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Data-intensive applications have fueled the evolution of log-structured merge (LSM) based key-value en-
gines that employ the out-of-place paradigm to support high ingestion rates with low read/write interference.
These benefits, however, come at the cost of treating deletes as second-class citizens. A delete operation in-
serts a tombstone that invalidates older instances of the deleted key. State-of-the-art LSM-engines do not
provide guarantees as to how fast a tombstone will propagate to persist the deletion. Further, LSM-engines
only support deletion on the sort key. To delete on another attribute (e.g., timestamp), the entire tree is read
and re-written, leading to undesired latency spikes and increasing the overall operational cost of a database.
Efficient and persistent deletion is key to support: (i) streaming systems operating on a window of data, (ii)
privacy with latency guarantees on data deletion, and (iii) en masse cloud deployment of data systems.

Further, we document that LSM-based key-value engines perform suboptimally in the presence of deletes
in a workload. Tombstone-driven logical deletes, by design, are unable to purge the deleted entries in a timely
manner, and retaining the invalidated entries perpetually affects the overall performance of LSM-engines in
terms of space amplification, write amplification, and read performance. Moreover, the potentially unbounded
latency for persistent deletes brings in critical privacy concerns in light of the data privacy protection reg-
ulations, such as the right to be forgotten in EU’s GDPR, the right to delete in California’s CCPA and CPRA,
and deletion right in Virginia’s VCDPA. Toward this, we introduce the delete design space for LSM-trees and
highlight the performance implications of the different classes of delete operations.

To address these challenges, in this article, we build a new key-value storage engine, Lethe+, that uses a
very small amount of additional metadata, a set of new delete-aware compaction policies, and a new physical
data layout that weaves the sort and the delete key order. We show that Lethe+ supports any user-defined
threshold for the delete persistence latency offering higher read throughput (1.17×−1.4×) and lower space

amplification (2.1×−9.8×), with a modest increase in write amplification (between 4% and 25%) that can be
further amortized to less than 1%. In addition, Lethe+ supports efficient range deletes on a secondary delete

key by dropping entire data pages without sacrificing read performance or employing a costly full tree merge.
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1 INTRODUCTION

Systems are Optimized for Fast Data Ingestion. Modern data systems process an unprece-
dented amount of data generated by a variety of applications that include data analytics, stream
processing, and the new breed of information-centric technologies such as the Internet of
Things [75, 78] and 5G [23, 35]. Cloud-based latency-sensitive applications like live video stream-
ing [45], real-time health monitoring [64], e-commerce transactions [44], social network analy-
sis [71], and online gaming [57] generate large volumes of data at a high velocity that requires hy-
brid transactional/analytical processing (HTAP) [10, 60, 63]. Modern commercial data store
designs are, thus, driven by three principle objectives: (i) the raw data size is larger than the main
memory size which means a significant proportion of the data resides on disk, (ii) fast writes, and
(iii) fast reads with predictable tail latencies. Toward this, for the past decade, one of the main
data management research challenges has been to design data systems that can sustain fast data
ingestion rate and process queries at low latency [6, 12, 63]. To achieve this, modern data stores
reduce read/write interference by employing out-of-place ingestion [14, 15, 26, 43, 52, 54, 65, 83].
Out-of-place data stores buffer the incoming data stream in memory and writes them back to the
disk lazily to amortize the cost of writes while facilitating fast query processing.

LSM-based Key-Value Stores. A classical out-of-place data structure is the log-structured

merge (LSM) tree [62], in which data is stored on a disk as immutable files, and updates and
deletes are handled out-of-place [26, 58, 62, 67, 84]. LSM-trees buffer incoming data entries in
main memory, and periodically flush this buffer as an immutable sorted run on durable stor-
age [26, 58, 62, 67, 84]. As more sorted runs accumulate, they are iteratively sort-merged to form
fewer yet larger sorted runs. This process, termed compaction, reduces the number of sorted runs
accessed during a read query with amortized merging cost. Every compaction sort-merges exist-
ing sorted runs from consecutive levels and discards any invalid entries. LSM-trees are adopted
by several modern systems including LevelDB [41] and BigTable [22] at Google, RocksDB [33] at
Facebook, X-Engine [44] at Alibaba, Voldemort [56] at LinkedIn, Dynamo [30] at Amazon, Cassan-
dra [8], HBase [9], and Accumulo [7] at Apache, and bLSM [81] and cLSM [40] at Yahoo. Relational
data systems have been increasingly adopting LSM-style of updates. MyRocks [34] uses RocksDB
as storage engine and SQLite4 [82] has experimented with LSM-trees in its storage layer. The out-
of-place paradigm has also been adopted by many commercial data stores like Vertica [52, 83],
Snowflake [25], Vectorwise [93], and TileDB [65, 85], and research designs like MaSM [14] and
FD-tree [54] employ out-of-place updates to facilitate hybrid workloads.

