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Abstract
Training machine learning (ML) models for scientific prob-
lems is often challenging due to limited observation data. To
overcome this challenge, prior works commonly pre-train ML
models using simulated data before having them fine-tuned
with small real data. Despite the promise shown in initial
research across different domains, these methods cannot en-
sure improved performance after fine-tuning because (i) they
are not designed for extracting generalizable physics-aware
features during pre-training, (ii) the features learned from
pre-training can be distorted by the fine-tuning process. In
this paper, we propose a new learning method for extracting,
preserving, and adapting physics-aware features. We build a
knowledge-guided neural network (KGNN) model based on
known dependencies amongst physical variables, which fa-
cilitate extracting physics-aware feature representation from
simulated data. Then we fine-tune this model by alternately
updating the encoder and decoder of the KGNN model to
enhance the prediction while preserving the physics-aware
features learned through pre-training. We further propose
to adapt the model to new testing scenarios via a teacher-
student learning framework based on the model uncertainty.
The results demonstrate that the proposed method outper-
forms many baselines by a good margin, even using sparse
training data or under out-of-sample testing scenarios.

Keywords: physics-aware features, knowledge-guided
neural networks, data mining

1 Introduction

Environmental processes involve complex interactions
amongst physical variables, such as weather, water, soil
conditions, plants, and microbes, at different spatial and
temporal scales. These processes, which jointly form the
cycling of energy, water, and carbon, are simulated by
existing physics-based models developed across many
scientific domains, such as climate science, hydrology,
agriculture, and meteorology [1, 2, 3, 4]. However, these
models often use approximations or parameterizations
due to incomplete knowledge or excessive complexity in
modeling certain processes [5, 6, 7].

Due to the importance of this problem, there is
an increasing interest in building data-driven machine
learning (ML) models for modeling environmental pro-
cesses in many societally important applications, such
as monitoring agriculture production [8], predicting wa-
ter temperature and streamflow [9], and forecasting
weather and climate [10]. As standard ML models

need large training data for capturing complex patterns
amongst all the physical variables, one promising direc-
tion is to transfer knowledge from physics-based mod-
els for training ML models [11]. In particular, prior
work has shown that ML models can achieve better
accuracy after being pre-trained using simulated data
generated by physics-based models, especially when ob-
servation data are scarce [12, 13, 14, 15]. Despite the
promise of initial research on this topic, these meth-
ods remain limited in model generalization due to two
reasons. First, they often use standard model archi-
tectures and training procedures in pre-training, which
cannot ensure learning generalizable features related to
physical processes. Second, the standard fine-tuning
process (over the entire model) adopted in these works
may distort useful features learned from large simulated
data [16, 17, 18], leading to the overfitting issue.

To address these challenges, we propose a new
method, Knowledge-Guided Pretraning, Finetuning,
and Adaptation (KGPFA), in the context of predict-
ing crop yield, which is critical for ensuring food se-
curity for the growing population nowadays. The pro-
posed KGPFA method uses simulated data and true
observations to train a customized ML model for mod-
eling complex physical processes through three learning
stages. First, we build a knowledge-guided model ar-
chitecture to embed physical information through the
pre-training process using simulated data generated by
physics-based models. Second, we develop a new fine-
tuning method, which alternately updates the decoder
and encoder of the ML model. The decoder is up-
dated while we freeze the encoder to maintain the ex-
tracted feature representation from the pre-training pro-
cess. Then the encoder is updated in a conservative
manner by reducing the model uncertainty for only the
training samples with significantly higher prediction ac-
curacy. Third, we conduct model adaptation in the
testing phase using a teacher-student approach. The
teacher model is updated using only confident samples
while preserving physical constraints, and then used for
guiding the training of the student model.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited715

D
ow

nl
oa

de
d 

04
/3

0/
24

 to
 9

6.
23

6.
21

8.
24

3 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



We evaluate the proposed method using real corn
yield data over a 21-year period in Iowa and Illinois, two
leading states of corn production in the United States.
The results demonstrate that our proposed method can
achieve good prediction accuracy in data-sparse and
out-of-sample scenarios. We also verify the effectiveness
of each step in the proposed KGPFA method.

