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ABSTRACT
With the recent rapid advances of revolutionary AI models such
as ChatGPT, foundation models have become a main topic for the
discussion of future AI. Despite the excitement, the success is still
limited to specific types of tasks. Particularly, ChatGPT and similar
foundation models have unique characteristics that are difficult to
replicate for most geospatial tasks. This paper envisions several
major challenges and opportunities in the creation of geospatial
foundation (geo-foundation) models, as well as potential future
adoption scenarios. We also expect that a major success story is
necessary for geo-foundation models to take off in the long term.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Informa-
tion systems → Spatial-temporal systems.
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1 INTRODUCTION
While ChatGPT and similar foundation models for generative tasks
have fueled huge excitement around AI and raised the expectation,
the success is still limited to specific types of tasks. Recent discus-
sions have considered various possibilities of adopting ChatGPT
for language-related tasks in geospatial fields [14, 16]. However,
through a closer look, we can find there are unique characteristics
of these foundation models that make them hard to adapt to general
geospatial tasks. In this paper, we envision several major challenges
and opportunities in the development of geo-foundation models, as
well as potential adoption scenarios. We start with a brief overview
of the current status of foundation models and GeoAI as follows.
*Yiqun Xie and Zhaonan Wang contributed equally to this research.
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1.1 Success Stories from Broad AI
1.1.1 Imitating Human Behaviors. The term Artificial Intelligence
(AI), originally coined in 1950s, refers to a machine’s ability to do
tasks that require human intelligence. This field has undergone ups
and downs, and recently become tangible to everyone’s life because
of the revolutionary milestone of ChatGPT. It is essentially powered
by a Large Language Model (LLM), namely Generative Pre-trained
Transformers (GPT), to simulate human-like conversations with
users. LLMs such as ChatGPT and other generative models such as
DALL-E 2 are major success stories that are able to imitate human
behaviors while being substantially more efficient.

1.1.2 Surpassing Human Capabilities. There are also specific cases
where AI algorithms reach beyond-human performance, such as Al-
phaGo on playing the board game Go and AlphaFold on predicting
complex 3D protein structures. While these are brilliant successes,
each effort tends to take a huge amount of resources and there are
only very few successes to date for specific applications.

1.2 Foundations of "Geo"-AI are Still Needed
"Geo"-AI has been researched for many years. However, the neces-
sity of the term "Geo" from the technical perspective still needs to
be thoroughly developed to establish its foundations. This means
that, especially in the long term, GeoAI should not be only applying
general AI methods to geospatial data. Instead, it should represent
a family of spatially-oriented AI methods that explicitly address
the challenges posed by geospatial data (e.g., spatial heterogeneity,
spatial data representation learning, etc.), which violate certain
assumptions of general AI methods and cannot be well-addressed
without GeoAI. These foundations are much needed for further
research on "Geo" foundation models. Otherwise, it would just
be typical foundation models being applied to geospatial datasets,
which does not justify the "Geo" prefix - having a prefix for each of
the numerous domains using AI is the same as having none.

2 MAJOR CHALLENGES
2.1 Challenges in Replicating the Success of

"ChatGPT" and Generative Models
While LLMs such as ChatGPT have shown revolutionary success
and demonstrated strong capabilities in a variety of language-based
and generative tasks, the success can be hard to translate to many-
geospatial problems. The success of ChatGPT-type of foundational
LLMs (and broad generative models) has two important ingredients:
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Figure 1: Challenges and opportunities for
geo-foundation models.

(1) A very large model with a number of parameters at billions-to-
trillions level; and (2) Self-supervised learning (SSL) based pretrain-
ing [11]. Specifically, there are several characteristics of the SSL
component that are non-trivial to replicate:
• Tight alignment between SSL and real-tasks: SSL is mainly
used for pretraining large models, which are otherwise very
difficult to train due to their huge amount of parameters. The
usefulness of SSL depends on the alignment between SSL (a.k.a.
pretext) and downstream tasks [20]. In text-related tasks such as
language generation or chatting, the commonly used SSL tasks
(e.g., word masking and prediction) can be well-aligned with the
actual downstream NLP tasks. This is similar to general genera-
tive tasks in computer vision. For example, the objective of GAN
or diffusion models directly aligns with the task of realistic im-
age generation [11]. However, many geospatial problems, except
a few such as trajectory generation/classification (e.g., [7]), do
not naturally have SSL tasks whose objectives are tightly aligned
with the downstream applications. For example, in satellite-based
flood mapping, the goal of classifying "flooded" vs "non-flooded"
is not directly related to existing SSL tasks such as inpainting.

