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Abstract We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen
needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across
North America and Eurasia. We quantified the onset and end (StartGPP and EndGPP) of photosynthesis in
spring and autumn based on the response of net ecosystem exchange of CO2 to sunlight. To test the
hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of
snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity
∼3 weeks before end of snowmelt, while DBF forests achieved that capacity ∼4 weeks afterward. DBF
forests increased photosynthetic capacity in spring faster (1.95% d−1) than ENF (1.10% d−1), and their
active season length (EndGPP–StartGPP) was ∼50 days shorter. We hypothesized that warming has
influenced timing of the photosynthesis season. We found minimal evidence for long‐term change in
StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer
weather was associated with earlier StartGPP (1.3–2.5 days °C−1) or later EndGPP (1.5–1.8 days °C−1,
depending on forest type and month). Finally, we tested whether existing phenological models could
predict StartGPP and EndGPP. For ENF forests, air temperature‐ and daylength‐based models provided best
predictions for StartGPP, while a chilling‐degree‐day model was best for EndGPP. The root mean square
errors (RMSE) between predicted and observed StartGPP and EndGPP were 11.7 and 11.3 days,
respectively. For DBF forests, temperature‐ and daylength‐based models yielded the best results (RMSE
6.3 and 10.5 days).
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photosynthesis in spring ∼3 weeks
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• Interannual variation in onset and end
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temperature
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Plain Language Summary We used records of forest‐atmosphere carbon dioxide exchange and
weather to determine when photosynthesis begins and ends each year in 46 northern hemisphere forests. We
used observations of soil temperature to determine the timing of the end of the snowmelt period. We found that
evergreen needleleaf forests began photosynthesis ∼3 weeks before snowmelt ended, while deciduous broadleaf
forests (DBF) waited until ∼4 weeks after snowmelt ended. The DBF type ramped up photosynthesis in spring,
and ramped down in autumn, faster than the ENF, and the length of the photosynthesis (or “growing”) season
was ∼50 days shorter for DBF forests. Abundant evidence suggests that spring is occurring earlier in recent
decades. We checked whether these forests are starting photosynthesis earlier by looking at forests with long‐
term records. We found minimal support for changes in photosynthetic phenology over time, but very strong
connections between temperature and the timing of spring and autumn transitions. We tested 19 models that use
weather data to predict plant phenological events. We used gridded weather data to drive the models, and the
best models were able to predict the spring and autumn photosynthetic transitions to within ∼10 days.

1. Introduction
Seasonally snow‐covered forests of the northern temperate and boreal regions are an important component of the
global carbon (C) cycle (Friedlingstein et al., 2022; Luyssaert et al., 2007). These forested regions span hundreds
of millions of hectares (Brandt, 2009; Keenan et al., 2015), and contain substantial C reservoirs (Kurz
et al., 2013). Currently they are a significant sink for C (Pan et al., 2011), but the future of that sink is highly
uncertain (Friedlingstein et al., 2014) and reliant on forest response to environmental change.

The climate of northern latitudes is undergoing significant change (Gauthier et al., 2015). Temperature has risen
markedly over the last few decades (Wang et al., 2019), bringing a host of associated changes. Temperature (T)
strongly influences plant phenology, and plants have responded to warming with earlier leaf growth, flowering,
and fruiting (Menzel et al., 2006). A global pattern of earlier spring onset and delayed autumn has been observed
for deciduous plants (Garrity et al., 2011; Linderholm, 2006; Pilegaard & Ibrom, 2020; Schwartz et al., 2006;
Vitasse et al., 2022; White et al., 2009). Satellite records of vegetation greenness indicate an extended photo-
synthetic season for deciduous forests across the northern hemisphere (Jeong et al., 2011; Myneni et al., 1997;
Piao, Wang, Park, et al., 2020), and this has impacted land‐atmosphere C exchange enough to alter the magnitude
and timing of the seasonal cycle of atmospheric CO2 (Barichivich et al., 2013; Piao, Wang, Park, et al., 2020).
However, the impact of climate change on evergreen needleleaf forests (ENF) is less certain, as these forests
maintain chlorophyll year‐round and exhibit persistent greenness even during winter photosynthetic dormancy
(Kong et al., 2020; Kunik et al., 2023; Magney et al., 2019; Walther et al., 2016).

Warming has also diminished the seasonal snow cover in North America (Mote et al., 2018; Siirila‐Woodburn
et al., 2021) and Europe (Beniston et al., 2018; Klein et al., 2016). Notable changes include reduced snow
depth and snow water equivalent (SWE), increased rain/snow fraction, and earlier snowmelt, with potential
feedback and additional warming through decreased albedo (Clare et al., 2023; Graf et al., 2023; McGuire
et al., 2006). The onset of spring leaf flush in deciduous forests occurs after snowmelt (Black et al., 2000;
Contosta et al., 2017), and changes in snowpack dynamics thus impact timing of photosynthesis. Satellite data
reveal a long‐term trend toward earlier snowmelt across large regions (Mioduszewski et al., 2015). Evidence
suggests the timing of net C uptake by northern ecosystems and the onset of spring are now both earlier (Parazoo
et al., 2018; Pulliainen et al., 2017). However, when forest cover is sparse, understory vegetation can dominate
satellite observations of green up (Kobayashi et al., 2016).

Phenology and seasonal change in photosynthetic capacity dominate terrestrial gross primary productivity (GPP,
Xia et al., 2015), and as such the implications of earlier spring onset for photosynthesis remain uncertain. The
freeze‐thaw transition provides a liquid water source to support transpiration, but only if the water transport
pathway also thaws and remains so. Several studies have emphasized the significance of liquid water availability
in the soil (e.g., Hollinger et al., 1999; Monson et al., 2005; Pierrat et al., 2021) and tree boles (Bowling
et al., 2018; Nehemy et al., 2022; Sevanto et al., 2006) for spring initiation of GPP in ENF forests. If the soil and/
or boles and stems are frozen, then liquid water cannot be transported through the xylem to support GPP, so one
might expect that snowmelt would be an important event for photosynthesis to begin.
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Implications of earlier spring onset for annual carbon gain are also uncertain. In deciduous forests, a longer
photosynthesis season often results in greater overall net C gain throughout the year (Finzi et al., 2020; Keenan
et al., 2014), but higher spring uptake might lead to earlier senescence due to plant internal C sink limitation (Zani
et al., 2020). Further, in regions with drier summers that rely on snowpack moisture during the photosynthesis
season (Bailey et al., 2023; Goldsmith et al., 2022), earlier melt can lead to less C uptake over the year (Buermann
et al., 2013; Hu et al., 2010; Knowles et al., 2018). The air T during the spring period also appears to be an
important driver of spring C gain, as early melt combined with cold air and leaf T can limit photosynthesis during
the melt period (Winchell et al., 2016). Colder soils due to decreasing snow can lead to delay of leaf flush (Desai
et al., 2022). Other evidence suggests that warmer spring can lead to earlier senescence (Zohner et al., 2023).
Warming experiments have shown that vulnerability to frost events in spring can lead to damage and mortality if
the winter is not sufficiently cold to develop and maintain frost hardiness (Richardson et al., 2018).

