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Abstract
Estimating human mobility is essential during the COVID-19 pandemic because it provides
policymakers with important information for non-pharmaceutical actions. Deep learning
methods perform better on tasks with enough training data than traditional estimating tech-
niques. However, estimating human mobility during the rapidly developing pandemic is
challenging because of data non-stationarity, a lack of observations, and complicated social
situations. Prior studies on estimating mobility either concentrate on a single city or can-
not represent the spatio-temporal relationships across cities and time periods. To address
these issues, we solve the cross-city human mobility estimation problem using a deep
meta-generative framework. Recently, we proposed the Spatio-Temporal Meta-Generative
Adversarial Network (STORM-GAN) model, which estimates dynamic human mobility
responses under social and policy conditions relevant to COVID-19 and is facilitated by
a novel spatio-temporal task-based graph (STTG) embedding. Although STORM-GAN
achieves a good average estimation accuracy, it creates higher errors and exhibits over-fitting
in particular cities due to spatial heterogeneity. To address these issues, in this paper, we
extend our prior work by introducing an improved spatio-temporal deep generative model,
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namely STORM-GAN+. STORM-GAN+ deals with the difficulties by including a distance-
based weighted training technique into the STTG embedding component to better represent
the variety of knowledge transfer across cities. Furthermore, to mitigate the issue of over-
fitting, we modify the meta-learning training objective to teach estimated mobility. Finally,
we propose a conditional meta-learning algorithm that explicitly tailors transferable knowl-
edge to various task clusters. We perform comprehensive evaluations, and STORM-GAN+
approximates real-world human mobility responses more accurately than previous methods,
including STORM-GAN.

Keywords Meta-learning · Generative adversarial networks · Spatio-temporal · Graph
embedding · COVID-19

1 Introduction

The COVID-19 pandemic’s evolving developments (e.g., spread, mutation, and vaccination)
raised the pressure on policymakers to develop flexible and adaptable regulations that can
safeguard public health while preventing economic collapses and supporting basic needs in
daily life. The staged reopening has been established as a solution to this problem to prevent
illnesses brought on by loosened social distance policies. Estimating how dynamic human
mobility will respond to pandemic conditions and policies is therefore still important in
policymaking.

It is particularly challenging for cities in the early stages of an outbreak or wave (for
example, the Omicron variant) to forecast future human mobility responses under unprece-
dented severity levels or unforeseen policies due to the asynchronous spread of the disease
and the absence of past data. In order to resolve this issue, it is essential for these cities to be
able to utilize the past experiences and knowledge of other cities for their own evaluation. In
this regard, there is an imperative need for estimation methods of mobility response that can
leverage cross-city knowledge to produce promising results.

We attempt to solve the cross-city heterogeneous human mobility responses estimation
problem in this paper.We intend to develop amodel that can rapidly adapt to previously unob-
served cities and time periods and estimate the dynamics of human mobility response under
any projected conditions. Our inputs consist of contextual (e.g., population, POI) counts,
epidemic (e.g., COVID-19 cases), policy (e.g., stay-at-home orders), and corresponding
human mobility responses (e.g., POI visit counts, home dwell time) measures from multiple
locations.

Challenges There are four main challenges with the cross-city human mobility response
estimation problem. First, human mobility responses are influenced by various intricate
social–physical factors that are either unknown or uncertain. Responses may be impacted, for
instance, by people’s willingness to comply with rules, decisions made by service providers
(such aswhether a restaurant will open or offer dine-in options), modifications to public trans-
portation, supply, and a variety of other factors [1]. Second, spatial–temporal non-stationarity
is frequently observed in human mobility responses. For instance, the impact of various fac-
tors on mobility can quickly change over time and tends to vary from region to region due
to cultural and economic differences. The availability of training data for each estimation
task is severely constrained by such spatial and temporal non-stationarity, making it chal-
lenging to take advantage of the approximation power of data-driven approaches. Third,
additionally, there are complex spatial and temporal dependencies among varying estimation
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tasks, i.e., cities and times, which must be explicitly taken into account for reliable parame-
ter sharing. Cities may, for instance, have similar mobility dynamic patterns based on their
geographic proximity (e.g., distances, travel connections like airlines) and their pandemic
stage. Fourth, task heterogeneity and uncertainty are two major obstacles to meta-learning
that cannot be overcome by globally sharing information among tasks, because the majority
of the meta-learning algorithms in use nowadays presume that all tasks globally share the
same transferable knowledge. As a result, they struggle to manage a series of tasks that come
from multiple distributors.

Related work Numerous recent attempts have used machine learning techniques to perform
spatio-temporal estimate tasks. In a recent paper [2], a COVID-GAN has been proposed for
estimating human mobility, where policies (e.g., school closure) are employed as restrictions
to enhance estimation outcomes. This study does not model the spatial and temporal rela-
tionships between cities or phases; instead, it solely considers estimation in a single city. As
a result, they are unable to adjust to unknown cities quickly. COVID-GAN is a spatial model
that does not explicitly characterize the temporal dynamics of human mobility responses.

The few-shot learning problem, which arises when there are few training samples for
new tasks, has been addressed in recent years by a number of meta-learning approaches [3,
4]. However, few of them are designed for spatio-temporal tasks. Zhang et al. [5] is one of
the exceptions; it generates traffic volume using a model-based meta-learning technique and
a variational autoencoder structure. Another study on traffic prediction incorporates CNNs
and the attention mechanism [4]. In addition, functionality zones are used to divide cities
into tasks before the model-agnostic meta-learning (MAML) framework is implemented, as
described in [6].

We recently proposed a Spatio-TempORal (conditional) Meta-Generative Adversarial
Network (STORM-GAN [7]), a deep spatial–temporal meta-generative model [8, 9], to esti-
mate cross-cities mobility under various real-world conditions such as COVID-19 severity
and local policy interventions. STORM-GAN effectively captures mobility pattern similar-
ities among cities by modeling the spatio-temporal dependencies and correlations across
different tasks with a meta-learning paradigm and spatio-temporal task-based graph (STTG)
embedding learning. However, it does not consider the effects of spatial heterogeneity over
different urban contexts. For example, more activities are concentrated in urban areas (e.g.,
Boston, NYC) than rural areas, which can be attributed to different population densities in dif-
ferent regions, producing higher errors in certain regions. Also, STORM-GAN suffers from
overfitting when testing in rural areas. However, these regions indeed have a high significance
in understanding the mobility patterns due to data scarcity issues.

Proposed work This paper is a significant extension of our recent work [7]. In this paper,
we address the above limitations by proposing an improved conditional meta-learning-based
spatio-temporal generative adversarial network model to take into consideration of spatial
heterogeneity across tasks when estimating human mobility response patterns to COVID-
19. We call the new meta-learning-based conditional generative adversarial network model
STORM-GAN+. The use of a conditional GAN [8] allows consideration of unknown and
uncertain factors (i.e., modeled as latent factors). Building on top of STORM-GAN, the
STORM-GAN+ model learns to generate spatio-temporal mobility dynamics in different
cities under a set of geographic, epidemic, social, and other factors. It utilizes an improved
STTG embedding learning strategy to capture region heterogeneity from a distribution of
tasks (i.e., mobility estimation for each city over a time period) for fast adaption to new
spatio-temporal tasks (e.g., new cities, future projection). Moreover, we adopt a new condi-
tional meta-learning strategy to explicitly solve the task heterogeneity issue, and modify the
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training objective to learn the estimated mobility faster and more accurately. We proposed
the STORM-GAN+ with the new graph embedding method and meta-learning structure for
better model generalization and adaptation, further improving STORM-GAN+ performance.

The new contributions of this paper are as follows:

• We quantify the spatial heterogeneity of human mobility tasks using an enhanced spatio-
temporal task-based graph (STTG) to improve the model’s capacity for capturing task
diversity. Through a distance-based weighted learning technique, this augmentation can
assist in learning the spatial heterogeneity of the task, hence increasing the shared
knowledge learning across tasks.

• We quantify the spatial heterogeneity of human mobility tasks using an enhanced spatio-
temporal task-based graph (STTG) to improve the model’s capacity for capturing task
diversity. Through a distance-based weighted learning technique, this augmentation can
assist in learning the spatial heterogeneity of the task, hence increasing the shared
knowledge learning across tasks.

• Wemodify the objective function ofmeta-learning by substituting the fixedmeta-learning
rates with a dynamic meta-hyperparameter adaptation scheme. This dynamic learning
mechanism can eliminate the need to tune meta-learning rates and improve solution
quality by addressing the issue of overfitting when training on sparse regions.

• We conduct intensive experiments on real-world data to validate the solution quality
improvements achieved by the proposed approach under various scenarios. Extensive
experiments on real-world datasets demonstrate that STORM-GAN+ is capable of gener-
ating humanmobility patterns that closely approximate the ground truth and significantly
outperform other baseline methods.

The rest of the paper is organized as follows: Section2defines the problem.Sections3 and4
detail the methodology and model structure of STORM-GAN and STORM-GAN+, respec-
tively. We present evaluation results in Sect. 5, and related works are summarized in Sect. 6,
and the paper is concluded in Sect. 7.

