
Acheron: Persisting Tombstones in LSM Engines
Zichen Zhu

Boston University
zczhu@bu.edu

Subhadeep Sarkar
Boston University
ssarkar1@bu.edu

Manos Athanassoulis
Boston University
mathan@bu.edu

ABSTRACT
Modern NoSQL storage engines frequently employ log-structured
merge (LSM) trees as their core data structures because they offer
high ingestion rates and low latency for query processing. Client
writes are captured in memory first and are gradually merged on
disk in a level-wise manner. While this out-of-place paradigm sus-
tains fast ingestion rates, it implements delete operations via in-
serting tombstones which logically invalidate older entries. Thus,
obsolete data cannot be removed instantly and may be retained for
an arbitrarily long time. Therefore, out-of-place deletion in LSM
trees may, on the one hand, violate data privacy regulations (e.g.,
the right to be forgotten in EU’s GDPR, right to delete in California’s
CCPA and CPRA), and on the other hand, it hurts performance.

In this paper, we develop Acheron, which demonstrates the per-
formance implications of out-of-place deletes and how our method
achieves timely persistent deletes. We integrate both prior state-
of-the-art compaction policies and our recently presented method,
FADE, into Acheron and visualize the life cycle of tombstones in
LSM trees. Using the Acheron visualization, users can observe that
the state of the art does not provide guarantees on when obso-
lete entries can be physically removed and also observe that FADE
can achieve timely persistent deletes without full tree compaction.
Users can further customize the workload, LSM tuning knobs, and
disk parameters to investigate their impact on tombstones and per-
formance. This demonstration provides key insights into the impact
of tombstones on LSM-interested researchers and practitioners.

CCS CONCEPTS
• Information systems → Point lookups; Unidimensional
range search; Record and block layout; Key-value stores; •
Security and privacy → Social aspects of security and privacy;
Privacy protections.

KEYWORDS
LSM trees; data deletion; privacy

ACM Reference Format:
Zichen Zhu, Subhadeep Sarkar, and Manos Athanassoulis. 2023. Acheron:
Persisting Tombstones in LSM Engines. In Companion of the 2023 Inter-
national Conference on Management of Data (SIGMOD-Companion ’23),
June 18–23, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3555041.3589719

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9507-6/23/06. . . $15.00
https://doi.org/10.1145/3555041.3589719

(A) Leveling (B) Tiering

Figure 1: In an LSM tree, for every tombstone, there can be (A)
onematching entry per level for leveling or (B) onematching
entry per tier per level.

1 INTRODUCTION
LSM-based Key-Value Stores. Data-intensive applications (e.g.,
Internet-of-things, edge computing, 5G communications, and au-
tonomous vehicles) generate a huge amount of data at unprece-
dented rates. Several modern NoSQL storage engines, including Lev-
elDB, RocksDB, WiredTiger, and Cassandra, rely on Log-Structured
Merge (LSM) trees [1–3] to sustain efficient ingestion for OLTP
workloads. Many relational database systems (e.g., MyRocks and
CockroachDB) also use LSM trees as the basic data structure to build
their key-value storage engines. In LSM trees, incoming entries are
batched in an in-memory write buffer, and once the buffer is full, it
is flushed to storage as an immutable sorted run. When the number
of accumulated similarly sized runs exceeds a predefined threshold,
they are merge-sorted to form a larger immutable run (this process
is also termed compaction [3, 5, 7]). The immutability of sorted runs
does not allow for in-place updates/deletes; rather, all updates lead
to sequential writes during flushing and compaction.
Deletes in LSM Trees. However, the immutability of sorted runs
comes at the cost of out-of-place deletes. Every delete is imple-
mented by inserting a tombstone, as shown in Figure 1. Within the
memory buffer, a tombstone eagerly deletes any older matching
entries, and it is maintained to invalidate further matching entries
in the tree. When the buffer is full, all the entries (including tomb-
stones) in the buffer are flushed to disk as a file. As more data is
ingested, this file will be involved in compactions, during which
older entries with the same key will be physically discarded.
Problems.When a tombstone is inserted, older entries may exist in
deeper levels, and thus, we can only safely remove the tombstone
when it reaches the last level of the LSM tree through iterative
compactions. Tombstones and obsolete entries may co-exist for an
arbitrarily long time until all tombstones are compacted to the last
level, which has the following implications:

131

https://doi.org/10.1145/3555041.3589719
https://doi.org/10.1145/3555041.3589719
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555041.3589719&domain=pdf&date_stamp=2023-06-05

(a) Tombstones and obsolete entries increase space amplification.
(b) Before obsolete entries are physically discarded, they are likely

to be involved in other compactions, which may lead to in-
creased write amplification.