There is currently no consensus among flux‐tower based studies regarding long‐term trends in the timing of
photosynthesis. Trends toward earlier start and later end to the photosynthesis season have long been observed at
large spatial scales using vegetation reflectance (Myneni et al., 1997; Piao, Wang, Park, et al., 2020; White
et al., 2009), and microwave remote sensing has indicated widespread earlier thaw in the northern hemisphere,
consistent with CO2 fluxes in boreal forests (Pulliainen et al., 2017). The longer northern photosynthesis season
has led to changes in the seasonality of atmospheric CO2 (Piao, Wang, Park, et al., 2020). Despite these clear
changes, conflicting analyses of long‐term flux tower data indicate earlier (Keenan et al., 2014; Pilegaard &
Ibrom, 2020; Xu et al., 2019) or no change (Wang et al., 2019) to the timing of the start of photosynthesis in
spring. For deciduous species, the end of season has become later (Calinger & Curtis, 2023; Garrity et al., 2011;
Pilegaard & Ibrom, 2020) or earlier (Hurdebise et al., 2019) in recent years. Moreover, recent reports highlight
sub‐annual lagged effects based on warming, wherein the previous summer's T influences spring photosynthetic
timing (Gu et al., 2022), or increased early‐season T leads to earlier senescence in autumn (Zohner et al., 2023).
These changes are consistent with conceptual models of C fluxes hypothesized previously (Richardson
et al., 2010).

Renewed interest in phenological responses to climate change has led to improved models to predict important
phenological events for plants and animals (see reviews by Chuine & Régnière, 2017; Piao et al., 2019; Tang
et al., 2016). These models can be grouped into categories based on a priori hypotheses about important envi-
ronmental factors (see for example Post et al., 2022), such as air or soil T, accumulated T during spring warming
or autumn chilling, daylength (photoperiod), and water availability. These “process‐oriented” models are often
parameterized to match observational data using optimization methods (Chuine et al., 1998, 1999), but inherent
correlation among parameters may preclude physiological interpretation of model parameters. While pheno-
logical model parameters are often considered to be species‐specific, the same models have also been used with
good success when fit to multi‐species stand‐level phenological observations (Melaas et al., 2016). When cali-
brated to a sufficiently broad set of training data, even relatively simple phenological models with just a few
parameters can make predictions that generalize well in time and space (Chen et al., 2016).

As Earth system models have added complexity and realism, it has become increasingly apparent that dynamic
responses of the terrestrial biosphere to climate forcing must be faithfully represented (Chen, 2022; Song
et al., 2021). Because the seasonality of many land‐atmosphere feedbacks is regulated by phenology, enhancing
phenological routines in these models is critical (Li et al., 2023; Peano et al., 2021; Richardson et al., 2012). For
example, accurate representation of the seasonality of photosynthesis and evapotranspiration is a prerequisite for
partitioning the surface energy budget (Barr et al., 2009), and for modeling soil moisture–both are critical to land‐
atmosphere coupling and feedbacks (Piao, Wang, Park, et al., 2020; Seneviratne et al., 2010). In a recent eval-
uation of the phenology schemes embedded in the Community Land Model (CLM versions 4.5 and 5.0), the
modeled spring onset (change in leaf area index) was found to be much later than spring onset observed by
MODIS in both temperate and boreal regions (Li et al., 2022); similar deficiencies have been reported for other
land surface models (Peano et al., 2021).

In deciduous ecosystems, the primary challenge in phenological modeling involves accurately representing the
seasonal dynamics of leaf area. This contrasts with temperate and boreal evergreen forests, where photosynthesis
begins as trees emerge from winter dormancy (Bowling et al., 2018) but before new foliage grows in spring (e.g.,
Hollinger et al., 2021). Consequently, an alternative approach based on photosynthetic phenology is needed for
evergreen forests. To ensure widespread applicability of phenological models, it is essential to understand the
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sensitivity of phenological events to environmental factors. This allows for extrapolation in time and space,
enabling models to provide valid predictions about photosynthetic phenology and how it may respond to altered T
and precipitation (Hänninen et al., 2018; Richardson et al., 2013).

In this study, we developed a new method to quantify the dates of the onset and end of photosynthesis, using the
light response of net ecosystem exchange (NEE) of CO2 (NEE). We compared these dates with estimates of the
timing of end of snowmelt based on soil temperature to test: H1) Snowmelt is required for initiation of photo-
synthesis in winter‐dormant forests in spring, and H2) Warmer temperature leads to earlier onset and later end to
the photosynthesis season, at interannual and long‐term time scales. Finally, to examine environmental influences
on phenology of photosynthesis, and with the goal to improve phenological processes in terrestrial biosphere
models (TBMs), we tested whether H3) existing phenological models can predict these phenological transitions
when driven with gridded weather data.

2. Materials and Methods
2.1. Flux Tower Databases and Site Selection

Focusing on forests with cold season photosynthetic dormancy, we analyzed data from the AmeriFlux (ameriflux.
lbl.gov), FLUXNET2015 (fluxnet.org), and Warm Winter 2020 (Warm Winter, 2020 Team, ICOS Ecosystem
Thematic Center, 2022) databases. Initially, we considered all temperate and boreal forests in the northern
hemisphere. We then selected sites with seasonal snow cover and winter photosynthetic dormancy based on (a) air
T below freezing in winter, (b) high midday shortwave albedo in winter (where measured), (c) low short‐term
variation in soil T in winter (indicative of snow presence), (d) well‐defined dormant periods in winter (identi-
fied by visual assessment of weekly mean NEE indicating no net C uptake), and (e) records of at least 3 years
length. The R package REddyProc (version 1.3.2) was used to remove periods of low turbulence, with a site‐
specific friction velocity threshold (50 percentile), and to gap‐fill NEE and weather data (Wutzler
et al., 2018), but not for partitioning NEE into GPP and ecosystem respiration (see next section).

Our selection criteria led to a total of 46 flux towers for our analysis, consisting of 30 ENF, 14 deciduous
broadleaf forests (DBF), and 2 mixed forests (sites are listed in Table S1 in Supporting Information S1). For
analysis we combined the mixed and deciduous forests into a single group referred to as DBF. These study forests
spanned a range of mean annual air T from −3.2 to 8.3°C, latitude from 35.9 to 67.4°N, and were located in North
America and Eurasia. Overall, we analyzed a total of 578 site‐years of data from these 46 forest sites. The period
of record analyzed covered 1994–2021, and the distributions of representation of years analyzed are shown in
Figure S1 in Supporting Information S1. Years analyzed for each forest site are shown in Table S1 in Supporting
Information S1.

2.2. Flux Transition Dates Derived From NEE

We devised a novel method based on the light response of NEE to determine the seasonal dates marking the onset
and end of the photosynthesis season. We deliberately avoided utilizing GPP derived from NEE flux partitioning.
See Figure S2 in Supporting Information S1 and related discussion, and Section 3 of the SI for details on why a
new approach was required.

Our method to determine seasonal transition dates from NEE and sunlight photosynthetically active radiation
(PAR) is illustrated for a single site in Figure 1. We examined the light response of NEE (or lack thereof) from
half‐hourly (or hourly) data using a 5‐day (5d) moving window. Representative examples are highlighted for a
photosynthetically dormant period in winter and during the summer when photosynthesis is active (inset in
Figure 1b). The mean NEE at night was taken to represent ecosystem respiration (Reco) during each 5‐day
window, and the GPP light response was calculated by inverting the sign of NEE and removing the constant
offset (inset in Figure 1c),

GPP = Reco − NEE (1)

where the sign convention for GPP and Reco are both positive, and NEE is negative during uptake (positive
during release). This approach likely underestimates the magnitude of daytime respiration, particularly in the
warm season. As a result, the associated estimates of GPP are also biased low relative to actual GPP. However, for
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this study we are interested in the timing of seasonal change in the relation between light and photosynthesis, and
the magnitude of GPP is unimportant.

