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Abstract—Indexing in modern data systems facilitates efficient
query processing when the selection predicate is on an indexed
key. As new data is ingested, indexes are gradually populated with
incoming entries. In that respect, indexing can be perceived as the
process of adding structure to incoming, otherwise unsorted data.
Adding structure, however, comes at a cost. Instead of simply
appending the incoming entries, we insert them into the index.
If the ingestion order matches the indexed attribute order, the
ingestion cost is entirely redundant and can be avoided altogether
(e.g., via bulk loading in a B*-tree). However, classical tree index
designs do not benefit when incoming data comes with an implicit
ordering that is close fo being sorted, but not fully sorted.

In this paper, we study how indexes can exploit near-
sortedness. Particularly, we identify sortedness as a resource that
can accelerate index ingestion. We propose a new sortedness-
aware (SWARE) design paradigm that combines opportunistic
bulk loading, index appends, variable node fill and split factors,
and an intelligent buffering scheme, to optimize ingestion and
read queries in a tree index in the presence of near-sortedness.
We apply SWARE to two state-of-the-art search trees (B™-
tree and B°-tree), and we demonstrate that their Sortedness-
Aware counterparts (SA BT-tree and SA B‘-tree) outperform
their respective baselines by up to 8.8x (SA BT -tree) and 7.8x
(SA B¢-tree) for a write-heavy workload in the presence of data
sortedness, while offering competitive read performance, leading
to overall benefits between 1.3x — 5x for mixed read/write
workloads with near-sorted data. Overall, we highlight that
SWARE can be applied to other tree-like data structures to
accelerate index ingestion and improve their performance in the
presence of data sortedness.

Index Terms—Indexing, Data Sortedness, B -tree, B¢-tree.

I. INTRODUCTION

Database indexing sits at the heart of almost any data system
ranging from full-blown relational systems [45] to NoSQL
key-value stores [30]. Indexes help accelerate query processing
both for analytical and transactional workloads by allowing
efficient data access of selective (range or point) queries.
Essentially, database administrators decide to build and main-
tain indexes on frequently queried attributes to improve query
performance. This comes at the expense of space and write
amplification [5], and the time needed to update the indexes.

Indexing Adds Structure to Facilitate Queries. We pay the
cost of index construction and maintenance because it adds
structure to the data, which in turn, allows for efficient queries.
As shown in Fig. 1 with the thick black line, every data orga-
nization technique exhibits a fundamental tradeoff between its
read and write cost. To achieve efficient logarithmic search
time for point queries, a classical index would insert data in
their correct position (in-place insertion, bottom right part of
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Fig. 1: State-of-the-art indexing and data organization techniques pay a higher
write cost in order to store data as sorted (or, in general, more organized) and
offer efficient reads. Since the goal of indexing is to store the data as sorted,
we ideally expect that ingesting near-sorted data would be more efficient,
which is not the case. We introduce the SWARE meta-design that offers better
performance as data exhibit higher degree of sortedness.

the figure). On the other extreme, if read queries are infrequent,
then scanning is acceptable, and instead of inserting entries
to an index, we can simply append them (leading to scans,
in the top left part of the figure). Indexes like B -tree [25]
and B¢-tree [8], or even simple online sorting via in-place
insertion, navigate the read vs. write tradeoff. Since all data
organization efforts essentially add structure to an otherwise
unstructured data collection, one would expect they benefit
when such structure - data sortedness - already exists.

Data Sortedness. There have been several efforts to quantify
data sortedness [7, 16, 39], all of which essentially capture the
difference between the indexed order and the arrival order
of the indexed attribute (key). In practice, data entries may
arrive as near-sorted in several real-world cases. Consider the
TPC-H [51] 1ineitem table that has three date-related at-
tributes. Fig. 2a depicts the first 10, 000 values of shipdate,
commitdate, and receiptdate of the 1ineitem table,
and shows that when data arrives as sorted on shipdate,
the other two attributes are also very close to being sorted.
There are several other scenarios that lead to near-sorted data
collections. For example, (i) a relation that was sorted, but a
few new arbitrary updates took place [7], (ii) data that has been
created based on a previous operation, e.g., a join [7], (iii) data
that is sorted based on another naturally correlated attribute
(like the TPC-H example above) [4], or (iv) the timestamp
attribute of an incoming data stream that has a few data packets
arriving out of order due to network congestion.

Problem: Lack of Sortedness-Awareness. In this work, we
show that state-of-the-art indexes like BT -trees do not take
advantage of existing order to improve ingestion performance
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Fig. 2: (a) TPC-H implicit clustering between shipdate, commitdate,
and receiptdate leads to near-sorted columns when the data is sorted
based on one of them. (b) Ideally, index insertion performance should improve
when inserting already sorted or near-sorted data.

and exhibit poor utilization of memory space. While indexes
can already benefit from inserting a fully sorted data collection
via bulk loading [1, 19], this is assuming that data is available
at its entirety and its full sortedness is known a priori.
However, for most practical use-cases that ingest data on the
fly and build indexes online, bulk loading is infeasible, as
the indexes are agnostic to the sortedness of the incoming
(and future) data. We point out that when inserting data to an
index, the higher the data sortedness, the lower the insertion
cost should be for an ideal tree data structure, as shown in
Fig. 2b. Note that indexes like BT-trees do not exhibit any
performance improvement (by design) when inserting near-
sorted data. In fact, if data is inserted largely in near-sorted
order a BT-tree would have high space amplification, since,
in the absence of bulk loading, every node will be exactly half
full (as inserts are right-deep). In contrast, a sortedness-aware
index should achieve better read vs. write tradeoffs (dashed
lines in the shaded region of Fig. 1) as well as better space
utilization when ingesting data with increased sortedness (that
is, as we move closer to the origin of the green axis of Fig. 1).

We envision a new class of index data structures that exploit
sortedness to pay “less” indexing cost for near-sorted data.

Our Approach: SWARE. Toward this, we establish data
sortedness as a fundamental resource that can accelerate index
ingestion. We propose a new index design paradigm that
can exploit data sortedness to improve insertion performance
without hurting query latency. We achieve this by using an
ensemble of techniques that, when combined appropriately,
lead to a better performance improvement than any one of
them would do alone. Specifically, we employ an intelligent
buffering mechanism that is periodically partially flushed to
capture near-sortedness, combined with opportunistic bulk
loading and merging techniques to create a sortedness-aware
index. However, as is, the proposed approach comes at the
cost of a nominal increase in the query latency, since every
query may have to additionally search the buffer component.
To alleviate this cost, we augment the buffer with a collection
of Zonemaps [40], Bloom filters (BFs) [12], and query-driven
partial sorting, that amortize query cost close to the baseline.
The proposed sortedness-aware (SWARE) paradigm can be
applied to any state-of-the-art tree index to form its sortedness-
aware counterpart. We illustrate this by applying the SWARE
paradigm to a B -tree and a B¢-tree to form their sortedness-
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aware equivalents: SA BT -tree and SA B®-tree. In a nutshell,
they both buffer incoming data to opportunistically bulk load
by reorganizing the out-of-order entries in memory, while re-
verting back to insertion from the root (fop-inserts), otherwise.
Further, by adaptively sorting buffered data during queries, SA
Bt -tree and SA B¢-tree avoid the overhead of sorting large
data chunks. To facilitate efficient query processing, they use
interpolation search for the sorted parts of the buffer and pay
only a constant cost of scanning a small amount of (unordered)
data. Note that the SWARE paradigm can make any tree-based
data structure amenable to data sortedness, and we use the B*-
tree and B¢-tree as two examples. SWARE is not a new index
per se, rather, a new framework for creating sortedness-aware
counterparts for any tree-based index.

