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Optimal Fixed Lockdown for Pandemic Control
Qianqian Ma, Yang-Yu Liu, and Alex Olshevsky

Abstract— As a common strategy of contagious disease
containment, lockdowns inevitably have economic cost. The
ongoing COVID-19 pandemic underscores the trade-off arising
from public health and economic cost. An optimal lockdown
policy to resolve this trade-off is desired. Here we propose
a mathematical framework of pandemic control through an
optimal fixed stabilizing non-uniform lockdown, where our
goal is to reduce the economic activity as little as possible
while decreasing the number of infected individuals at a pre-
scribed rate. This framework allows us to efficiently compute
the optimal stabilizing lockdown policy for general epidemic
spread models, including both the classical SIS/SIR/SEIR mod-
els and a model of COVID-19 transmissions. We demonstrate
the power of this framework by analyzing publicly available
data of inter-county travel frequencies to analyze a model of
COVID-19 spread in the 62 counties of New York State. We
find that an optimal stabilizing lockdown based on epidemic
status in April 2020 would have reduced economic activity
more stringently outside of New York City compared to within
it, even though the epidemic was much more prevalent in
New York City at that point. This finding holds for a variety
of epidemic models and parameters from the literature, and is
robust to errors in travel rates, different cost functions, and
potential urban-rural transmission spread differentials.

INTRODUCTION

The COVID-19 pandemic has resulted in more than 395M
confirmed cases and 5.7M deaths (up to Feb. 7th, 2022) [1]
and has impacted the lives of more than 90% global population
[2], [3]. Curbing the spread of a pandemic like COVID-19
continues to depend on the successful implementation of non-
pharmaceutical interventions such as lockdowns, social dis-
tancing, shelter in place orders, contact tracing, isolation, and
quarantine [4]–[7]. However, these interventions can also lead
to substantial economic damage, motivating us to investigate
the problem of curbing pandemic spread while minimizing the
induced economic losses.

We consider the problem of designing an optimal fixed
stabilizing lockdown that minimizes the economic damage
while reducing the number of new infections to zero at a pre-
scribed rate. Such a lockdown should be non-uniform, because
shutting down different locations has different implications
both for the economic cost and for pandemic spread. The
difficulty is whereas a uniform lockdown can be found through
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a search over a single parameter, a non-uniform lockdown
is parametrized by many parameters associated with differ-
ent locations. Despite of its significance and implications, a
computationally fast framework to design stabilizing lockdown
strategies is still lacking.

Here we propose such a framework by mapping the design
of optimal lockdown policy to a classical problem in control
theory — design an intervention that affects the eigenvalues
of a matrix governing the dynamics of a dynamical system.
It turns out that, even though general epidemic spreading
dynamics are nonlinear, an eigenvalue bound for a linear
approximation of the spreading dynamics at the initial con-
dition nevertheless forces the number of infections at each
location to go to zero asymptotically at a prescribed rate for
all time. As we show, attaining such an eigenvalue bound at
the initial condition of the epidemic is equivalent to enforcing
an upper bound on the basic reproduction number over the
entire lifetime of the epidemic. We provide two highly efficient
algorithms that design the lockdown to achieve such an
eigenvalue bound.

We apply these algorithms to design a stabilizing lockdown
on both synthetic and real data (using data from SafeGraph [8]
to fit a county-level model of New York State) for epidemic
spread models of COVID-19 using disease parameters from
the literature [9]–[11]. The lockdown we obtain using our
methods is optimal in the sense that it has minimal cost
among all possible lockdowns which achieve the same upper
on the reproduction number over the lifetime of the epidemic.
Unsurprisingly, we find that the heterogeneous lockdown is
far more economical than a homogeneous lockdown. However,
we find additional features of the optimal stabilizing lockdown
that are counter-intuitive. For example, we find that in models
of random graphs, degree centrality and population do not
affect the strength of the lockdown of a location unless its
population (or degree centrality) takes extremely smaller (or
larger) values than others. Somewhat surprisingly, we show
that an optimal stabilizing lockdown based on the epidemic
status in April 2020 would have reduced activity more strongly
outside of New York City (NYC) compared to within it, even
though the epidemic was much more prevalent in NYC at
that point. This finding passes a variety of robustness checks
and holds for different combinations of epidemic transmission
models (SIS/SIR/COVID-19), parameters governing epidemic
spread, cost functions associated with lockdowns, as well as
potential differences between how fast the disease spreads in
urban vs rural locations.
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A. Related work

Our work is related to a number of recent papers moti-
vated by the spread COVID-19, as well as some older work.
Indeed, spatial spread of epidemic admits a natural network
representation, where nodes represent different locations and
edges encode traveling of residents between the locations.
Such spatial epidemic network model has received attention
in the studies of COVID-19 recently [4], [12]–[15]. We begin
by discussing several papers most closely related to our work.

Our paper builds on the results of [11], which proposed a
spatial epidemic transmission model and consider the effect
of lockdowns; we use the same model of lockdown of [11] in
this work. The major difference between this work in [11] is
two-fold. First, we do not consider asymptotic stability in a
model with births and deaths as our focus is on a shorter scale.
Second, we propose new algorithms with improved running
times; in particular, our main contribution is a linear time
method that is applicable to the vast majority of cases we
have considered. Similarly, the main difference of this work
relative to [16] and the references therein are new algorithms
(though the lockdown models differ somewhat), as well as
the new observations on counter-intuitive phenomena satisfied
by the optimal lockdown. Our work has some similarities
with literature [17], which divided the population into 18
compartments and found that population heterogeneity could
significantly impact disease-induced herd immunity.

Our Approach vs Traditional Optimal Control: An alternative
approach would be to approach the lockdown problem using
the techniques of optimal control. This approach is explored
by a number of papers [18]–[24].

Our work has several differences with the traditional optimal
control approach. The first is that we are looking for a fixed
lockdown, whereas an optimal control based approach would
offer a lockdown which varies for all time t. Fixed vs variable
lockdowns offer a number of advantages and disadvantages,
but one advantage of the former is that policymakers might be
overly eager to relax lockdowns, resulting in poor decision-
making; one could argue this is what happened in the United
States in the summer of 2020 [25]. Thus we focus our
investigation on a single-fixed lockdown maintained until the
extinction of the epidemic.

Next, scalability is central to our results: our main result is
an algorithm which, under certain conditions, runs in nearly
linear time. This is not the case for the optimal control
approach. For example, Khanafer and Basar [18] wrote down
the optimal control formulation for the SIS case and remarked
that solving the resulting equations “is intractable.”

As Khanafer and Basar pointed out, there are no methods
that are guaranteed to find the optimal control efficiently.
Nevertheless, in a number of recent works promising nu-
merical results are obtained. For a direct formulation of the
problem, one can turn to [20], which is also in the same
spirit as our work, in that it studies control of COVID-19
using, among other things, movement restrictions. This results
in a mixed-integer non-linear programming problem. Solving
such problems is generally intractable, so [20] used a genetic
algorithm as a heuristic.

Another possibility might be to use indirect methods (i.e.,
relying on the maximum principle) to solve the optimal control
problem. The same complexity considerations, however, come
up in this context again. Most of the literature on the optimal
control of epidemics over networks seems to use variants of
the forward-backward sweep method [22], [26]–[28] to solve
the equations arising from the maximum principle, but it is
known that this method can diverge even for simple examples
[29]. Nevertheless, on many examples the method converges in
reasonable time: for example, [26] reports excellent results on
random networks of large size. Recent papers studying control
of COVID-19 using numerical optimal control methods are
[21]–[24]. These papers assumed a cost of a human life lost
(sometimes set based on the average lifetime earnings) and
considered the discounted total cost over the entire epidemic
(alternatively, [21] considered the frontier of possible strategies
over all possible ways to value life). However, the scalability of
these approaches is unclear, due to their reliance on numerical
methods without a clear convergence theory.

We remark that a fixed lockdown also has some disad-
vantages. For example, it does not allow us to modify the
lockdown strategy in place as new information comes in about
the underlying pandemic. Given that in this paper we will
develop methods which can work in linear time, it may be
appealing to handle time-varying lockdowns by using our
method within an MPC framework as a way to bypass any
computational inefficiency that may arise with an optimal
control approach.

I. MODELS OF SPATIAL DISEASE SPREAD

All the epidemic spread models considered in this work
are compartmental or network models [11], [30] with “lo-
cations” corresponding to neighborhoods, counties, or other
geographic subdivisions. We consider n locations, with the
variable xi denoting the proportion of infected population at
location i. Our framework can be applied to general epi-
demic spread models. For demonstration purpose, here we
consider a simple model of COVID-19 which contains the
classical Susceptible-Infectious-Recovered (SIR) model and
the Susceptible-Exposed-Infectious-Recovered (SEIR) model
as special cases. Our results also hold for the SIS model (see
Appendix B for details).