We then applied a curve fit to the light response of the resulting GPP estimate:

GPP =
a ∗ PAR

(1 + b ∗ PAR)
(2)

where a and b are fit coefficients, and evaluated each 5d window at high light (PAR = 1,800 μmol m−2 s−1). This
value is arbitrary, but allowed us to examine seasonal change in the capacity for photosynthesis (Bowling
et al., 2018). Initial analyses led us to fix the b coefficient to a constant value (0.002 m2 s1 μmol−1) which provided
more robust results. In this way the shape of the light response curve is fixed and its saturation level is defined by
a/b. We use the time series of GPP at high light (Figure 1c), which we refer to as GPP1800, to represent the annual
pattern of whole‐forest photosynthetic capacity, similar to a maximum photosynthesis rate (Amax) on a leaf‐level
photosynthetic light response curve.

The annual pattern of GPP1800 was used to determine transition dates that define the start and end of GPP
(StartGPP and EndGPP) in spring and autumn, respectively. The annual pattern of GPP1800 (Figure 1c) was fit
with two single logistic equations, one for the first part of the year and a separate one for the second part
(Figure 1d). This approach allowed us to retain data for ∼ half‐years with long data gaps in spring or autumn.
Details for the multi‐step logistic fitting procedure are provided in the SI with Figure S3 in Supporting Infor-
mation S1. Our approach differs from earlier usage of the double logistic equation by the flux community (Garrity
et al., 2011; Gu et al., 2009; Yang & Noormets, 2021). From the logistic fits, we evaluated the percent distance
from baseline to summer maximum (of fit line) at 5 thresholds that represent percentage of summer photosyn-
thetic capacity (GPP1800) present at a given time of year (10%, 25%, 50%, 75%, and 90%, Figure 1d). The use of
multiple thresholds attempts to balance the tradeoff between ability to detect a transition and confidence that the
result is robust (Richardson et al., 2009). Thus, for each site‐year we calculated 5 variants for each of StartGPP and
EndGPP, one for each GPP1800 threshold. The population of these dates for a GPP1800 threshold of 25% for all
years for Niwot Ridge (site US‐NR1) is shown in Figure 1e.

The utility of open‐path CO2 analyzers has been identified as a challenge in cold conditions (Amiro, 2010; Burba
et al., 2008; Wang et al., 2017), leading to potentially misleading conclusions about photosynthesis in winter.
These analyzers are used by many in the flux tower community. However, we are interested in the timing of
transitions between dormancy and photosynthesis, which are reliably detected despite this unavoidable issue.

2.3. Snow Cover Transition Dates Derived From Soil Temperature

A primary objective was to evaluate how the start and end of photosynthesis compared to the timing of dynamics
of the snowpack (testing hypothesis H1). With few exceptions, our community has not installed sufficient
instrumentation to monitor the snowpack at most flux towers, and site data to quantify snowpack properties such
as cover, depth, or SWE were generally unavailable. We therefore used soil T to estimate when a snowpack was
present. The soil thermodynamic environment under a snowpack is decoupled from energy exchange with the air
and sky by the snow–this leads to fairly stable soil T with low variability in soil T even under shallow snow (Barr
et al., 2009; Maurer & Bowling, 2014). We exploited the seasonal change in soil T variation to quantify when a
snowpack was present (Groffman et al., 2001). For this, we used the shallowest soil T measurement available at

Figure 1. Illustration of the method for determining the timing of start and end of photosynthetic activity from the light response of net ecosystem exchange (NEE).
Shown are the annual patterns of (a) photosynthetically active radiation (PAR) and (b) NEE for a single year. Selected 5‐day periods are shown during the active season
(blue) and the dormant season (yellow), and these are plotted as a light response of NEE (inset of panel b). The average NEE at night (PAR <5 μmol m−2 s−1) was taken
as an estimate of ecosystem respiration during each 5‐day period to estimate the light response of gross primary productivity (GPP) (inset in panel c), and the value of
GPP at high light (PAR = 1,800 μmol m−2 s−1) was then calculated in similar fashion for all 5‐day periods over the annual period (time series in panel c). This time series
was fit using a single logistic curve for the first part of the year (purple), and a separate logistic function for the second part of the year (brown, details in Figure S3 in
Supporting Information S1). Examples for a single year at site US‐NR1 (Niwot Ridge) are shown in panel (d). Each curve was then divided into fractions from baseline
to maximum, using 5 thresholds (10%, 25%, 50%, 75%, and 90%), and the day of occurrence for each threshold was assigned to the start of GPP (StartGPP, dates on the
rising edge (purple line) of the GPP1800 annual pattern), or end of GPP (EndGPP, dates on the falling edge, green line). Shown in panel (e) are all the dates for all years of
record for this site at the 25% GPP1800 threshold, and the curve fits that they were derived from (purple and green lines).
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each site (closest to the soil/snow interface), which should have maximum diel variation at any time of year
compared to greater depths.

The method is illustrated in Figure 2, with SWE and soil T shown for 1 year at Niwot Ridge (for validation, SWE
in this case was measured by the USDA NRCS Snow Survey Program using a snow pillow ∼ 400 m from the flux
tower). The variation of soil T is low when there is snow present, contrasting markedly with the snow‐free period,
and the effect is consistent with even a minor amount of SWE (the inset in Figure 2e shows this pattern over many
years). We fit the annual pattern of coefficient of variation (CV) of soil T using two single logistic equations as
above (details in SI with Figure S4 in Supporting Information S1). From the fitted logistic equation, we deter-
mined the baseline and summer maximum of T variation (Figure 2d). The day of year by which a threshold of 10%
of the variation range between the summer maximum and the threshold was first exceeded in the spring was
determined as the end of the snowmelt period in spring (Endsnow) and when variation last dropped below that 10%
threshold in the autumn was determined as the beginning of accumulation of snow in autumn (Startsnow). The
collection of Endsnow and Startsnow dates for all years for Niwot Ridge is shown in Figure 2e. See Figures S5–S11
in Supporting Information S1 for validation of this method at sites where snow cover data were available.

We stress that Endsnow indicates the end of the snowpack effect on soil T, and hence the end (not the start) of the
melt period. Since this is based only on soil T it provides no direct information about liquid water associated with
melt. Two sites were missing soil T data in the databases used and were omitted from snow‐related analyses (US‐
Vcm, US‐Pfa). The method failed to produce reliable estimates of Startsnow and Endsnow for DK‐Sor due to lack of
clear seasonality in soil T.

2.4. Phenological Models

A major objective was to evaluate whether existing models of plant phenology could accurately predict the timing
of the start and end of photosynthesis (StartGPP and EndGPP) of temperate and boreal forests. We applied 19 spring
and 3 autumn phenology models using the R package phenor (version 1.3.2), a modeling framework described by
Hufkens et al. (2018). This package was developed to compare vegetation phenology data combined with
location‐specific gridded weather data obtained from the Daymet (Thornton et al., 2021) and E‐OBS (Cornes
et al., 2018) data sets for North America and Europe, respectively. The phenor package provides functions to
quantitatively compare multiple models. Using pre‐defined parameter ranges with a uniform distribution (non-
informative Bayesian priors), we used simulated annealing to optimize parameters.

The phenology models are listed in Table 1 along with their drivers and number of parameters. The models
represent different assumptions about the underlying environmental drivers and mechanisms controlling
phenological transitions (none of the models include snowpack characteristics). The mathematical representation
of these processes provides a wide range of model structures (for details, see Basler, 2016; Hufkens et al., 2018;
Schädel et al., 2023) to be tested against the data. We used the principle of parsimony to guide model selection—
the simplest model that can explain the observations is most useful. Akaike's Information Criterion (AIC) allowed
us to balance complexity against goodness‐of‐fit.