The Challenge: Out-of-place Deletes. LSM-based storage engines use the out-of-place para-
digm for any write operation, including ingestion (inserts), modification (updates), and deletion
(deletes). As a result, a delete (update) is implemented by inserting additional meta-data that log-
ically invalidates the older target entries [21]. We refer to this process as logical deletes (updates).
Both logical deletes and updates show a complex three-way trade-off involving read performance,
update performance, and main memory footprint [16]. Logical deletes, however, have wider impli-
cations in terms of (i) space amplification, (ii) read cost, (iii) write amplification, and (iv) privacy
considerations, and hence, is the primary focus of this work (Figure 1(a)).
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Fig. 1. (a) Lethe+ strikes an optimal balance between the latency/performance for timely delete persistence

in LSM-trees, and (b) supports timely delete persistence by navigating the latency/cost trade-off.

In particular, a logical delete inserts a tombstone that invalidates all the older entries for a target
key, with the expectation that the matching older entries will eventually be persistently deleted.
In practice, the delete persistence latency is driven by (a) the system design choices and (b) work-
load characteristics. Neither can be fully controlled during execution, therefore, providing latency
guarantees for persistent deletion of user data within a specific delete persistence threshold (termed
persistent timely deletion) is nearly impossible in state-of-the-art LSM-based storage engines.
In fact, LSM-trees have a potentially unbounded delete persistence latency. In order to limit it,

current designs employ a costly full-tree compaction on a periodic basis, typically, every 15–30
days. Such full-tree compactions are highly undesirable as they incur superfluous storage I/Os,
which interfere with read performance, add to the write amplification, and result in performance
unpredictability [20, 44]. Some LSM-engines, such as RocksDB, have the option of triggering com-
pactions based on a time-to-live that may be configured to represent the delete persistence thresh-
old [33, 70]. While this can guarantee timely persistence of deletes, it comes at the cost of high
write amplification. This is because, upon expiration of the time-to-live, the file chosen for com-
paction must be compacted through all the subsequent levels so that all tombstones contained in
the file are propagated to the last level and then purged. The I/O cost for such a reactive approach
for persistent timely deletion can be as high as that of full-tree compactions, which makes it also
undesirable for production systems.

Deletes in LSM-trees. LSM-trees are employed as the storage layer for relational systems [34],
streaming systems [5, 46, 86], and pure key-value storage [18, 61, 89]. As a result, an LSM delete

operation may be triggered by various logical operations, not limited to user-driven

deletes. For example, ZippyDB, which is a distributed key-value engine that stores metadata for
images and videos, processes 25.2M delete requests over a 24-hour window, which is 6% of the en-
tireworkload [21]. Deletes are also triggered byworkloads that involve periodic datamigration [59],
streaming operations on a running window [44, 51], or entail cleanup during data migration [59].
In particular, dropping tables from an LSM-based data store with multiple column families is typ-
ically realized through a range delete operation [59]. In a time-series scenario that stores data as
sorted on ingestion-timestamp, every update translates to a delete followed by the insertion of the
new version [20]. Below, we distill the common concepts of three frequent delete use cases.

Scenario 1: An e-commerce company EComp stores its order details sorted by order_id in an
LSM-tree, and needs to delete the order history for a particular user. Within the system, this delete
request is translated to a set of point and range deletes on the sort key, i.e., order_id .

Scenario 2: A data companyDComp stores its operational data in an LSM-tree with document_id
as the sort key. As most of the data are relevant only for D days, DComp wants to delete all data
with a timestamp that is older thanD days (and archive them). At the same time,DComp frequently
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accesses the documents usingdocument_id , hence, the sort key (document_id) is different from the
delete key (timestamp).

Scenario 3: BComp is a big data analytics company that runs a relational API on top of an LSM
storage. To realize updates on attributes other than the primary key at the storage layer, BComp
needs to translate every update to (i) a delete of the indexed key and (ii) an insert of the new
indexed key for the same row, converting an update-intensive workload to a delete-intensive one.