We consider a simple model (similar to models in literature
[9], [11], [18], [20], [31], [32]) of COVID-19 spreading
that breaks infected individuals into two types: asymptomatic
and symptomatic. This model allows individuals transmit the
infection at different rates:

ṡi = −si

n∑
j=1

ai j(βaxa
j + β

sxs
j)

ẋa
i = si

n∑
j=1

ai j(βaxa
j + β

sxs
j) − (ϵ + ra)xa

i

ẋs
i = ϵx

a
i − rsxs

i

. (1)

Here si (xa
i or xs

i ) stands for the proportion of susceptible
(asymptomatic or symptomatic infected, respectively) popula-
tion at location i, ai j captures the rate at which infection flows
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from location j to location i, βa (or βs) is the transmission
rate of asymptomatic (or symptomatic) infected individuals,
ra (or rs) is the recovery rate of asymptomatic (or symp-
tomatic) infected individuals. We assume infected individuals
are asymptomatic at first and ϵ is the rate at which they develop
symptoms.

Note that our model of COVID-19 spreading can be con-
sidered as a generalization of the classical SIR model and
the SEIR model of epidemic spread. Indeed, by setting βs =

ϵ = rs = 0, we recover the SIR model; and by setting
βa = ra = 0, we recover the SEIR model. However, neither
the SIR nor the SEIR model captures the existence of two
classes of individuals who transmit infections at different rates
as above. Our model can also be considered as a simplification
of existing models in studying COVID-19 spreading [9], [11].
For example, in [11], asymptotic stability was considered
in a slightly more general model including both births and
deaths. Here for simplicity in our model we consider a fixed
population size. In [9] eight classes of patients (instead of
two) were introduced, depending on whether the infection is
diagnosed, whether the patient is hospitalized, as well as other
factors.

In matrix form, we can write our model as
ṡ

ẋa

ẋs

 =
0 −βadiag(s)A −βsdiag(s)A

0 βadiag(s)A − (ϵ + ra) βsdiag(s)A

0 ϵ −rs





s

xa

xs

 ,
(2)

where scalars in the matrix should be understood as multi-
plying the identity matrix, and the matrix A stacks up the
coefficients [ai j]. Here s, xa, xs are now vectors. Let us write
M(t) for the bottom right 2n × 2n submatrix (outlined by a
box) in Eq. (2).

If we want the number of infections to decay to zero
starting at time t0, a natural objective is to achieve a bound
on the basic reproduction number, i.e., to achieve R0(t) ≤ r
for some r < 1 and all t ≥ t0, where R0(t) is the basic
reproduction number1. It turns out this is equivalent to the
linear eigenvalue condition λ(M(t0)) ≤ −α for an appropriately
chosen positive α (see Appendix A for a proof). Moreover, this
eigenvalue condition ensures that the number of infections at
each location goes to zero at an asymptotic rate of α, i.e,
bounded asymptotically by a multiple of e−αt. These facts are
standard, but for completeness we include a proof of them in
the arxiv in [34].

In the remainder of this paper, we will attempt to design
strategies that enforce decay of infections with a prescribed
rate by modifying the matrix A through lockdowns to satisfy
such an eigenvalue bound.

A. Construction of The Spread Matrix A

Methods of constructing A capturing spatial heterogeneity
have been well studied [35]–[42]. Here we follow a recent

1For a non-compartmental model, the basic reproduction number is defined
as the average number of secondary infections produced by a typical case of an
infection in a population where everyone is susceptible. For a compartmental
model, the definition of basic reproduction number was given in [33].

work [11] that is particularly well-suited to model the lock-
downs in curbing COVID-19. Denote the fixed population size
at location i as Ni, and assume people travel from location i
to location j at rate τi j.

We next describe how the matrix A is constructed. Observe
that the susceptible individuals at location i can be infected not
only at location i but also in other locations. Indeed, the rate
of travel of susceptible population from location i to location
l is (1 − xi)τil. Further, the rate of infection at location i is
proportional to the fraction of infected people in the total
population of location i. In terms of these variables, we have

ṡi = −

n∑
l=1

siτil

∑n
j=1 N jτ jlxa

j∑n
k=1 Nkτkl

βa +

∑n
j=1 N jτ jlxs

j∑n
k=1 Nkτkl

βs
 , (3)

where the constants βa, βb capture the number of interactions
a typical person will have upon traveling to a location, as
well as the probability that an interaction will lead to an
infection; since the latter may be different from asymptomatic
and symptomatic individuals, the two numbers βa, βb may not
be the same.

It is now straightforward to relate the coefficients ai j’s to
the flow rates τi j and the populations: this can be done by
simply “pattern matching” Eq. (3) to Eq. (23) to obtain

ai j =

n∑
l=1

τilτ jl
N j∑n

k=1 Nkτkl
. (4)

Observe that Eq. (4) can also be written in matrix form as
A = CB⊤ with

C = τ, B⊤ = D1τ
⊤D2, (5)

where τ = (τi j), D1 = diag(
∑

k Nkτkl)−1 while D2 =

diag(N1, . . . ,Nn).

B. Lockdown model

When a lockdown is ordered heterogeneously across dif-
ferent locations, this has two consequences. First, the trans-
mission rates will be altered. For instance, ensuring that all
buildings have a maximum enforced density limits the rate at
which people can interact, as do mandatory face-covering, and
other measures, resulting in a number of transmissions that is
a fraction of what they otherwise would have been. We may
account for this as follows. Taking Eq. (4), let us multiply
both sides by βa to obtain:

βaai j =

n∑
l=1

βaτilτ jl
N j∑n

k=1 Nkτkl
.

This is pre-lockdown. Now the effect of the lockdown is to
replace βa in each term within the sum by βa fl, for some
location-dependent fl ∈ [0, 1]. The effect on βs is similar.
Secondly, travel rates to location l are also a fraction of what
they were before since there is now reduced inducement to
travel, i.e., τil should be replaced by τilgl with gl ∈ [0, 1] for
each location l.

To avoid overloading the notation, we will not change the
definitions of βa, βs or the travel rates τil but instead achieve
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the same effect by changing the definition of ai j as:

ai j =

n∑
l=1

zlτilτ jl
N j∑n

k=1 Nkτkl
, (6)

where zl = flgl ∈ [0, 1]. In matrix notation, the post-lockdown
A matrix is

Az = Cdiag(z)B⊤. (7)

The quantities z1, . . . , zn can be thought of as measuring the
intensity of the lockdown at each location.

It goes without saying that designing the detailed rules
that will bring locations to desired zi is beyond the scope
of the current work. Thus, if the methods we propose below
recommend, say, zi = 0.5, it will be up to policymakers to
come up with detailed rules reducing by 50% the quantity
figi.

C. Lockdown cost

Clearly, setting zl = 1 corresponds to doing nothing and
should have a zero cost in terms of lost employment. On
the other hand, choosing zl = 0 corresponds to a complete
lockdown and should be avoided. We will later apply our
framework to real data collected from counties in New York
State; shutting down a county entirely would result in people
being unable to obtain basic necessities, and thus the economic
cost should approach +∞ as zl → 0. With these considerations
in mind, a natural choice of lockdown cost is

c(z1, . . . , zn) =
n∑

i=1

cl

(
1
zl
− 1

)
. (8)

Here cl captures the relative economic cost of closing down
location l. Throughout this paper, we will choose cl to be the
employment at local l, but other choices are also possible (e.g.,
cl could be the GDP generated at location l).

Besides the cost function in Eq. (8), we will also con-
sider cost functions that blow up with different exponents
as

∑n
i=1 cl

(
z−k

l − 1
)
, as well as costs which threshold as∑n

i=1 min
(
cl(z−1

l − 1),Cl

)
, i.e., which alter our cost function

by saturating at some location-dependent cost Cl rather than
blowing up as zl → 0.

One feature of some of these cost functions is that they in-
herently discourage extreme disparities among nodes. Indeed,
a lockdown that places all the burden on a small collection of
nodes by setting their zi close to zero will have cost that blows
up. By contrast, some previous works such as [11], [20] used
cost functions

∑
i ci(1 − zi) which do not have this feature.

D. Final problem formulation

The optimal fixed stabilizing lockdown problem simply
puts together all the features we have outlined above: we
are looking for a fixed lockdown of minimum cost enforcing
a guaranteed decay rate on the epidemic through eigenvalue
bounds on the matrix A which is obtained from the travel
rates τi j as described in Section I-A. More formally, we are
looking for a vector z such that the matrix Az = Cdiag(z)BT

from Eq. (5) satisfies an eigenvalue constraint λmax(Az) ≤ α

(where α is negative) as well as the condition z ∈ [0, 1]n while
minimizing a cost function from Section I-C.