Contributions. Our work offers the following contributions.

We identify sortedness as a resource that can be harnessed
to ingest data faster in tree indexes.

We propose a new index meta-design that employs buffer-
ing, partial bulk loading, and merging to enhance ingestion
by exploiting data sortedness.

We augment this design to propose the SWARE
paradigm that encompasses query-driven sorting, merging,
Zonemaps, and hierarchical Bloom filters to offer compet-
itive performance for point and range queries.

We apply the SWARE paradigm to a state-of-the-art BT -
tree, and we show that the sortedness-aware Bt -tree (SA
BT -tree) can achieve up to 8.8x faster data ingestion with
competitive read query performance leading to performance
benefits of up to 5x in mixed read/write workloads.

Further, we also apply the SWARE meta-design to a B¢-tree
to highlight that SA B¢-tree can achieve up to 7.8 relative
performance benefits against its standard counterpart.

By applying the SWARE paradigm to a B -tree, we reduce
space utilization by up to 48%.

II. BACKGROUND ON SORTEDNESS

In this section, we provide a brief background regarding
data sortedness and sorting algorithms used in this work.

Data Sortedness Metrics. Multiple metrics have been pro-
posed to capture data sortedness [2, 7, 16, 18, 22, 28, 39].
A natural way to quantify the degree of sortedness is to
measure how many elements are out of place, and by how
much. The (K, L)-sortedness metric [7] follows this idea using
two parameters: K, which captures the number of elements
that are out of order, and L, which captures the maximum
positional displacement of the out-of-order elements.

Sorting Algorithms. Few sorting algorithms take advantage of
the existing order in the input to optimize their performance [7,
15, 20, 34, 37, 44]. The (K,L)-Sorting Algorithm [7] is one
such adaptive algorithm that uses the (K, L)-metric to sort
a (K, L)-near sorted collection in at most two sequential
passes. The algorithm has a complexity of O(N -log(K + L))
(assuming N entries) and uses memory of size O(K + L).
We take advantage of the adaptivity of the (K, L)-sorting
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Fig. 3: Design elements aimed at exploiting data sortedness. (a) An in-order
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batch of new in-order inserts, they can be bulk loaded to the tree. (c) The
node split factor can be adjusted, so that a newly created node from the split
reserves more space for following inserts.

algorithm to quickly structure data in the buffer. Next, we
discuss how the various degrees of sortedness, used in the
paper, map to the the (K, L)-metric’s domain.

Degrees of Sortedness. While a data collection may have
arbitrary values for K and L, we qualitatively define four
degrees of data sortedness for the majority of our experiments:
fully-sorted (where data arrives completely in order), near-
sorted (where data arrives mostly in order albeit with a few
out-of-place elements), less-sorted (where data is arriving
mostly out-of-order but still contains few sorted entries) or
completely-scrambled (where data is arriving completely out-
of-order). A data collection is completely sorted if either K=0
or L=0, while near-sorted data collections usually have low
values for K and L, high values for either K or L but a low
value for the other. The latter is also near-sorted since either
the unordered entries are very close to their actual positions
or the unordered entries occur far from their actual positions
but are very few. Data with high values for both K and L are
less-sorted, and in extreme cases, are completely scrambled.

III. DESIGN ELEMENTS

We now present the four fundamental design elements,
which when appropriately combined, allow a tree-index to
enhance ingestion performance by exploiting data sorted-
ness. We decompose the design elements into (a) elements
improving ingestion for sorted data, and (b) elements that
enhance ingestion for intermediate data sortedness. The first
three (illustrated in Fig. 3), i.e., right-most leaf insertion, bulk
loading, and fill/split factor adjustment, benefit as-is, a fully
sorted data ingestion. When combined with buffering, it leads
to a design that can exploit any intermediate (degree of) data
sortedness in the ingestion workload to improve performance.

Right-Most Leaf Insertion. When inserting data in-order,
we can avoid the logarithmic tree traversal cost by always
maintaining a pointer to the right-most leaf node (tail leaf), as
shown in Fig. 3a. Every in-order insert to the minimum key
in the tail leaf, can directly be inserted into the tail leaf. This
costs only O(1), instead of O(logr(N)) due to tree-traversal.
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Bulk Loading. If the data is fully sorted, we can perform
better than in-order insertion, by bulk loading [19], as shown
in Fig. 3b. This way, we can avoid accessing a node for every
entry, and amortize the insertion cost across F' entries. While
bulk loading gives great index creation time if data is fully
sorted, it cannot exploit intermediate data sortedness.

Split Factor/Fill Factor Adjustment. We can further optimize
the shape of the tree by adjusting how we split the internal and
leaf nodes when ingesting data. Specifically, for fully sorted
data, the classical node split creates two half-full nodes, the
left of which never receives any future inserts and leads to poor
space utilization. In some cases, splitting the nodes evenly may
increase the index height as well, leading to asymptotically
increased access cost. Instead, if we anticipate data to arrive
fully sorted (or near-sorted), we can decide to split leaving
more space for future inserts. Suppose we split at an 80 : 20
ratio, 80% of the entries stay on the original split node and
the newly created one will only hold 20% of the data, as
shown in Fig. 3c. This also allows the nodes to have a higher
fill factor on average. Adjusting the split factor reduces the
number of overall splits, and the resulting higher fill factor
reduces the overall number of nodes, thus, improving insertion
performance as well as reducing the memory footprint.

Buffering. The above techniques offer benefits only if the
data is fully sorted. To maximize the benefits for intermediate
sortedness, we need to buffer incoming data and propagate to
the tree only those inserts that are in order. In §IV, we discuss
how to employ intelligent buffering and in-memory sorting to
provide efficient ingestion without hurting read performance,
outlining the crux of the SWARE paradigm.

IV. SWARE META-DESIGN

We now present the SWARE meta-design that exploits data
sortedness to enhance ingestion into tree-based indexes. We
demonstrate its usefulness on a BT-tree and a B®-tree.

A. Sortedness-Aware Ingestion

Right-most leaf insertions and bulk loading help when
ingesting fully sorted data, however, having any intermediate
sortedness reduces their benefit. Thus, we intercept all index
insertions and add them to a dedicated in-memory buffer. The
buffer is a principal component of the SWARE framework and
sits on top of the basic index (shown in Fig. 4). Specifically, the
buffer performs opportunistic bulk loading via partial flushing.
Below, we describe the buffering mechanism in detail.

The SWARE-buffer. The SWARE-buffer is an intelligent in-
memory buffer that maintains all recently inserted data and
checks whether the entries are in order. To ensure its contents
are always in memory we pin its pages in the system’s
bufferpool. The data in the buffer is eventually inserted into the
index either through bulk loading in an opportunistic manner
(for entries with higher values than the data already in the
index), or through top-inserts via the root node of the tree. By
having this design, we can already guarantee that if data is
inserted in order, they will be efficiently bulk loaded. We now
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discuss the buffer flushing strategies that optimize ingestion
performance in the presence of a varying degree of sortedness.