The State of the Art and Why that is Not Enough. The three aforementioned scenarios high-
light the limitations of state-of-the-art LSM-based storage engines. Modern commercial LSM-
engines cannot efficiently support EComp (Scenario 1) and BComp (Scenario 3) for two reasons.
First, as deletes insert tombstones (retaining the physical entries), they increase space amplifi-

cation. Second, retaining superfluous entries in the tree adversely affects read performance

because read queries have to discard potentially large collections of invalid entries, which further
“pollute” the filter metadata [44], and increase write amplification because invalid entries are
repeatedly compacted. Further, LSM-engines are ill-suited for DComp from the second scenario
because they cannot efficiently support a range deletion in a delete key other than the sort key
(termed secondary range deletes). Instead, they employ a full-tree compaction, which causes an ex-
cessive number of wasteful I/Os while reading, merging, and re-writing the sorted files of the
entire tree [44].
Delete persistence latency. In order to be able to report that a delete persisted, the correspond-

ing tombstone has to reach the last level of the tree through iterative compactions to discard all
invalidated entries. The time elapsed between the insertion of the tombstone in the tree and the
completion of the last-level compaction is termed delete persistence latency. LSM logical deletes

do not provide delete persistence latency guarantees, hence EComp and BComp cannot offer
such guarantees to their users. In order to add a hard limit on delete persistence latency, current
designs employ a costly full-tree compaction that interferes with read performance and pre-

dictability while increasing the operational cost remarkably.
Privacy through deletion. Having unbounded delete persistence latency does not ensure timely

deletion of the physical entries from a database and may lead to a breach of data privacy. For exam-
ple, it was recently reported that Twitter retains user messages years after they have been deleted,
even after user accounts have been deactivated [88]. With the new data privacy protection acts be-
ing enforced across different countries and for several states within the United States, limiting the
end-to-end data lifecycle has become critical [31, 74]. In particular, data retention policies such as
the right to be forgotten in EU’s GDPR [1], the right to delete in California’s CCPA and CPRA [2, 3],
and deletion right in Virginia’s VCDPA [4] coming into play, physically deleting the users’ data
within a finite threshold has emerged as a fundamental challenge for several data companies.

LSM-engines are not optimized when it comes to providing delete persistence latency guaran-
tees or supporting secondary range deletes. In our interactions with engineers working on LSM-
based production systems, we learned that periodic deletes of a large fraction of data based on
timestamp are very frequent. To quote an engineer working on XEngine [44, 90], “Applications
may keep data for different durations (e.g., 7 or 30 days) for their own purposes. But they all have
this requirement for deletes every day. For example, they may keep data for 30 days, and daily delete
data that turned 31-days old, effectively purging 1/30 of the database every day.” This deletion is
performed with a full-tree compaction. To further quote the same team, “Forcing compactions to
set a delete latency threshold, leads to significant increase in compaction frequency, and the observed
I/O utilization often peaks. This quickly introduces performance pains.” For large data companies,
deleting 1/7 or 1/30 of their database accounts for several GBs or TBs that is required to be persis-
tently removed daily. The current approach of employing full-tree compactions is suboptimal as it
(1) causes high latency spikes for reads, (2) increases write amplification, and (3) adds significantly
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to the overall operational cost of the database. Full-tree compactions are, therefore, heavily unde-
sired in production systems, particularly when serving latency-sensitive applications. The goal of
this work is to address these challenges while retaining the benefits of LSM-based design and
reusing a major part of the existing design and system codebase.

“Full tree compactions should be avoided.”

The objective of this work is to design an LSM-based data store that (i) provides latency guarantees
for delete persistence without compromising the overall system performance and (ii) is able to
support secondary deletes efficiently for applications with different delete key and sort key.

The Solution: Lethe+.We propose Lethe+1, a new LSM-based key-value store that offers efficient
deletes without compromising the benefits of LSM-trees. Lethe+ pushes the boundary of the tradi-
tional LSM design space by adding delete persistence as a new design goal, and is able to meet user
requirements for delete persistence latency. Figures 1(a) and (b) show a qualitative comparison be-
tween state-of-the-art LSM-engines [8, 9, 33, 41, 89] and Lethe+ with respect to the efficiency and
cost of timely persistent deletes. Lethe+ introduces two new LSM design components: FADE and
KiWi+.