• Imitating humans with human-generated "labels": As AI
aims to imitate human intelligence, most AI models learn from
human-generated labels. This is nearly ideal for text-related lan-
guage problems, as text – no matter fromWikipedia, books, news,
online chats, forums, code repositories, or elsewhere – is mostly
created by humans with careful thinking. Thus, in some sense,
the vast amount of data being leveraged in SSL for text-related
tasks is not just regular data, but “annotated” data containing
human-generated labels. This is highly different from other tasks
such as computer vision, where the photos/videos do not contain
human-generated labels needed for most applications. For exam-
ple, to train an object detector in self-driving cars, we still need
additional manual effort to label these scenes, which significantly
constrains the amount of labels. This is even more challenging
for many geospatial tasks where field work or expensive in-situ

sensors are commonly needed for label collection [19] (more
details in Sec. 2.2).

• Significant contribution from broad population:While both
texts in articles and object annotations in images (or other labels)
are human-generated content, a key distinction between the two
can make it very difficult to have a similarly large human-labeled
dataset in broad applications beyond text-related language prob-
lems. The difference is that most of the text-based materials are
generated as an essential part of the creators’ daily life, such
as work, recreation, or other communications. However, labels
such as object annotations in images are not, and they are mostly
created with the pure purpose of training or evaluating machine
learning models, significantly confining the possible amount of
contribution. Not only that, the text data are generated by a
substantial proportion of the broad population. Such a level of
human-generated content is off-the-chart and difficult to obtain
for broad tasks including many geospatial problems.
Thus, SSL with super large models may be a perfect recipe for

text-related language problems as well as general generative prob-
lems (e.g., image/video generation),1 the success may not be easily
achievable in many important geospatial problems.

2.2 Challenges in Building the Datasets
Creating large and representative datasets for many geospatial
problems can be challenging due to the following aspects: (1) High
cost: Geospatial problems not only occur in highly developed coun-
tries and urban areas. Many of the most pressing issues facing our
society – such as food security, wildfires and climate change – are
closely related to rural or less developed regions, where the cost
of ground-truth collection is very expensive. For example, field
surveys are still one of the most common ways in large-scale crop
monitoring for label collection [19]. (2) Expert knowledge:While
citizen science platforms can be leveraged to increase participa-
tion from general population or internet citizens, labeling in many
geospatial problems require certain expertise from training, such
as recognizing different species of trees (over hundreds) and crops,
identifying cropland with nutrient deficiency, classifying types of
sea-ices, etc. (3) Distribution shifts in space:Geospatial problems
often concern decisions and phenomena at large scales over time.
Considering fundamental properties such as spatial heterogeneity
[4, 21], this requires labels to be representative over space to cover
the distribution shifts and localized efforts often do not generalize.

2.3 Challenges in Generalization
A motivation for building foundation models is to improve general-
izability. In geospatial problems, the term "generalizability" should
consider at least two different dimensions. First, it covers different
types of tasks, which is similar to LLMs and so on. Second, it also
needs to consider spatial generalizability within each task, which
means the model should be able to adapt to different geographical
regions and locations. This spatial generalization problem is com-
monly faced by practitioners in the geospatial domain. While the
concept of a foundation model is attractive, it can be challenging to

1SSL tasks in the image-generation type of problems can be tightly aligned with the
target real task and only require images/videos as input without major manual labeling
efforts.
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build a single model that fits all due to the fundamental property of
spatial heterogeneity or variability. Given the physical and social
complexity of real-world scenarios, our observations (i.e., features
X) tend to be partial about the entire phenomena or events. The
unobserved features (e.g., certain environmental conditions), how-
ever, are most likely not fixed constants over space [4, 21]. This
potentially introduces conflicts between different locations, where
similar observed features can correspond to different labels.