We note that there may be alternate objectives that are plau-
sible. For example, a guaranteed bound on the reproduction
number is not the same as minimizing the total number of
cases over the lifetime of the epidemic: indeed, it was argued
by many in the context of COVID-19 that simply letting
a disease spread unimpeded through the population could
result in a smaller number of deaths. Our objective rules out
such strategies by insisting on attaining a small reproduction
number for the entire lifetime of the epidemic beginning at
the initial condition.

II. ALGORITHMS FOR THE OPTIMAL FIXED STABILIZING
LOCKDOWN

We next state our main theoretical contribution. This re-
quires some background on the so-called matrix balancing
problem, briefly described in the next subsection.

A. The matrix balancing problem

Given a nonnegative matrix P ∈ Rn×n, we say it is balanced
if it has identical row and column sums (i.e., the sum of
the i’th row is the same as the sum of the i’th column for
all i = 1, . . . , n). The matrix balancing problem is, given a
nonnegative P, to find a nonnegative diagonal matrix D such
that DPD−1 is balanced.

The problem of matrix balancing is quite old; for example,
an asymmetric version of this problem was introduced in the
classic work of Sinkhorn and Knopp in the 1960s [43]. It is
impossible to survey all the literature on matrix balancing and
related problems, though we refer the reader to the survey
[44]. Recently, a powerful algorithm for matrix balancing was
given in [45]. It was shown in that work that this problem
can be solved in linear time, understood as follows: solving
the problem to accuracy ϵ requires only Õ(||P||0 log κ log ϵ−1)
where ||P||0 is the number of nonzero entries in the matrix
A, κ = D∗

max/D
∗
min is the imbalance of the optimal solution,

and the Õ hides logarithmic factors. Thus matrix balancing
problems can be solved in nearly the same time as it takes to
simply read the data, provided κ is bounded away from zero.
In the event that we do not have an a-prior bound on κ, [45]
gives complexity bounds of Õ(||P||03/2) and Õ(||P||0diam(A))
where diam(A) is the diameter of the graph corresponding to
the matrix A.

We will summarize this complexity by saying that the
running time “explicitly scales nearly linearly in the number
of nonzero entries.” The “nearly” comes from the logarithmic
terms; the word “explicit” comes because the scaling also
depends on the imbalance of the optimal lockdown κ, and one
can construct families of examples where the κ will have some
kind of scaling with network size. Finally, we will say that a
problem is reducible to matrix balancing if we can write down
a matrix balancing problem whose solution can be translated
in linear time to the solution of the original problem.
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B. Main theoretical contribution

With the above preliminaries in place, we can now state
our main theoretical contribution. Our main theorem provides
efficient algorithms for solving the lockdown problem. Our
key contribution is to give an algorithm for optimal stabilizing
lockdown whose complexity has an explicit scaling which,
under some assumptions, is nearly linear in the number of
nonzero entries of the matrix A. That is to say, not only can
the optimal heterogeneous lockdown be computed exactly, but
doing so can take not much more operations as just reading
through the data.

Our first step is to discuss an assumption required by one
of our algorithms. The formal statement of the assumption is
as follows.

Assumption 1 (High spread assumption): We have

diag
(
B⊤diag(s(t0))C

)
≥

ϵ + ra

βa + βsϵ/rs .

To see why this condition is satisfied in a “high spread”
regime, note that A = CB⊤ and, given our choices of C and
B in Eq. (5), the entry CiiBii corresponds to the spread of the
epidemic in location i purely from the same-location trips of
residents of location i. The left-hand side of the above equation
is at least diag(s(t0))CiiBii, so if Aii and the initial proportion
of infected are large enough relative to the other parameters,
this inequality will be satisfied.

We next turn to our main result.
Theorem 2: Suppose the graph corresponding to positive

entries of the matrix A is strongly connected and s(t0) > 0.
Then:

1) Suppose Assumption 1 holds. Then the lockdown prob-
lem is reducible to matrix balancing.

2) If Assumption 1 does not hold, then the lockdown prob-
lem can be solved by computing an eigendecomposition
and then performing Õ(nω) operations, where ω is the
exponent of matrix multiplication and the Õ(·) notation
hides factors which are logarithmic in the remaining
problem parameters.

Our main result gives favorable complexities for lockdown
problem depending on whether the high-spread assumption
holds, though the complexity is a little worse if it does not.
Analogous results hold for the SIS model, as explained in
Appendix B of this paper. In practice, we find the optimal lock-
down problem is solvable using the matrix balancing algorithm
in the vast majority of the cases. Specifically, when we fit the
models to New York State data, in 23 experiments out of 27
(where we varied the epidemic model from SIS/SIR/COVID-
19 as well as different parameter values from the literature),
the matrix balancing algorithm gave the correct answer.

The next section provides a proof of our main result.

III. PROOF OF THEOREM 2
We will present a series of lemmas and observations which

will culminate in the proof of the main theorem. It is here that
we will perform the reduction from the problem of computing
the optimal lockdown to matrix balancing.

Our starting point is the following lemma on a “splitting”
of a positive matrix.

Lemma 3:
1) A strongly connected matrix P with non-negative off-

diagonal elements is continuous-time stable if and only
if there exists d > 0 such that Pd ≤ 0.

2) The nonnegative strongly connected matrix B is discrete-
time stable if and only if there exists d > 0 such that
Bd ≤ d.

3) Suppose P = L − D where L is nonnegative while D is
a matrix with nonpositive off-diagonal elements whose
inverse is elementwise nonnegative. Suppose further that
both P and D−1L are both strongly connected. Then P
is continuous time stable if and only if B = D−1L is
discrete-time stable.

This lemma is a small variation on a well-known fact:
usually, parts 1 and 2 are stated for strictly stable matrices,
in which case all the inequalities need to be strict (see [46],
Theorem 15.17 for the strict version of part (i) and Proposition
1 of [47] for the strict version of part (ii)). The non-strict
version additionally requires that the matrices be strongly
connected, which is not needed for the nonstrict version of this
problem. Note that we do not claim that any part of this lemma
is novel. For completeness, we nevertheless give a proof in
[34] (See proof of Lemma 4.7.).

We will later need to interchange the order of products while
still preserving the condition of being strongly connected. To
that end, the following lemma will be useful.

Lemma 4: Suppose U,V are two nonnegative n×n matrices
with no zero rows or columns such that VU is strongly
connected. Then UV is strongly connected.

Proof: Consider a directed bipartite graph G on 2n
vertices, with vertices l1, . . . , ln and r1, . . . , rn denoting the two
sides of the bipartition, defined as follows. If Ui j > 0, then
we put an edge from l j to ri; and if Vi j > 0 we put an edge
from r j to li. Let G1 be the graph on l1, . . . , ln where we put
the directed edge from li to l j if there is a path of length two
from li to l j in G. Likewise, let G2 be the directed graph on
r1, . . . , rn such that we put an edge from ri to r j whenever
there is a path of length two in G.

Then the strong connectivity of VU is equivalent to having
G1 be strongly connected: indeed, (VU)ab > 0 if and only
if there exists a link from b to a in G1. Similarly, the
strong connectivity of UV is equivalent to having G2 be
strongly connected. We will show that if G1 is not strongly
connected, neither is G2. The converse is established via a
similar argument.

Indeed, suppose G1 is not strongly connected. That means
there exists a proper subset of the vertices, say L1 = {l1, . . . , lk},
with no edges outgoing to Lc

1 = {lk+1, . . . , ln}. Let r1 be the set
of out-neighbors of L1 in G. Then we must have that r1 is
a proper subset of {r1, . . . , rn} (for otherwise, the assumption
that V has no zero rows/columns would contradict no edges
going from L1 to Lc

1 in G1) and the set of out-neighbors of r1
in G is contained in L1.

But since (i) r1 is a proper subset of the right-hand side
(ii) the out-neighbors of r1 in G are contained in L1 (iii) the
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out-neighbors of L1 in G are contained in r1, we obtain that
there are no edges leading from r1 to rc

1 in G2. This proves
G2 is not strongly connected.

With these preliminary lemmas in place, we now turn to
core of our reduction of lockdown to matrix balancing. The
reduction will go through several “intermediate” problems, the
first of which as follows.

Definition 1: We will refer to the following as the stabil-
ity scaling problem: given a nonnegative strongly connected
matrix P and positive diagonal matrix D, find positive scalars
q1, . . . , qn minimizing

∑n
i=1 q−1

i such that diag(q1, . . . , qn)P−D
is continuous-time stable.