The spring models ranged from a simple regression with air T to more complex nonlinear models including air T
(warming and for some, chilling), photoperiod, and vapor pressure deficit, with 2–10 parameters depending on the
model.

For autumn models, we used three modifications of the chilling degree day (CDD) model (Table 1) in which leaf
senescence occurs when the amount of chilling degree days is larger than a certain species‐specific threshold
(Jeong & Medvigy, 2014). The CDDP (chilling‐degree day with photoperiod) model is adapted from the photo‐
thermal time (PTT) (spring thermal time with photoperiod) model and includes a photoperiod parameter (day-
length in hours per day based on location) in the chilling requirement.

We used the function pr_ fm_ phenocam to format flux data into a flattened nested list suitable for model
comparison. All models were fit using the function pr_ fit and parameter optimization was run using the GenSA
generalized simulated annealing package in R (version 1.1.7, Xiang et al., 2013). The upper and lower limits for
parameter ranges for all plant functional types (Table S2 in Supporting Information S1) were taken from Hufkens
et al. (2018) and are within a biologically reasonable range. We ran the code on the high‐performance computing
cluster “Monsoon” (Northern Arizona University) in 25 parallel chains for each of the 40,000 iterations.
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Figure 2.
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2.5. Statistical Analysis

We used two‐way analysis of variance with forest type (ENF or DBF) and GPP1800 threshold as factors to (a)
examine the timing of StartGPP in relation to end of snowmelt (testing hypothesis H1), and (b) compare the length
of the photosynthetically‐active season between forest types.

To evaluate whether there have been changes over time (years to decades) in the onset of GPP in spring or end of
GPP in autumn (testing hypothesis H2), we evaluated site‐level trends in observed StartGPP or EndGPP with time
(year). For this we used sites with 10 or more years of data (28 forests total, 17 ENF and 11 DBF sites). The period
of record for these longer flux tower data sets was 1994–2021, with most data density 2005–2015 (Figure S1 and
Table S1 in Supporting Information S1).

We tested for significant changes three ways. First, we used simple linear regression (e.g., StartGPP or EndGPP vs.
year) and a Student's t‐test to evaluate whether regression slopes were significantly different from zero. Second,
we used the Mann‐Kendall test via the Kendall package in R (version 2.2) to determine if there were significant
trends. We tested all combinations of StartGPP and EndGPP with time, using all GPP1800 thresholds. Regressions
were performed on 280 total site‐specific groups of dates ((17 ENF + 11 DBF sites) × 5 GPP1800 thresholds × 2
date types = 280). Third, we calculated the non‐parametric Theil‐Sen slope of a regression of StartGPP or EndGPP

with time (year), which is less sensitive to outliers than parametric linear regression (Sen, 1968). For this the R
package deming (version 1.4) was used. Results are reported in Table 2 for those cases that were statistically
significant. As a corollary to H2, we used simple linear regression to test for trends in monthly mean air T for sites
with long records.

To evaluate (further testing H2) whether years with warmer spring or autumn are associated with earlier onset or
later end to photosynthesis (or the reverse for cold years), we compared anomalies for StartGPP and EndGPP (at
GPP1800 threshold of 10%) to anomalies of monthly mean air T for sites with records of 10+ years. Anomalies
were computed related to the long‐term mean for all years of record for each site independently. Data for ENF and
DBF forests were grouped with all sites years in each forest type examined together. Simple linear regression was
used to with a t‐test for statistical significance as above.

The phenology models were evaluated in their ability to predict StartGPP and EndGPP (testing H3). The model
output included model‐predicted StartGPP and EndGPP, model parameter values, root mean square error (RMSE)
from comparison of model predictions versus observed StartGPP and EndGPP, and AIC. To identify the best model
for each season and forest type, we selected the model with the lowest AIC across all 25 parallel model runs for
each season and functional type. We considered models with ∆AIC <2 to be equivalent in terms of performance,
whereas models with ∆AIC ≥2 had little support and models with ∆AIC ≥10 no support (Burnham &
Anderson, 2004).

2.6. Writing

The generative large‐language model ChatGPT (https://openai.com/blog/chatgpt) was consulted to improve
readability. This was used for language‐related tasks, but not for creation or modification of scientific content,
data, interpretation of results, or accession/interpretation of scientific literature.

Figure 2. Illustration of method for determining the timing of initial accumulation and end of melt of snowpack based on the coefficient of variation of soil temperature
(T, at site US‐NR1, 5 cm depth). Shown in panel (a) is a representative time series of snow water equivalent (SWE) (measured ∼400 m from the tower), with the snow‐
free period indicated with shading, with the dates indicating the measured end of the melt period (day of year DOY 137) and the start of the next snowpack (DOY 290).
Shown in panel (b) is the time series of soil T, with selected 5‐day periods shown in the snow‐free summer (blue) and in the snow‐covered winter (red); the inset shows
the soil T during each 5‐day period (and the mean ± 1 standard deviation). The coefficient of variation (CV) of soil T was calculated for each 5‐day period during the
year and is shown in panel (c), with the selected periods from panel (b) indicated in color (calculations made in Kelvins to avoid the sign of the Celsius scale). This time
series was fit to a logistic curve for the first part of the year (purple line, d), and to a separate one for the second part (green line, details in Figure S4 in Supporting
Information S1). A gray highlight marks the snow‐free period, when the variation of T was above a threshold of 10% of the variation range between the summer
maximum and baseline. The first and last exceedance of this threshold marked the end of the snowmelt period in spring (Endsnow) and beginning of accumulation of
snow in autumn (Startsnow, DOY 139 and 294, respectively, d). The collection of all years (n = 14) for this site, with corresponding dates, are shown in panel (e). The
inset in panel (e) highlights the relation between measured SWE and the CV of soil T over these 24 years, demonstrating that even a shallow snowpack leads to minimal
daily variation in soil T.
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3. Results
3.1. Timing of Seasonal Transitions

Transition dates between winter dormancy and active season GPP (StartGPP, EndGPP) are shown for the 25%
GPP1800 threshold and compared to snowpack dates (Startsnow, and Endsnow) in Figure 3 (the transition dates for
other thresholds may be found in Figures S12–S15 in Supporting Information S1). With one exception (CZ‐BK1),
GPP began at all sites after the spring equinox, and ended well after the autumn equinox (Figure 3). Interannual
variability was apparent for all date types and all sites, with generally more variability in Startsnow and Endsnow

relative to StartGPP or EndGPP. The standard deviations of multi‐year anomalies of the snowpack dates relative to
each site's mean date were ENF: 17.9 days in spring, 20.8 days in autumn, and DBF: 12.2 days in spring, 20.6 days
in autumn, indicating that average year‐to‐year variation in snowpack melt or accumulation timing was a few
weeks, with ranges in these site‐specific timing anomalies as large as 50–60 days. Forests in warmer locations
tended to have earlier start and later end to GPP (sites are ranked based on mean annual air temperature, MAT, in
Figure 3), but there was much variation in this pattern. The DE‐Hai (continental) and DK‐Sor (near ocean) sites
have similar MAT but likely different snowpack characteristics; we were not able to extract reasonable Startsnow

or Endsnow dates for DK‐Sor.