2 Problem statement

This section introduces a set of basic concepts about our data modeling and then provides a
formal problem statement.

2.1 Basic concepts

Definition 1 Spatial grid S is a grid-discretization of a spatial field (e.g., a city), where each
grid cell si represents an equally sized squared area. Given S, the location of any POI can be
mapped into a grid cell. For simplicity, in this work we choose the grid cells to be 1km×1km.

Definition 2 Temporal period T is a temporal period (e.g., a 7-daywindow) containing equal-
length slots (e.g., a day), denoted as T = {t1, t2, . . . , tn}, where each slot t represents the
finest temporal resolution of the data.

Definition 3 Mobility-related conditions All conditions that will influence human mobility
responses are mobility-related conditions including contextual conditions (e.g., population,
household income), epidemic conditions (e.g., COVID-19 confirmed cases and deaths), and
policy conditions (e.g., strict stay-at-home or shelter-in-place orders). We denote a list of k
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conditions as F = { f1, f2, . . . , fk}. For a grid cell s, we denote f s,t as all the conditions of
s in time slot t .

Definition 4 Human mobility responses The human mobility responses M are a two-
dimensional tensor, representing the total number of visits to POIs (e.g., grocery stores,
hardware stores, restaurants, gas stations) in each grid cell s for time slot t .

In the scope of the present study, we use point-of-interest (POI) visit counts simply as an
example to demonstrate the solution framework. Our model can also use other mobility
measures (e.g., median home dwell time). The choice of the measure is not the focus of this
paper.

Definition 5 Spatio-temporal task-based graph (STTG) A STTG is defined as a directed
weighted graph G (V, E), where V represents spatial locations of tasks (e.g., cities), and
E represents the relevance among spatial locations. The graph is attributed, meaning that
the nodes are associated with attributes f (νi ) to describe the characteristics of each spatial
location in the task space. The attributes of STTG are not fixed and can be specified by users
in various scenarios. We illustrate two STTG scenarios in Sect. 5.4.

Definition 6 Generator GA deep neural network model is used to generate a series of human
mobility response mapsM′

G given a set of conditions.

Definition 7 Discriminator D A deep neural network model that outputs a probability preal
at which a map of human mobility responses is classified as from real-world rather than from
a generator G.

Definition 8 Spatio-temporal mobility estimation tasks A task Ti consists of a series of pairs(
Mt ,Ft

)
for a few consecutive time periods T (e.g., 5 weeks) in a partitioned area S (e.g.,

10 × 10 grids of a city). Each sample is a 4D tensor with size l × l × k × T, where l × l is
the size of the spatial window, and k is the number of conditions. Each Ti is divided into a
training set Dtrain

i and a testing set Dtest
i .

2.2 Problem definition

We construct the tasks (Definition 8) by a spatio-temporal partition of all conditions F and
mobility responsesM. Each spatio-temporal task Ti contains data from the grid S of a single
city for w consecutive time periods {T1, . . . , Tw}, and tasks are mutually exclusively (i.e.,
no overlap along the temporal dimension). Each data sample in a task contains a time-series
of length | T | with any start time (but the time span of a sample must be completely within
the span of a task).
Inputs:

• A time-series of conditions {Ft−|T |+1, . . . ,Ft } for each data sample in training tasks;
• Mobility responseMt for each sample in training tasks;
• Spatio-temporal task-based graph STTG for tasks.

Outputs:

• A generator G to generate/estimate mobility responses;
• A meta-initialization θ for G for fast adaptation to training and new testing tasks.
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Fig. 1 STORM-GAN and STORM-GAN+

Objective:

• Minimize average generation error on new testing tasks.

In this work, given a series of tasks sampled from multiple cities (e.g., Boston and NYC),
we train a meta-generative model. Then, when a new city (e.g., Houston) comes in with a
small training set, we quickly fine-tune the meta-model parameters to obtain a tailored model
for the new city to generate its mobility responses.

3 Baseline: STORM-GAN

In this section, we present STORM-GAN details from our recent work [7] and use STORM-
GAN as the building block for the new method proposed in this paper. Our previous work
makes the first attempt to formulate the cross-city COVID-19 human mobility estimation
problem through a meta-learning-based deep data generation problem.

3.1 STORM-GAN architecture

The following section presents our model structure to address the cross-city human mobility
response estimation problem. Figure1 shows the overall workflow of the proposed STORM-
GAN starting from the data preprocessing step to the human mobility estimation step. To
help capture the task similarity, we propose a spatio-temporal task-based graph (STTG) in the
generator to improve the estimated values using domain knowledge. Next, wewill discuss the
three key components in our STORM-GAN, i.e., the spatio-temporal generator, discriminator,
and STTG. Note, Fig. 1 illustrates the structures of STORM-GAN+, and differences made
by STORM-GAN+ based on STORM-GAN are highlighted in red.
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Fig. 2 STORM-GAN and STORM-GAN+ Network Architecture

3.1.1 Spatio-temporal generator

The spatio-temporal generator aims to generate human mobility responses while capturing
spatial patterns and temporal dependencies. The utilization of the GAN structure allows
known factors to be learned as conditions and unknown factors to be represented by latent
noise,whichhelps themodel to express these uncertainties (i.e.,mobility response estimations
may have some degree of variations). As shown in Fig. 2, the generator uses a stack of CNN
and LSTM elements where CNN captures local spatial patterns and maintains the spatial
representation (e.g., neighbor relationships). LSTM is able to capture temporal trends in a
given sequence. The generator takes a condition tensor F ∈ R

l×l×k×T (we skip the batch
dimension here for simplicity) and a latent code tensorU ∈ R

l×l×u×T, where k is the number
of conditions (e.g., policy, COVID statistics, and contextual conditions), u is the dimension
of the noise vector for modeling the uncertainties, and T is the length of a time period.

In the generator, denote the CNN output as r̂ ∈ R
d×T, where d is the number of output

features. Next, to capture temporal patterns and trends, r̂ is fed into an LSTM layer, where
the memory vector is concatenated to r̂ . Then, the output from the last timestamp of the
LSTM layer ˆrh will be concatenated with the graph embedding and further passes through
a fully connected layer to generate the final output. This ˆrh is not yet the estimated mobility
response M′

G .
For more robust estimation, the spatio-temporal generator additionally uses a proposed

spatio-temporal task-based graph embedding to characterize task-level spatio-temporal fea-
tures and potential dependency across multiple cities and their mobility patterns, as discussed
in the next section.

3.1.2 Spatio-temporal task-based graph (STTG) embedding

In real-world scenarios, spatial meta-learning tasks may have a very diverse distribution.
For example, in our problem, tasks sampled from multiple cities can have significantly dif-
ferent human mobility patterns due to different urban contexts. Meanwhile, there may also
exist underlying dependencies among cities due to traffic connections, geo-socio similarities,
etc. Such spatial distribution of tasks, if properly utilized, would significantly enhance the
performance of the learned meta-learning model.
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To better model heterogeneity and dependency across spatio-temporal tasks, we propose a
novel spatio-temporal task-based graph (STTG) to incorporate such information and facilitate
the learning of transferable knowledge from related tasks. In the following part, we will first
introduce STTG ’s construction rules and then discuss STTG-based embedding learning.

The STTG in our proposed STORM-GAN framework is a directed weighted graph
G (V, E), where nodes represent the spatial locations of tasks (e.g., cities) and edges (and
weights) represent the relevance among spatial locations. Furthermore, the graph is attributed,
meaning that the nodes are associated with attributes f (νi ) to describe the characteristics of
each spatial location in the task space.

STTG can be defined in various ways depending on the underlying analysis goal and
the network data used. In our particular application, we define each node νi as a major
metropolitan area in the USA, which contains features f (νi ) of the city such as the current
stage of the pandemic. Each edge ei j connecting cities νi and ν j indicates that there is geo-
socio similarity between νi and ν j in the pandemic, where the edge weight represents the
strengths of such similarity. Depending on how “similarity” is measured, we can define the
edge andweights differently. Examples of suchmeasuresmay include the infection spreading
between cities [10], the correlation between cities’ mobility patterns, etc.

In this thesis, we present two examples of STTG construction cases, although other defini-
tions can also be used with our method. In the first case, we define the edges and their weights
based on physical reachability, i.e., the number of direct flights and driving distance between
cities, with the assumptions that the COVID spreading is tightly related to traveling and that
cities with stronger transportation connections tend to have more relevance in COVID situ-
ation. In the second case, we define the edges based on the similarity of historical mobility
pattern distribution measured by the Kullback–Leibler (KL) divergence [11] between cities.
We provide details on the STTG construction in Sect. 5.4 and show effectiveness in Sect. 5.5.