We will find it useful below to refer to the unconstrained
lockdown problem: this is the same as the lockdown problem
described above but we do not constrain the entries of z to
lie in [0, 1] but rather only require them to be nonnegative.
In particular, an uncontrained lockdown is allowed to increase
intensity of activity in some locations by setting z∗i > 1 (pre-
sumably to offset decreased activity in other locations while
meeting a cost constraint). We will sometimes differentiate
between these by talking about the constrained case (meaning
the original formulation) and the unconstrained case (meaning
that entries of z do not have to be upper bounded by one).

While this problem formulation is not of practical interest,
our proofs will heavily use the fact that, under certain con-
ditions, the constrained and unconstrained problems coincide.
This is quite intuitive: if the epidemic spreads sufficiently fast
everywhere, the unconstrained shutdown will never choose to
increase the activity of any location.

The utility of these definitions should become clear after
the following lemma.

Lemma 5: In the unconstrained case, the minimum lock-
down model for COVID-19 dynamics can be reduced to
stability scaling provided A is strongly connected and s(t0) >
0. In the constrained case, the same holds under Assumption
1.

Proof: Let us begin by assuming that

α < min(rs, ϵ + ra). (9)

We will revisit this assumption later. We need to make the
matrix

A0 :=
(
βadiag(s(t0))Az − (ϵ + ra) + α βsdiag(s(t0))Az

ϵ −rs + α

)
(10)

stable, where we have introduced the notation that Az =

Cdiag(z)B⊤. Let us write

A0 = L − D,

where

L =
(
βadiag(s(t0))Az βsdiag(s(t0))Az

0 0

)
,

and

D =
(
ϵ + ra − α 0

−ϵ rs − α

)
.

We next apply part 3 of Lemma 3 to get that A0 is
continuous-time stable if and only if D−1L is discrete time
stable. To do this, however, we need to verify that D−1

is elementwise nonnegative, and that both P and D−1L are
strongly connected. This easily follows from observing that

D−1 =

( 1
ϵ+ra−α

0
ϵ

(ϵ+ra−α)(rs−α)
1

rs−α
,

)
and recalling that s(t0) > 0 as well as Eq. (9).

To summarize, we have shown that equivalently we need
to make sure that B = D−1L is discrete-time stable. Since the
eigenvalues of a matrix which is the product of two matrices
do not change after changing the order of the product, this is
the same as having LD−1 be discrete-time stable. But we have
the simple expression

LD−1 =

(
diag(s(t0))Azb1

βs

rs−α
diag(s(t0))Az

0 0

)
, (11)

where b1 =
βsϵ+βa(rs−α)

(ϵ+ra−α)(rs−α) .
But the eigenvalues of LD−1 are just the eigenvalues of its

top n×n block. Thus we obtain that LD−1 is stable if and only
if the matrix diag(s(t0))Ab1 is discrete-time stable. Plugging
in A = Cdiag(z)B⊤, we now need that

diag(s(t0))Cdiag(z)B⊤b1 is discrete-time stable. (12)

We next appear to part (3) of Lemma 3 again, using D =
diag(s(t0))−1b−1I to obtain that we need

Cdiag(z)B⊤ − diag(s(t0))−1b−1
1 I is continuous-time stable,

(13)

We can apply part (3) of Lemma 3 as strong connectivity
follows from z being elementwise positive and strong con-
nectivity of A = CB⊤. But the last condition is equivalent to
Equation (24), which we’ve already shown how to reduce to
stability scaling.

We conclude the reduction by observing that, once again,
this results in an instance of stability scaling with the matrix
P = B⊤C, which is strongly connected because A = CB⊤ is
strongly connected, allowing us to apply Lemma 4. Further,
the matrix diag(s(t0))−1b−1

1 I is a positive diagonal matrix due
to the assumptions that s(t0) > 0 and the assumption of Eq.
(9).

For the constrained case, we argue that under Assump-
tion 1, the optimal solution will have all z∗i ≤ 1, so
we can equivalently consider the unconstrained case. In-
deed, suppose e.g., that z∗j > 1. In that case, the matrix
diag(z∗)B⊤diag(s(t0))C has its ( j, j)’th entry at least b−1

1 . Since
the j’th row of diag(z∗)B⊤diag(s(t0))C is nonnegative, and
since B⊤diag(s(t0))C is strongly connected by Lemma 4, we
have that the j’th row of diag(z∗)B⊤diag(s(t0))C is not zero.
By by the same argument as we made in the SIS case, the
matrix diag(z∗)B⊤diag(s(t0))C − b−1

1 I cannot be continuous-
time stable. This implies that Eq. (13) cannot be satisfied.

Finally, we conclude the proof by revisiting the assumption
we made in the very beginning, namely the assumption of Eq.
(9). We now argue the problem of optimal lockdown has no
solution if that equation fails. Indeed, in that case, the matrix
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A0 has either its first n× n block nonnegative, or its last n× n
block nonnegative. We show that the problem has no solution
in the first case; the other case has a similar proof.

We want to argue that having d > 0 such that A0d ≤ 0 cannot
occur if the top n×n block of A0 is nonnegative; by Lemma 3
part (1) this is enough to show A cannot be stable regardless of
z. We can partition d = [d1, d2], and we immediately see that
we must have that d1 = 0, since, by the strong connectivity of
diag(s(t0))Az, every entry of d1 is multiplied by some entry in
the top left n×n submatrix of A0. Applying the same argument
to the “top right” n × n block of A0, get that d2 = 0, and this
is a contradiction. This concludes the proof.

Thus we have just reduced the unconstrained lockdown
problem to stability scaling; further, the constrained lockdown
problem was reduced to the same under the high-spread
condition.

Our next step is to reduce the stability scaling problem to
a new problem, defined next, which has a somewhat simpler
form.

Definition 2: Given a nonnegative matrix A, the problem
of finding scalars l1, . . . , ln such that A − diag(l1, . . . , ln) is
continuous-time stable while minimizing

∑n
i=1 cili will be

called the diagonal subtraction problem.
Lemma 6: Stability scaling can be reduced to diagonal

subtraction.
Proof: Indeed, starting from

min
q1>0,...,qn>0

n∑
i=1

ciq−1
i

such that diag(q1, . . . , qn)P − D is continuous time stable,

we apply Lemma 3, part (c) to obtain that the constraint is the
same as

D−1diag(q)P is discrete-time stable.

Here we used crucially that the matrix P is nonnegative and
strongly connected and that the diagonal matrix D is positive,
ensuring that the assumptions of Lemma 3, part 3 are satisfied.
We next use the same Lemma 3 part (c) again to obtain that
this the last constraint is identical to

P − diag(q1, . . . , qn)−1D is continuous time stable

For simplicity, it is convenient to introduce the notation δi =
q−1

i , i = 1, . . . , n. In terms of these new variables δi, we have
the problem

min
δ1>0,...,δn>0

n∑
i=1

ciδi

subject to P − diag(d1δ1, . . . , dnδn) is continuous-time stable,

where D = diag(d1, . . . , dn). Finally, introducing variables ui =

diδi, i = 1, . . . , n, we have

min
u1>0,...,un>0

n∑
i=1

ci
ui

di

subject to P − diag(u1, . . . , un) is continuous-time stable ,

which is an instance of diagonal subtraction with cost coeffi-
cients ci/di.

With all these preliminaries in place, we are now ready
to turn to the proof of the first part of our main theoret-
ical result. In Lemma 10, we have shown how to reduce
the optimal lockdown problem to stability scaling. In the
subsequent Lemma 6, we showed how to reduce stability
scaling to diagonal subtraction. We now prove Theorem 2
by reducing diagonal subtraction to matrix balancing. After
submission of this paper, we have found that this last assertion
can be proved by putting together the results of [48] and
[49]. We nevertheless include our original proof below for
completeness, and so that the argument is available in a single
place, while acknowledging that the reduction from diagonal
subtraction to matrix balancing was obtained earlier.

Proof: [Proof of Theorem 2, parts 1]
Indeed, we need to solve

min
l1>0,...,ln>0

n∑
i=1

cili

such that A − diag(l1, . . . , ln) is continuous time stable,

where A is a nonnegative matrix. We use part (a) of Lemma
3 to write this ass

min
l1,...,ln,d1,...,dn

n∑
i=1

cili (14)

such that Ad − diag(l1d1, . . . , lndn) ≤ 0

d > 0, l > 0

The difficulty here is that we are optimizing over l and d, and
the constraint includes a product of the variables. We try to
make this into a simpler problem by introducing the variables
µi = lidi, i = 1, . . . , n. We change variables from (l, d) to (µ, d)
to obtain the equivalent problem:

min
µ1,...,µn,d1,...,dn

n∑
i=1

ciµi/di (15)

such that Ad ≤ µ

d > 0, µ > 0

In this reformulation, the constraint is linear, and the nonlin-
earity has been moved to the objective.