3 WHAT’S NEXT?
3.1 Success Modes and Opportunities
3.1.1 Task-oriented Foundation Models. Due to the spatial general-
ization challenge, forcing multiple tasks into one foundation model
may introduce conflicts in training, considering that spatial hetero-
geneity or variability patterns can be different for different tasks.
Thus, at the early stage, scoping down and building task-specific
foundation models may help smooth the path. Such foundation
models can focus on spatial generalization within individual tasks,
which is already a major "geospatial" feat if successful. We envision
several opportunities: (1) Task-aligned self-supervised learn-
ing: The alignment between SSL tasks and downstream tasks can
directly impact the quality of pre-training [20]. In the ideal case,
if an SSL task T𝑆𝑆𝐿 is a dual (equivalent) problem of the original
task T𝑟𝑒𝑎𝑙 , then the SSL task T𝑆𝑆𝐿 can replace the need of human-
labeled data in the supervised setting. Thus, the key is to design
a task T𝑆𝑆𝐿 to resemble T𝑟𝑒𝑎𝑙 as close as possible. As a concrete
example, Auto-CM defines an SSL task for the problem of cloud
masking in satellite imagery, where the decrease of the loss on the
SSL task directly depends on the model’s ability to mask out clouds
[23]. This dependency enforces the network to develop the ability to
solve the original problem. (2) Heterogeneity-aware spatial sub-
tasking: The ability to handle spatial heterogeneity is necessary
for building a spatially generalizable foundation model. To achieve
this, heterogeneity-aware learning frameworks are needed to rec-
ognize different data distributions and create sub-tasks with private
parameters to resolve potential conflicts [21]. Sub-tasking alone
does not address data imbalance issues over space, and advances in
spatial adaptation and finetuning are needed for generalization to
data-sparse regions. Physics- or process-based models built upon
scientific theories may also be leveraged to enhance generalization
in data-limited scenarios [10].

3.1.2 Bridges to Data-Rich LLMs. With advances in multi-modal
learning, it is possible for non-text tasks to leverage latent features
in LLMs that can be trainedwith huge datasets (e.g., vision-language
pre-training[3]). Geospatial tasks can leverage this multi-modal po-
tential, and the success will depend on the bridge-building ability
between data-sparse and data-rich tasks. Recent examples of multi-
modal learning between geographical information and text include
geocoding [5] and scene classification for satellite images [17], but
the level of success is still rather limited compared to the capabil-
ities brought by LLMs. Spatiotemporal information may also be
explored to combine with other modalities to improve prediction
performance [7, 8, 15, 23].

3.1.3 Major Data Collection Efforts. To achieve generalizability
via geo-foundation models, representative data collection is likely

an essential step towards real success stories. While the data vol-
ume may not reach the level of LLMs’ any time soon (Sec. 2.1, we
anticipate that major data collection efforts will be carried out as
they start to become the actual bottlenecks. Major investments or
innovations may be required to build such datasets, and we en-
vision the following opportunities: (1) High-incentive spatial
schemes: The ground-truthing work may require strong incen-
tives from the broad public to contribute. As many tasks require
in-field observation beyond simple picture-looking (e.g., Amazon
Mechnical Turk), new types of platforms may be needed with new
payment and validation methods that explicitly consider spatial
characteristics. (2) AI-assisted labeling: As general foundation
models continue to mature, some can potentially be leveraged or
customized to accelerate labelling for certain tasks. For example,
CVAT has included recent models such as the Segment-Anything-
Model [12]. While these models are still far from mature for direct
automation in related geospatial tasks, they can be easily used as as-
sistants. (3) Low-cost sensors: We also envision low-cost sensors
to be more broadly deployed in combination with sparser installa-
tion of high-precision sensors as a way to collect in-situ labels (e.g.,
carbon emission, water level) at large scales to enable spatial gen-
eralization. (4) Collaboration: Academia-industry-government
collaboration may be needed to enable geo-foundation models, as
the data collection requires resources at scale (both monetary and
human) beyond what are currently available to most academics.