FADE (Fast Deletion) is a new family of compaction strategies that prioritize files for com-
paction based on (a) the number of invalidated entries contained, (b) the age of the oldest tomb-
stone, and (c) the range overlap with other files. FADE uses this information to decide when to
trigger a compaction on which files, to purge invalid entries within a threshold.
While FADE allows Lethe+ to persist deletes in a time-boundmanner, it does not improve the sec-

ondary range delete performance. The key intuitions behind facilitating efficient secondary range
deletes are: (a) to avoid full-tree compactions and (b) to do so without hurting read performance.
To achieve this, we propose Key Weaving Storage Layout (KiWi), which is a new continuum of
physical layouts that offers tunable secondary range delete performance without causing latency
spikes, by introducing the concept of delete tiles. An LSM-tree level consists of several sorted files
that logically form a sorted run. KiWi augments the design of each file with several delete tiles,
each containing several data pages. A delete tile is sorted on the secondary (delete) key, while each
data page remains internally sorted on the sort key. Having Bloom filters at the page level, and
fence pointers for both the sort key and the secondary delete key, KiWi facilitates secondary range
deletes by dropping entire pages from the delete tiles, with a constant factor increase in false pos-
itives. Maintaining the pages as sorted on the sort key also means that once a page is in memory,
read queries maintain the same efficiency as the state of the art. We further improve the trade-
off between the costs of secondary range deletes and point lookups by introducing KiWi+. KiWi+

takes into account the workload characteristics (composition and distribution) and the LSM-tuning
(page size, size ratio, and Bloom filter size) to propose the optimal size of a delete tile separately for
every tree-level. The level-wise optimal data layout proposed by KiWi+ pushes the Pareto frontier
constituted by the costs of secondary range deletes and (short) read queries farther, close to the
optimum.
Putting everything together, Lethe+ presents the design of a deletion-aware LSM-engine that

offers timely and efficient deletion of user data while improving read performance, supports user-
defined delete latency thresholds, and enables practical secondary range deletes.

Additional Materials with respect to Conference Publication. Lethe+ is an extension of our
prior work on delete-conscious LSM-engines [17, 73, 79]. In this article, we (i) formally prove that
FADE persists primary deletes within a given delete persistence threshold and (ii) justify the as-
signment of the time-to-live (TTL) assigned to every LSM-level by FADE through theoretical

1Lethe (pronounced as: /"li:Ti:/), the Greek mythological river of oblivion, signifies efficient deletion.
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verification (Section 4.1). Further, (iii) we introduce a level-wise interweaved data layout, KiWi+,
that takes into consideration the workload characteristics and the LSM-tuning to identify the op-
timal data layout for each level in an LSM-tree. We present this new hierarchical data layout in
Section 4.3 along with its performance implications. The proposed design pushes the Pareto fron-
tier for the costs of primary reads and secondary range deletes closer to the theoretical optimum,
thereby, improving the overall performance of an LSM-engine significantly. We also (iv) present
the analysis for KiWi+ for tiered LSM-tree designs (Section 4.3), which demonstrates the applica-
bility of Lethe+ in commercial engines such as HBase and Cassandra. Finally, (v) we performed a
large number of new experiments with KiWi and KiWi+ by varying (a) the proportion of empty
and (b) non-empty point lookups, (c) the proportion of short range queries, and (d) the size ratio
of the tree to understand their implications on performance. We further enrich this discussion by
varying (e) the proportion as well as (f) the selectivity of secondary range deletes. We present the
new results in Section 5.

Contributions. Below we present the contributions of the paper.