(c) Invalid entries may pollute the indexes and filters, and thus
hurt range and point query performance.

(d) Out-of-place deletion does not guarantee when older records
will be physically removed, which may violate data privacy
regulations [4] such as the right to be forgotten in EU’s GDPR,
right to delete in California’s CCPA and CPRA.

Our approach. The approach [6] that we demonstrate proposes a
new compaction policy that prioritizes files containing older tomb-
stones. Compared to full tree compaction, this approach retains the
LSM tree’s benefits of an amortized merging cost with no latency
spikes and has less write amplification and shorter write stalls.
Specifically, compactions are more eagerly triggered based on the
maximum age of tombstones for each level, so that tombstones can
reach the last level within a user-defined threshold.

In this paper, we develop Acheron1, which demonstrates the
performance implications of tombstones, and how our method
achieves timely persistent deletes. To our knowledge, there are no
previous systems or tools that reveal tombstones’ impact on new
data privacy regulations and system performance in LSM trees. LSM-
interested researchers and practitioners can benefit from Acheron
to gain more useful insights into this impact.
Demonstration. Participants in the conference can interact with
Acheron to compare and analyze the life cycle of tombstones in
LSM trees under different scenarios. The visual interface allows
participants to see (i) when tombstones move from shallower levels
to deeper levels and are physically deleted in the last level, (ii) how
our method purges obsolete data compared to other compaction
policies, and (iii) how tombstones affect the system performance.
Acheron also offers the opportunity for participants to vary the
workload composition and LSM tunings (e.g., delete percentage, size
ratio, storage read/write speed) to exploremore scenarios. The demo
is available at https://disc-projects.bu.edu/acheron/research.html.

2 ENABLING TIMELY PERSISTENT DELETES
To enable timely persistent deletes, in prior work, we introduced
FADE, a new family of delete-aware compaction policies. FADE
(short for FAst DEletes) piggybacks the task of timely delete per-
sistence to the LSM tree’s compaction routine while retaining the
LSM tree’s benefit of amortized merging cost and predictable perfor-
mance. Acheron taps into the key design of FADE and presents an
interactive framework that highlights how users can navigate the
performance-privacy trade-off between delete persistence and de-
sired performance. In this section, we present the technical details
of FADE and the metrics we use in Acheron.

2.1 FADE
Delete Persistence Threshold (DPT). FADE ensures that all the
tombstones are persisted within a user-specified delete persistence
threshold (DPT). DPT is formally defined as the worst-case time
1Acheron is the Greek mythological river used to transport souls to the underworld
(persist tombstones).

required, following the insertion of a tombstone, for the tree to be
void of any entry (including tombstones) with a matching (older)
key to that of the inserted tombstone. Typically, DPT is specified
as part of the service level agreement (SLA) concerning data reten-
tion. The complete algorithm of FADE is presented in Algorithm 1.
Compared to the state-of-the-art LSM compaction policy, FADE
augments it in the following two aspects.
Compaction Trigger. In FADE, a compaction is triggered not
only when a level is saturated but also when tombstones are close
to expiration. To support the additional trigger, FADE maintains
the age of the oldest tombstones per file and assigns every file a
time-to-live (TTL). If TTL is fixed as DPT for all the files, all the
expired tombstones/files in shallow levels can result in cascading
compactions and, thus, high write amplification. Instead, FADE
assigns a smaller TTL,𝑑𝑖 , for every file in level 𝑖 such that

∑︁𝐿−1
𝑖=1 𝑑𝑖 =

DPT, where 𝐿 is the number of levels in the current LSM tree. The
allocation strategy for 𝑑𝑖 proposed by FADE follows a geometric
sequence with an increasing ratio 𝑇 (the same as the size ratio)
because the exponential assignment is coherent with the capacity
in each level and thus leads to fewer concurrent compactions.