2 Related Work

Recent research has shown immense success in integrat-
ing physics knowledge into ML models to improve pre-
dictive performance and solve general scientific prob-
lems. The most common ways include applying ad-
ditional loss functions [15, 19] and other hybrid ap-
proaches [20]. Our recent survey [11] summarized ex-
isting methods for integrating scientific knowledge into
ML models. For example, Hanson et al. [21] added eco-
logical principles as physical constraints into the loss
function of ML models to improve the lake phospho-
rus prediction. In a case to simulate the lake tempera-
ture, Karpatne et al. [19] introduced new training loss
to enforce the physical relationship that the density of
water at a lower depth is always greater than the den-
sity of water at any depth above. Then, our previous
works [15, 22, 23] further proposed new methods to re-
duce search space and improve prediction accuracy by
penalizing violations of energy and mass conservation.

Advanced ML models often require a large amount
of representative training samples, which can be expen-
sive to obtain in scientific applications. To address this
issue, one solution is to augment the model training with
simulated data generated by physics-based models un-
der varying yet realistic physical parameters. Prior work
has shown that simulated data generated by physics-
based models can be used to improve the prediction
through residual modeling [24] and augmentation of
model input [19]. Both of these methods aim to reduce
the complexity of the prediction task, but their per-
formance can still degrade for complex problems given
limited training samples. Prior work also investigated
another approach that pre-trains ML models using sim-
ulated data for either final output variables or interme-
diate physical variables, and found they can perform
much better under data-scarce scenarios in a range of
scientific applications [14, 15, 25, 26, 27, 28, 29, 30, 31].

However, the fine-tuning process is found to dis-
tort feature representation learned from the pre-training
phase [16]. This is likely to degrade the model generaliz-
ability, especially when real observations are sparse and
testing data are in a different distribution. An alterna-
tive approach is to freeze the pre-trained feature rep-
resentation and tune only a few remaining layers [32].
Prior work also employed this approach before fine-

tuning the entire model, and achieved better accuracy
and generalization performance [16]. Some other works
further investigated improving the fine-tuning process
by modifying the loss function [17] and creating addi-
tional synthetic samples [33].

Unsupervised model adaptation techniques have
been widely studied to enhance the prediction on the
target data (i.e., unlabeled testing data) with distribu-
tion shifts. Existing methods can be classified into two
categories, the methods with access to the source data
(i.e., labeled training data), e.g., domain adaptation [34]
, and the methods without access to the source data,
e.g., test-time adaptation [35, 36, 37]. These approaches
refine the model during the testing phase either by re-
ducing the distributional gap between the source and
target data [34], or by optimizing additional objectives,
e.g., entropy [36] and rotation prediction [35].

3 Problem definition

The objective of this work is to predict the county-
level yield for corn in target years. For each county,
we are provided with daily input features within each
year. Specifically, we use the index i to represent
a specific combination of a county and a year, and
the input features for the sample i are represented as
xi = {x1

i ,x
2
i , ...,x

T
i }, where T = 365 in a non-leap

year. The daily features xt
i include weather drivers

(e.g., precipitation, solar radiation), and soil and crop
properties. The feature values are obtained as the
average of the variable values from a set of randomly
sampled farm locations in each county. More details
can be found in Section 5.2. Additionally, we have
the access to the yearly crop yield labels Y = {yi}
from agricultural surveys in the training set R. In the
testing set T , we only have the input features but do
not have the crop yield labels. We create the training
and testing sets by splitting the available data based on
different years while keeping the same set of counties
across training and testing data.

In addition to the real crop yield dataset, we also
run the physics-based Ecosys model [1] to simulate crop
yield. We use S to represent the simulated dataset on a
set of combinations of (counties, years). Another ben-
efit of the physics-based model is that it can simulate
intermediate physical variables in the crop growing pro-
cess, such as variables involved in carbon cycling (e.g.,
autotrophic respiration (Ra), heterotrophic respiration
(Rh), and net ecosystem exchange (NEE)). It is note-
worthy that physics-based models are often biased as
they are necessarily approximations of reality. Hence,
the simulations can only be used for weak supervision.
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4 Method