Table 1
Details of Spring and Autumn Models Adapted From Basler (2016) and Hufkens et al. (2018)–See the Appendices of Those Papers for Full Model Descriptions

Model name Abbreviation Drivers # Parameters Reference/comments

Spring

Linear LIN F 2 Linear regression and temperature

Thermal Time TT F 3 Cannell and Smith (1983), Hänninen (1990), Hunter and Lechowicz (1992)

Thermal Time sigmoid TTs F 4

*Photo‐thermal time PTT PF 3 Črepinšek et al. (2006), Masle et al. (1989)

Photo‐thermal time sigmoid PTTs PF 4

*M1 M1 PF 4 Blümel and Chmielewski (2012)

*M1 sigmoid M1s PF 5

Alternating AT CF 5 Cannell and Smith (1983),
Murray et al. (1989)

Sequential SQ CF 8 Hänninen (1990), Kramer (1994)

Sequential b SQb CF 8

*Sequential M1 SM1 CPF 9 Combination of Sequential and M1 model

*Sequential M1b SM1b CPF 9

Parallel PA CPF 9 Hänninen (1990), Kramer (1994), Landsberg (1974)

Parallel b (bell‐shaped) PAb CPF 9

Parallel M1 PM1 CPF 10 Combination of Parallel and M1 model

Parallel M1b (bell‐shaped) PM1b CPF 10

Unified M1 UM1 CPF 9 Chuine (2000)

Growing season index SGSI FPV 9 Xin et al. (2015)

Growing season index AGSI FPV 9 Xin et al. (2015)

Autumn

*Chilling degree day CDD C 3 Jeong and Medvigy (2014)

Chilling degree day sigmoid CDDs C 4 Jeong and Medvigy (2014)

*Chilling degree day photoperiod CDDP CP 3 Jeong and Medvigy (2014)

Note. Models are grouped here by drivers: forcing temperature (F), chilling temperature (C), photoperiod/daylength (P), and vapor pressure deficit (V). Shading groups
models with the same base structure together. Models with an asterisk were found to be optimal (see text).
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Evergreen needleleaf forests achieved 10% of their summer photosynthetic capacity about 3 weeks prior to the
timing of full snowmelt (Figure 4e, the mean time when GPP1800 reached 10% threshold was 17.7 days prior to the
mean snowmelt date in ENF). In contrast, deciduous forests reached 10% capacity roughly 4 weeks after
snowmelt (Figure 4e, mean for DBF 28.6 days). The GPP in ENF forests reached 50% capacity 19.4 days after
snowmelt, and the DBF forests 54.4 days after snowmelt (Figure 4c). The mean increase from 10% to 90% of
summer photosynthetic capacity took 73 and 41 days for ENF and DBF forests, respectively (comparing means

Table 2
Results of Regressions of Transition Dates StartGPP and EndGPP Versus Time for Sites With 10 or More Years of Record

Database and
site Biome

Date
type

GPPsat
threshold (%)

n
years

Linear regression

Mann‐Kendall trend
p‐value

Theil‐Sen slope
(d yr−1)

Slope
(d yr−1)

Std error of slope
(d yr−1)

p‐
value

AMF_CA‐LP1 ENF StartGPP 90 12 −2.19 1.17 0.09 0.05* −1.95

AMF_CA‐TP3 50 14 −1.30 0.65 0.07 0.02* −1.40

AMF_US‐Ha2 50 17 1.46 0.64 0.04* 0.12 1.40

AMF_US‐Ho2 50 20 0.73 0.35 0.05* 0.07 0.80

AMF_US‐NR1 90 23 0.74 0.34 0.04* 0.04* 0.92

WRM_CZ‐BK1 90 11 3.78 1.14 0.01* 0.02* 3.25

WRM_FI‐Let 25 10 3.49 1.05 0.01* 0.03* 4.17

50 2.86 0.47 0.00* 0.00* 2.57

75 1.70 0.67 0.03* 0.07 2.29

AMF_US‐Ha2 ENF EndGPP 25 17 −1.07 0.56 0.08 0.03* −1.21

50 −0.59 0.63 0.37 0.01* −1.11

AMF_US‐NR1 50 23 −0.46 0.20 0.03* 0.05* −0.35

75 −0.74 0.30 0.02* 0.05* −0.57

90 −0.99 0.45 0.04* 0.07 −0.71

AMF_US‐Uaf 75 14 0.75 0.31 0.03* 0.01* 0.67

AMF_US‐Vcm 25 10 −2.24 0.85 0.03* 0.01* −2.60

50 −4.47 1.42 0.01* 0.01* −4.14

75 −5.45 1.94 0.02* 0.02* −4.33

90 −5.42 2.15 0.03* 0.05* −3.00

WRM_IT‐Ren 50 17 1.28 0.45 0.01* 0.04* 1.00

75 1.78 0.58 0.01* 0.01* 1.80

90 1.87 0.82 0.04* 0.06 2.18

AMF_CA‐Cbo DBF StartGPP 10 24 0.67 0.26 0.02* 0.01* 0.69

25 0.42 0.16 0.02* 0.06 0.38

FLX_IT‐Col 10 12 −0.81 0.30 0.02* 0.02* −0.65

90 0.56 0.49 0.28 0.01* 0.69

AMF_US‐Bar DBF EndGPP 10 14 1.20 0.43 0.02* 0.02* 1.20

AMF_US‐Ha1 25 30 0.26 0.14 0.07* 0.01* 0.34

50 0.23 0.17 0.17 0.01* 0.33

FLX_IT‐Col 25 12 1.28 0.34 0.00* 0.02* 1.22

50 1.76 0.66 0.02* 0.05* 1.50

FLX_US‐PFa 75 18 −1.36 0.64 0.05* 0.06 −1.14

Note. Regressions with significant (p ≤ 0.05) linear regression slopes or Mann‐Kendall trends are shown here (and bolded, they were not always significant together).
Negative slopes imply a trend with transition dates occurring earlier in time (earlier StartGPP in spring or EndGPP in autumn in the later years of record), and positive
slopes the reverse (later StartGPP or EndGPP). Database codes AMF = AmeriFlux, FLX = FLUXNET2015, WRM = Warm Winter 2020, biomes ENF = evergreen
needleleaf forest, DBF = deciduous broadleaf forest.
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for each forest type in Figures 4a and 4e). These data show an average rate of increase of photosynthetic capacity
in spring of 1.10% and 1.95% d−1 for ENF and DBF forests.

The length of the photosynthetically active season (EndGPP–StartGPP) was longer for ENF compared to DBF by
49 days, when 10% GPP1800 thresholds were compared (Figure 4j), but only 10 days longer when 90% thresholds
were compared (Figure 4f). This difference results from the length of time for each forest type to ramp up (and
down) photosynthetic capacity in spring (autumn, Figure 4).

3.2. Evaluation of Long‐Term Trends in Timing of Seasonal Transitions

We examined the time series of StartGPP and EndGPP at sites with long records (10 or more years) to determine if
there were trends such as earlier onset of photosynthesis in spring or later end in autumn. Results mostly showed
no trends, those with trends were mixed and are shown in Table 2. In total, 280 regressions were examined for
trends in StartGPP and EndGPP with time (see Section 2). Only 32 regressions were significant (89% of regressions
showed no trend).