3.1.4 Natural Language and Coding Tasks. The discussion above
refers to more general geospatial tasks. For certain specific tasks,
we expect the LLM-type of success to be more reproducible thanks
to task similarities to LLM tasks. In principle, tasks that can be
converted into standard coding should be lower-hanging fruits by
prompting with LLMs. For example, spatial data processing, query-
ing, and analysis workflows that can be formulated using Python
code snippets with well-documented libraries can be generated
by natural language commands. Geoparsing, as another instance,
could be performed by zero-shot inference [14]. While these tasks
are more direct applications of existing LLMs, they could substan-
tially reduce manual efforts on such common procedures. Problem
reformulation is another short-term possibility, where the similarity
between the sequential structure of language and certain geospatial
tasks can be leveraged to enhance the performance, such as POI
recommendation [9, 13], activity detection [7], etc.

3.2 Adoption Scenarios
3.2.1 A Few Foundation Models. We envision that a more conserva-
tive scenario will be a few widely-adopted geo-foundation models
being built or customized for geospatial problems. We expect to
see task-oriented geo-foundation models (Sec. 3.1.1) appear first
before more general versions can be developed. Such task-oriented
models may also evolve into domain-oriented models that cover
many tasks from the same application domain such as transporta-
tion and agriculture. To build more general geo-foundation models,
major changes or advances in geospatial data generation (labels)
may need to happen (Sec. 3.1.3).

3.2.2 Foundation Models for Everyone. A more radical or non-
conservative scenario is that geo-foundation models may become a
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replacement for our current deep learning models, just being big-
ger in size. A decade ago, training a deep neural network can be a
luxury practice that can only be done by a few; they were also con-
sidered super-size models by the old standard. With advancements
in software and hardware, deep learning models have become some-
thing that most researchers can easily train and use. Thus, it is not
impossible that in the longer term, most of us will start to build
and use these now-super-size models in our regular research activi-
ties. However, this may make the original meaning of "foundation
models" disappear. In either scenario, efforts are needed to establish
building blocks of "geospatial" AI for foundation models.

4 WHAT’S A GAME CHANGER?
To establish geo-foundationmodels, we envision that a game changer
will be the release of a spatially-generalizable model, which robustly
surpasses the performance of existing models at large scales and
is broadly adopted by important real-world applications such as
agriculture or transportation. This is needed to demonstrate the
feasibility and practical value of geo-foundation models and es-
tablish the confidence of end-users and research communities. It
is important to recognize that for geospatial problems in many
critical sectors, the most common machine learning models being
adopted in real products are still the very traditional methods, such
as decision trees and random forests, even for tasks where deep
learning or foundation models are thought to be good at. For exam-
ple, USDA’s Cropland Data Layer, as the most commonly used crop
map for the US, still uses decision trees to generate a base map for
manual refinement [2]. Thus, it is important to establish a real suc-
cess story, even with a limited scope, before geo-foundation models
can take off. In addition, a successful geo-foundation model needs
to demonstrate unique capabilities to handle geospatial challenges
– other than being one of the numerous customizations – to have
long-term impacts.

5 OTHER ASPECTS: ETHICS AND MORE
This paper’s discussion focuses on the aspects of technical feasibil-
ity related to the model performance. It is important to note that
there are other aspects such as responsibility, fairness, ethics and
sustainability that have been broadly discussed around foundation
models [1], where most apply to geo-foundation models. Here we
briefly discuss two unique aspects to consider in geo-foundation
models: (1) Locational fairness: The large degree of freedom in
deep neural networks has been shown to be easily biased over
locations, where performances in certain regions can be largely
compromised to chase a global score. Locational fairness metrics
and frameworks (e.g., [6, 22]) need to be explicitly incorporated into
geo-foundation models. (2) Environmental justice: The training
of geo-foundation models can cause excessive carbon emissions and
environmental problems. However, themodels are likely not equally
useful for people from different backgrounds and geographic re-
gions [18]. Advances in AI training or new policies may be needed
to regulate multi-scale environmental impact.

6 CONCLUSIONS
We envisioned the challenges and opportunities for geo-foundation
models given the recent advancement and excitement around the

ChatGPT-type of success. We found that there are major differences
between geospatial tasks and the success-recipe behind typical gen-
erative models. Narrower-scope formulations, spatially-oriented
models, multi-modal bridges and major data collection efforts are
needed. More importantly, a success story focused on solving chal-
lenging real-world problems is still missing, but critical to demon-
strate the feasibility and practical value of geo-foundation models.
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