Algorithm 1: FADE
Input :delete persistence threshold (DPT); levels in tree (𝐿𝑜𝑙𝑑); size ratio (𝑇);

size of memory buffer (𝑀)
FADE():
begin

𝐿𝑛𝑒𝑤 = getCurrentTreeLevel(), 𝑑0 = 0
if 𝐿𝑛𝑒𝑤 > 𝐿𝑜𝑙𝑑 then

for 𝑖 ∈ [1 : 𝐿𝑛𝑒𝑤] do
𝑑𝑖 = 𝑑𝑖−1 + DPT· (𝑇 − 1)/(𝑇𝐿 − 1) · 𝑇 𝑖−1

for 𝑖 ∈ [1 : 𝐿𝑛𝑒𝑤] do
csize(𝑖) = 0, 𝑡𝑡𝑙𝑖 = 0, 𝑐𝑎𝑝𝑖 =𝑀 · 𝑇 𝑖

for 𝑗 ∈ [1 : getFileCountInLevel(i)] do
csize(𝑖) += size(𝑗)

if 𝑑𝑖 < 𝑎𝑔𝑒 𝑗 then
𝑡𝑡𝑙𝑖++

𝑠𝑐𝑜𝑟𝑒 [𝑖] = csize(𝑖)/𝑐𝑎𝑝𝑖 + 𝑡𝑡𝑙𝑖
𝑐𝑜𝑚𝑝𝑎𝑐𝑡_𝑙𝑒𝑣𝑒𝑙 = getLevelToCompact(𝑠𝑐𝑜𝑟𝑒 [])
𝑐𝑜𝑚𝑝𝑎𝑐𝑡_𝑓 𝑖𝑙𝑒 = getFileToCompact(𝑐𝑜𝑚𝑝𝑎𝑐𝑡_𝑙𝑒𝑣𝑒𝑙)
initiate compaction with 𝑐𝑜𝑚𝑝𝑎𝑐𝑡_𝑓 𝑖𝑙𝑒

getLevelToCompact(𝑠𝑐𝑜𝑟𝑒 [])
begin

𝑐_𝑙𝑒𝑣𝑒𝑙 = 𝑠𝑐𝑜𝑟𝑒 [0]
for 𝑖 ∈ [1 : 𝐿𝑛𝑒𝑤] do

if 𝑠𝑐𝑜𝑟𝑒 [𝑖] > 𝑠𝑐𝑜𝑟𝑒 [𝑖 − 1] then
𝑐_𝑙𝑒𝑣𝑒𝑙 = 𝑖

return 𝑐_𝑙𝑒𝑣𝑒𝑙

getFileToCompact(𝑐𝑜𝑚𝑝𝑎𝑐𝑡_𝑙𝑒𝑣𝑒𝑙)
begin

𝑓 𝑖𝑙𝑒𝑠 = getFilesInLevel(𝑐𝑜𝑚𝑝𝑎𝑐𝑡_𝑙𝑒𝑣𝑒𝑙)
for 𝑖 ∈ [1 : 𝑓 𝑖𝑙𝑒𝑠.𝑠𝑖𝑧𝑒 () − 1] do

if 𝑑𝑐𝑜𝑚𝑝𝑎𝑐𝑡_𝑙𝑒𝑣𝑒𝑙 ≥ 𝑓 𝑖𝑙𝑒𝑠 [𝑖] .𝑎𝑔𝑒 then
return 𝑓 𝑖𝑙𝑒𝑠 [𝑖]

sort 𝑓 𝑖𝑙𝑒𝑠 by overlapping ratio in an ascending way
return 𝑓 𝑖𝑙𝑒𝑠 [0]

File Picking Policy. The state-of-the-art LSM engines use the
picking policy of selecting the file with the smallest overlap to
reduce the write amplification (while there are many other picking
policies [7], this is the most common one and thus selected to
compare with FADE in Acheron). However, in FADE, files with