In this section, we will describe the proposed KGPFA
method, which is outlined in Fig. 1. The proposed
method aims to extract physics-aware features through
pre-training, preserves the learned features in fine-
tuning, and adapts the features to the new environment
during the test phase. In particular, we first introduce a
knowledge-guided neural network (KGNN) model that
integrates known physical knowledge to enhance the
pre-training from simulated data. Next, we decompose
the KGNN model into the encode and decoder compo-
nents and fine-tune them alternately using real data.
In the fine-tuning phase, the decoder is updated to
transform learned physics-aware feature representation
to better fit observed data samples while the encoder is
updated moderately to refine physics-aware features to
mitigate bias learned from the simulated data. Finally,
we propose an adaptation method to update the KGNN
model in the testing phase. A separate teacher model
is constructed to guide the adaptation of the KGNN
model, and the teacher model is trained in a conserva-
tive manner using only confident samples.

4.1 Knowledge-guided networks for pre-
training. Environmental processes in agricultural
systems involve the interactions amongst different
physical variables (e.g., weather, soil conditions, plant,
and respiration). These variables can be either observed
or unobserved. These processes, which jointly form the
cycling of energy, water, and carbon, are simulated by
existing physics-based [1, 2, 3, 4] through a series of
mathematical equations. However, these models often
use approximations or parameterizations, and also
require high computational cost [5, 6, 7].

Standard ML models need large training data for
capturing complex patterns among all the physical vari-
ables. Recent research in integrating physical knowledge
into ML has shown promise in a variety of scientific ap-
plications [11]. Despite the promise of initial research on
this topic, existing KGNNmodels remain limited in cap-
turing inter-dependencies amongst multiple processes in
complex systems.

We aim to build a new KGNN with a cus-
tomized network structure that is consistent with exist-
ing physics-based models. This entails an interpretable
and differentiable model architecture by ascribing phys-
ical meaning to intermediate network outputs. A ma-
jor advantage of this method is the ability to output
many intermediate variables in addition to the final tar-
get variable (e.g., yield), which enables interpreting and
tracking the states of the target systems and applying
relevant physical constraints over different physical vari-
ables (e.g., the conservation of mass and energy).

In the context of predicting crop yield, we take
weather and soil variables as input drivers to simu-
late the carbon cycle in the crop growing process. The
KGNN architecture used in this work is illustrated in
Fig. 1. Starting from the sequence of daily input fea-
tures xt

i, we first use long-short term memory (LSTM)
layers to embed the temporal patterns in the input
data, as {ht

i}Tt=1 = LSTM({xt
i}Tt=1). Then we trans-

form the LSTM embeddings through two separate fully-
connected network branches, to embed plant-related
and soil-related information, respectively. We use hpt

i

and hsti to represent the obtained plant-related embed-
ding and soil-related embedding, respectively.

Next, we simulate three key variables in the carbon
cycle: (i) the ecosystem autotrophic respiration (Ra)
is generated from the plant-related embedding, (ii) the
ecosystem heterotrophic respiration (Rh) is generated
from the soil-related embedding, and (iii) the net ecosys-
tem exchange (NEE) is generated from the concatena-
tion of plant-related and soil-related embeddings. The
entire carbon cycle can be captured by a mass conser-
vation relation, as −NEE = GPP − Ra − Rh, where
GPP represents the gross primary production, and can
be estimated from remote sensing. The estimated GPP
values are available over large regions and thus are used
as input to the KGNN model.

During the pre-training phase, we are provided with
the simulated values for Ra, Rh, NEE generated by the
physics-based Ecosys model. Then we define a mean
square error (MSE)-based loss function for measuring
the difference between KGNN-predicted values (denoted

by”Ra, ”Rh,’NEE) and the simulated values, as follows:

(4.1)

Lsim =
∑
i

∑
t

(||Rati −”Rati||2 + ||Rhti −”Rhti||2
+ ||NEEt

i −’NEE
t

i||2)/(|S|T )

We also define a physical loss that measures the
violation of the mass conservation law, as follows:
(4.2)

Lphy =
∑
i

∑
t

(GPPt
i −”Rati −”Rhti +’NEE

t

i)
2/(|S|T )

Besides, we generate the target variable, i.e., crop
yield ŷi, from the plant-related embedding {hpt

i}Tt=1.
As the crop yield is available yearly while the input is
available daily, we use an attention layer to aggregate
the plant-related embeddings over time and generate
predictions, as follows:

(4.3)
ŷi = f(

∑
t

αt
i hp

t
i),

{αt
i}Tt=1 = softmax({g(xt

i)}Tt=1),
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Figure 1: The overall flow of the proposed KGPFA method. The left side shows the KGNN model architecture.
The encoder and decoder are trained alternately in fine-tuning. Given new testing data, a teacher-student learning
framework (on the right side) is proposed to adapt the learned KGNN model to the unlabeled testing data based
on the confidence estimates.

where αt
i denotes the attention weight at time step t,

and is normalized over all the time steps through a
softmax function. The transformation functions f(·)
and g(·) are implemented using fully connected layers.
Then a supervised MSE loss is defined to measure the
difference between predicted crop yield and simulated
crop yield ỹ, as Lsup =

∑
i(ŷi − ỹi)

2/|S|.
The complete pre-training loss combines the afore-

mentioned loss functions, as follows

(4.4) Lpre = Lsup + Lsim + λLphy,

where λ is a hyper-parameter to control the weight of
physical loss. In our implementation, we use normal-
ized values for Ra, Rh, NEE, and yield in computing
Lsup and Lsim, and do not include additional hyper-
parameters to balance their weights.

4.2 Alternate fine-tuning using real data.
Given limited observation data, We need to fine-tune
the pre-trained model to fit the real environment and
mitigate the bias in simulated data. However, prior
studies found that directly fine-tuning the entire neural
network model is likely to distort informative features
learned through pre-training [16], and thus undermine
the model generalizability. To overcome this issue, we
decompose the KGNN model into the encoder and de-
coder (as shown in Fig. 1) and fine-tune them alterna-
tively in different ways.

Encoder tuning aims to refine the physics-aware
feature representation to mitigate the bias learned from
simulated data. Since we do not have access to interme-
diate variables (e.g., Ra, Rh, NEE) in real observations,
we will refine the encoder in a conservative way so that
the learned feature representation is not distorted.

In particular, we propose to tune the encoder by re-
ducing the model uncertainty on samples with low pre-
diction errors. To quantify the uncertainty, we assume
the observations follow a Gaussian distribution with the
mean of ŷti (i.e., the original predicted value) and the
standard deviation of σ̂. We create an additional net-
work branch from the plant-related embedding hp to
predict the standard deviation from the plant-related
embedding. Before alternative training starts, This ad-
ditional branch is first trained separately by minimizing
the negative log-likelihood (NLL) on real training data.
The NLL for each data sample i is defined as follows:

(4.5) Lnll =
log 2π(σ̂t

i)
2

2
+

(yti − ŷti)
2

2(σ̂t
i)

2
.

Here we omit the constants in the NLL. It is also
noteworthy that we add the uncertainty modeling (i.e.,
the prediction of σ̂) in fine-tuning with real data, but
not in pre-training. This is because the real observations
can be affected by minor environmental factors that are
not considered in generating simulated data.

When tuning the encoder, we will optimize the
encoder to reduce the uncertainty on a selected set of
’easy’ samples E ⊆ R, which will be discussed later.
Instead of directly minimizing their uncertainty (i.e.,
variance or standard deviation), we use the same NLL
objective on these selected training samples in our tests
because it also ensures that the predicted values remain
close to the true observations (the last term in Eq. 4.5).

To conduct conservative tuning, we select only
’easy’ samples, i.e., the samples that can be well pre-
dicted by the current model, i.e., E = {(xi, yi)} ⊆ R
that satisfy |KGNN(xi) − yi| < τ , and τ is a perfor-
mance threshold. To determine the threshold, we adopt
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a statistical test, where the null hypothesis H0 states
that the prediction error ei = |KGNN(xi) − yi| for all
the training samples follow a single normal distribution
while the alternative hypothesis H1 states that there
exists a subset of samples U ⊆ R, and their prediction
errors err(U) follow a different normal distribution from
the errors of the remaining samples U ′. Here U can be
either the ’easy’ or ’hard’ samples. The optimal set U

can be obtained by solving argmaxU log Likelihood (H1|U)
Likelihood (H0)

.

According to our prior work [38], this can be solved
by minimizing the sum of the variance of err(U) and
err(U ′). Hence we can select the threshold γ that leads
to the smallest value of Var(err(U)) + Var(err(U ′)),
where Var denotes variance.