Next, we use the built STTG in the meta-training phase to help learn more helpful knowl-
edge across tasks. As Fig. 2 shows, during the training on the generator, we first sample a
task-specific 1-hop subgraph H for the corresponding node (a city) on the STTG. Then, we
obtain a sub-graph embedding using variational graph autoencoder (VGAE), which consists
of graph convolution neural networks (GCNs) [12] by solving:

f (XL , A) = α
(
D̂− 1

2 ÂD̂− 1
2XL−1WL−1

)
, (1)

where A is the adjacency matrix, Â = A + I , I is the identity matrix, D̂ is the diagonal node
degree matrix of Â, α(·) is an activation function (e.g., ReLU), X is the feature matrix of each
node from the graph, and WL−1 is a weight matrix for the L − 1th layer. The encoder takes
A and X as inputs and generates the latent variable Z as output. The decoder reconstructs an
adjacency matrix defined by the inner product between latent variable Z.

The graph feature representation Z is concatenated with the output ˆrh (Fig. 2) and flows
through a final fully connected layer in the spatio-temporal generator to achieve M′

G . The
new STTG- and GCN-based embedding, being part of the generation process, will also help
the meta-learner to incorporate the similarity and dependency among tasks.

3.1.3 Spatio-temporal discriminator

Figure 2 shows the structure of the discriminator, which takes a tensor of size Rl×l×(k+1)×T,
where k is the number of conditions (same as that for generator) and the added one dimension
is for the mobility response layer.
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To create training data for “fake” or “real” labels, the input tensors are created in three
ways: (1) generated mobility M′

G concatenated with conditions; (2) real mobility Mreal

concatenated with corresponding conditions; (3) conditions concatenated with mismatched
real mobility Mmismatch . Finally, only samples from the second combination are labeled
“real”. Using these inputs, the discriminator learns to determine whether an input is “real”
or “fake”.

STORM-GAN training on a single city is performed through adversarial configuration
between the generator and discriminator. A min–max objective function is used to train G
and D jointly by solving:

LG,D = EM∼Pdata [log D(M,F)]
+ EU∼PU [log(1 − D(G(F,U, ST TG),M))] (2)

where LG,D is the binary cross-entropy loss.

3.2 STORM-GAN training and testing

3.2.1 MAML-based outer loop updates

As defined in Sect. 1, our goal is to learn the shared knowledge or initialization across
tasks drawn from multiple cities. To transfer the structural knowledge from the graph and
spatio-temporal knowledge frommobility data inmultiple cities,we adopt themodel-agnostic
meta-learning (MAML) framework to learn themeta parameter θD and θG , specifically in our
case for all spatio-temporal tasks. The learned initialization is expected to contain common
knowledge that can be fast-adapted to new tasks.

WithMAML,we sample a batch of tasks in each step, where each task Ti consists of (F, M)
and their corresponding one-hop subgraph in STTG. The general optimization formulation
is as follows. Given a set of tasks {T1, T2, . . .} drawn from a task distribution p (T ), where
each task Ti ∼ p(T ) consists of a training and a test set {Dtrain

i ,Dtest
i }, we optimize the G

and D with parameters θG and θD to minimize the expected empirical loss across all tasks
during meta-training. The meta-update rules are given by:

θD = θD − β∇θDLG,D( fθ ′
D
) (3)

θG = θG − β∇θGLG,D( fθ ′
G
) (4)

where β is the learning rate for meta-update, and θ ′
G and θ ′

D represent temporary task-
specific parameters. Following the recommendation in [6], we use the first-order MAML for
the meta-weight update.

3.2.2 STORM-GAN inner loop updates

Algorithm 1 shows the detailed meta-training procedure. The training of discriminator uses
the three types of combinations: (M′

G , F), (Mreal , F) and (Mmismatch , F). Denote α as the
learning rate of the discriminator, θ ′

D as the parameters of the discriminator, the loss function
and the update rule of D are shown in Eqs. (5) and (6), respectively.

fD = − 1

m

m∑

i=1

(
log(1 − D((M′

G)i ,Fi )) + log(D(Mi
real ,F

i ))
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+ log(1 − D(Mi
mismatch,F

i ))

)
(5)

θ ′
D = θ ′

D − α∇ fD(θ ′
D) (6)

wherem is the total number of samples in a batch, and index i refers to the i th sample. Denote
θ ′
G as the parameters in G, we have the loss function and update rule of G as:

fG = 1

m

m∑

i=1

(
log(1 − D((M′

G)i ,Fi ))

)

= 1

m

m∑

i=1

(
log(1 − D(G(Fi ,Ui , ST TG),Fi ))

)
(7)

θ ′
G = θ ′

G + α∇ fG(θ ′
G) (8)

3.2.3 STORM-GAN adaptation on new tasks

During the model adaptation phase (e.g., updating the optimal initialization for a new task
from a new city), we first copy θG and θD from themeta-training phase as the initialization for
fast-adaptation and then use training samples from the new task to perform STORM-GAN
for updating the meta-parameter θD and θG . Finally, the updated model outputs the estimated
mobility using testing samples. The tasks used for meta-testing adaptation are held out from
meta-training.

4 Mobility estimation through STORM-GAN+

Although STORM-GANachieves a good average estimation accuracy, it creates higher errors
and exhibits over-fitting in particular cities due to the presence of spatial heterogeneity (e.g.,
urban vs. suburban). To address these issues, we propose a new model, namely STORM-
GAN+, to improve the estimation accuracy.

4.1 STORM-GAN+ architecture

As discussed above, STORM-GAN does not handle spatial heterogeneity in different urban
contexts. To help improve the model capacity in dealing with this issue, we reform the
objective of the STTG by introducing a distance-based weighted training technique into the
STTG embedding component in order better to represent the variety of knowledge transfer
across cities. Furthermore, to mitigate the issue of overfitting, we modify the meta-learning
training objective to teach estimated mobility. Note, Fig. 1 illustrates the overall structure of
STORM-GAN+;.

4.1.1 STORM-GAN+ generator

The spatio-temporal generator aims to generate human mobility responses while capturing
spatial patterns and temporal dependencies. As shown in Fig. 2, the generator uses a stack
of CNN and LSTM elements where CNN captures local spatial patterns and maintains the
spatial representation (e.g., neighbor relationships). LSTM is able to capture temporal trends
in a given sequence. The generator G takes a condition tensor F ∈ R

l×l×k×T (we skip the
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Algorithm 1 STORM-GAN Training and Testing
Require:
1: • Set of training cities Ttrain; set of testing cities Ttest
2: • Conditions F, mobility Mreal, a STTG G
3: • Inner learning rate α; outer learning rate β; number of epochs epoch
Ensure: θG , θG , estimated mobility M ′

G for Ttest
4: G = initG(); D = initD()
5: Randomly initialize meta θG , θG
6: for e = 1 to epoch do
7: Sample a batch of T from Ttrain
8: Sample the subgraph H of T from G
9: for Ti in {F,Mreal,H} do
10: Sample a set of disjoint Dtrain

i , Dtest
i

11: Generate graph embedding E of H
12: M′

G = G(F, E, rand(PU))

13: Update D using Dtrain
i by Eqs. (5) and (6)

14: Update G using Dtrain
i by Eqs. (7) and (8)

15: Evaluate estimation loss using Dtest
i by Eq. (2)

16: end for
17: Update θD and θG by Eqs. (3) and (4)
18: end for
19: Return θG , θD
20: Sample batch of testing tasks T from Ttest
21: for Ti in {F,Mreal,H} do
22: Sample a disjoint Dtrain

i , Dtest
i from Ttest

23: Generate graph embedding E of H
24: Copy θG , θD
25: Evaluate performance by Eq. (2) using Dtrain

i
26: Update G through Eqs. (7) and (8)
27: Estimate M′

G using updated G and Dtest
i

28: end for

batch dimension here for simplicity) and a latent code tensor U ∈ R
l×l×u×T, where k is

the number of conditions (e.g., policy, COVID statistics, and contextual conditions), u is the
dimension of the noise vector for modeling the uncertainties, and T is the length of a time
period.

In G, denote the CNN output as r̂ ∈ R
d×T, where d is the number of output features.

Next, to capture temporal patterns and trends, r̂ is fed into a LSTM layer, where the memory
vector is concatenated to r̂ . Then, the output from the last timestamp of the LSTM layer ˆrh
will be concatenated with the graph embedding and further passes through a fully connected
layer to generate the final output. This ˆrh is not yet the estimated mobility responseM′

G .

4.1.2 Enhanced spatio-temporal task-based graph (STTG) embedding

In real-world situations, spatial meta-learning tasks may have a highly variable distribution.
For instance, due to the heterogeneous metropolitan environments in our problem, tasks
sampled from diverse locations may exhibit dramatically varied human mobility patterns.
Furthermore, due to traffic linkages, geo-socio similarities, etc., there could also be underly-
ing relationships among cities. If utilized appropriately, such a geographical distribution of
activities would significantly improve howwell the acquiredmeta-learningmodel performed.

Phase-1: Define STTG To better model heterogeneity and dependency across spatio-
temporal tasks, we propose a novel spatio-temporal task-based graph (STTG) to incorporate
such information and facilitate the learning of transferable knowledge from related tasks.
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In the following part, we will first introduce STTG ’s construction rules and then discuss
STTG-based embedding learning. Finally, we will introduce the distance-based weighted
learning strategy.