Significant trends with time were found for 10 out of 17 evergreen forests and 5 out of 11 deciduous forests, in
some cases for more than one GPP1800 threshold. Of the significant trends, spring initiation of GPP is occurring
earlier (by 1.3–2.2 days yr−1) in 2 ENF forests (CA‐LP1 and CA‐TP3), later in five others (US‐Ha2, US‐Ho2,
US‐NR1, CZ‐BK1, and FI‐Let) by 0.7–4.2 days yr−1. and not changing in seven other forests. Patterns in
autumn were also mixed with 3 forests showing earlier end to GPP, and 2 forests later end (Table 2). Only 2
deciduous forests showed significant trends in spring (CA‐Cbo and IT‐Col). Autumn end of GPP in deciduous
forests is happening later at US‐Bar, US‐Ha1, and IT‐Col, and earlier at US‐PFa. Pilegaard and Ibrom (2020)

Figure 3. Boxplots highlighting the distribution of interannual variation in transition dates for each site, with sites ordered
based on mean annual temperature (MAT in parentheses for each site, shown separately based on forest type (left and right
panels). These are shown on the figure as StartGPP (start of gross primary productivity (GPP), purple) and EndGPP (end of
GPP, blue), and the start and end of snowpack accumulation and melt (Startsnow and Endsnow, yellow and red, respectively).
Vertical dashed lines indicate the spring and autumn equinoxes for comparison. Dates for GPP are shown for the 25%
GPP1800 threshold; other thresholds can be examined in Supplemental Figures S12–S15 in Supporting Information S1.
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found significant trends in both onset and end of photosynthesis at DK‐Sor, which contrasts with our results
using their data (no trend, Table 2). Our method requires PAR data which were missing or had long gaps in
some years. Removing those years from the dates of the DK‐Sor analysis of Pilegaard and Ibrom (2020) led to
non‐significant trends (data not shown).

To determine if the length of the photosynthetic season has changed over time, one should reasonably compare
dates retrieved from the same GPP1800 thresholds in spring and autumn. The thresholds associated with significant
trends differed across sites and from spring to autumn (Table 2). Significant trends were found at the same
threshold in both spring and autumn at only two sites, (US‐Ha2, US‐NR1) with spring transitions later and fall
transitions earlier, indicating a trend toward shorter photosynthesis season. For sites with changes in only spring
or autumn (as noted above), the photosynthetic season is a bit longer (ENF: CA‐LP1, CA‐TP3, US‐Uaf, IT‐Ren,
DBF: US‐Bar, US‐Ha1, US‐PFa), or shorter (ENF: US‐Ho2, CZ‐BK1, FI‐Let, US‐Vcm, DBF: CA‐Cbo) due to
trends in the spring and fall dates as shown in Table 2.

Long‐term trends in monthly mean air T at sites with long records are shown in Figure S17 in Supporting In-
formation S1 (regressions of monthly mean T versus year for sites with records of 10+ years). Most sites and
months showed no significant trend, and this was true whether the full record was used, or just those years
represented in our analysis (years where StartGPP and EndGPP were available). Those that were significant indicate
warming during those months (<0.3°C/yr−1), with a few exceptions that show cooling.

Anomalies of StartGPP and EndGPP are compared with anomalies of air T in Figure 5 for March and September
(other months are shown in Table S4 in Supporting Information S1). Across all forests in each type, regressions

Figure 4. Left column: Frequency distributions of the difference (Endsnow–StartGPP) between end of snowmelt dates
(calculated as in Figure 2) and start of gross primary productivity (GPP) in spring (as in Figure 1) for each of the GPP1800
thresholds (panels a–e). Negative values on horizontal axis indicate that GPP began before end of snowmelt, positive indicate
that GPP began after end of snowmelt. Right column: Frequency distributions of the length of the GPP season (EndGPP–
StartGPP) for each GPP1800 threshold (panels f–j). Results are grouped for all evergreen and deciduous forests separately.
Means for each distribution are shown in text on the right side of each panel. Letters indicate significantly different means
between groups following two‐way ANOVA, performed separately on the left and right columns.
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were highly significant in these months. For both forest types, warmer spring was associated with earlier onset of
photosynthesis (by 1.3–2.5 days °C−1), and warmer autumn with later end (1.5–1.8 days °C−1).

3.3. Phenology Model Predictions of Seasonal Transitions

The phenology models were most successful at predicting the StartGPP and EndGPP using the 25% GPP1800

threshold, except for DBF and StartGPP in which model predictions were best at 50% threshold (Figure S16 in
Supporting Information S1, GPP1800 threshold with lowest RMSE group in each case). Plots of AIC showed the
same pattern (not shown), with lowest AIC coinciding with the 25% threshold for ENF StartGPP and EndGPP, 25%
DBF EndGPP, and 50% DBF StartGPP).

The best models in each case were chosen based on AIC (Figure 6, details of these models are provided in the
Discussion, and optimized parameters for all models in Table S3 in Supporting Information S1). For evergreen
forests, 4 models performed well for ENF in spring (Figure 6a); the best models were M1 (lowest AIC), PTT
(∆AIC from m1 = 0.15), and a combination of sequential and M1 models, SM1b (1.82), and SM1 (1.95). The best
model for ENF forests in autumn was the CDD model (Figure 6b). In spring for DBF forests, the best predictions
came from the M1s (lowest AIC) and M1 models (∆AIC from m1s = 0.06, Figure 6c). The best model for DBF
forests in autumn was the CDDP model (Figure 6d).

Predictions of StartGPP and EndGPP from the best models are compared with the measured values in Figure 7. For
evergreen forests, the M1 and CDD models predicted StartGPP and EndGPP with RMSE of 11.7 and 11.3 days (331
and 349 site‐years of data, respectively, Figures 7a and 7b). For deciduous forests, the M1s and CDDP model
predictions were slightly better, RMSE = 6.3 and 10.5 days (226 and 229 site‐years, Figures 7c and 7d).

Figure 5. Anomalies of StartGPP (top) and EndGPP (bottom, both at GPP1800 threshold of 10%) with monthly air T for
evergreen needleleaf forests (a, b) and deciduous broadleaf forests (c, d), for the months of March and September.
Regressions for other months can be found in Table S4 in Supporting Information S1.
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4. Discussion
4.1. Seasonal Timing of Photosynthesis and Dormancy

We used the light response of NEE to determine the timing of transitions from winter dormancy to photosynthetic
activity and back. By exploiting the consistent soil T under a snowpack, we quantified the timing of end of
snowmelt in spring, and start of snowpack accumulation in autumn. Our comparison revealed a robust and
statistically significant difference in the phenology of GPP between evergreen and deciduous forests (Figure 4).
Evergreen forests began photosynthesis in the spring well before end of snowmelt, approximately 3 weeks prior,
while deciduous forests began photosynthesis about 4 weeks after end of snowmelt. Our hypothesis (H1) that
snowmelt is required for initiation of photosynthesis received support for DBF, but ENF forests began photo-
synthesis well before snow was completely melted (Figures 3 and 4), thus refuting H1.

Validation of our snowpack timing method to derive Startsnow and Endsnow is essential to ensure its reliability. Our
validation efforts (Figures S5–S11 in Supporting Information S1) demonstrate the reliability of the method in
defining the timing of the end of spring snowmelt to within 1–2 weeks. We acknowledge that snowmelt exhibits
considerable spatial variability within a forest (e.g., Lundquist et al., 2013), and a single soil T measurement per
site cannot represent the entire forest. Nevertheless, this uncertainty is much smaller than the observed difference
in timing for StartGPP between ENF and DBF forests, which is nearly 7 weeks (Figure 4e). As a priority for future
research, we recommend that flux tower scientists in snowy locations incorporate automated measurements of
SWE and snow depth, using snow pillows and ultrasonic depth sensors. A complementary alternative for
automated depth measurement could be repeat digital photography (e.g., Richardson, 2019) with graduated snow
stakes in the image. Continued development of remote sensing techniques to monitor snow over wide regions
would also be valuable (e.g., Mavrovic et al., 2023; Metsämäki et al., 2015). SWE is the preferred metric because
it provides information about the water available from the snowpack to support forest productivity (Hu

Figure 6. Comparison of difference in Akaike Information Criterion (∆AIC) compared to the best‐fit (lowest Akaike's
Information Criterion) model in each case. Only the best GPP1800 thresholds from Figure S16 in Supporting Information S1
are shown. The SGSI and AGSI model results plot off scale (very high ∆AIC for StartGPP for both evergreen needleleaf
forests and deciduous broadleaf forests forests).
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et al., 2010; Maurer & Bowling, 2014). Measurements of T of the snowpack at multiple vertical and horizontal
locations can be particularly useful to identify when and how rapidly the snow is melting (Burns et al., 2014;
Jennings et al., 2018).