Flush Strategy. Once the buffer is full, we flush it to the index
either by bulk loading or through top-inserts. Our goal is to
maximize the data inserted via bulk loading. When the buffer
is fully sorted by virtue of pre-existing data sortedness, we
bulk load the buffer contents with no sorting effort. Otherwise,
we would need to sort it before flushing. At this point, (i) if the
tree has strictly smaller values than the (now sorted) buffer, we
bulk load as many pages as possible, and then (ii) top-insert
overlapping entries through the root node.

Another decision we make at every flush cycle (i.e., every
time the buffer is full) is what proportion of the buffer to flush.
If we flush the entire buffer, we may insert entries that overlap
with future inserts (if data does not arrive in fully sorted order).
This would increase the number of top-inserts in subsequent
flush cycles. Thus, we only flush a fraction of the buffer. We
always flush the first eligible fraction of the buffer, and after
a flush, the remaining buffered entries are sorted and moved
to the beginning of the buffer to accommodate new inserts.

Zonemaps to Identify Overlaps. After a flush, the buffer is
partially full (at least half) and its contents are fully sorted.
Hence, we mark the last page containing sorted data as
the last_sorted_zone (Fig. 5a). Due to the potential
displacement, a new entry may either (i) overlap with data
in earlier pages, hence moving the last_sorted_zone to
the left (Fig. 5b), (ii) overlap without having to move the
last_sorted_zone (Fig. 5¢), or (iii) strictly greater, thus
will move the last_sorted_zone to the right (Fig. 5d).
Zonemaps maintained at the granularity of a buffer page help
in performing a quick overlap test after every insertion to avoid
unnecessary sorting at every flush. This amortizes the cost of
sorting already ordered non-overlapping incoming data entries.

Once the buffer is full, we use the last_sorted_zone
to decide how much to flush. If the last_sorted_zone
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is in the first half, we flush all pages up to this marker and
attempt to bulk load. This way, we avoid the sorting cost before
flushing. Otherwise, we flush half the pages in the buffer.
By partially and opportunistically flushing non-overlapping
entries, we amortize the potential top-inserts and maximize
bulk loading, thus, improving the ingestion performance.

B. Optimizing Read Queries

While the SWARE-buffer helps to harness the sortedness
by maximizing opportunistic bulk loading, its presence adds
an overhead to the read performance. Specifically, every query
first searches the buffer, and if it did not terminate in the buffer,
it performs a tree search. In the worst case, a read query will
need a full scan of the buffer. We now discuss how to reduce
this query cost overhead to something nominal.

Scanning the Unsorted Section First. In steady-state, the
SWARE-buffer can be in one of two states: (i) fully sorted or
(ii) with a sorted portion and an unsorted portion. Note that
even if the last_sorted_zone is moved to the beginning
of the buffer (due to an out-of-order entry overlapping with
the tree), we still have at least half of the buffer sorted (as we
flush at most half the buffer). So, for any point query, we only
need to scan the unsorted portion of the buffer that contains the
most recent data. If the target key is not found in this part of
the buffer, we continue to efficiently search the sorted section
of the buffer, and if the lookup has still not terminated, we
search the tree. However, for a key that is found in the buffer,
we terminate early and avoid the cost of searching the tree,
as the most recent version of the key would be the one in the
buffer. The lifecycle of a point query is shown in Fig. 6.

A BF to Skip the Unsorted Section. The unsorted section is
up to half of the SWARE-buffer, and thus, holds a small
fraction of the overall data (residing in the buffer and the tree).
As a result, queries without any temporal locality, have a low
expectation to terminate in the buffer. Thus, to avoid the cost
of unnecessary scanning the unsorted section, we maintain a
BF for this section, that is continuously updated as new entries
are inserted. This drastically reduces the cost of queries that
do not terminate in the unsorted section.
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Zonemaps to Skip Pages in the Unsorted Section. When a BF
probe returns positive, all pages of the unsorted section are
marked for scanning. However, we skip unnecessary page
accesses using the Zonemaps that are already part of the
SWARE-buffer (used to identify the last_sorted_zone).

Using Per-Page BF. While the BF and Zonemaps help avoid
many unnecessary accesses, they are insufficient in case of
lower data sortedness. Hence, we also maintain a BF for every
buffer page. These are updated as data is appended to the
buffer. Overall, a query starts searching in the unsorted section
by first visiting the global BF. In Fig. 7, we show with an
example that for a point query on key 1400, if the BF returns
a positive result, we access the Zonemaps to find which pages
may contain the target key. Subsequently, for the Zonemaps
that may contain the key, we probe the corresponding per-
page BF and we access only the qualifying pages. We discuss
further details about the filter configuration in §V.

Interpolation Search to Search Sorted Section. After search-
ing the unsorted section, if the query has not yet termi-
nated, it will search in the sorted section. Regardless of
whether the newly ingested data overlaps with the sorted
section (and thus, have moved the last_sorted_zone),
the data retained after the previous flush is kept sorted, and
we maintain the position marking this sorted section, as
previous_boundary. While the last_sorted_zone
may move to the left, as new entries are inserted into the
buffer, the previous_boundary may only move rightward
as long as entries are inserted in fully sorted order and until
the first out-of-order entry is inserted. We employ interpo-
lation search [43, 52] on the sorted section, that finishes in
O(log(log(N))) steps. This is a notable upgrade from the
binary search and is highly efficient unless there is a very
high data skew, in which case we can opt for a simple binary
search or a variation of exponential search [9].

An Optimized Read Path. Putting it all together, we have
now an optimized read path that avoids the vast majority
of unnecessary data accesses. As Fig. 6 shows, we maintain
two more Zonemaps: one for the SWARE-buffer and one for
the tree. If the desired key is not in the range of the buffer,
we skip the buffer entirely. On the other hand, in the worst
case, we may have to access the unsorted section of the
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buffer. However, due to the per-page BFs, even if the data
is completely scrambled, we will only access a very small
number of pages from the unsorted section. We discuss more
optimizations and range queries in §IV-C.

C. Fine-tuning a Sortedness-Aware Index

The SWARE meta-design introduces new components and
tuning knobs that can be carefully calibrated to further improve
performance of a sortedness-aware index.

Choice of Sorting Algorithm. To reduce the cost of reads,
we sort the buffer after every flush. Ideally, we want the
sorting cost to be minimal to attain the maximum benefits
of the SWARE paradigm. While any sorting algorithm that
leverages data sortedness (e.g., TimSort [44], Replacement
Selection Sort [34]) can be used, here we consider three sorting
algorithms: (i) quicksort, as it is common and has minimal
space requirements, (ii) (K, L)-adaptive sorting [7], as it ag-
gressively takes into account pre-existing data sortedness with
O(K + L) space usage, and (iii) mergesort (specifically, the
C++ standard library std: :stable_sort), as it maintains
relative order of duplicate values with O(n) space usage.
Because we need to maintain the relative order of duplicates,
we are constrained between mergesort and (K, L)-adaptive
sorting. Our experimental analysis shows that for low data-
sortedness, mergesort outperforms (K, L)-adaptive sorting (in
fact, (K, L)-adaptive sorting fails for significantly high values
of K or L). However, for K < 20% or L < 5%, their
performance is similar, and we opt for (K, L)-adaptive sorting
due to its smaller space requirements (K + L < n) [7].
So, when the estimated (meta-data) values are K < 20% or
L < 5% of the buffer size we employ (K, L)-adaptive sorting
while using std: :stable_sort), otherwise.