The STTG in our proposed STORM-GAN+ framework is a directed weighted graph
G (V, E), where nodes represent the spatial locations of tasks (e.g., cities) and edges (and
weights) represent the relevance among spatial locations. Furthermore, the graph is attributed,
meaning that the nodes are associated with attributes f (νi ) to describe the characteristics of
each spatial location in the task space.

STTG can be defined in various ways depending on the underlying analysis goal and
the network data used. In our particular application, we define each node νi as a major
metropolitan area in the USA, which contains features f (νi ) of the city such as the current
stage of the pandemic. Each edge ei j connecting cities νi and ν j indicates that there is geo-
socio similarity between νi and ν j in the pandemic, where the edge weight represents the
strengths of such similarity. Depending on how “similarity” is measured, we can define the
edge andweights differently. Examples of suchmeasuresmay include the infection spreading
between cities [10], the correlation between cities’ mobility patterns, etc.

In this paper, we present two examples of STTG construction cases, although other defini-
tions can also be used with our method. In the first case, we define the edges and their weights
based on physical reachability, i.e., the number of direct flights and driving distance between
cities, with the assumptions that the COVID spreading is tightly related to traveling and that
cities with stronger transportation connections tend to have more relevance in COVID situ-
ation. In the second case, we define the edges based on the similarity of historical mobility
pattern distribution measured by the Kullback–Leibler (KL) divergence [11] between cities.
We provide details on the STTG construction in Sect. 5.4 and show effectiveness in Sect. 5.5.

Phase-2: Engage STTG with generator Next, we use the built STTG in the meta-training
phase to help learnmore useful knowledge across tasks.AsFig. 2 shows, during the trainingon
generator,wefirst sample a task-specific 1-hop subgraphH for the corresponding node (a city)
on the STTG. Then, we obtain a sub-graph embedding using variational graph autoencoder
(VGAE) which consists of graph convolution neural network (GCNs) [12] by solving:

f (XL , A) = α
(
D̂− 1

2 ÂD̂− 1
2XL−1WL−1

)
, (9)

where A is the adjacency matrix, Â = A + I , I is the identity matrix, D̂ is the diagonal node
degree matrix of Â, α(·) is an activation function (e.g., ReLU), X is the feature matrix of each
node from the graph, and WL−1 is a weight matrix for the L − 1th layer. The encoder takes
A and X as inputs and generates the latent variable Z as output. The decoder reconstructs an
adjacency matrix defined by the inner product between latent variable Z.

The graph feature representation Z is concatenated with the output ˆrh (Fig. 2) and flows
through a final fully connected layer in the spatio-temporal generator to achieve M′

G . The
STTG- and GCN-based embedding, being part of the generation process, will also help the
meta-learner to incorporate the similarity and dependency across tasks.

Phase-3:Measure STTG heterogeneity across tasksAs shown in Fig. 1, tasks in eachmini-
batch are randomly selected from a source city during the meta-training phase. According to
the generation rule of the spatio-temporal mobility estimation tasks, there are no temporal
overlaps across tasks from the same source city; however, there are spatial overlaps. Due to
this, it is likely that one mini-batch can contain two or more tasks from identical cities, and
each mini-batch task is treated equally in the graph learning phase. Consequently, from a
spatial perspective, the meta-training on such mini-batches cannot well capture the spatial
heterogeneity across tasks. Our initial STTG does not handle these mini-batch sampling
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drawbacks explicitly; as a result,model performance is greatly affected by spatially duplicated
tasks. Therefore, estimating mobility in sparse regions (e.g., sub-urban, rural areas) presents
one difficulty. Due to data scarcity issues, these regions have a high level of importance for
comprehending mobility patterns, but they are difficult to estimate due to their small sample
sizes.

To overcome this problem, we present an enhanced STTG by integrating a weighted mini-
batch learning technique to increase estimate accuracy. The primarymotivation for weighting
tasks is to provide lower weights to tasks that are geographically near to the first sampled
task in each mini-batch and allocate greater weights to tasks that are spatially far from the
first sampled task.

We introduce a distance-based weighted mini-batch tasks learning strategy as a constraint
to preserve the spatial heterogeneity across tasks in each mini-batch. As a natural general-
ization, given a set of tasks t = {1, 2, . . . , i} in a mini-batch, we can assign a weight wi to
each task by solving:

d1i = do − min(do)

max(do) − min(do)
, (d1i ∈ [0, 1]) (10)

wi = 1 − e−d1i , (wi ∈ [0, 1]) (11)

where d1i represents the spatial distance between the 1st sampled task and i th sampled task,
do represents the original spatial distance calculated through the Haversine formula using
the coordinates of city centroid coordinates. The d1i has the range [0, 1], with a unity value
implying the maximum normalization. When tasks are sampled spatially identical, d1i = 0
andwi = 0. In this situation, duplicated tasks only contribute to spatial heterogeneity learning
once. Contrariwise, greater distance will lead to greater wi which facilitates the acquisition
of spatial heterogeneity across tasks.

4.1.3 STORM-GAN+ discriminator

Figure 2 shows the structure of the discriminator, which takes a tensor of sizeRl×l×(k+1)×|T |,
where k is the number of conditions (same as that for generator) and the added one dimension
is for the mobility response layer.

To create training data for “fake” or “real” labels, the input tensors are created in three
ways: (1) generated mobility M′

G concatenated with conditions; (2) real mobility Mreal

concatenated with corresponding conditions; (3) conditions concatenated with mismatched
real mobility Mmismatch . Only samples from the second combination are labeled “real”.
Using these inputs, the discriminator learns to determine whether an input is “real” or “fake”.

STORM-GAN+ employed the adversarial setup between the generator and discriminator
of GAN model training framework. Each task ti receives a min–max objective function,
which is combined with the new distance-based weights wi for tasks in each mini-batch. To
train G and D together, a new goal function is provided:

Lti (G,D) = min
G

max
D

V (G, D) = EM∼Pdata [log D(M,F)]
+EU∼PU [log(1 − D(G(F,U, ST TG),M))]

(12)

whereLti (G,D) is the binary cross-entropy loss of each tasks. Thus, the final objective function
can be expressed as the sum loss over tasks sampled in each mini-batch:

LG,D =
j∑

i=1

wiLti (G,D) (13)
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Fig. 3 Meta-learning training process

where LG,D is the sum of loss over tasks in each mini-batch.

4.2 STORM-GAN+ training and testing

We deployed the model-agnostic meta-learning (MAML [13]) framework for learning the
STORM-GAN+meta parameters θD and θG to transfer the structural information fromgraphs
and the spatio-temporal knowledge from mobility data in multiple cities. Two loops—the
inner loop and the outer training loop—are used byMAML to carry out the training procedure,
as shown in Fig. 3. In our particular case, MAML attempts to direct the generative model
for the inner loop so that the training loss for a specific spatio-temporal task is minimized.
In the outer loop, the objective function is used to determine the optimal parameters that can
be generalized to a new task in an unknown city.

There are two fundamental drawbacks of MAML, first, when the number of parameters
is significantly expanded from a base network, as indicated by the inner loop learning rate
α and the outer loop meta-learning rate β, the performance and stability of this technique
vary drastically. Compared to the [14] approach, choosing learning rates can be a difficult
operation that takes up much GPU time. We discovered that this restriction causes a problem
with overfitting in the STORM-GAN estimate results in sparse regions. We decide to learn
learning rates as part of the optimization process because only a few samples are available
for meta-testing and fine-tuning. Thus, the computational power required to locate fairly
good learning rates decreases while also assuring that learning rates function very well.
Second, in standard meta-learning, most gradient-based meta-learning algorithms assume an
initialization that is globally shared across all tasks. These existing methods may fail to adapt
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Fig. 4 Illustration of meta-parameter sharing of STORM-GAN and STORM-GAN+

to heterogeneous environments of tasks, in which the complexity of the tasks’ distribution
cannot be captured by a single meta-parameter vector. In STORM-GAN, tasks are trained
with a single meta-parameter that disregards task heterogeneity. Since spatio-temporal tasks
are diverse, explicit modeling of task diversity in parameter sharing is essential.

To mitigate the problem of overfitting and globally shared meta-parameter, particularly in
sparse regions, we first propose a conditional meta-learning strategy to customize a shared
initialization to each cluster using a task clustering framework. Second, we propose an adap-
tive meta-learning scheme with dynamic learning rates as opposed to fixed learning rates.
The solution we propose is founded on the premise that the optimal learning rate does not
vary significantly between iterations [15], so we can optimize the learning rates from the
previous optimization step.

Section 4.2.1 describes the new conditional meta-learning-based STORM-GAN+ inner
loop generation strategy and learning rate α update rules and fine-tuning processes, fol-
lowed by a more in-depth discussion (Sect. 4.2.2) of the outer loop learning rate β updates.
Section 4.2.3 demonstrates the new task adaptation and detailed Algorithm 2.

4.2.1 STORM-GAN+ inner loop updates

The optimization-based meta-learning for the model’s inner loop contains the update for
Discriminator D and the Generator G, so the inner loop learning rate is applied to both
components. As Fig. 3 shows, we first construct a batch of meta-training tasks and divide
each task into a training set Dtrain and testing set Dtest . For each task, the training set is fed
into a GAN parameterized by θD and θG ; the training set loss Losstrain is computed and
propagated to update the GAN parameters. The testing set then feeds into the updated GAN
to generate mobility. Using the generated mobility to compute the testing set loss Losstest

for the given task. Steps (1–4) are repeated, and the same process repeats for the other n
sampled tasks, starting from the same GAN model.