Our results provide new evidence supporting the general phenomenon of ENF photosynthesis commencing
before the end of the snowmelt period, while DBF initiate photosynthesis afterward (Figures 3 and 4). This
distinctive contrast between forest types aligns with earlier studies (Ahmed et al., 2021; Barr et al., 2009; Descals
et al., 2020; Thum et al., 2009) The period between snowmelt and full development of canopy foliage in DBF
forests has been referred to as the “vernal window” (Contosta et al., 2017; Groffman et al., 2012; Khodaee
et al., 2022), and as climate warms, the length of the vernal window has increased (Contosta et al., 2017). In boreal
regions, deciduous trees take up a surprisingly large amount of water during this phase, before leaf‐out and full
transpiration begins (Young‐Robertson et al., 2016).

While evergreen forests must transport water through xylem once transpiration starts, accumulating evidence
suggests that the initiation of transpiration in ENF forests lags behind photosynthesis, indicating the utilization of
stored water for days to weeks (Bowling et al., 2018; Nehemy et al., 2022, 2023; Sevanto et al., 2006; Tanja
et al., 2003). Notably, the rehydration of conifer stems following winter shrinkage can last several weeks
(Nehemy et al., 2023; Turcotte et al., 2009). Our soil T method quantifies the end of the snowmelt period
(Endsnow), but cannot provide information about the start or duration of melt. The initiation and completion of soil
thaw in spring can be markedly affected by forest structure (Ahmed et al., 2021; Lundquist et al., 2013). Soils in
warmer locations may not freeze every winter, even under the snowpack (Iwata et al., 2010; Maurer &
Bowling, 2014), and so thaw is not always a requirement for liquid water availability.

Figure 7. Comparison of predictions (vertical axes) of StartGPP and EndGPP from the best‐fit phenology models (and
associated GPP1800 thresholds, see Figure 6 and Figure S16 in Supporting Information S1) with the observed StartGPP and
EndGPP (horizontal axes) derived from net ecosystem exchange and photosynthetically active radiation data as in Figure 1.
Shown in each panel are the best model and GPP1800 threshold, number of sites and site‐years represented, the root mean
square error (predicted vs. observed), slope of a linear regression (colored lines), r2, and a 1:1 line for comparison.
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We observed a substantial difference in the length of the photosynthesis season between ENF and DBF forests, as
calculated using StartGPP and EndGPP at the 10% threshold (Figure 4j). On average, the photosynthetically active
season was approximately 50 days longer in ENF forests compared to DBF (Figure 4j). This confirms patterns
identified for selected forests (Barr et al., 2009; Noormets et al., 2009) and early ecophysiological studies
(Schulze et al., 1977). This disparity aligns with the relative length of carbon uptake period reported for these
forest types by Churkina et al. (2005) and Panwar et al. (2023).

After photosynthesis began, the time taken for GPP to rise from 10% to 90% of maximum photosynthetic capacity
in spring was nearly twice as fast for DBF compared to ENF forests (comparing means of the distributions in
Figures 4a and 4e). The spring increase in photosynthetic capacity was termed the “recovery phase” by Gu
et al. (2009), who showed faster recovery rate for 3 DBF forests compared to a single ENF forest. Yang and
Noormets (2021) termed the period “length of flux development” and defined it using a GPP‐based method to
derive flux transition dates, but did not provide a quantitative description in their paper. Calculated from their data
set, the spring ramp for ENF forests took 44 days (median of 40 forests, 300 site‐years), while for DBF forests it
lasted 28 days (22 forests, 185 site‐years). This higher rate of spring increase in photosynthetic capacity by DBF
forests also aligns with the seasonal patterns observed for ENF and DBF forests analyzed collectively by Panwar
et al. (2023). Consequently, another generalizable phenological pattern emerges: ENF forests begin (end)
photosynthesis earlier (later) but take nearly twice as long to reach peak photosynthetic capacity compared to
DBF forests (Figure 4).

4.2. Lack of Long‐Term Trends in Length of Photosynthesis Season

We hypothesized (H2) that climate warming has resulted in earlier start and later end of photosynthesis,
consequently leading to a longer photosynthesis season. As described in the introduction, there is debate among
flux‐tower‐based studies regarding changes in the timing of photosynthesis for deciduous and evergreen forests.
We found no evidence in the flux tower data to support H2, a widespread directional pattern of change in StartGPP

or EndGPP for either evergreen or deciduous forests (Table S1, Figure S1 in Supporting Information S1). Out of
the tested regressions of StartGPP and EndGPP versus time, only a fraction (11%) yielded statistically significant
trends (Table 2). Those that were significant did not show consistent patterns, as they exhibited earlier, later, and
no change to the phenological transitions in both spring and autumn (the three methods to test for significance
were not always in agreement). Since leaf T is strongly related to air T (Bowling et al., 2018; Leuzinger &
Körner, 2007; Still et al., 2019), the lack of major trends in StartGPP and EndGPP over time can potentially be
explained by lack of long‐term T change (but see next section).

Our findings align with other tower‐based flux studies investigating flux phenology. Keenan et al. (2014)
observed strong trends in start of season dates for the northeastern U.S. based on remote sensing of greenness
(earlier spring by 0.5 days yr−1), and showed that timing of spring and autumn transitions of C fluxes was strongly
linked to T (see their Figures 3 and 5 and Figure S9 in Supporting Information S1). However, when analyzing flux
tower data, they reported only marginally significant advances in spring GPP for Harvard Forest (US‐Ha1) and
for deciduous forests collectively. Moreover, no statistically significant trends were observed for GPP nor NEE
timing in coniferous forests. Finzi et al. (2020) extended these results for Harvard Forest, reporting a trend of
0.4 days yr−1 for the DBF tower (US‐Ha1), but found no significant trends for the ENF tower (US‐Ha2, see their
Figure 12). Panwar et al. (2023) identified significant trends only for lower thresholds (akin to our GPP1800

thresholds) and only when ENF and DBF forests were analyzed as groups, rather than as individual forests. At
Hyytiälä (FI‐Hyy), Launiainen et al. (2022) found a weak but marginally significant trend for earlier start of the
GPP season (see their Table 2). Finally, Wang et al. (2019) reported no change in spring or autumn timing of C
fluxes during the global warming hiatus (1998–2012) using FLUXNET data. Our study, along with the afore-
mentioned research, presents a direct contrast to the findings of Xu et al. (2019) who reported highly significant
trends toward earlier spring and autumn transitions in both forest types (their Table 1).

The above studies either focused on time series of GPP derived from flux partitioning, or of NEE. Our approach to
determine transition dates (Figure 1, Figure S3 in Supporting Information S1) instead relies on the functional
relation between NEE and sunlight. This distinction allows us to avoid the problematic artifact of erroneous
winter GPP that arises from flux partitioning (Figure S2 in Supporting Information S1). Our record extends the
analysis of Wang et al. (2019) by 6+ years (Figure S1, Table S1 in Supporting Information S1) with added forest
sites, uses an entirely different method, and we reach the same conclusion. Specifically, we find no compelling
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evidence to support a general change in the timing of spring or autumn C fluxes in the northern hemisphere forest
flux tower record, with a few exceptions (Table 2), thus refuting H2 at the long‐term time scale.