Decoder tuning aims to modify how the physics-
aware feature representations are transformed into the
output variables while fixing the physics-aware feature
representations. Before we start tuning the decoder,
we reweight all the samples based on prediction errors,
as wi = (ei −min{ei})/(max{ei} −min{ei}) + 1. The
sample weights range in [1, 2], and the training samples
with larger errors have higher weights. Then we tune
the decoder using a weighted MSE loss, as follows:

(4.6) Lwmse =

∑
i∈R wi(yi − ŷi)

2

|R|
.

Traditional unweighted training often compromises
the performance on a subset of samples in exchange for
better overall prediction. In the proposed approach,
the sample weights are re-estimated every few epochs,
which ensures that the decoder training improves the
prediction over diverse training samples with worse
performance. This approach also helps improve the
model’s generalizability.

4.3 Adaptation to the testing environment We
now introduce the adaptation method to transfer the
learned model to the testing data. In contrast to the
fine-tuning process, the adaptation only has access to
the input features of testing samples but not their labels
(i.e., crop yield y). We will leverage the uncertainty
measures learned from the fine-tuning phase as proxies
for prediction performance, and use them for selecting
samples and guiding the adaptation process.

In particular, we propose to conduct model adapta-
tion via a teacher-student learning framework. The idea
is to construct a teacher model using only confident sam-
ples in the new environment and then use the teacher
model to guide the original KGNN model, i.e., the stu-
dent. Specifically, we select confidence samples based
on an uncertainty threshold, which is determined based
on the easy-to-hard sample partitioning in the previous
fine-tuning phase. In particular, we consider the range

of standard deviation σ for easy samples in the training
set R as [a,b] and the range of for the hard samples in
R as [c,d]. For reasonable uncertainty measures, they
are often related to prediction errors, and thus we have
the relation a < c < b < d. We set the uncertainty
(standard deviation) threshold as (b + c)/2, and then
use it to identify confident samples, i.e., σ̂i < (b+ c)/2.

We will use the selected confident samples to train
the teacher model by minimizing the NLL loss (Eq. 4.5)
by setting the labels y as the current model predictions.
The intuition is to further reduce the uncertainty on
the confident samples while maintaining the prediction
values. After training the teacher model, we will apply
the obtained teacher model to the testing data, which
produces the estimated prediction mean and standard
deviation for each test sample, which are represented by
µ̃i and σ̃i, respectively.

Next, we will use the output of the teacher model
(i.e., predicted mean values {µ̃t

i}) as labels to train
the student model. As the teacher model is trained
using confident samples in the testing data, it has a
better chance at identifying samples that cannot be
handled by the current model by increasing the modeled
uncertainty. Hence, we will reweight different testing
samples based on the standard deviation σ̃i estimated
by the teacher model. For each sample i, its weight is
equal to w̃i = η(1/σ̃i), where η(·) is a normalization
function over all the test samples. It can be seen that
the testing samples with lower uncertainty have higher
weights. The final loss for the student model is

(4.7) Lstu =

∑
i∈T w̃i(ŷi − µ̃i)

2

|T |

In our tests, we also added the physical loss
(Eq. 4.2) when training both teacher and student mod-
els. We also tested different tuning strategies, either
tuning the entire model or only the decoder in the adap-
tation phase, and observed similar performance.

5 Experimental Results

5.1 Dataset We use the corn yield data in Illinois
and Iowa from the years 2000-2020 provided by USDA
National Agricultural Statistics Service (NASS) 1. In
particular, there are in total 199 counties in our study
region (100 counties in Illinois and 99 counties in Iowa).
The corn yield data (in gCm−2) are available for each
county each year. The input features have 19 dimen-
sions, including NLDAS-2 climate data [39], 0-30cm
gSSURGO soil properties 2, crop type information, the

1https://quickstats.nass.usda.gov/
2https://gdg.sc.egov.usda.gov/
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250m Soil Adjusted Near-Infrared Reflectance of vegeta-
tion (SANIRv) based daily GPP product [40], and cal-
endar year. Moreover, we use the physics-based Ecosys
model [1] to simulate Ra, Rh, NEE, and crop yield for
10,335 synthetic sample locations in the United States
from the years 2001-2018.

5.2 Evaluation details We conduct experiments to
answer the following questions:

• Q1. Whether the proposed method can improve
the predictive performance, especially when the
training data are sparse?