Query-Driven Sorted Components. We further employ a
new read optimization technique to adaptively add struc-
ture to the unsorted part of the buffer through incoming
queries, called query-driven partial sorting (inspired by Crack-
ing [31, 32] and adaptive merging [27]). This technique
increases the number of sorted sub-components within the
buffer (called query-sorted blocks) that can be probed quickly
using the faster interpolation search. We set a threshold
(query_sorting_threshold) to restrict the size of the
unsorted part of the buffer. If this threshold is exceeded,
the next read query will sort this portion and create a
new sorted component, before continuing to buffer incoming
inserts. Similar to progressive indexing [29] that allocates
a small indexing budget for every query, we allocate a
small sorting budget for every query as long as we have
enough entries in the unsorted component. In general, the
SWARE-buffer may contain the main sorted section, multiple
sorted sub-components (query-sorted blocks) of size equal
to unsorted_threshold, and a small unsorted section.
For example, if the query_sorting_threshold is set to
10% of the buffer size, the buffer can contain up to four query-
sorted blocks in addition to the remaining unsorted section
and the main sorted section, as shown in Fig. 8. Note that the
remaining unsorted section still uses all the metadata discussed
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in §IV-B. Once the buffer is full and needs to be sorted (either
before or after flushing qualifying entries), we sort the small
unsorted component, while the remaining sorted blocks are
merged. This approach further amortizes the ingestion cost.

Supporting Range Queries. Every range query first checks
the SWARE-buffer Zonemap and if there is no overlap, the
query executes by only accessing the tree. Otherwise, we begin
by collecting the qualifying entries from the unsorted section.
To do so, we first sort the (previously) unsorted section. We
avoid re-sorting this section via a dedicated flag, which is
reset upon receiving a new out-of-order insert. After retrieving
entries from the unsorted section, we merge them with the
qualifying entries from the sorted section and the query-driven
segments (if any). The collected entries are then sort-merged
with qualifying entries from the tree and returned.

SWARE-buffer Size. The size of the in-memory buffer is cru-
cial to both ingestion and query performance of a sortedness-
aware index. Our goal is to have a large enough buffer that can
capture sortedness (specifically focusing on L) to maximize
opportunistic bulk loading. However, a large buffer implies
costlier reads, since the cost of scanning the unsorted part will
be significant. Thus, it is crucial to strike the right balance to
obtain the ideal performance. In §V, we vary the buffer size
and relative values of K and L, and show that even with a
buffer significantly smaller than L, we can absorb sortedness
to a large degree, without hurting queries.

Adjusting Split & Fill Factors. The textbook bulk loading
algorithm used in §IV-A fills every node with the bulk loaded
data to maximize node utilization (and thus, minimizes space
amplification). Since we anticipate several top-inserts (the
fraction of which depends on the sortedness of the workload),
we also leave in every bulk loaded node a few empty slots (5%)
to facilitate top-inserts without expensive cascading splits.

Similarly, in textbook insertion and bulk loading, an internal
node when full splits at 50% to generate two half-full internal
nodes. Since during bulk loading, we anticipate that most of
the future inserts will be of larger values, we also adjust the
split factor to more than 50%, as shown earlier in Fig. 3c.
This maintains most of the internal nodes of the underlying
tree nearly full, even when the data is coming fully sorted,
and most importantly, allows us to avoid the worst-case
space amplification of BT-trees for sorted data. In addition
to reducing space amplification, we also reduce the number of
node splits, lowering the overall insertion cost.

D. Discussion

Deletes in the SWARE-buffer. Every delete in a SA BT -tree
is inserted as a tombstone in the SWARE-buffer, if within the
buffer’s range of indexed keys. Deletes outside the buffer’s
range and within that of the tree are directly applied to the
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tree. Here, we inherit a delete debt that is paid off during
a flush. During data reorganization (e.g., due to query-driven
sorting or during a flush), tombstones discard any invalidated
keys. When flushing the buffer, tombstones are propagated to
the tree as classical deletes through the root node.

Concurrency Control in the SWARE-buffer. Concurrency
control for B™-tree has been extensively studied in the past [6,
10, 24], so here we focus on the updates needed to the
SWARE-buffer. Inserts to SA BT -tree are appends, with the
exception of an insert that causes a flush. Every insert in-
stantaneously takes a lock on the entire buffer to check if
it will cause a flush. If no flush is triggered, the buffer-
wise lock is released, and the worker locks only the page to
append (similar to lock-crabbing [24]) and the corresponding
metadata (Global BF, Zonemaps of the updated page, and
last_sorted_zone). Note that the page-wise lock protects
all page-level metadata. If a flush is triggered, the buffer-wise
exclusive lock will be held until the flush is complete. All
retained locks are released post-insertion. Queries by default
acquire read locks. However, when query-driven sorting (in-
spired by Cracking [31]) is triggered, we upgrade the read lock
to an exclusive lock (in a similar manner that concurrent read
queries in adaptive indexing require concurrency control [26]).
These mechanisms allow multi-threaded execution where in-
serts and queries on SA B -tree are issued concurrently.

V. EXPERIMENTAL EVALUATION

We illustrate the benefits of the SWARE paradigm by
applying it to a BT-tree and BE-tree to form their sortedness-
aware counterparts: SA B -tree and SA B-tree. We present the
performance evaluation of the SA B -tree in §V-A-§V-F. We
then demonstrate the benefits of SA B¢-tree in §V-G. Lastly, we
experiment with TPC-H [51] data to compare the performance
of a Bt-tree and a SA BT -tree.

Experimental Setup. We run the experiments in our in-house
server equipped with two sockets each with an Intel Xeon
Gold 5230 2.1GHz processor with 20 cores and virtualization
enabled. The server has 384GB of RDIMM main memory at
2933 MHz with a 240GB SSD and runs CentOS 8.

Index Design. We use an in-house BT -tree (inspired by the
state-of-the-art implementation [11]) and B®-tree [8] imple-
mentations that support opportunistic bulk loading and variable
fill/split factors. Note that the B-trees internal node buffer is
unaffected by the variable fill/split factors. For the B¢-tree, we
use e=1/2 [8]. Both the BT -tree and B¢-tree implementations
are equipped with a bufferpool of 300GB, so most experiments
are purely in-memory. The bufferpool is orthogonal to the
SWARE-buffer, which is always in main memory. The default
entry size is 8B (4B key), and we use a 4KB index page size.
Our code is available at https://github.com/BU-DiSC/sware.

Default Setup. By default, the size of the SWARE-buffer is
40MB which can hold up to 5M entires. The buffer is imple-
mented as a dense array accompanied by the Zonemaps and
BFs. We maintain filters at two levels: (i) global BF and (ii)
per-page BFs. For the global BF we pre-allocate 10 bits-per-
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Fig. 9: Workloads with varying sortedness: (a) sorted, (b) K=10%, L=10%, (c)
K=20%, L=10%, (d) K=50%, L=25%, (e) K=100%, L=50%, and (f) scram-
bled (uni-rand). x-axis: position of entry in data, y-axis: entry-value. The
scattered points represent X' whereas the gray-band denotes the L.

entry (giving ~ 0.8% false-positive rate) for the entire buffer’s
capacity, while for the per-page BFs, we pre-allocate 10 bits-
per-entry for a page’s capacity. We use MurmurHash [3]
combined with hash sharing and bit rotation [53] for hashing.