Next, consider what happens when we fix some d > 0 and
consider the best µ for that particular d. Because ci > 0 for
all i, and d > 0 , we want to choose each element µi as small
as possible. The best choice is clearly µ = Ad; no component
of µ can be lower than that by our constraints. Because A is a
nonnegative matrix without zero rows by strong connectivity,
this results in a feasible µ > 0.

Thus we can transform this into a problem which optimizes
over just the variables d1, . . . , dn:

min
d1>0,...,dn>0

n∑
i=1

ci[Ad]i/di.

Our next step is to change variables one more time. Since d
is a positive vector, it is natural to write di = egi . In terms
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of the new variables g1, . . . , gn, we just need to minimize the
function f (g1, . . . , gn) defined as

min f (g1, . . . , gn) := min
g1,...,gn

n∑
i=1

n∑
j=1

ciai jeg j−gi .

We now have an unconstrained minimization of a con-
vex function. In particular, if we can find a point where
∇ f (g1, . . . , gn) = 0, we will have found the global optimum.

Let us consider the k’th component of the gradient of
f (g1, . . . , gn). We have the equation

0 =
∂ f
∂gk

(g1, . . . , gk) =
∑
j,k

−ckak je
g j−gk +

∑
i,k

ciaikegk−gi

=

n∑
j=1

−ckak je
g j−gk +

n∑
i=1

ciaikegk−gi (16)

Let Dg = diag(eg1 , . . . , egn ) and Dc = diag(c1, . . . , cn).
Observing that

[D−1
g DcADg]uv = e−gu cuauvegv = cuauvegv−gu ,

we have that Eq. (16) can be written as

−[D−1
g DcADg1]k + [1⊤D−1

g DcADg]k = 0

In other words, the matrix D−1
g DcADg needs to have it’s k’th

column sum equals to its k’th row sum. Thus provided we can
find a balancing of the matrix DcA, we will have found the
minimum of f (g1, . . . , gn) as needed.

However, a matrix X can be balanced if and only if the
underlying graph G(X) is strongly connected [50]. Since
we have assumed that ci are all positive and A is strongly
connected, we have that DcA can be balanced. We conclude
that the unique minimum of f (g1, . . . , gn) can be recovered
from the balancing of this matrix. This concludes the reduction
of diagonal subtraction to matrix balancing.

Having proved the first part of Theorem 2, we now turn to
the second part. We will not be using any of the reductions
used to prove the first part of the theorem. The first steps
of our proof are very similar to the proof of the main result
of [11], which gave a semidefinite formulation of a lockdown
problem ensuring asymptotic stability in a model involving
births and deaths. We diverge from [11] when we write the
problem as a so-called covering semi-definite problem and
analyze its complexity.

Proof: [Proof of Theorem 2, part 3] We can simply repeat
the proof of Lemma 10 to reduce the constrained lockdown to
stability scaling; except that, without Assumption 1, we now
have to keep the constraint that z ∈ [0, 1]n. Indeed, note that
the only place where Assumption 1 was used in those two
proofs was to argue that we can omit that constraint.

In this way, we can reduce the constrained lockdown
problem to the following:

min
z1,...,zn

n∑
i=1

ciz−1
i

diag(a)Cdiag(z1, . . . , zn)B⊤ − qI is continuous time stable

z ∈ [0, 1]n,

where, from Eq. (13) we have that a = s(t0) while q = b−1
1 .

Note that this optimization problem is only over the variables
z1, . . . , zn; all other quantities appearing in it are parameters.

Suppose next that matrices C and B are chosen according
to Eq. (5). In other words, we have the problem

min
z1,...,zn

n∑
i=1

ciz−1
i

diag(a)τdiag(z1, . . . , zn)D1τ
⊤D2−qI is continuous time stable

z ∈ [0, 1]n,

where, recall, the matrices D1,D2 are defined immediately
after Eq. (5).

Since the nonzero eigenvalues of a product of two matrices
do not change when we flip the order in which they are
multiplied, the second constraint is equivalent to

diag(z1, . . . , zn)D1τ
⊤D2diag(a)τ−qI is continuous time stable .

Applying part (3) of Lemma 3, we get that this is the same as

q−1diag(z1, . . . , zn)D1τ
⊤D2diag(a)τ is discrete time stable .

Here we used the strong connectivity and positive diagonal of
the matrix τ. Next, applying the same lemma again, we further
get the equivalence to

τ⊤D2diag(a)τ−D−1
1 diag(z1, . . . , zn)−1qI is continuous time stable .

This can be simplified further by observing that a symmetric
matrix is stable if and only if it is non-positive-definite.

Indeed, let us introduce the notation ui = (D1)−1
ii qz−1

i , and
Q = τ⊤D2diag(a)τ. We can therefore write our problem as

min
n∑

i=1

ci(D1)ii

q
ui

s.t. 0 ⪰ Q − diag(u1, . . . , un)

ui ∈ [q(D1)−1
ii ,+∞) for all i = 1, . . . , n.

Further defining c′i = ci(D1)ii and the 2n × 2n positive-
semidefinite matrices Bi = eie⊤i + en+ie⊤n+i, we can write this
as

min
n∑

i=1

c′iui

s.t.
n∑

i=1

uiBi ⪰

(
Q 0
0 0

)
+

(
0 0
0 qdiag((D1)−1

11 , . . . , (D1)−1
nn )

)
(17)

This is known as a “covering SDP.” In the recent paper, [51], it
was shown that it can be be solved, up to various logarithmic
factors, in matrix multiplication time. We next discuss in detail
the results in [51] and how they are applicable to Eq. (17).

Specifically, in [51], an algorithm for checking whether the
system of equations∑

i

xiCi ⪰ I,
∑

i

xiPi ≤ (1 − δ)I, x ≥ 0,
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is feasible was given; here Ci, Pi are arbitrary nonnegative
definite matrices. Formally, this is what is defined to be a
covering SDP.

To begin applying this to our problem, let us choose δ = 1/2
and Pi =

1
2n u−1c′i11⊤ for all i. In that case, we are checking

the feasibility of∑
i

xiCi ⪰ I,
∑

i

c′i xi ≤ u, x ≥ 0. (18)

The running time of the algorithm from [51] for checking
whether this is feasible is Õ(

∑
i ||Ci||0 + nω), where the Õ

hides a multiplicative factor which is a power of logarithm
is O

(
n2 maxi λmax(Ci)/λmax(Pi)

)
(see discussion under “Main

Claim” in [51], and note that, in our case, the number of
matrices and the dimension are proportional). In our case, we
will choose Ci = eie⊤i + en+ie⊤n+i so that

λmax(Ci) ≤ 1, λmax(Pi) =
1
2

max
i

c′iu
−1,

and plugging the definition of c′i , we have that the factor being
hidden in the tilde is a power of logarithm of

n2 1
maxi λmax(Pi)

= 2n2 1
maxi c′iu

−1

= 2n2u
1

maxi c′i

= 2n2u
1

maxi ci(D1)ii

≤ 2n2u−1 1

maxi ci

(∑
j N jτ ji

)−1 .

To summarize, we have discussed how long it takes to
check feasibility of Eq. (18). The conclusion is that the
running time Õ(

∑
i ||Ci||0 + nω), where the the tilde notation

hides a factor that is logarithmic in the problem parameters
n, u−1,mini

∑
j c−1

i N jτ ji.

From feasibility to optimization: We have just shown that
checking feasibility of Eq. (18) can be done in polynomial
time. We want to argue that this implies that minimizing∑n

i=1 c′i xi subject to the constraint
∑

i xiCi ⪰ I, x ≥ 0 is
polynomial-time. Of course, the way to do this is at obvious: n
ϵ′-additive approximation to the latter can be found with lots
of feasibility checks.

Let us suppose that we actually know that x∗i ≥ li for some
li (we do, in fact, know this because Eq. (17) forces

x∗i ≥ q(D1)−1
ii = q

∑
k

Nkτki (19)

:= qNvisit
i

:= li (20)

If c∗ is the optimal cost, then we need to do
O

(
log(c∗/

∑
i c′i li) + log ϵ′−1

)
feasibility checks to get an

ϵ additive approximation to the optimal cost. Upper bounding
c∗ ≤ ncmax maxi x∗i , we see that we need to do

O
log

n maxi ci maxi x∗i
q
∑

i c′i N
visit
i

+ log ϵ′−1
 ,

feasibility checks.

Last step: getting to Eq. (17) We have just bounded the
complexity of minimizing a linear objective subject to the
constraint

∑
i xiCi ⪰ I, x ≥ 0. But we cannot quite apply this

directly to Eq. (17), since in Eq. (17), the right-hand side is
not the identity matrix.