• Q2. What is the effect of the alternate fine-tuning
in enhancing the prediction?

• Q3. Can the proposed method improve the predic-
tion under out-of-sample testing scenarios?

• Q4. Whether the knowledge-guided network model
can preserve the mass conservation?

We implement the proposed model using GTX 3090
24GB GPU and AMD Ryzen 9 5950X 16-Core 3.40
GHz Processor with 64GB RAM. The training uses the
ADAM optimizer [41] with an initial learning rate of
0.002. The LSTM outputs, hp, and hs have 64 dimen-
sions, the embeddings hp and hs are then transformed
through a two-layer fully connected network (the first
layer with 32 dimensions) to produce the output vari-
ables. The weight hyper-parameter for the physical loss
is set to be 0.1.

We implement a diverse set of methods:
• LSTM-ATT uses only the LSTM to transform
input features and then uses the attention layer to
predict the yield [23].

• KGNNAG is based on the proposed KGNN archi-
tecture, and uses simulated data to augment the
training, i.e., having both simulated and real train-
ing data in the loss function with equal weights.

• KGNNFT directly fine-tunes all the parameters in
the KGNN model after being pre-trained on the
simulated data.

• KGNNLP fine-tunes only the decoder layers in
KGNN, as inspired by previous work [16].

• KGPF fine-tunes KGNN using the proposed fine-
tuning method (Section 4.2).

• KGPFDA adapts the model to the target data using
the adversarial domain adaptation approach [34].

• KGPFTT adapts the model by test-time training
on an additional task, as inspired by [35]. The
additional task aims to predict GPP from other
input features (by masking out GPP from input).

• KGPFA is the proposed three-stage method.

5.3 Predictive performance Table 1 summarizes
the testing performance of different methods on the

Table 1: The prediction root mean squared errors
(RMSE) by different approaches using the training data
from the last 2, 5, or 18 years before 2018. The
performance is measured on the next three years 2018-
2020 as testing years.

Method 2 years 5 years 18 years
LSTM-ATT 64.129 50.030 44.719
KGNNAG 58.309 46.553 39.053
KGNNFT 58.308 46.551 38.905
KGNNLP 55.130 44.862 38.528
KGPF 48.202 42.557 36.591
KGPFDA 56.615 44.414 38.260
KGPFTT 48.013 42.137 36.136
KGPFA 47.838 41.714 34.818

years 2018-2020. We also test each method using
different numbers of years of real data for training.

It can be seen that the proposed KGPFA outper-
forms other methods by a considerable margin. The
improvement can also be seen from the spatial distri-
bution of prediction errors, as shown in Fig. 2 (a)-(c).
As we reduce the training data, all the methods have
degraded performance. Nevertheless, KGPFA has led
to substantial performance improvement compared to
most baselines even with limited training data.

Besides, we have the following observations. First,
KGNNAG performs better than LSTM-ATT, which
demonstrates the benefit of using the physics-aware
model structure and the simulated data in the learning
process. Second, KGNNLP and KGPF perform better
than KGNNAG. This is because KGNNAG directly uses
the combination of simulated and real data in tuning
the entire model but can be affected by the bias in
simulated data. KGNNLP does not perform as well
as KGPF because it only updates the decoder while
the extracted physical features may also need to be
updated. Third, the adaptation approaches KGPFTT

and KGPFA improve the performance compared to
KGPF. This shows the need for model adaptation. The
domain adaptation method KGPFDA does not perform
well compared to other adaptation methods. This is
because it focuses on reducing the distributional gap
between training and testing input data but may not
preserve the discriminative information about yield.

5.4 Analysis on model tuning We study the
change of prediction performance in the fine-tuning
process over training epochs, as shown in Fig. 3. It
can be seen that the standard linear probing method
over the KGNN model (KGNNLP) also improves the
performance when the fine-tuning starts, but after
more epochs it cannot further improve the performance
because it only modifies the transformation on the
fixed feature representation. In contrast, the proposed
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(a) (b) (c) (d)

Figure 2: (a)-(c) The spatial distribution of prediction errors (RMSE) over different counties by (a) KGNNFT, (b)
KGPF, and (c) KGPFA. (d) The uncertainty value, i.e., the standard deviation, measured by the KGPF method.
The results (a)-(d) in each county are averaged over three testing years.