4.3. Evaluation of Phenological Model Performance

We assessed the predictive capacity of a variety of phenological models to determine StartGPP and EndGPP. The
goal was to test (H3) if simple models based on gridded weather data could predict the phenology of photo-
synthesis, and therefore should be incorporated in future TBMs. For DBF, the most effective spring models were
the M1s and M1 models (Figure 6c). These models predicted StartGPP favorably across all 16 DBF forests with an
RMSE of 6.3 days (226 site‐years, Figure 7c). This level of predictive model skill is comparable to lowest
prediction errors when these models were applied to predict leaf unfolding (Basler, 2016; Migliavacca
et al., 2012). However, for modeling spring green‐up of evergreen forests across the Northeastern US, Teets
et al. (2023) found that the M1 model was out‐performed by parallel and sequential models that incorporated
chilling effects. A plausible interpretation of these differing outcomes is that, given the large geographic range
covered by our study sites, parallel and sequential models might not perform as effectively without regional
calibration of chilling thresholds. In contrast, the photoperiod‐temperature structure inherent in the M1s and M1
models retained its generalizability across different spatial and temporal contexts.

For ENF, the most effective spring models included M1 but also PTT, SM1, and SM1b, with nearly equal per-
formance based on AIC (Figure 6a). Both M1 and PTT include accumulated T and photoperiod (Črepinšek
et al., 2006) with minor difference in form. The SM1 and SM1b models also include a chilling threshold which must
be satisfied before early spring T accumulation can initiate leaf unfolding, hence the “sequential” name (Hänni-
nen, 1990; Kramer, 1994). Although the AIC difference was minimal, model complexity differs. The SM1 and
SM1b models have 9 parameters, compared to 4 (M1) and 3 (PTT), and the principle of parsimony suggests that M1
and PTT may be preferable due to their simplicity. Model prediction across 30 ENF forests had RMSE of 11.7 days
(331 site years, Figure 7a). This is similar in magnitude to the interannual variability in StartGPP for most forests
(Figure 3). In summary, for ENF forests in spring, these results suggest that we can reduce the number of useful
candidate models in future studies from 15 (as listed in Table 1) to 4 promising models (M1, PTT, SM1, SM1b).

The timing of the autumn transition for ENF forests was best modeled with the CDD model, which was developed
to predict autumn leaf color transitions in deciduous forests (Jeong & Medvigy, 2014). This model is a simple
accumulation of cold (air T) below a site‐specific base T, until a chilling threshold is met. Model selection, guided
by AIC, favored the CDD model in ENF forests; this is consistent with Schädel et al. (2023) who found that the
CDD model was most effective for the autumn transition in Picea mariana at the NGEE‐SPRUCE experiment
(warming of up to +9°C above ambient). This model yielded RMSE of 11.3 days for autumn prediction (Figure 7b).

For DBF forests, adding a photoperiod threshold to the chilling algorithm led to the best prediction in autumn via
the CDDP model (Jeong & Medvigy, 2014), with RMSE of 10.5 days (Figure 7d). In contrast to ENF, there was
more support for the CDDP model in DBF forests. This contrasts with the results of Teets et al. (2023) for
modeling the start of autumn senescence in deciduous forests of the Northeastern U.S., but this is likely related to
the distinction between “start of senescence” and “end of photosynthesis.”

Importantly, our results indicate that existing phenology models can predict the timing of the start of photo-
synthesis in spring, or its end in autumn, with an average accuracy of approximately 10 days. Notably, these
models were not driven by weather data directly collected at the flux towers but rather by widely adopted gridded
weather data products (Cornes et al., 2018; Thornton et al., 2021), and thus can be easily incorporated into TBMs.

We did not find evidence for long‐term change in StartGPP or EndGPP in the flux record (Section 4.2), but the
model results indicate that accumulated T is the primary control on interannual variability of phenology in both
spring and autumn, with photoperiod as a secondary control in spring. Keenan et al. (2014) showed that the timing
of the start of photosynthesis in spring was dependent on the spring T anomaly (their Figure 5 and Figure S10 in
Supporting Information S1), with warmer spring T leading to earlier start. Further synthesis of evergreen flux
tower sites showed that warmer springs advanced onset of photosynthetic uptake, and warmer autumns delayed its
end (Richardson et al., 2018). Our results are in complete agreement. Interannual variation in StartGPP or EndGPP

was strongly linked to interannual variation in air T (Figure 5). Collectively, the observational and modeling
results of the present study provide strong support for the hypothesis that future climate warming is likely to lead
to earlier start of photosynthesis and a potentially longer photosynthesis season.
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4.4. Implications for Terrestrial Biosphere Modeling

Most ecosystem, land‐surface, and TBMs have been developed with emphasis on representing underlying
processes. In the Community Land Model, for example, for DBF there are phenological subroutines driven by
air and soil T, and daylength that control budburst, leaf emergence, and canopy development in spring (the
“onset” period in CLM), and senescence and leaf drop in autumn (the “offset period,” https://www2.cesm.ucar.
edu/models/cesm2/land/CLM50_Tech_Note.pdf, Lawrence et al., 2019). Photosynthesis is then modeled as a
function of leaf area, modulated by incoming solar radiation, T, and humidity. The phenology of photosyn-
thesis, defined by the start and end dates of photosynthetic activity, emerges indirectly through this repre-
sentation. By comparison, for ENF, where leaf area is present year‐round, photosynthesis can in principle occur
any time conditions are favorable. CLM allows seasonal variation in photosynthetic electron transport rate
(Jmax) and carboxylation velocity (Vcmax) as a function of daylength and air T. Thus, there is a built‐in model
capability for photosynthetic capacity to have its own seasonal rhythm, but the parameterization is arguably
coarse, at best.

The seasonality of evergreen needleleaf photosynthesis, as well as up‐ and down‐regulation of photosynthetic
capacity and photoprotection, is driven by T and photoperiod (Ensminger et al., 2004; Fréchette et al., 2016; Tanja
et al., 2003), consistent with the M1 and CDD models used here. Given the ability of these models to describe
broad spatial patterns in photosynthetic phenology of ENF, there is clearly potential to include a more explicit,
process‐oriented, if not explicitly process‐based, representation of evergreen photosynthetic phenology in TBMs.
For example, the M1 and CDD models could be used as switches in spring and autumn, turning off and on the
dormancy of the photosynthetic machinery. While all models are imperfect, such changes would almost certainly
improve on the large errors in modeling evergreen photosynthetic phenology by TBMs that have been reported
previously (Richardson et al., 2012). Additionally, because of the inherent coupling between photosynthesis and
transpiration, improving the seasonality of photosynthesis in simulation models would also contribute to better
representation of evapotranspiration and thus the surface energy balance, both critically important as regulators of
land‐atmosphere interactions related to the boundary layer, precipitation, and atmospheric transport (Peano
et al., 2021; Richardson et al., 2013).

Data Availability Statement
Flux tower data used in this study are freely available from the AmeriFlux (https://ameriflux.lbl.gov/), FLUX-
NET2015 (https://fluxnet.org/data/fluxnet2015‐dataset/), and Warm Winter 2020 (https://www.icos‐cp.eu/data‐
products/2G60‐ZHAK) databases. Gridded weather data are available from Daymet (https://daymet.ornl.gov/
and E‐OBS (https://www.ecad.eu/download/ensembles/ensembles.php). Dates for StartGPP, EndGPP, Startsnow,
and Endsnow from our study, and R scripts to calculate these dates, are included in the supplemental material.
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