However, the right-hand side of Eq. (17) is symmetric, so it
can be decomposed as UΛU⊤ for orthogonal U and diagonal
Λ. Since A ⪰ B implies ZAZ⊤ ⪰ ZBZ⊤, by choosing Z =
Λ−1/2U⊤ we can equivalently rewrite Eq. (17) as

min
n∑

i=1

c′iui

s.t.
n∑

i=1

uiΛ
−1/2U⊤BiUΛ−1/2 ⪰ I.

Letting C′
i = Λ

−1/2U⊤BiUΛ−1/2, we thus obtain a problem to
which the algorithm of Eq. ( [51]) is applicable. Unfortunately,
in the transformation the number of nonzero entries in the
matrix Ci changes. Nevertheless, as explained in [51] (in foot-
note 6 in the arxiv version), despite the change of variables,
the scaling in the running time remains with the number of
nonzero entries in the matrices Bi. However, we now need to
add the complexity of computing the eigendecomposition of
the right-hand side of Eq. (17) to our complexity bounds.

Putting everything together: We can now put together ev-
erything we have observed above. The total complexity scales
as the complexity of matrix multiplication and computing the
eigendecomposition of a symmetric matrix, which takes O(n3)
exact arithmetic operations [52]. This is multiplied by a power
of a logarithm in the quantities

ϵ′−1, n,max
i

ci,min
i

∑
j

c−1
i N jτ ji,max

i
x∗i , u

−1,
b1∑

i c′i N
visit
i

, λmax(C′)

where Nvisit
i was defined in Eq. (20).

Now all of these are naturally viewed as problem parameters
– except the final four, i.e., maxi x∗i , u

−1, 1∑
i c′i N

visit
i
, λmax(C′)

which are quantities we encountered in the course of the proof.
Let us upper bound these in terms of other quantities.

First, we have that

max
i

x∗i = max
i

u∗i ≤ q max
i

q(D1)−1
ii (min

i
z∗i )−1

= b−1
1

max
a

∑
k

Nkτka

 (min
i

z∗i )−1,

which gives us the first bound we need.
Next, the smallest u will be is∑

i

c′i li = q
∑

i

c′i N
visit
i .

Thus we can “kill two birds with one stone” by first upper
bounding u−1 as∑

i

c′i li

−1

=

∑
i

ci(D1)−1
ii q

∑
k

Nkτki

−1

which is a polynomial in

max
i

c−1
i ,max

i

∑
k

Nkτki

−1

, b1,
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and this also upper bounds∑
i

c′i N
visit
i

−1

by a polynomial in the same quantities and q−1. This gives us
the second and third bounds we need.

Finally,

λmax(C′
i ) ≤

1
mini Λii

≤
1

min(λmin(Q), q mina Nvisit
a )
,

which is in turn a polynomial in

1
λmin(Q)

, q−1,
(
min

a
Nkτka

)−1

To upper bound this, it only remains to lower bound λmin(Q).
However, since Q = τ⊤D2diag(a)τ, we have that

λmin(Q) ≥
(
min

i
(D2)iiai

)
λmin(τ⊤τ)

= λmin(τ⊤τ)
(
min

i
βsNisi(t0)

)
.

Adding up all the complexity: To summarize, to compute an
ϵ′ additive approximation to the optimal solution we need to
compute an eigendecomposition and then perform a number
of operations which is O(nω) times a polylog in the variables

ϵ′−1, n,max
i

ci,max
i

c−1
i , (min

i
z∗i )−1, b1, b−1

1 ,
(
λmin(τ⊤τ)

)−1
,

max
a

∑
k

Nkτka,

min
a

∑
k

Nkτka

−1

,
(
min

i
βsNisi(t0)

)−1
.

IV. SIMULATIONS

We now apply the algorithms we’ve developed to design
an optimal stabilizing lockdown policy for the 62 counties in
the State of New York (NY). Our goal is to reduce activity
in each county in a non-uniform way to curb the spread of
COVID-19 while simultaneously minimizing economic cost.
The data sources we employed are presented in the full-
version of our paper [34] (SI Sec. 6). When the “high-spread”
assumption is satisfied, we will apply the matrix-balancing
algorithm, otherwise we will apply the covering semi-definite
program. To provide valid estimation results, we employed
three different sets of disease parameters provided in literature
[10], [11], [9] (See SI Table 2 of [34]). Because the amount of
simulations performed was too large to fit within the TAC page
limits, we report here on the key results and include pointers
to additional simulations in our arxiv version [34].

Comparison with other lockdown policies. We used the
data of the 62 counties in NY on Apr. 1st, 2020 as initialization
and estimated the number of active cases over 300 ∼ 800
days (04/01/2020 - 01/26/2021 or 04/01/2020 - 06/01/2021)
and the number of cumulative cases over 500 ∼ 1, 500 days
(04/01/2020 - 08/14/2021 or 04/01/2020 - 05/10/2024) with
different lockdown policies. Fig. 1a-c show the estimated
active cases over times, and Fig. 1d-e show the estimated cu-
mulative cases over time. Here results from different columns
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Fig. 1 Estimated number of active cases and cumulative cases
for the COVID-19 model by applying different lockdown policies
based on available data about COVID-19 outbreak in NY on April
1st, 2020. a-c, the estimated number of active cases in NY from Apr.
1st, 2020 to Jan. 26th, 2021 (or June 10th, 2022). d-f, the estimated
cumulative cases in NY from Apr. 1st, 2020 to Aug. 14th, 2021 (or
May 10th, 2024). In a, d, the disease parameters are set as in [10],
the decay rate α is chosen as 0.0231 which corresponds to halving
every 30 days. In b, e, the disease parameters are set as in [9], the
decay rate is chosen as α = 0.2rs = 0.0034 so that α < min(ra, rs).
In c, f, the disease parameters are set as in [11], the decay rate α is
chosen 0.0231 that corresponds to halving every 30 days.
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Fig. 2 Estimated number of active cases and cumulative cases
for SIS model by applying different lockdown policies based on
available data about COVID-19 outbreak in NY on April 1st, 2020.
a-c, the estimated number of active cases in NY from Apr. 1st, 2020
to Jan. 26th, 2021 (or June 10th, 2022). d-f, the estimated cumulative
cases in NY from Apr. 1st, 2020 to Aug. 14th, 2021 (or May 10th,
2024). In a, d, the disease parameters are set as in [10], the decay
rate α is chosen as 0.0231 which corresponds to halving every 30
days. In b, e, the disease parameters are set as in [9], the decay rate
is chosen as α = 0.2rs = 0.0034 so that α < min(ra, rs). In c, f,
the disease parameters are set as in [11], the decay rate α is chosen
0.0231 that corresponds to halving every 30 days.

of Fig. 2 were calculated by using different sets of disease
parameters adopted from literature [9]–[11].

We compared the optimal stabilizing lockdown policy calcu-
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lated by our methods with several other benchmark policies:
(1) no lockdown, i.e., zl = 1 for all locations; (2) random
lockdown, zl is randomly chosen from a uniform distribution
U[a, b] with the lower- and upper-bounds a and b chosen
such that the overall cost of this policy is the same as that
of our policy; (3) uniform lockdown, where zl = z is the
same for all the locations and z is chosen such that the overall
economic cost is the same as that of our policy; (4) uniformly-
bounded-decline locdown, where the “decline” is uniformly
bounded across locations, i.e., the decay rate of the infections
in each location is bounded by a constant α, where α is chosen
such that the economic cost of this policy is the same as that
of our policy. Note that among the four benchmark policies
both the uniformly-bounded-decline lockdown and the random
lockdown are heterogeneous locationwise.

From Fig. 1, Fig. 2, we can see that our optimal stabilizing
lockdown policy outperforms all other lockdown policies in
terms of the total final number of cumulative cases based
on COVID-19 model and SIS model, respectively. Similar
findings for SIR model is also reported in SI Fig. 2 in [34].

Optimal stabilizing lockdown rate z∗l for each county.
Fig. 3 shows lockdown-rate profiles zl calculated by various
policies. First, we found that the optimal stabilizing lockdown
profile is quite sensitive to the disease parameters. Second,
surprisingly, the values of z∗l for counties in NYC are relatively
higher (corresponding to a less stringent lockdown) than that
of counties outside NYC, regardless of the disease parameters.
Even though the epidemic was largely localized around NYC
on the date we used to initialize the infection rates, the
calculated optimal stabilizing lockdown profile indicates that it
is cheaper to reduce the spread of COVID-19 by being harsher
on neighboring regions with smaller populations. It can be
observed from Fig. 3 that this pattern only appears in our
heterogenous optimal stabilizing lockdown policy. The result is
counter-intuitive. Indeed, it is easy to see that in non-network
models the lockdown strength is invariant to population2.It
is therefore strange to see that a higher-population higher-
infection node (NYC) get assigned a lower intensity lockdown
under our optimal fixed lockdown.