Data Sortedness Benchmark & Workload. We use the
Benchmark on Data Sortedness [46] for testing indexes
against varying sortedness. The benchmark uses the (K, L)-
near sorted metric and creates a family of differently sorted
collections that vary in both K and L (as a fraction of the
total data size). Fig. 9 shows a sample set of differently
sorted collections, represented by position and value. For
performance evaluation, the benchmark measures: (i) raw
ingestion latency, (ii) overall operational latency of a mixed
workload with variable read/write ratio.

We use the benchmark’s workload generator to create in-
gestion workloads with varying sortedness. Unless otherwise
mentioned, the ingestion workload consists of 500M key-value
entries with a total size of 4GB, and the query workload has a
variable number of uniform random non-empty point lookups,
interleaved with inserts after 80% of the ingestion is complete.

SWARE Tuning. By default, SA Bt-tree and SA B¢-tree
are tuned as follows. The SWARE-buffer flushes 50% of the
entries when saturated. The nodes split at an 80:20 ratio, and
the opportunistic bulk loading fills every leaf up to 95%. By
default, we set the query-based sorting threshold to 10%.

A. Mixed Workload

We first compare the performance (using the offered
speedup) of SA BT -tree with the BT-tree by executing a set
of mixed workloads with interleaved inserts and queries. We
vary the read-write ratio, constructing a continuum between a
write-heavy and a read-heavy workload. For each workload,
we also vary the data sortedness as: (i) fully sorted (K=0%),
(i) near-sorted (K=10%, L=5%), (iii) less sorted (K=100%,
L=50%), and (iv) scrambled (uniformly random).

SA BT-tree Outperforms BT -Tree. Fig. 10 shows that
SA BT -tree significantly outperforms B*-tree if the data is
fully sorted or near-sorted. For an ingestion-heavy work-
load, SA BT-tree leads to 8.8x speedup for fully sorted
data and 5x better for near-sorted data in ingestion-heavy
workloads. SA BT -tree achieves this by buffering entries
in-memory to add structure to the data, thus, reducing
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the number of top-inserts. Fig. 11 shows that SA BT-
tree performs significantly fewer top-inserts for workloads
with a high degree of sortedness. With fully sorted data,
entries are ingested only
through the bulk insertion,
while for near-sorted data,
only ~4% are top-inserts.

As data becomes less

« 10¢ HIIM top-insert WM bulk load

#Entries

sorted, SA BT -tree mimics the
behavior of a BT-tree. Now,
SA BT -tree’s ability to capture
the unordered entries using a

S = v oW e a

o 2 10
K (%)
Fig. 11: For higher K%, SA B*-

tree performs more top-inserts

20 50 100

and bulk loads fewer entries.

relatively small buffer (1% of

data size) diminishes, and top-inserts are comparable to a
BT -tree. Regardless of the sortedness, SA BT -tree’s benefit is
more pronounced for write-intensive workloads. Conversely,
in Fig. 10 we observe that for a lookup-heavy workload
(90% lookups), SA BT-tree offers a speedup of 1.4x and
1.3x for fully sorted and nearly sorted data, respectively, as
the significant performance benefits of SA B -tree during
ingestion are countered by the lookup overhead incurred.

Ingesting Scrambled Data Does Not Benefit from SA
BT -tree. When the ingestion is scrambled, SA BT -tree does
not offer performance benefits. Specifically, when the data is
generated uniformly random, using a B*-tree is about 20%
faster than SA BT -tree, regardless the read-write proportion
in the workload. This is a result of the finite buffer being
unable to capture the (minimal) sortedness of the incoming
data, that in turn, forces SA B*-tree to always perform top-
inserts. Consequently, the SWARE-buffer management cost
(sorting the buffer, managing metadata, and probing BFs
during lookups) does not pay off, however, it keeps the penalty
to a modest 20%. This observation is consistent with our goals
and our expectation. While SA BT -tree is very useful for a
varying degree of sortedness, for fully scrambled data, the
worst-case guarantees of a classical BT -tree are sufficient.

B. Raw Performance

Next, we compare the SA BT -tree and BT -tree in terms of
ingestion and query performance separately. In the ingestion
workload, we vary K while keeping L constant, as varying L
would entail changing the buffer size as a proportionally to L.
Setup. We insert 500M entries (4GB) and subsequently per-
form 50M non-empty point lookups. To report the worst-
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Fig. 13: Latency breakdown of operations in SA B -tree. (a) Time spent by SA
B -tree for top-insert escalates when decreasing sortedness. (b) Tree search
dominates query latency, while time spent managing metadata and maintaining
Zonemaps + BFs (SWARE ops.) increases for lower data sortedness.

case lookup performance we ensure the buffer is full before
executing any query. We execute 100 range queries generated
randomly from the key domain as well as 100 range queries
targeting the recently inserted data for various selectivities.

SA BT-tree Dominates the Ingestion Performance. Fig.
12(a) shows that SA B -tree performs significantly better
than BT -tree for inserts if there exists any data sortedness.
While SA BT -tree shows up to ~90% improvement in in-
gestion latency for fully sorted data, it still manages an
impressive 23% improvement over the BT-tree’s ingestion
latency even as sortedness decreases. Fig. 13a shows the
breakdown of the ingestion costs in SA BT -tree for (i) fully
sorted (K=0%), (ii) nearly sorted (K= 10%, L=5%), and
less sorted (K=100%, L=50%) workloads. We observe that
for fully sorted workloads, the SA BT-tree is able to bulk
load the entire data set without any additional processing.
For near-sorted data, SA BT -tree sorts the buffer periodically
which accounts for 38% of the workload execution latency.
However, the additional effort in establishing structure leads
to significantly fewer top-inserts, which in turn, reduces the
overall latency. Finally, for less sorted data, SA BT -tree ingests
fewer entries via bulk loading. Instead, a significant amount
of data is ingested through top-inserts, resembling a B™ -tree.
However, SA BT -tree still outperforms the state of the art by
a significant margin (Fig. 10). Note that SA BT -tree achieves
this performance with a buffer that is smaller in size when
compared to L (1% vs. 5%). This implies that even with a
considerably small buffer that does not capture all of the out-
of-order entries, SA B -tree performs significantly fewer top-
inserts and is able to bulk load a large fraction of the data.

Fast Ingestion Comes at a Small Cost for Queries. Fig. 12b
compares the point lookup performance of SA BT -tree to that
of the BT -tree. We observe that SA BT -tree incurs an overhead
between ~5% and ~26% for point lookups. This is due to the
additional time spent searching for the target key in the buffer.
Fig. 13b shows the breakdown of the point query latency in
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Fig. 12: Performance of SA B -tree (buffer size=40MB) for L=5%: (a) SA B -tree offers better ingestion performance with workloads with some degree of
data sortedness. (b) SA B -tree incurs a small overhead for point queries. (¢) For mixed workloads with equal proportions of reads/writes, the ingestion-benefits
outweigh the lookup-overhead and offers better overall performance. (d) SA B -tree offers competitive performance for both short and long range scans.