Figure 3: The change of performance over epochs for
KGNNLP and the proposed KGPF methods.

method alternately updates the encoder and decoder
and leads to consistent improvement.

According to the method described in Section 4.3,
the quantification of model uncertainty by the KGPF
model (before the adaptation) is the key to the success
of the adaptation process. We illustrate the estimated
uncertainty (standard deviation) of the KGPF model in
Fig. 2 (d). It can be observed that the uncertainty is in
general consistent with the distribution of prediction er-
rors presented in Fig. 2 (b). Therefore, the uncertainty
measures can be used as proxies to pick testing samples
that can be well predicted by the current model.

5.5 Out-of-sample performance To test the ca-
pacity of the proposed method under out-of-sample sce-
narios, we conduct another experiment by testing the
model on the three years with extreme weather condi-
tions (2002, 2003, and 2012) and training on the re-
maining 18 years. In Fig. 4, we show the results of
different methods when tested in the years with ex-
treme weather and the last three years (2018-2020).
We can observe that all the methods perform much
worse when tested in extreme weather conditions as
the testing data are in a different distribution. The

Figure 4: The testing performance of different ap-
proaches on years with extreme weathers (2002, 2003,
2020) vs. the years 2018, 2019, and 2020.

results show that KGPF substantially improves the per-
formance compared to LSTM-ATT and KGNNAG in ex-
treme weather conditions as the proposed fine-tuning
approach to some extent preserves the physically mean-
ingful features learned through pre-training. The pro-
posed adaptation approach also slightly enhances the
testing performance, i.e., RMSE 53.95 for KGPFA vs.
55.63 for KGPF.

5.6 Validation of mass conservation Next, we
verify that the results produced by the proposed method
are indeed consistent with known physical laws. Specif-
ically, we validate the conservation of mass between
GPP, NEE, Ra, and Rh in the testing years, as shown
in Fig. 5 (a). We implement a model that predicts Ra,
Rh, and NEE (with supervision in synthetic data) but
does not consider their relationship. When applied to
the testing period 2018-2020, this model significantly vi-
olates the mass conservation. In contrast, the proposed
method leads to a much smaller degree of violation, i.e.,

GPPt
i −”Rati −”Rhti +’NEE

t

i, over the entire testing pe-
riod. Fig. 5 (b) also shows that the performance is stable
when the weight of physical loss is above 0.1.
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(a) (b)

Figure 5: (a) The violation of mass conservation law,

i.e., GPPt
i − R̂a

t

i − R̂h
t

i + ˆNEE
t

i, over time in the testing
period. The value is averaged over all the counties
in our study region. The two curves represent the
complete version of KGPFA and the KGPFA without
using the physical loss (Eq. 4.2). (b) The change of
prediction performance by KGPF and KGPFA when
using different weights for the physical conservation loss.

6 Conclusion

This paper proposes a new multi-stage learning method
for extracting, preserving, and adapting physics-aware
features. We first build a KGNN model for extract-
ing physics-aware feature representation through pre-
training from simulated data generated by physics-
based models. Then we propose a fine-tuning approach
that alternately updates the encoder and decoder in the
KGNN model to enhance the prediction while preserv-
ing the learned physics-aware features. Next, we con-
duct unsupervised adaptation to transfer the model to
the testing data using proxy labels from a conservative
model as a teacher. The results demonstrate that the
proposed method can substantially improve the predic-
tion accuracy, even using sparse training data or un-
der out-of-sample scenarios. Besides, we analyze the al-
ternate training procedure in the proposed fine-tuning
approach, and show that the uncertainty estimates ob-
tained after fine-tuning can reveal the general patterns
of model prediction errors. This ensures that truly con-
fident samples can be selected in the adaptation process
for training the teacher model. Additionally, we show
that the proposed method indeed preserves the mass
conservation.

The proposed method is generally applicable to
many disciplines, (e.g., freshwater science, hydrology,
climate science, and material science) in which physics-
based models are being used for modeling interacting
and evolving processes. Future directions include (i)
exploring more advanced KGNN structures in repre-
senting complex physical systems (e.g., [29, 42]), and
(ii) extending the uncertainty quantification approach
to consider the uncertainty from different sources.
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