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Zichen Zhu, Subhadeep Sarkar, & Manos Athanassoulis

132

https://disc-projects.bu.edu/acheron/research.html

1 2 3

4
5

6

In
p

u
t

P
an

el
C

o
n

tr
o

l
P

an
el

E
m

u
la

ti
o

n
 P

an
el

P
er

fo
rm

an
ce

 P
an

el

7 8 9

11

10

Flushed Data Flushed Data Flushed Data Flushed Data

Figure 2: The Acheron UI visualizes the life cycle of tombstones under different compaction policies.

expired TTL are prioritized over files with the least overlapping rate
to enforce the timely physical deletion. In other words, compactions
triggered by TTL expiration only pick expired files to compact,
while compactions that are only triggered by saturation still pick
the file with minimum overlapping ratio.

2.2 Demonstration Metrics
FADE ensures that all the tombstones are persisted by the time their
lifetime reaches DPT by triggering more compactions, which natu-
rally introduces a trade-off between tombstones and compactions.
To better capture this trade-off, Acheron benchmarks the following
metrics during the emulation.
Tombstone-related Metrics. After every flush and every com-
paction, Acheron records the number of deletes, the number of exist-
ing tombstones, the number of expired tombstones (with respect to
the specified DPT), and the maximum age of existing tombstones.
Compaction Metrics. Compaction metrics include the number
of compactions, the average compaction (input) size, the average
compaction latency, and the worst-case compaction latency. These
metrics are updated every time compaction finishes.

Performance Metrics. Many performance metrics can also be
affected by extra tombstones and compactions. For example, more
tombstones lead to more disk space, larger Bloom Filters (BFs), and
indexes of the LSM tree, and thus Acheron also records storage
space and memory footprint for auxiliary structures. On the other
hand, extra compactions can significantly affect the average ingest
I/O cost and write amplification, which is also tracked in Acheron.

3 THE ACHERON DEMONSTRATION
Overview. The overall structure of Acheron UI is summarized in
Figure 2, which consists of an input panel, a progress bar control
panel, an emulation panel, and a performance panel. Users interact
with Acheron through the following operation flow: (i) specify the
configuration in the input panel, (ii) click the “Play” button in the
control panel (after which Acheron starts emulating the ingestion
process), (iii) watch the animation of how tombstones propagate
through iterative compactions in the emulation panel, (iv) compare
the metrics presented in the performance panel.
Input and Control Panels. Users can customize the workload by
specifying the number of total ingests, the key size, the entry size,

Acheron: Persisting Tombstones in LSM Engines SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

133

Figure 3: Acheron UI and visualizations. Each rectangle represents a file. During compaction, the file with a red solid border
indicates that it is being selected to compact to the next level, while the files with a red dashed border overlap with the selected
file. After the compaction finishes, newly generated files are marked with a solid green border.

and the percentage of deletes (1). Acheron emulates a real workload
by proportionally scaling down the number of ingests. In addition
to the workload specification, Acheron allows users to configure
the main memory parameters (i.e., the memory size for MemTable,
the bits per key for BFs) (2), the size ratio (3), disk parameters like
read latency per I/O and write latency per I/O) (4), and persistence
threshold (DPT) (5). After setting the input, users can control the
emulation progress via buttons Play, Pause, Finish, and even drag
the progress bar in the control panel.
Emulation and Performance Panels. The emulation panel dis-
plays iterative compactions in three LSM trees with different com-
paction policies: FADE (7), MinOverlappingRatio (8), and Round-
Robin (9). To better highlight the difference, Acheron shows the
compaction progress in detail, as shown in Figure 3. In the visual-
ization, each rectangle represents a file (where the length is propor-
tional to the file size). Additionally, the length of the gray/white
striped part in a rectangle represents the proportion of tombstones
in this file. The darkness of the striped part indicates the maximum
tombstone age, and when the oldest tombstone expires, the color
turns completely dark. The darkness of the blue part indicates the
overlapping ratio of this file. The LSM tree structure is updated
every flush and every compaction. For illustration, every flush is
forced to be synced across different policies, but the actual time
could differ. When watching the animated compaction process,
users can also observe that the performance metrics and plots are
updated in real-time(10), with the x-axis representing the flushed
data. If users want to investigate the impact of different DPT in
FADE, they can also switch to the DPT Analysis in FADE mode (11).