10 0.01 0.05 0.1

K (%)

100 1

5

SA Bt -tree for the same (i) fully sorted, (ii) nearly sorted and
less sorted, workloads as before. Regardless of data sortedness,
~80%-99% of the query latency is attributed to searching
for the target key in the tree. With a full buffer, SA BT-tree
suffers an overhead due to (i) probing the SWARE-buffer using
interpolation search and sequential scans and (ii) performing
SWARE-operations like sort-merging the entries in the buffer
and updating metadata. This overhead depends on the number
of entries in the buffer and the data sortedness. For a fair
comparison, we maintain a full buffer before executing the
query workload; however, in practice, the buffer is expected
to be 50% saturated on average, potentially cutting down the
query overhead by half. Further, querying the buffer and the
tree in parallel can potentially reduce the lookup cost.

The Benefits Outweigh the Overhead almost Always.
Fig. 12c shows the mean latency per operation for a mixed
workload. We observe that for a workload with equal reads
and writes, SA BT -tree improves the mean latency by ~70%
for fully and nearly sorted data. Even for workloads with
lower sortedness, SA BT -tree offers 1.25x improved overall
performance. To summarize, for read-only workloads, the
performance of SA B -tree is similar to that of BT -trees, as the
buffer remains empty, and thus, adds no overhead. However,
if a mixed workload is read-dominated (writes < 1%), the
incurred read overhead outweighs the benefits of ingestion.

SA BT -tree Offers Competitive Scan Performance. Fig. 12d
shows that SA B*t-tree performs similarly to BT-trees for
random range queries with different selectivity, varying from
0.01% (50K entries) to 10% (50M entries). Overall, SA B~ -
tree offers an improvement of 3% — 12% in mean latency. For
larger selectivities, the performance of SA BT-tree remains
comparable to the baseline even when considering P95 and
P99 latencies. We only observe a maximum overhead of 1% at
the P99 latency. For range queries that target the most recently
inserted data, SA Bt -tree is 0.4% — 8% faster on average, and
leads up to 7% lower P95 latency, and 0.1% — 1.4% lower P99
latency (graph omitted for brevity). With the higher fill factor
in SA BT-tree, we reduce leaf-scan costs that compensate
for any overhead due to probing multiple components of
the buffer, and thus, maintain a comparable range query
performance to the baseline BT -tree.

C. Workload Influence

Setup. To measure the speedup offered by SA BT -tree over
the state-of-the-art B'-tree for mixed workloads, we vary
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Fig. 14: Performance of SA BT -tree with varying degrees of sortedness. (a) In a write-heavy workload, SA B -tree exploits data sortedness to offer maximum
benefit in overall performance. (b) For more reads the benefit reduces. (c) SA BT -tree performs similar to Bt -tree for read-heavy workloads with minimal
performance benefits due to data sortedness. (d) A larger buffer in SA BT -tree is better at capturing even higher sortedness, to improve overall performance.
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both K (%)=(0,2,10,20,100) and L(%)=(1,5,10,50) and
experiment with 20 different degrees of data sortedness.

Varying the Workload Composition. We observe in Fig. 14a-
¢ that as reads increase in the workload, the read-overhead
incurred by SA BT -tree counterbalances the ingestion benefits.
Even for fully sorted data, increasing the reads from 10% to
90% reduces the speedup from 9.2x to 1.4x. Fig. 14 thus
serves as a guideline for applicability of the SA BT -tree design.

Varying the Degree of Sortedness. Analyzing the speedup
for K=2% (second column) and L=1% (fourth row) in Fig.
14a, we observe that K influences the performance of SA BT -
tree to a greater extent compared to L. This is because if
the buffer size is comparable to the L-value, K drives the
cost of data reordering, and relative overlaps between buffer
cycles (causing top-inserts) are minimal. However, as L gets
larger, it impacts the overall speedup more significantly. With
an increase in both K and L, the SA BT -tree operates similar
to BT -trees, and the speedup approaches 1.

D. SWARE-buffer Tuning

Setup. Here, we first increase the buffer size to 5% of the data
size and compare the results with those discussed in §V-B.
Next, we run a workload with 500M inserts followed by 50M
lookups, and vary the buffer between 0.5%-5% of the data
size. For a mixed workload, we pre-load the index (to 80%)
and interleaved equal reads and writes with varying sortedness.

Increasing the Buffer Size Improves Performance. Increas-
ing the buffer size allows us to opportunistically bulk load a
larger fraction of the data. Fig. 14d shows the speedup offered
by SA BT -tree when SWARE-buffer size is increased to 5% of
the data size (200MB) for a mixed workload (50%W-50%R).
Comparing with Fig. 14b (buffer size of 1%), we observe
that the 5x increase in the buffer size further increases the
overall speedup to 8.2x (a 95.2% increase) for a fully sorted
data; between 27.6% and 176.9% for nearly sorted data; and
improves the speedup to 1.3x for lower data sortedness.

Buffer Size Affects the Ingestion Performance Significantly.
Fig. 15 shows that the buffer size affects the ingestion and
lookup performance for SA BT-tree. We vary the buffer size
for a fixed sortedness (K= 10%, L=5%), and observe that
even with a small buffer equivalent to 0.5% of the data
size, SA BT-tree offers a 5.7x speedup during ingestion.

As the buffer size increases to 5%, the ingestion speedup
increases to 7x due to increased opportunistic bulk loading.
However, query performance

in SA BT-tree is marginally 7.5
affected by the buffer size.
A 10x increase in buffer
size increases query latency
by 11%. This validates our
observations from Fig. 12b
and l4c regarding the ap-
plicability of the SWARE
paradigm; however, the benefits of SA BT -tree (Fig. 10)
outweigh the read-overheads even for a small fraction of writes

(=5%).

Tuning the Buffer Flush Threshold. Adjusting the flush
threshold of the SWARE-buffer affects the overall performance
of SA BT -tree. We now vary the proportion of entries flushed
from the buffer at a given cycle between 25%, 50%, and 75%,
and run mixed workloads. In the interest of space, we omit the
figure and focus on key observations. When the buffer flush
threshold is set to 25%, SA B -tree offers a speedup between
1.0x and 4.0x. For flush threshold 50%, the speedup of SA
B -tree ranges between 1.0x and 4.3, and for a threshold of
75%, between 0.91x and 4.2x. Hence, SA BT -tree performs
best for 50% flush threshold, which we default to.

Tuning Query-Based Sorting. Fig. 16 shows the implications
of query-based sorting on SA Bt -tree’s overall performance.
We vary the query-based sorting threshold between 1%-100%
(i.e., query-based sorting is disabled for 100%) and run mixed
workloads to compare the speedup against the baseline.
Employing query-based sorting offers a performance

improvement between 7%
(for 1% threshold) and
25% (for 10% threshold).
As  expected, gradually
sorting the buffered data
significantly accelerates
query  performance  on 0 2 10 20 100
average since the unsorted K(%)

section is kept small.
Moreover, we observe that
query-based sorting has diminishing returns if applied
too frequently. Specifically, a threshold of 10% offers the

—B" -tree Il Inserts Ml Lookups
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Buffer Size (%Entries)

Fig. 15: The ingestion performance of
SA Bt -tree increases with buffer size.
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Fig. 16: Query-based sorting threshold
set to 10% offers the highest speedup.
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Fig. 17: Latency breakdown for various SA BT -tree configurations. (a) Adding

BFs to the SWARE-buffer slightly increases the insert latency. (b) The use of
BFs in the buffer for lookups is more pronounced as data sortedness decreases.
maximum speedup for any data sortedness, while other
values affect performance adversely (if at all). Reducing the
threshold (to 1% or 5%) leads to too frequent sorting while
increasing the threshold (to 25%) results in fewer sorted
blocks so scanning the unsorted section remains expensive.
Thus, we empirically tune SA BT -tree to perform query-based
sorting with the threshold at 10%.