We have performed a number of additional simulations
replicating this phenomenon and verifying its robustness: for
lack of space, these can be found in [34]. In SI Sec. 7 of [34],
we further replicated the same finding in a much simpler city-
suburb model: we consider a city with large population and
a neighboring suburb with small population and observe that
the optimal stabilizing lockdown will choose to shut down the
suburb harder. In SI Sec. 10 of [34], we further confirmed the
same counterintuitive phenomenon using other cost functions.
In SI Sec. 11 of [34], we checked the robustness of this
counterintuitive phenomenon with respect to the uncertainty
of the travel rate matrix τ by adding noises or removing part
of the travelling data. It turns out that this phenomenon is quite
robust against the uncertainty of the matrix τ . In particular,
perturbing each τi j by noise with variance up to 10τ2

i j preserves

2Observe, for example, that scaling all the populations in Eq. (6) by the
same number leaves the matrix A, and consequently the optimal stabilizing
lockdown, unchanged.
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Fig. 3 Lockdown rate of each county given by different policies
for the COVID-19 model based on available data about COVID-19
outbreak in NY on April 1st, 2020. a-c, optimal lockdown rate z∗l
given by our method . d-f, uniform lockdown rate zl. g-i, random
lockdown rate zl. j-l, uniformly-bounded-decline lockdown rate zl.
In a, d, g, j, the disease parameters are set as in [10], the decay rate
α is chosen as 0.0231 which corresponds to halving every 30 days.
In b, e, h, k the disease parameters are set as in [9], the decay rate
is chosen as α = 0.2rs = 0.0034 so that α < min(ra, rs). In c, f, i, l,
the disease parameters are set as in [11], the decay rate α is chosen
0.0231 that corresponds to halving every 30 days. It can seen from
a-c that the value of z∗l for counties in NYC are relatively higher
than other counties in New York State, which implies we should
shutdown the outside of NYC harder than itself. Besides, it can be
seen that such counter-intuitive phenomenon does not appear in any
other lockdown policies.

the result, as does randomly setting half of the τi j to zero (see
SI Fig. 18 of [34]).

We investigated this finding further in SI Sec. 8 of [34],
where we let the metric to be optimized be the total number
of infections. As a counterpoint, we do a greedy search over
all two-parameter lockdowns that shut down NYC harder than
the rest of New York State. Our results show that our lockdown
has a smaller number of infections than the best two-parameter
lockdown of the same cost.

Furthermore, in SI Sec. 12 of [34] we performed a ro-
bustness check of this finding in models where the disease
spreads faster urban vs rural environments as a power of the
population density. We presented these results by focusing on
the most and least dense counties in New York, namely New
York County and Hamilton county; there is a multiplicative
factor of 30, 000 difference in the densities between them.
We considered models where the quantities βa, βs scale with a
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power h of density. We found that in models where spread
scales with density, our finding still holds if the epidemic
spreads 2.8 times faster in New York County as compared with
Hamilton County (corresponding to h = 0.1). By contrast, as
we substantite in the same SI section of [34], there does not
appear to be a correlation between the density of a county
in New York State and the growth rate of COVID-19. In
particular, in real-world data the growth rate of COVID-
19 has not been systematically higher in New York County
as compared with Hamilton County over the lietime of the
epidemic.

Moreover, in SI Sec. 14 of [34], we considered whether
this finding still holds if symptomatic individuals reduce their
travel relative to asymptomatic individuals. We considered
scenarios where the travel reduction is 10%, 50%, 90%, and
we found that this finding remains in all of these cases.

The phenomenon in question likely occurs because shutting
down a suburb with small population yields benefits pro-
portional to the much larger population of the city, since a
shutdown in the suburb affects the rate at which infection
spreads in the city as city residents can infect each other
through the suburb. Similarly, a possible explanation for the
phenomenon we observe on New York State data is that
shutdowns outside of NYC may be a cheaper way to curb
the spread of infection within NYC.

We stress that this effect is due to the network interactions.
In particular, this counterintuitive phenomenon does not occur
in a hypothetical model of New York State where residents
always stay within their own county: in that case, the lockdown
problem reduces to a collection of single-node models which
do not interact, and optimal stabilizing shutdown will be
increasing in the proportion of infected (and insensitive to
population), thus hitting NYC harder than the rest of New
York State.

Additional observations. To fully understand the effect
of the disease-related parameters to the optimal stabilizing
lockdown-rate profile {z∗l } and the economic cost, we imple-
mented additional numerical experiments to analyze the sensi-
tivity. We plotted the obtained z∗l with respect to degree, home-
stay rate, population, and employment in SI Fig. 7 of [34]. We
also implemented random permutation experiments (where we
randomly permute one parameter while fixing everything else)
in terms of degree, home-stay rate, population, employment
and initial susceptible rate, and the results are shown in SI Fig.
8-9 of [34]. From these experiments, we found the distribution
of z∗l can be strongly affected by permutations of centrality,
population, and the home stay rate. However, the distribution
of z∗l is not altered much by permuting employment and the
initial susceptible rate. More details about these experiments
are presented in SI Sec. 6 of [34].

From the empirical analysis of data in New York State,
we hypothesize that the home-stay rate, degree centrality, and
population are three major parameters that impact the optimal
lockdown rate z∗l of county-l. However, no inferences can be
made about the effect of these parameters from empirical data
because all of them vary together. To study how the value of
z∗l is related to these parameters, we implement experiments

on synthetically generated data. We describe the experiments
and results next.

Impact of degree centrality. To study the impact of degree
centrality, we considered geometric random graphs [53] (see
SI Sec. 6.5 of [34] for other graphs). The population, the
home-stay rate, and the initial susceptible rate of different
nodes are set as the same values across all the nodes. The
simulation results are presented in Fig. 4a-b. We found that
degree centrality only matters for the value of z∗l when there
exist hotspots (i.e., hubs node with very high degrees). Beyond
such hotspots, the effect of degree centrality is essentially
ignorable.

Impact of population. To study the impact of population,
we fix all other model parameters and vary the population
of the nodes. We again considered geometric random graphs,
where node degrees are similar. The simulation results are
presented in Fig. 4c-d. We found that nodes with small
populations are assigned smaller values of z∗l , but once the
population is large enough, z∗l is almost independent of the
population size.
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Fig. 4 Numerical results of optimal lockdown rates on synthetic
networks. a-b, the impact of the degree centrality on the geometric
random graph. It can be observed that centrality only matters for the
value of z∗l when there exist hotspots in all the three models. Without
such hotspots, the effect of degree centrality is essentially ignorable.
c-d, the impact of population. Nodes with small populations are
assigned smaller values of z∗l . Surprisingly, once the population is
big enough, it doesn’t affect z∗l too much. In these figures, each point
represents a node in the network.

V. CONCLUSION AND DISCUSSION

The main contribution of this paper is two-fold. Our first
contribution is methodological: we give a modeling framework
that gives rise to efficient methods for pandemic control
through fixed lockdowns, with our main algorithm reduces the
problem to matrix balancing, which, under certain assumption,
can be solved in nearly linear time (and otherwise in matrix
multiplication time). The favorable scaling of these methods
allows us to scale up in a way that is not known for any other
method. For example, at present data is not available to design
lockdowns at the city level, but the method presented here can
be scaled up to design a lockdown even at the neighborhood
level for the entire United States. This could potentially be of
use in future pandemics.

Our second contribution is to use our algorithms to observe
several counter-intuitive properties of lockdowns. In particular,
we observe that a model of epidemic spread in New York
State will tend to shut down outside of NYC more stringently
that NYC itself, even if the epidemic is largely localized to
NYC. We compared the lockdown found by our model against
exhaustive search of all two-parameter lockdowns which shut
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down NYC harder than the rest of New York State to verify
that indeed it outperforms. We further found that this result
is robust against significant perturbations to the travel matrix,
the epidemic parameters, as well as the epidemic model.

We caution that our results should not be viewed as an im-
mediate policy recommendation. Indeed, in studying properties
of the lockdowns that drive infections to zero at the fastest
rate, we have not modeled a number of important factors.
For example, hospital and ICU capacity in each county is
important, as well as the ability of ambulances to shuttle pa-
tients between hospitals in neighboring counties, should some
be overwhelmed. Additionally, if counties differ significantly
in testing capabilities, this may affect transmission rates if
a substantial and geographically varying number of patients
know they are infected and follow guidelines to self-isolate. W
have also not attempted to model substitution effects, where
stringent lockdowns in some counties may cause people to
increase their travel to counties with laxer restrictions.

Finally, we remark that since this paper was put online as
a preprint, its results have been generalized to be applicable
to general nonlinear networked systems in [54].
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APPENDIX

A. Connection with the reproduction number

We now provide a proof of a claim that we made in the body
of the paper, namely that the constraint λmax(M(t0)) ≤ −α is
equivalent to a constraint on the basic reproduction number
R(t0).