4 DEMONSTRATION SCENARIOS
The participants can fully interact with Acheron to understand the
life cycle of tombstones, how the life cycle differs across different
compaction policies, and also the impact of DPT along with twelve
system metrics. We use the following three example scenarios to
demonstrate possible interactions between users and Acheron.
Scenario 1: Visualize the Life Cycle of Tombstones Through
Iterative Compactions.We consider the default setting: 10𝑀 128-
byte entries with 25% deletes are ingested into an LSM tree with
16𝑀𝐵 buffer size, 10 bits per key for BFs, a 50-second DPT, and a
size ratio of 2. After users click the Play button, they can see the
whole tree construction progress, which includes how tombstones
move from shallower levels to deeper levels, how tombstones age
(the color gradually changes from white to gray), and persist (no
gray strips/tombstones in the last level).

Scenario 2: Compare Compaction Policies for Deletes. When
comparing different compaction policies, users can observe how
tombstones expire (gray strips are replaced with pure black) under
the MinOverlappingRatio and Round-Robin policies. In contrast,
pure black tombstones never appear in FADE since DPT is applied
as a hard TTL constraint. Besides, users can also observe the higher
compaction cost in FADE via the compaction metrics since FADE
achieves timely persistence by performing extra compactions.
Scenario 3: Examine the Performance Impact of Delete Time-
liness. Users can switch to DPT Analysis in FADE mode to explore
how different DPT affects performance. When playing with this
mode, users can observe from the performance panel that the oldest
tombstones strictly follow DPT configuration (tombstones never
become older than the specified DPT) no matter what DPT users
specify. Users can also examine the performance impact by com-
paring other metrics (e.g., #compactions and write amp).

5 CONCLUSION
In this paper, we introduce Acheron, which visualizes the life cy-
cle of tombstones in LSM trees under different settings. Acheron
can help users to understand why tombstones can stay for an ar-
bitrarily long time under state-of-the-art compaction policy and
how FADE achieves timely persistent deletes without full tree com-
paction. Acheron also allows users to explore the impact of DPT
on tombstones and performance.

ACKNOWLEDGMENTS
This work was funded by NSF grants IIS-1850202 and IIS-2144547,
a Facebook Faculty Research Award, and a Meta gift.

REFERENCES
[1] Chen Luo and Michael J. Carey. 2020. LSM-based Storage Techniques: A Survey.

The VLDB Journal 29, 1 (2020), 393–418.
[2] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.

The log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.
[3] Subhadeep Sarkar and Manos Athanassoulis. 2022. Dissecting, Designing, and Op-

timizing LSM-based Data Stores. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2489–2497.

[4] Subhadeep Sarkar and Manos Athanassoulis. 2022. Query Language Support for
Timely Data Deletion. In Proceedings of the International Conference on Extending
Database Technology (EDBT). 429–434.

[5] Subhadeep Sarkar, Kaijie Chen, Zichen Zhu, and Manos Athanassoulis. 2022.
Compactionary: A Dictionary for LSM Compactions. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. 2429–2432.

[6] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, and Manos Athanas-
soulis. 2020. Lethe: A Tunable Delete-Aware LSM Engine. In Proceedings of the
ACM SIGMOD International Conference on Management of Data. 893–908.

[7] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis. 2021.
Constructing and Analyzing the LSM Compaction Design Space. Proceedings of
the VLDB Endowment 14, 11 (2021), 2216–2229.

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Zichen Zhu, Subhadeep Sarkar, & Manos Athanassoulis

134

	Abstract
	1 Introduction
	2 Enabling Timely Persistent Deletes
	2.1 FADE
	2.2 Demonstration Metrics

	3 The Acheron Demonstration
	4 Demonstration Scenarios
	5 Conclusion
	Acknowledgments
	References