Conditional meta-learning: cluster-based parameter sharing STORM-GAN adopts a
global parameter as shown in Fig. 4 . To accommodate heterogeneous tasks, as illustrated
in Fig. 4, STORM-GAN+ tailors the global shared initialization to each task by taking advan-
tage of task-specific information. First, based on the diversity of spatial–temporal tasks, we
cluster all training cities’ tasks into C categories. Category c of assignments represents var-
ious urban contexts. If task Ti belongs to cluster c, the clustering result rcti = 1, otherwise
rcti = 0. In the meta-training phase, tasks in the same category are trained together, and each
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cluster learns a set of unique parameters for the generator and discriminator, respectively,
θGrc and θDrc

The training loss for each task is subjected to the standard stochastic gradient descent
during the meta-training inner loop. Following that, the testing set is used to evaluate the
updated parameters. Denote αD as the inner loop learning rate and θ ′

D as the parameter for
the discriminator of a particular task, the loss function of D, update rule of αD , and the update
rule of θ ′

D are shown in Eqs. (14), (15), and (16), respectively.

fD = − 1

m

m∑

i=1

(
log(1 − D((M′

G)i ,Fi )) + log(D(Mi
real ,F

i ))

+ log(1 − D(Mi
mismatch,F

i ))

)
(14)

αD = αDn−1 + ηD∇ fDn (θ
′
Dn

) (15)

θ ′
D = θ ′

D − αD∇ fD(θ ′
D) (16)

where m is the total number of samples in a batch, n is the iteration number, ηD is the hyper
learning rate for αD and index i refers to the i th sample.

Similarly, denoting αG as the inner loop learning rate, ηG as the hyper learning rate, and
θ ′
G as the parameters in generator G, we have the loss function of G, update rule of αG and
update rule of θ ′

G as shown in Eqs. (17), (18), and (19), respectively.

fG = 1

m

m∑

i=1

(
log(1 − D((M′

G)i ,Fi ))

)

= 1

m

m∑

i=1

(
log(1 − D(G(Fi ,Ui , ST TG),Fi ))

)
(17)

αG = αGn−1 + ηG∇ fGn (θ
′
Gn

) (18)

θ ′
G = θ ′

G − αG∇ fG(θ ′
G) (19)

Equations (14) to (19) show the GAN model learning process of each task. As the inner
meta-training is trained on batch level, thus, we revise the loss function in Eq. (13) by
summing the loss of each task cluster in one batch. Then, the final objective function is:

LTt∼p(T )G,D =
C∑

rc

j∑

i=1

wi rciLti ( fGrc ,Drc )
(20)

Here we note that LTt∼p(T )G,D denotes the training loss over all tasks from different
clusters. Each cluster has different θGrc and θDrc . The structure of training STORM-GAN+
at the inner loop is conditioned by task-related information used for clustering.

4.2.2 STORM-GAN+ outer loop updates

The general optimization procedure is given a set of tasks {T1, T2, . . .} drawn from a task dis-
tribution p (T ), where each task Tt ∼ p(T ) consists of a training and a test set {Dtrain

t ,Dtest
t },

we optimize the G and D with parameters θ ′
G and θ ′

D to minimize the expected empirical
loss across all tasks during meta-training for each task cluster. The purpose of the outer loop
is to sum up the last update step’s testing loss from all the tasks and use the summation to
update the θGrc and θDrc . Then, another batch of tasks is sampled, and steps (1–6) in Fig. 3
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are repeated. Then, for meta-testing tasks, steps (8–9) are applied to the GAN using the
meta-learned parameter θGrc and θDrc copied from the meta-training phase, which enables
generalization over unseen tasks (step 10). During meta-testing, an unseen task is catego-
rized into one cluster, and meta-updated parameters are learned starting from initialization
parameters from the corresponding cluster across meta-training tasks, and the new optimal
parameters are used to adapt to unseen tasks quickly.

To improve the estimation in unseen cities, we transfer initialization θGrc and θDrc of
STORM-GAN+. Utilize the same assumption that the optimal value of learning rate β does
not vary significantly between iterations, we compute the outer loop learning rate βD , βG ,
and meta-update rules θD , θG through one gradient descent step over each cluster ci , the
previous value of learning rate given by:

βD = βDn−1 + ηD�Ttrc∼p(T )∇ fDn (θ
′
Dn

) (21)

θDrc = θDrc − βD�Ttrc∼p(T )∇θDLG,D( fθ ′
D
) (22)

βG = βGn−1 + ηG�Ttrc∼p(T )∇ fGn (θ
′
Gn

) (23)

θGrc = θGrc − βG�Ttrc∼p(T )∇θGLG,D( fθ ′
G
) (24)

where θ ′
G and θ ′

D represent temporary task-specific parameters which acquired from Eqs.
(16) and (19). And, LG,D is acquired from Eq. (20) which represents the summation loss
over tasks sampled in each cluster. Note, each cluster has unique θGrc and θDrc .

4.2.3 STORM-GAN+ adaptation on new tasks

During the model adaptation phase (e.g., updating the optimal initialization for a new task
from a new city), we first cluster the unseen task, then output (Fig. 3—step 7) θGrc and θDrc

from the meta-training phase as the initialization for fast-adaptation from corresponding
clusters. We then use training samples from the new city to perform STORM-GAN+ for
updating the meta-parameters θD and θG in the meta-testing phase. Lastly, the updated model
estimates mobility based on testing samples. The tasks used for meta-testing adaptation are
held out from meta-training.

The goal of this adaptation step is to generate themobilitymap of the entire study area (e.g.,
a city or county) from the estimations of s × s spatial unit windows defined in Definition 8.
Since STORM-GAN+ would generate the mobility maps of spatial unit windows in different
time slots and areas, we present multiple-draw based sliding window scheme to generate
the final map of mobility estimation. This scheme takes w draws of the same window from
the generator G instead of a single draw. The results of the multiple draws are averaged
before being integrated into the estimation of the original study area. This scheme can reduce
random effects in comparison. The overall learning process is demonstrated in Algorithm 2;

5 Evaluation

Through the experiments, we aim to answer the following questions:

• Whether STORM-GAN+ can outperform baseline methods in terms of solution quality,
including STORM-GAN?

• How does the proposed spatio-temporal network impact the solution quality compared
to non-spatial–temporal models?

• What is the effect of the improved meta-learning framework on model performance?
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Algorithm 2 STORM-GAN+ Training and Testing
Require:
1: • Set of training cities Ttrain; set of testing cities Ttest
2: • Conditions F, mobility Mreal, a STTG G
3: • Inner learning rate α; outer learning rate β; number of epochs epoch
Ensure: θG , θG , estimated mobility M ′

G for Ttest
4: G = initG()
5: D = initD()
6: Randomly initialize meta θG , θG
7: Cluster all tasks and into C clusters, and get rc for each task;
8: for e = 1 to epoch do
9: Sample a batch of T from Ttrain
10: Sample the subgragh H of T from G
11: for Ti in ci do
12: for Tci in {F,Mreal,H} do
13: Sample a set of disjoint Dtrain

i , Dtest
i

14: Generate graph embedding E of H
15: M′

G = G(F, E, rand(PU))

16: Update αD and D using Dtrain
i by Eqs. (14), (15), and (16)

17: Update αG and G using Dtrain
i by Eqs. (17), (18), and (19)

18: Evaluate estimation loss using Dtest
i by Eq. (20)

19: end for
20: Update βD , βG and θDrc and θGrc by Eqs. (21), (23), and (22), (24)
21: Copy θDrc and θGrc
22: end for
23: end for
24: Return θG , θD
25: Sample batch of testing tasks Tnew from Ttest
26: Cluster Tnew into ci
27: for Tci in {F,Mreal,H} do
28: Sample a disjoint Dtrain

i , Dtest
i from Ttest

29: Generate graph embedding E of H
30: Copy θDrc and θGrc

31: Evaluate performance by Eq. (20) using Dtrain
i

32: Update G through Eqs. (18), (17) and (19)
33: Estimate M′

G using updated G and Dtest
i

34: end for

• Can the new proposed STTG embedding contribute to the model performance?
• What are the effects of training on temporally seen vs. temporally unseen tasks and

spatially seen vs. spatially unseen tasks?
• How does conditional meta-learning impact the solution quality compared to standard-

meta learning?

5.1 Dataset description

5.1.1 Data sources

We elaborate on four types of data as described in Definitions 3 and 4 (pandemic, contextual,
policy, andmobility). The pandemic-related conditions are collected fromCenters forDisease
Control and Prevention [16], demographic and socio-economic conditions are collected from
CensusBureau [17], the date of disease prevention policies (e.g., stay-at-home,mask policies)
are collected from the corresponding city government websites. Finally, the human mobility
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Fig. 5 Data preprocessing for STORM-GAN+

responses, which are represented by the total POIs visit count data in this paper, are collected
from SafeGraph [18]. SafeGraph provides free access to data for academic purposes upon
request, and all the other data are publicly available.