Proposition 7: Given any r ∈ [0, 1], one can find an α in
the domain α ∈ [0,min(rs, ϵ + ra)] such that the constraints

R(t0) ≤ r

and
λmax(M(t0)) ≤ −α

are equivalent. The converse is also true: given α in the above
domain, one can find an r ∈ [0, 1] so that the above two
constraints are equivalent.

Proof: The argument essentially reprises the proof of
Lemma 5. Indeed, in that lemma we considered the matrix

M(t0) =
(
βadiag(s(t0))Az − ϵ − ra βsdiag(s(t0))Az

ϵ −rs

)
.

In Eq. (12), it was shown that the constraint

λmax(M(t0) ≤ α

was equivalent to the constraint

λmax(diag(s(t0))Azb1(α)) ≤ 1.

Here we write the expression b1(α), unlike in Eq. (12), this
way to highlight the dependence on α. Using the definition of
b1(α) from that lemma, the last condition can be rewritten as

ρ(diag(s(t0))Az) ≤ b1(α)−1

=
(ϵ + ra − α)(rs − α)
βsϵ + βa(rs − α)

=
ϵ + ra − α

βa + βsϵ/(rs − α)
(21)

We thus have that an upper bound the condition λmax(M(t0)) ≤
−α is equivalent to the upper bound ρ(diag(s(t0))Az) ≤ f (α),
where f (α) is a monotonically decreasing function of α. We
next argue that a similar finding holds for the constraint R(t0) ≤
r.

To do this, we need to express the reproduction number in
terms of the matrix M(t0). We use an expression from [55] in
the form discussed in the recent paper [56]. Indeed, Definition
3 of [56] shows3, referring to [55], that if we split

M(t0) = F + V

3Specifically, to apply those results here, the variable y of [56] represents
the susceptible agents, while the variable x of that paper collects all the asymp-
tomatic and symptomatic locations. The function f (x, y) of [56], representing
the inflow of infections, is taken to be zero.
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where
F =

(
βadiag(s(t0))Az βsdiag(s(t0))Az

0 0

)
and

V =
(
−ϵ − ra 0
ϵ −rs

)
then

R(t0) = −ρ(FV−1).

However, we have already computed this spectral radius in
Eq. (11):

R(t0) = ρ(diag(s(t0))Az)b1(0)

= ρ(diag(s(t0))Az)
βsϵ + βars

(ϵ + ra)rs

Thus the constraint
R(t0) ≤ r

is equivalent to

ρ(diag(s(t0)Az) = r
(ϵ + ra)rs

βsϵ + βars (22)

We have thus shown that the constraint R(t0) ≤ r is equivalent
to the condition ρ(diag(s(t0)Az) ≤ g(r), where g(r) is a
monotonic function of r. Since both constraint on R(t0) and
λmax(M(t0)) are equivalent to constraints on ρ(diag(s(t0)Az),
they are equivalent to each other.

Finally, inspecting Eq. (21) and Eq. (22), we see that α =
0 corresponds to r = 1, which is as one might expect. On
the other hand, we see that as α approaches the endpoint of
its domain, min(rs, ϵ + ra), we have that the corresponding r
approaches zero. This concludes the proof.

B. Results for The Network SIS Model

The SIS model differs from the COVID-19 model described
in the main text or its special cases because it allows recovered
individuals to get infected. An analogous form of our main
result holds for the SIS model, as we describe next.

1) Problem formulation: The network SIS Model is described
by the following set of ordinary differential equations

ẋi = (1 − xi)
n∑

j=1

βai jx j − γxi, i = 1, . . . , n. (23)

Here β denotes the transmission rate, which captures the rate
at which an infected individual infects others, γ denotes the
recovery rate, and ai j captures the rate at which infection flows
from the population at location j to location i.

For simplicity of notation, we can stack up the coefficients
ai j into a matrix as as A = [ai j]. Then we can write the network
SIS model as

ẋ = diag(1 − x)βAx − γx,

where 1 denotes the vector of all-ones while diag(u) makes a
diagonal matrix out of the vector u.

It is naturally desirable to have xi(t) → 0 for all i = 1, . . . , n,
i.e., to have the infection die out. This happens if and only if
the matrix βA − γI is continuous-time stable [57]–[61]. To
achieve an exponential decay rate α of each xi(t) (i.e., to be

bounded asymptotically by a multiple of e−αt), it is necessary
and sufficient to have λmax(βA − γI) ≤ α (see formal proof
in [34]). Note that even though the network SIS dynamics is
nonlinear, the asymptotic stability is nevertheless equivalent to
a linear eigenvalue condition.

Thus the optimal fixed lockdown condition is to find a
vector z ∈ [0, 1]n such that λmax(Az) ≤ α, where Az is defined
identially to the main body of the paper in Eq. (7).

2) Our results: We first state the form of the high-spread
assumption for the SIS case.

Assumption 8 (High spread assumption): In the network
SIS model, we have diag(B⊤C) ≥ γ

Our main result for the SIS case is then as follows.

Theorem 9: Suppose the graph corresponding to positive
entries of the matrix A is strongly connected and s(t0) > 0.
Then:

1) Suppose Assumption 8 holds. Then the lockdown prob-
lem for the compartmental SIS dynamics is reducible to
matrix balancing.

2) If Assumption 1 does not hold, then the lockdown prob-
lem for the compartmental SIS dynamics can be solved
by computing an eigendecomposition and then perform-
ing Õ(nω) operations, where ω is the exponent of matrix
multiplication and the Õ(·) notation hides factors which
are logarithmic in the remaining problem parameters.

3) Proof Sketch of Theorem 9: The proof of Theorem 9
overlaps quite a bit with the proof of Theorem 2 in the main
body of our paper. Indeed, almost all of the proof can be
followed verbatim for the network SIS case. The only part
that cannot be is Lemma 5, which explicitly references to the
COVID-19 dynamics. We next give a proof of a version of
this lemma for the SIS case.

Lemma 10: Suppose A = CB⊤ is strongly connected. The
minimum cost lockdown problem for the SIS network can
be written as stability scaling. Under Assumption 8, the
constrained lockdown problem for the network SIS problem
can also be written as stability scaling.

Proof: We consider the unconstrained lockdown problem
first. Recall that, in the SIS model, we are looking for a
minimum cost positive vector z such that

Cdiag(z)B⊤ − (γ − α)I (24)

is continuous-time stable. Since the nonzero eigenvalues of
a product of two matrices do not change after we change the
order in which we multiply them, this is the same as requiring
that

diag(z)B⊤C − (γ − α)I

is continuous-time stable. This is exactly the stability scaling
problem provided we have two additional conditions. The
first condition is that α < γ (because the diagonal matrix
subtracted needs to be positive). The second condition is that
B⊤C should be strongly connected. But by Lemma 4, the
second condition is true because we assumed that A = CB⊤ is
strongly connected.
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Observe that the reduction resulted in an instance of stability
scaling with matrix P = B⊤C. Since we have assumed A =
CB⊤ is strongly connected, we can apply Lemma 4 to obtain
that P is strongly connected as needed. Under the assumption
α < γ, the matrix (γ − α)I is a positive diagonal matrix as
required.

We thus have the reduction we want, from optimal lockdown
to stability scaling, assuming α < γ. But what if α ≥ λ?
In that case, we claim that the minimum cost lockdown
problem does not have a solution. Indeed, since at the optimal
solution we must have all z∗i > 0, we have that Cdiag(z∗)B⊤

is an irreducible nonnegative matrix and its Perron-Frobenius
eigenvalue is strictly positive by the Perron-Frobenius theorem
[62]. Consequently, Cdiag(z∗)B⊤ − (γ − α)I has a positive
eigenvalue and cannot be continuous-time stable.

Finally, we consider the constrained version. We argue that,
under Assumption 8, the optimal solution to the constrained
lockdown problem will have z∗i ≤ 1 for all i, so we can simply
drop the constraint. Indeed, first observe that we can assume
α ≤ γ, else the problem does not have a solution as explained
above. Now suppose that z∗j > 1; then diag(z∗)B⊤C − diag(γ −
α)I has a nonnegative j’th row with at least one positive entry
in that row. Indeed, the off-diagonal entries in the j’th row are
clearly nonnegative, while the diagonal entry is nonnegative
by Assumption 1.

By Lemma 3, diag(z∗)B⊤C − diag(γ − α)I cannot be
continuous-time stable. As matrix Cdiag(z)B⊤−(γ−α)I has the
same nonzero eigenvalues as the matrix diag(z∗)B⊤C−diag(γ−
α)I, it can not be stable either.

With this lemma established, all other parts of Theorem
2 can be followed verbatim, and the proof of Theorem 9 is
complete.
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