Benefits from the Global and Per-page BFs. Here, we
compare SA BT -tree with two variations: one without any BF
(Naive SA BT -tree) and one with only the global BF (SA B™-
tree-Global BF) to demonstrate the benefits of BFs. Updating
the BFs for every insert marginally increases the ingestion
latency (Fig. 17a). The added cost is a small fraction of the
total insert time and is settled by the significant performance
improvement during lookups. Fig. 17b shows that adding the
global BF speeds up queries by up to 14%, while the per-
page BFs boost performance further to 16%. The positive
impact of per-page BFs is limited by query-based sorting
that also helps avoid scanning unnecessary data (restricting
scanning to <10%). Note that ingestion in SA BYt-tree is
always significantly faster than B -tree regardless the BF cost.
Overall, the benefit of BFs is pronounced with more reads.

Tuning Zonemaps. The SWARE-buffer uses Zonemaps dur-
ing ingestion to approximate sortedness (§IV-A), thus, are
integral to the overall design. While we opt to always use them
at query time since they are always available, we observed that
skipping Zonemaps for lookups reduces performance by 35%.

Tuning Split Factor. Table I shows the normalized number
of leaf splits compared to the textbook split ratio of 50:50 in
SA BT -tree. Here, we vary the split ratios of the underlying
tree index (BT -tree) to split at 50%, 60%, 70%, 80%, and 90%
when ingesting data with varied degrees of sortedness. While
splitting the leaf node at 90% offers up to a 22% reduction
in the total number of splits during ingestion for near-sorted
data, this suffers a ~ 1.8x overhead when inserting data with
lower sortedness. In fact, the textbook splitting at 50% works
best with low data sortedness as it leaves enough space for
unordered entries to be inserted without splitting. Overall, we
observe SA BYt-tree offers the best performance across any

Split Ratio | K= 2%, L=1% K= 20%, L=10% K= 100%, L= 50%

50 : 50 1.00 1.00 1.00
60 : 40 0.90 0.97 0.94
70:30 0.82 0.96 1.04
80 : 20 0.79 0.96 1.27
90 : 10 0.78 0.98 1.82

TABLE I: Splitting at 80% best reduces leaf splits overall (lower value for
the normalized number of splits implies better memory utilization).
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Fig. 18: SA Bt -tree always outperforms BT -tree on disk (1% bufferpool).

data sortedness by splitting at 80%, which we use by default.

E. On-Disk Performance

We now experiment with an SA B -tree setup that accesses
disk-resident data. For this, we configure the bufferpool to fit
only the internal tree nodes (~1% of data size). The SWARE-
buffer is set to 1% of the data size. We repeat the experiment
for variable data sortedness and variable read/write ratios, and
present the speedup of SA BT -tree over BT-tree as shown in
Fig. 18. From the disk-based experiments, we draw similar
conclusions to the in-memory ones (Fig. 10), but with a
notable difference. With the data on disk, SA BT -tree always
outperforms BT-tree, even for read-intensive workloads and
fully scrambled data. This is because, regardless of sortedness,
we increase locality through our sorting procedures in the
buffer. Though this is applicable for both in-memory and disk-
based experiments with SA B -tree, the overhead of managing
the buffer is negligible compared to accessing tree nodes on
disk. Overall, when spilling to disk, SA B*-tree offers up to
8x performance benefits for write-intensive workloads with
high data sortedness, while always outperforming B -tree.

F. Scalability

To analyze the scalability of SA BT-tree, we increase the
number of entries ingested from 31.25M to 1B while varying
K and L proportional (5%) to the workload. We also scale
SWARE-buffer by keeping it equal to 1% of the dataset size.
Here, we run mixed workloads with equal reads and writes.

SA Bt-tree Scales Better than the State of the Art. In
Fig. 19a, we observe that the B*-tree performance remains flat
as the data size increases, which is attributed to the tree having
the same height. Further, we observe a marginal increase in
latency for 16GB, which is the point that the B*-tree height
increases by one. SA Bt -tree has a similar trend (it remains
flat with one step increase at 4GB) and it offers a speedup
between 2.32x and 3.14x. The speedup comes from a lower
tree height due to the higher factor when compared with the
baseline. Overall, maintaining the buffer size proportional to L
allows SA BT -tree to absorb out-of-order elements at a similar
pace as we increase the data size.

SA BT-tree Scales Better for Fixed L and Buffer Size.
In the next experiment, shown in Fig. 19b, we maintain L
and the buffer size constant as we vary the data size. We
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Fig. 19: SA BT -tree scales well with data size and outperforms B -tree when:
(a) we vary both K and L as a fraction (5%) of data size; (b) we vary K as
a fraction (5%) of data size but keep L fixed (L=12.5M).

Datasize ‘ 0.5GB 1GB 2GB 4GB 8GB 16GB
#Entries 31.25M  62.5M 125M 250M 500M 1B

%Ent. in Buff. 8% 4% 2% 1% 0.5% 0.25%
#.Pages scanned per query 0.094 0.0468  0.0227  0.0110 0.0052  0.0024

TABLE II: For a fixed L and buffer size, the fraction of entries as well as
the pages scanned in the buffer reduce with increasing workload data size.

set L to 12.5M entries and the buffer size to 40MB (holding
2.5M entries). We then run a mixed workload with an equal
number of reads and writes on a preloaded index. As expected,
the behavior of the BT -tree is the same as in the previous
experiment. On the other hand, we observe that the average
latency per operation for SA BT -tree reduces as the data size
increases, offering a 43% to 65% improvement compared to
the BT-tree. This result may initially seem counter-intuitive,
however, it is explained by the third row of Table II which
reports the number of buffer pages scanned per query for the
experiment in Fig. 19b. Since both L and the buffer have fixed
size, the fraction of data retained in the buffer reduces with
data size. For example, 8% entries are contained in the buffer
for a 0.5GB dataset, while it is only 0.25% for a 16GB dataset.
Since our queries are uniformly random in the entire domain,
a smaller fraction of data kept in the buffer means that fewer
queries will access the buffer, hence on average fewer unsorted
buffer pages will be scanned per query, which is the most
expensive part of the query in SA BT -tree. Overall, this leads
to a 22% reduction of latency per operation for SA BT -tree as
we increase the data size from 0.5GB to 16GB.

G. Sortedness-Aware B-tree

We now evaluate the SA B¢-free against a B¢-tree. Here,
we compute the normalized speedup of both the indexes with
varying sortedness against the performance of a B¢-tree with
scrambled data, using mixed workloads.