5.1.2 Data granularity

The original POI dataset from SafeGraph is obtained by collecting the location from cell
phone records with latitude and longitude information. Then, the location information is
used to determine the visits to POIs [18]. The POI visit counts data is in point data format.
Figure 5 pink color data illustrates the discretization of one city, where we sum the total
POI visit counts that fall into each grid cell, and use this aggregated visit counts value to
represent the human mobility responses of each grid cell. Moreover, each condition data
are associated with different geographic units (e.g., census block groups, counties) due to
different data sources or privacy protection concerns. Thus, further spatio-temporal data
processing is needed before training and estimation.

5.1.3 Data preprocessing

Figure 5 shows a summary of two types of data we gathered from multiple sources based
on definitions in Sect. 2.1 (i.e., contextual, epidemic, and policy conditions; human mobil-
ity responses). As we can see, most of the data are associated with different geographic
units (e.g., census block groups, counties) due to different data sources or privacy protec-
tion concerns. Thus, further spatio-temporal data processing is needed before training and
estimation.

First, we need to integrate all the data of various types and geographic units into the
same format, and feed them into the STORM-GAN+. To construct the list of conditions
for our input, for each grid cell, we preprocess data collected from different sources with
different geographic units.AsFig. 5 shows,wefirst adopt a commonlyused space-partitioning
method to segment each spatial domain into grid cells of size of 1km × 1km, and segment
all mobility-related conditions using the same grid cells. Then, each spatial region (or unit
spatial window) we used to create a data sample is a 10× 10 spatial window on the grid. For
each grid cell, the value of human mobility response is the total number of POI visit counts in
a day. Note that some conditions are re-scaled during this process. For example, population
and median household income data are collected at the census tract level, and we linearly
re-scaled the data using the corresponding area ratios between the area of the original census
tract polygon and the proposed 10× 10 grid cells. Similarly, COVID-19 statistics and policy
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Table 1 Detailed data statistics City Average number of
POIs per grid cell

POIs Size

Boston 28 26,054 37 × 48

NYC 64 133,520 58 × 72

LA 52 86,721 52 × 64

Chicago 30 47,356 50 × 40

Houston 24 37315 50 × 60

Iowa City 6 1401 20 × 32

data are collected at the county level. We assign each grid cell with the corresponding data
on which county it belongs.

5.1.4 Training data description

We collect mobility-related datasets from six cities. The dataset spans over six cities in
different states located from the west coast, midwest to the east coast (i.e., Boston, Chicago,
Houston, Iowa City, Los Angeles, and NYC). The list of cities also covers regions from
large metropolitan areas to less populous places. Detailed statistics of these datasets for each
city (e.g., number of POIs, number of cells covered for each city) are listed in Table 1. The
duration of data is from 02/24/2020 to 10/25/2020 for all cities, covering 35 weeks in total.
As discussed in Sect. 2.1, the data are segmented into a spatio-temporal distribution of tasks,
where each task contains one single city for five consecutive weeks (no mutual overlaps
among tasks). The candidate methods are trained on five cities (meta-training) with one left
out as the new city for meta-testing. Specifically, we selected Houston (large metropolitan
area) and Iowa City (small urban area) as the two test cities in two separate experiments.
Adaptation on test cities is performed with data samples from the most recent two weeks (out
of 35 weeks in total). As the duration of data is from 02/24/2020 to 10/25/2020, we divide
each city into 7 tasks along temporal dimensions, and each task maintains the full spatial
domain of the corresponding city. Overall, we have 35 spatio-temporal estimation tasks in
total. For methods with meta-learning, 80% of data in each task is used for meta-training,
and the rest for testing (Definition 8).

5.2 Evaluationmetrics

We evaluate the performance of STORM-GAN+ by using the following measures: mean
absolute error (MAE) and rooted mean square error (RMSE).

MAE = 1

n

n∑

i=0

∣∣∣MG − M̂G

∣∣∣ (25)

RMSE =
√√√√1

n

n∑

i=1

(
MG − M̂G

)2
(26)

where MG is the real mobility response and M̂G is the generated mobility response values by
candidate approach. Since the model generates the spatial unit windows multiple times for
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each grid cell during estimation, the outputs of the generator are averaged before comparing
with the ground truth.

To evaluate the model performance of learning the data distribution, we calculate the
KL divergence to indicate the similarity between the learned human mobility responses
distribution P̂ and real human mobility responses distribution P on different bin sizes. The
KL divergence is defined as follows:

DKL(P P̂) =
N∑

i=1

P(M ′
G)log

(
P(M ′

G)

P̂(Mreal)

)
(27)

5.3 Baselinemethods

We compare our proposed method with the following baseline methods, and fine-tune each
method using Houston and Iowa City as testing cities, respectively.

• HA: Historical Average The average of human mobility responses was calculated using
observed values from the same location in the past two weeks (same weekday).

• Spatial smoothing with neighborhood regions [19]. This method uses the mobility
response values in a local 3 × 3 window to compute a mean as the estimated value.
The values for smoothing are from the same weekday in the most recent week.

• Ridge [20] We use ridge regression with the same input features and mobility responses.
• cGAN [21] A conditional GAN where the generator and discriminator use three fully

connected layers (no layer structure to learn spatial or temporal patterns).
• COVID-GAN [2] COVID-GAN has the same structure as the above cGAN, and it adds

a correction layer, which is used to add constraints based on policy to refine the results.
• MAML-DAWSON [3] An optimization-based meta-learning approach using MAML. As

DAWSON originally works onmusic generation tasks, wemodify its inner structure with
a regression-focused conditional GAN.

• MetaST [4] MetaST fuses CNN, LSTM, and attention mechanism to predict urban traffic
volume through the MAML framework.

• STORM-GAN [7] STORM-GAN is a spatio-temporal meta-generative model that cre-
ates human mobility responses in various cities based on a variety of geographic,
epidemiological, social, and other aspects.

5.4 STTG construction examples

In this section, we provide two different STTG construction scenarios to evaluate the
effectiveness of graph embedding in human mobility estimation.

Scenario 1 (S1) We assume that cities of similar sizes, socio-economic environments, and
land-use design may share similar human mobility patterns that could help the estimation of
new cities. To build the graph Gs1 (V, E), we enumerate major metropolitan cities from every
region in the U.S. and define each city as a node νi . Next, we extract human mobility maps
for all the cities from the same date, and calculate the pairwise distribution similarity score
between cities using KL-divergence. The KL divergence indicates the strength of human
mobility correlation. Each edge is added if the correlation is � 0.5 and is weighted by the
correlation. Gs1 contains 55 nodes and 682 edges. Node attributes store the outbreak stage
of COVID-19. Each stage value is in {1, 2, 3}, where a smaller value means earlier in the
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Fig. 6 Subgraph of a node in STTG S2

COVID-19 outbreak. The stage value is assigned based on the month when exponential
growth first appeared.

Scenario 2 (S2) Intuitively, urban environment increases the chance of infection as people
move around and interact with others and the environment. As a hub for migration and travel,
urban areas may quickly spread infections to nearby places through short-distance travel, and
to major cities through connection flights.

To construct S2, similar to S1, we enumerate major metropolitan areas in USA and define
a graph Gs2 (V, E) to represent the relationships of these cities.

We divide the nodes V into two categories: the hub nodes Vh are major cities with more
than 100 airlines; the second-tier nodes Vs are cities with more than 35 but less than 100
airlines. Moreover, each directed edge νi → ν j ∈ E is added if its two nodes are: (1) both
major cities that have direct flights or (2) within a spatial proximity threshold (500km in this
paper). Our graph contains 69 nodes and 776 edges.

The graph is then weighted by spatio-temporal attributes associated with nodes and edges.
Edge attributes contain the number of directed flights between the cities and their geographic
distance. Node attributes store the sum of flights from connected edges as well as the outbreak
stage of COVID-19 which is the same as scenario 1. Figure 6 shows an example of our
S2, which is a 1-hop subgraph for Kansas City, a second-tier city by the above-mentioned
classification. Major cities that have direct flights to Kansas City (e.g., Denver, Atlanta,
Minneapolis) and second-tier cities (e.g., Oklahoma, Omaha) within the spatial proximity
threshold are shown on the subgraph.

We use both of the two STTG construction scenarios with our STORM-GAN+ (namely,
STORM-GAN+(S1) and STORM-GAN+(S2)) as well as the original STORM-GAN (S1
and S2) to compare their performances in the next subsection.

5.5 Estimation quality evaluation

During the adaptation phase, we evaluate the performance of the candidate methods on the
two test cities (i.e., Houston and Iowa City) using their last two weeks (Monday to Sunday)
of data, respectively. The length of a time period we use is 7 days since human mobility
pattern is influenced by strong weekly periodicity. The benefit of meta-learning is that the
model can quickly update the model parameters and generate good results on a new task by
seeing a small fraction of new data. So, for each testing city and week, we use 2 consecutive
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Fig. 7 Kullback–Leibler divergence

Fig. 8 Mobility estimation results of the Houston study area

weeks of data ahead of the week for adaptation and then use the parameters to generate the
next 7-day (one week) human mobility responses.

Furthermore, for all generated mobility maps, we apply the correction filtering proposed
in [2], which helps remove all mobility responses at cells with no valid POIs (i.e., no POI or
no POIs that are open according to the policy feature) after generating the estimated mobility
maps to mitigate spurious results during training.

In the following subsections, we aim to answer the first three questions summarized at
the beginning of Sect. 5.5.1. Figures 8 and 9 show a comparison of results from different
approaches in different scenarios for Houston and Iowa City, respectively. Furthermore, we
answer the fourth question at Sect. 5.5.3. Table 4shows the ablation study of STORM-GAN+.
In Tables 2 and 3, we demonstrate the statistical results of the candidate methods for Houston
and Iowa City, respectively. The results for the KL-Divergences are shown in Fig. 7.

The colors used in map symbologies for Figs. 8 and 9 are classified using quantiles
extracted from the ground truth (i.e., 0th, 25th, 50th, 75th and 100th), a typical approach for
enhanced map visualization. To reduce random effects in the comparison, all the results are
based on multiple-draw based approach (10 repetitive runs) described in 4.2.3.
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Table 4 Comparison among STORM-GAN+ variations

Method RMSE MAE

Base 202.2 80.6

Base + S 171.5 75.1

Base + ST + Meta 149.8 67.6

Base + ST + Meta + Graph (S2) 145.1 61.7

Base + ST + new Meta + new Graph (S2) 140.5 57.8

Base + ST + conditional Meta + new Graph (S2) 140.1 57.3

New methods are highlighted in bold

Fig. 9 Mobility estimation results of the Iowa City study area

5.5.1 Performance comparison of proposed STORM-GAN+ and other candidate
methods

Tables 2 and 3 show the results of the candidate methods obtained using Houston and Iowa
City as the testing city, respectively. We apply S1 and S2 graph construction scenarios on
STORM-GAN+, aswell as STORM-GAN.The overall evaluation results fromHouston show
that STORM-GAN+ achieves the lowest RMSE and MAE for each day in the week, with
major improvements from 7.5% to 100% with both STTG scenarios.

It is interesting to observe that historical average and spatial smoothing methods perform
better than the basic cGAN,which to some degree shows the spatio-temporal auto-correlation
effects. However, thesemethods canmainly estimate a rough base but are limited in capturing
complex spatio-temporal relationships between features and mobility responses.

Compared to COVID-GAN and MAML-DAWSON, our model outperforms COVID-
GAN by 21.8% (RMSE) and 26.1% (MAE) on average, and MAML-DAWSON by 18.8%
(RMSE) and 25.3% (MSE) in Houston. The results show that the design of spatio-temporal
architecture (i.e., CNN and LSTM substructures and the STTG) and meta-learning adap-
tation can significantly improve the solution quality. Furthermore, our model achieves
18.1% (RMSE) and 22.2% (MSE) better than MetaST, demonstrating that task-based graph
embedding can contribute to model performance by learning the inter-task similarities.

We also evaluate the model performance on less populous areas using Iowa City as a
testing city, the POI numbers and city size of Iowa City are significantly smaller than large
metropolitan areas according to Table 1. In Table 3, the improvements are relatively smaller
due to the smaller number of POI visit counts in a less populated city.Moreover, the study area
for sparse regions is small, which lead to data scarcity issue. However, both STORM-GAN+
scenarios still achieve the lowest errors in all of the testing days.
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We calculate the KL-divergence using results from Houston and Iowa City (Fig. 7). The
X-axis represents the number of equal-size bins used to discretize the value needed for the
computation, and the Y-axis shows the KL divergence values. A lower KL divergence value
means the result better matches the real distribution. As shown in Fig. 7, STORM-GAN+
achieves the lowest KL-divergence compared to the baseline methods consistently for all
numbers of bins.

5.5.2 Impact of STTG choice

Our results show that both of the two STTG constructed can significantly improve the per-
formance of STORM-GAN+ in Houston and Iowa City. This proves that the spatio-temporal
task-graph embedding design is effective and robust, rather than tailored for a specific STTG
definition. Between the two choices, S2 slightly achieves better performance as it uses more
information that are directly related to the spreading of COVID-19.

5.5.3 Ablation study

We study the effect of different components proposed in our method using Houston as the
testing city on one day (Monday).

• Base: Baseline conditional GAN.
• Base + Spatial (S): Equivalent to COVID-GAN, which has a correction layer to add

policy constraints, but purely a spatial model.
• Base + Spatio-Temporal (ST) + Meta: STORM-GAN with spatio-temporal meta-

learning, but without the STTG graph.
• Base + ST + Meta + Graph(S2): Complete STORM-GAN.
• Base + ST + new Meta + new Graph(S2): STORM-GAN+.
• Base + ST + conditional Meta + new Graph(S2): Complete STORM-GAN+ with

conditional meta-learning.

Table 4 shows the estimation performance of STORM-GAN+ and its variants. First, the
base + spatial (S) achieves a lower RMSE and MAE (a reduction of 15.3% and 15.2%,
respectively) compared to cGAN, showing the effectiveness of the correction layer from
COVID-GAN. Next, we can see that the addition of spatio-temporal meta-learning further
reduces RMSE and MAE by 12.7% and 10%, respectively. This result demonstrates that
CNN, LSTM andmeta-learning can better capture the complex spatio-temporal relationships
across multiple cities. Furthermore, the complete STORM-GAN improves the RMSE and
MAE by 3.1% and 8.6%, respectively. Finally, the complete STORM-GAN+ achieves the
lowest RMSE and MAE with the spatio-temporal task-based graph with an improvement of
3.2% and 6.3%, and the conditional meta-learning strategy achieves better performance than
the standard meta-learning training paradigm.

5.5.4 Visualization

We compare the solution quality of eight candidate approaches through map visualization.
Figures 8 and 9a–g show the results of baseline methods, and (h), (i) display the STORM-
GAN+ (S2) and ground truth. The results show the full Houston and Iowa City study areas for
a day in the data. Here STORM-GAN+ generates fine-scale mobility values that are closer to
the ground truth. As we can see, the mobility pattern generated by the STORM-GAN+ can
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capture the spatial pattern of humanmobility responses better than other baselines. The reason
may be that similar functionality zones in different cities may have similar mobility patterns.
The meta-learning framework successfully learns this shared knowledge from training tasks.
Moreover, the utilization of CNN and LSTM helps capture the spatio-temporal correlation
from region to region.

5.5.5 STORM-GAN+ vs. STORM-GAN

When comparing the results between STORM-GAN and STORM-GAN+, as we can see in
Figs. 8g, h and 9g, h, the generated human mobility patterns of STORM-GAN+ can better
approximate the mobility distributions in the ground truth than the results of the STORM-
GANmethod in (g), where a pattern with a large number of cells around the downtown dense
region is significantly improved and more accurately depicted in both cities. Furthermore,
Fig. 9 shows the Iowa City results of STORM-GAN+ in (h), STORM-GAN (g), and ground
truth (i), respectively. The red circles highlight two examples of the differences between
STORM-GAN and STORM-GAN+. It is evident that downtown dense zones of STORM-
GAN+ are much closer to the ground truth compared to STORM-GAN result.

According to the statistical results in Tables 2 and 3, the RMSE of STORM-GAN+
improved by 7% in Houston and improved by 17% in Iowa City. As previously mentioned,
the limitations of the original STORM-GAN are more apparent in sparse regions. The results
demonstrate that STORM-GAN underestimates human mobility responses in sparse regions
due to the smaller dataset. The results prove that adopting the new meta-learning objective
functions and weighted STTG learning strategy can significantly improve the model’s capac-
ity for capturing spatial heterogeneity; at the same time, these improvements can reduce the
difficulty of learning in sparse regions and enhance the estimation quality overall.

5.5.6 Temporally seen vs. temporally unseen

In this comparison, temporally seen refers to the time periods of task (i.e., days, weeks) in
the training data and have been seen by STORM-GAN+ during the meta-training phase. In
contrast, temporally unseen refers to data of days or weeks that are outside the training data
in the meta-training phase.

Given different condition combinations, we expect our model to generalize reliable cross-
city human mobility. The purpose of temporally unseen vs. temporally seen is to examine
the model estimation accuracy given new temporally unseen conditions. To make the test
more realistic, the timestamp of unseen data must also be strictly after all timestamps in the
training data so that the model does not try to estimate the past based on the future. Therefore,
we always feed prior conditions to estimate the following day’s mobility.

According to Sect. 5.1.4, there are seven temporally consecutive tasks for each training
city and 35 tasks in total for meta-training. In the temporally unseen vs. temporally seen
experiment, we use the first six tasks of each training city and 30 tasks in total for meta-
training to train the candidate models and leave the 7th tasks out for each city as “temporally
unseen" data. We use 7th tasks from the testing city to evaluate the model performance with
unseen conditions temporally.