SA B¢-tree further boosts performance. By applying the
SWARE paradigm to the B¢-tree, we further amplify its per-
formance with increasing data sortedness. Fig. 20 shows that
SA B¢-tree significantly outperforms a B¢-tree for any read-
write ratio or data sortednes. The B¢-tree by itself improves
its performance with increasing data sortedness due to having
a buffer in every internal node. This internal node buffer
makes the B¢-tree ingestion friendly, compared to the BT -tree,
and is able to benefit from data sortedness to some extent.
Meanwhile, SA B¢-tree fully exploits data sortedness, offering
up to 7.8x relative speedup to the B°-tree. The SA B¢-tree
opportunistically bulk loads when possible, leaving internal
node buffers empty. Top inserts (if any) occupy this empty
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Buffer Size (%data size )

Read : Writes
0.05% 0.1% 0.25% 0.5% 1.0%
10% : 90% 1.63x  2.60x  2.88x  4.46x  5.28%
25% : 5% 1.54x  2.40x  2.49x  3.62x  4.5Tx
50% : 50% 1.56x  2.07x  2.82x  3.21x  3.40x
75% : 25% 1.25% 1.65% 1.72x 2.09x 2.01x
90% : 10% 1.14x 1.24x 1.28% 1.42x 1.41x
TABLE IIT: When querying TPC-H data, SA B -tree always outperforms B+ -

tree offering speedups between 1.14x and 5.3 .

space without having to flush entries to lower levels, hence,
improving overall performance. The internal node buffer of
the B¢-tree, however, induces an overhead during lookups [8].
For this reason, we see a noticeable drop in the performance
of both indexes with increasing reads, though the SA B¢-tree
still offers at least a 1.1x relative speedup compared to the
Be¢-tree. Thus, write-optimized tree indexes like the B°-tree
further benefit by using the SWARE paradigm to improve
ingestion performance by exploiting data sortedness.

H. Experimenting with TPC-H

Setup. For this experiment, we quantify sortedness of data
from the lineitem table of TPC-H [51] data. We sort
the tuples based on the shipdate attribute which, in
turn, creates a nearly sorted data set with respect to the
receiptdate attribute. We attribute this degree of sort-
edness on receiptdate as: K=96.67% and L=0.1% of
the total 6M tuples. Using these values of K and L, we use
our custom workload generator to obtain a (K, L)-sorted data
collection for ingestion. For both SA BT-tree and the BT -tree,
we preload the index with 4.8M entries and then execute mixed
workloads. We also vary the buffer size between 0.05% and
1% of the data size and report the speedup in overall latency.

SA BT-tree Offers Superior Performance. Table III shows
that SA BT -tree performs significantly better than BT-trees
across all buffer sizes and workload compositions. Even with a
buffer that is 0.05% of the data size, SA Bt -tree offers between
1.14x and 1.63x speedup. As the buffer size increases, it
is able to cache more entries before flushing, which reduces
the number of top-inserts performed, improving ingestion
performance. We also observe that the benefits of SA B -tree
diminish as the proportion of reads increase in the workload;
however, even for a workload with 90% reads, SA BT -tree
offers a speedup of 1.3x on average. Interestingly, for larger
proportions of reads (>75%), a larger buffer size (>1%)
causes reads to probe more data in the buffer for every
lookup, which, in turn, causes a slight drop in SA B™-tree’s
speedup. Overall, this experiment highlights that the SWARE
meta-design is able to offer significant performance benefits
compared to the state of the art with a very small buffer size
(0.05%) even for workloads with higher reads (90%).

SA Bt-tree also outperforms B*-tree for high L and
low K. Here, we tweak our workload generator to obtain a
data collection of 6M tuples with K = 5% and L = 95%,
i.e., another extreme of sortedness, while repeating the same
experiment as TPC-H data. We observe that SA BT -tree offers
at least 13% improvement in overall performance against the
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Fig. 20: SA B¢-tree always outperforms a B€-tree for any degree of data sortedness (less sorted, near-sorted & fully sorted)
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Fig. 21: SA B -tree always outperforms B -tree even with data that has a
high L (95%) and low K (5%)

BT -tree (Fig. 21) with a buffer equivalent to only 1% of the
total data size. If we increase the buffer size to 2% (or 5%),
we gain up to 71% in overall performance, as a larger buffer is
able to better capture the overlapping entries during ingestion.

VI. RELATED WORK

To the best of our knowledge, this is the first work on
designing sortedness-aware indexes. Here, we discuss the
literature on ingestion-optimized index structures.

Optimizing for Tree Ingestion. BT -trees are widely used
indexes in commercial data systems due to their balanced
ingestion and read performance [17]. Several variants have
also been proposed that optimize ingestion via batching. For
example, T-tree [36] improves insertion and lookup perfor-
mance by storing pointers to data in the nodes. To reduce
ingestion latency, CSB™-tree [47] and PLI-tree [50] maximize
cache line utilization by using arithmetic operations (instead
of pointer chasing) to locate the child nodes. YATS-tree [33] is
a hierarchical index structure that maximizes bulk insertion by
pushing new inserts into separate blocks based on a total order.
Partitioned BT -trees [23] optimize bulk insertion by using an
artificial leading column to always append, which leads to
creating multiple indexes on overlapping data.

While the aforementioned BT -tree-variants improve in-
gestion performance, the SWARE paradigm allows them to
further optimize ingestion in the presence of data sortedness.

LSM-trees. LSM-trees [38, 41] optimize data ingestion by
buffering entries and flushing them to disk as sorted runs;
however, this comes at a high write amplification cost. The
entries are repeatedly re-written to disk as they are periodically
sort-merged to create larger sorted collections of data through
compactions [48]. While LSM-trees aim to maximize ingestion
throughput, they are not designed to exploit sortedness. In fact,
most LSM-designs are completely agnostic to data sortedness
and perform the same amount of merging and (re-)writing of
the data on disk even when the data arrive fully sorted. For

LSM-trees employing partial compactions with least overlap
data movement policy [48], it can accelerate ingestion of

with a monotonically increasing component, typically a times-
tamp [42]. Data series indexing assumes that data ingestion
follows the expected order [35, 54]-[56]. The ingested data
is converted to shapes using specialized representations like
iSAX [13], in order to allow similarity comparisons between
data series. Data streaming applications operate on windows
of data (typically time-based) to calculate state on the fly, and
then, discard the incoming entries [14, 21]. Hence, streaming
systems inspect whether data arrives out of the expected order
and often use a buffer to capture this arrival skew [49]. They
do not build an index for the entire dataset, rather, the default
expectation is again that data arrives in the expected order.
Contrary to data series and data streaming, in relational
systems, the arrival of data is, in general, scrambled; however,
indexes are not designed to exploit data arriving with some
order. In this work, we treat sortedness as a resource, and
we build a framework that allows indexes to substantially out-
perform their classical counterparts if data arrives with some
order, while otherwise falling back to baseline performance.

VII. CONCLUSION

Inserting data to an index can be perceived as the process of
adding structure to an otherwise unsorted data collection. We
identify inherent data sortedness as a resource that should be
harnessed when ingesting data. State-of-the-art index designs
like B*-trees support faster ingestion through bulk loading
when data arrives fully sorted, however, they fail to benefit
from sortedness when data is near-sorted.

To address this, we propose an index meta-design that
allows for progressively faster ingestion for higher data sorted-
ness. Our proposed SWARE paradigm, combines opportunistic
bulk loading, index appends, variable split/fill factor, and an
intelligent buffering scheme to amortize the index insertion
cost. To ensure competitive lookup performance, we augment
the design with Bloom filters, Zonemaps, and query-based
sorting that alleviate read overheads. By applying the SWARE
paradigm to a BT-tree and a Bf-tree, we demonstrate that
their sortedness-aware counterparts, SA B*-tree and SA B*-
tree, outperform their baselines by up to 8.8x and 7.84x.
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