The results are shown in Figs. 10 and 11; we evaluate the results for Houston and Iowa
City, respectively. The first row is the temporally unseen results for (a) ground truth, (b)
STORM-GAN+, and (c) STORM-GAN, and the second row is the temporally seen results.
We can see that STORM-GAN+ can maintain a good description of the overall pattern given
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Fig. 10 Mobility estimation results in a sub-region of Houston for temporally unseen (first row) and seen
regions (second row) data

Fig. 11 Mobility estimation results in a sub-region of Iowa City for temporally unseen (first row) and seen
regions (second row) data

temporally unseen conditions. The grid cells on the center of the sub-region in Figs. 10 and 11
from the STORM-GAN+ model have a higher solution quality, while STORM-GAN gives
a blur description and underestimation of this sub-region. This is especially important in
assisting policy-making when a model is used to estimate human mobility responses given
unseen conditions from unseen cities.
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Fig. 12 Mobility estimation results in spatially unseen (size of 30 km × 30 km) and seen regions of Houston

5.5.7 Spatially seen vs. spatially unseen

In this experiment, spatially seen refers to the study areas of the tasks from testing cities
and has been seen by STORM-GAN+ during the meta-testing fine-tuning phase. In contrast,
spatially unseen refers to study areas that are outside the training data in themeta-testing fine-
tuning phase. This experiment aims to explore the STORM-GAN+ generalization capacity
in a zero-shot learning scenario.

To generate spatially unseen regions, we crop a 30km × 30km sub-region (i.e., a 30× 30
sub-grid) off the total geographic space in Houston and crop a 15km × 15km sub-region
from Iowa City, and condition combinations in these sub-regions are not seen by STORM-
GAN+ during the fine-tuning in the meta-testing phase. More specifically, the cropped study
areas are taken out from Dtrain

new , and the study area can be seen in Dtest
new referring to Fig. 3.

This eliminates about one-third of the total amount of training samples (overlaps with the
sub-grid are not allowed) for both cities. Figures 12 and 13 show the comparison of results
by STORM-GAN+ and STORM-GAN in Houston and Iowa City, respectively. The first
row displays the spatially unseen results for (a) ground truth, (b) STORM-GAN+, and (c)
STORM-GAN, and the second row shows the spatially seen results.

When comparing the two rows of results in Houston, STORM-GAN+ can still produce a
good estimate for the first row, and STORM-GAN’s results are unable to accurately approx-
imate the mobility distribution’s finer details when the data are spatially hidden. It is evident
that STORM-GAN+ can capture humanmobility patterns and clearly generate high-mobility
grid cells, and STORM-GAN underestimates the mobility of the overall sub-region. If we
omit a portion of the city’s region, the STORM-GAN model would be unable to function
because of the lack of data. Thus, STORM-GAN should be utilized when prior data are
provided for fine-tuning the entire city. However, STORM-GAN+ can estimate the human
mobility pattern for the unseen city when no prior data are available because the cropped
areas are hidden during the meta-training and fine-tuning process.
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Fig. 13 Mobility estimation results in spatially unseen (size of 15 km × 15 km) and seen regions of Iowa City

5.6 Conditional meta-learning vs. unconditional meta-learning

To mitigate the impact of task heterogeneity, STORM-GAN+’s conditional meta-learning
strategy assigns a cluster to every task and trains a conditional meta-parameter based on
the cluster assignment to improve estimation performance. Since the granularity of human
mobility data is daily, we depict the spatial–temporal pattern of each task using the average
daily humanmobility pattern over a week.We cluster these patterns into four categories using
K-means. In this experiment, we examine the effectiveness of conditional meta-learning and
test under different scenarios.

Overall, the performance of STORM-GAN+ improves the estimation performance by
3.4% for RMSE and 7.2% for MAE compared to STORM-GAN. In addition, conditional
cluster-based meta-learning facilitates the learning of a further improved and specialized
initialization for the unobserved task. The ideal degree of knowledge transfer stability is
achieved. Since the data were collected throughout the same time period, cluster similarity
regularization provides a flexible and effective method of knowledge transfer.

6 Related works

6.1 Understand themobility pattern during COVID-19

There have been many studies [1, 22–25] exploring the interplay between human mobility
responses, social distancing policies, and transmission dynamics in response to the COVID-
19 pandemic. For example, it was shown by [1] that strict implementation of social distancing
policies can reducemobility and substantiallymitigate the spread of COVID-19. AUSmobil-
ity change map was created in [24] to increase public risk awareness and visualize dynamic
changes in mobility as the COVID-19 situation and policy evolve. Study [25] measures the
effectiveness of non-pharmaceutical interventions (NPIs) introduced by governments across
Europe using the changes in mobility. Studies [26, 27] have also explored the feasibility of
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utilizing contact tracing to control the spread of the disease through simulated synthetic data
and real-world smartphone trajectories.

These studies are timely in showing the critical role played by mobility in the spread
of COVID-19, but they do not address the challenges in real-world mobility estima-
tion/simulation (e.g., effects of unknown, uncertain, and random factors), and they analyze
the mobility changes in city or country scale. A study [28] simulated human mobility, allow-
ing policymakers to inspect mobility changes under different policies. But this approach
utilizes a traditional epidemiological model and does not transfer the simulation from city
to city by shared knowledge. Another study [29] proposed a deep neural network model to
capture spatio-temporal information from human mobility data through a straight forward
parameter-sharing method and transfer from one city to another. However, these studies have
yet to explore the potential use of deep learning based generative models and meta-learning
to assist the estimation.

6.2 Deep learning for spatio-temporal prediction

Many deep learning-based techniques have been developed for spatio-temporal data. For
example, LSTMs were widely used in traffic accident prediction [30] and flow prediction
[31], due to their capability to capture spatio-temporal correlation and thus provide good
prediction results. Geospatial object mapping [32–34], taxi driver behavior imitation [35],
taxi demand [36], travel time estimation [37], etc, they all combine the deep learning model
with spatio-temporal perspective in their model design and obtain good performance. Most
of these techniques typically are stationary predictors (i.e., the same result from two runs
on the same data) rather than generative models. They do not consider unknown factors in
prediction; their performance relies on large data sets. Besides, they do not leverage domain
knowledge-based constraints to assist learning (e.g., cGAN [2, 21]).

6.3 Generative adversarial networks (GANs)

GANs were proposed by [9] and have achieved great performance in the image generation
domain, including image-to-image translation [38], image super-resolution [39], and text-
to-image synthesis [40]. Despite the success, a critical issue for GANs is known to be the
unstable and sensitivity to the choices of hyperparameters in the learning process. Several
works have attempted to address the GANs training problem and to improve the stability by
designing new network architectures [41], modifying the learning objectives and dynamics
[42], adding regularizationmethods to obtain stable gradients [43]. Besides image generation,
recently, deep graph generative adversarial structure has been developed based on the concept
of unsupervised learning. Existing architectures build upon generative models including
GraphVAE [44] and GraphGAN [45], and they achieved good performance. However, the
generative model has not been applied to estimating human mobility problems as well as
other human-related movement research. For example, [21] uses a conditional generative
adversarial network (cGAN) to estimate traffic volume. A POI embedding transfer learning
approach is proposed [29] to predict urban traffic from one city to another city. This approach
adapts model parameters without using the meta-learning method.
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6.4 Meta-learning in spatio-temporal data mining

Meta-learning learns new tasks quickly and effectively with a few examples. Existing
optimization-based meta-learning algorithms such as MAML [6] and Reptile [46] rely on
optimization through gradient descent, and both are compatible with any model. MAML
produces a good initialization toward a new task with a few steps of gradient updates, and
Reptile is iteratively trained on a sampled task bymultiple gradient steps. Recently, the idea of
optimization-based meta-learning has been applied to many domains including classification
and reinforcement learning. However, there only a few works address the spatial and tempo-
ral problems simultaneously. In traffic prediction, a recent work [5] focuses on knowledge
transfer in a single city, which only deals with temporal tasks with no spatial-based tasks.
[47] proposes a transfer learning framework for traffic prediction through a learning region
matching function. Another work [4], which is based on multiple cities, does not consider
temporal patterns and dynamic scenarios. This model is designed with no time-based tasks,
which is insufficient to model the continued and dynamic changes.

7 Conclusions

We tackled the heterogeneous humanmobility estimation problem through a spatio-temporal
meta-generative framework. Specifically, we proposed a STORM-GAN+ model to cap-
ture complex spatio-temporal patterns as an extension of STORM-GAN. Building upon
STORM-GAN, we introduced an enhanced spatio-temporal task-based graph (STTG) to
represent the spatio-temporal relationships across tasks, with a graph convolution network to
learn embedding of its subgraph for cross-task learning enhancements. Moreover, STORM-
GAN+ utilized a redesigned conditional meta-learning structure and improved the objective
to learn shared knowledge from a spatio-temporal distribution of estimation tasks and
can quickly adapt to new tasks (e.g., new cities). The experiment results showed that our
proposed approach could significantly improve the estimation performance compared to
baselines, including STORM-GAN. The model can assist policymakers in better understand
the dynamic mobility pattern changes under different social and policy conditions and can
potentially be leveraged to inform decisions in resource allocation and provisioning, event
planning, response management, etc.
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