• We introduce the taxonomy of deletes in modern key-value workloads and highlight the
challenges in realizing the different classes of deletes in LSM-based storage engines.
• We analyze the implications of out-of-place logical deletes on the performance of LSM-
engines (in terms of read performance, space amplification, and write amplification), and
on data privacy (in terms of deletion cost and guarantees on timely data deletion).
• We introduce FADE that ensures efficient and timely persistence of primary deletes without
hurting performance or increasing resource consumption.
• We introduce Key Weaving Storage Layout, an interweaved data layout based on the sort
and delete attributes, that supports efficient secondary range deletes.
• We improve further on the interweaved layout to introduce KiWi+ which takes into account
the workload characteristics and the LSM-tuning to have different data layouts in different
levels on an LSM-tree.
• We present the design of Lethe+ that integrates FADE and KiWi+ in a state-of-the-art LSM-
engine and enables fast deletes with a tunable balance between delete persistence latency
and the overall performance of the system.
• We demonstrate that Lethe+ offers delete latency guarantees, having up to 1.4× higher read
throughput. The higher read throughput is attributed to the significantly lower space am-
plification (up to 9.8× for only 10% deletes) because it purges invalid entries faster. These
benefits come at the cost of 4%–25% higher write amplification.
• Further, we demonstrate that via KiWi+, Lethe+ is the first LSM-based storage engine to
support efficient secondary range deletes while achieving optimal workload execution time.
• Finally, we propose an extension of SQL to support declarative on-demand and retention-
based deletes using either arbitrary or pre-defined delete persistence thresholds.

2 LSM BACKGROUND

This section provides the necessary background on LSM-trees. A more detailed document on LSM-
tree background can be found in [58, 72, 77].

Basics. LSM-trees store key-value pairs, where a key refers to a unique object identifier, and the
data associated with it, is referred to as value. For relational data, the primary key acts as the key,
and the remaining attributes in a tuple constitute the value. As entries are sorted and accessed by
the key, we refer to it as the sort key. For an LSM-tree with L levels, we assume that its first level
(Level 0) is an in-memory buffer and the remaining levels (Level 1 to L − 1) are disk-resident. We
adopt the notations from the literature [26, 58].
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Buffering Inserts and Updates. Inserts, updates, or deletes are buffered in memory. A delete
(update) to a key that exists in the buffer, deletes (replaces) the older key in-place, otherwise the
delete (update) remains in memory to invalidate any existing instances of the key on the disk-
resident part of the tree. Once the buffer reaches its capacity, the entries are sorted by key to form
an immutable sorted run and are flushed to the first disk-level (Level 1). When a disk-level reaches
its capacity, all runs within that level are sort-merged and pushed to the next level. To bound the
number of levels in a tree, runs are arranged in exponentially growing levels on disk. The capacity
of Level i (i ≥ 1) is greater than that of Level i − 1 by a factor ofT , termed the size ratio of the tree.

Compaction Policies: Leveling and Tiering. Classically, LSM-trees support two merging poli-
cies: leveling and tiering. In leveling, each level may have at most one run, and every time a run
in Level i − 1 (i ≥ 1) is moved to Level i , it is greedily sort-merged with the run from Level i , if
it exists. With tiering, every level must accumulate T runs before they are sort-merged. During a
sort-merge (compaction), entries with a matching key are consolidated and only the most recent
valid entry is retained [32, 72, 80]. Recently hybrid compaction policies fuse leveling and tiering
in a single tree to strike a balance between the read and write throughput based on workload
specifications [28, 29].
Partial Compaction. To amortize latency spikes from compactions in larger levels, state-of-the-

art LSM-engines organize runs into smaller files, and perform compactions at the granularity of
files instead of levels [32]. If Level i grows beyond a threshold, a compaction is triggered and one file
from Level i is chosen to be partially compacted with files from Level i+1 that have an overlapping
key-range. Decidingwhich file to compact depends on the file picking policy adopted by the storage
engine design [76, 80]. For instance, to optimize write throughput, we select files from Level i with
minimal overlap with files in Level i + 1, to minimize both write amplification and compaction
time. Partial compactions spread the total number of I/Os performed during compactions of an
entire level over time to multiple smaller compactions [80].

Querying LSM-Trees. A point lookup begins at the memory buffer and traverses the tree from
the smallest disk-level to the largest one. For tiering, within a level, a lookup moves from the most
to the least recent tier. The lookup terminates when it finds the first matching entry. A range
lookup returns the most recent versions of the target keys by sort-merging the qualifying key
ranges across all runs in the tree.

Optimizing Lookups. Read performance is optimized usingBloomfilters (BFs) and fence point-
ers [77]. In the worst case, a lookup needs to probe every run. To reduce this cost, LSM-engines
use one BF per run in main memory [26, 33]. Bloom filters allow a lookup to skip probing a run
altogether if the filter-lookup returns negative. In practice, for efficient storage, BFs are maintained
at the granularity of files [32]. Fence pointers store the smallest key per disk page in memory [26],
to quickly identify which page(s) to read for a lookup, and perform up to one I/O per run for point
lookups. In addition to these, production LSM-engines also maintain fence pointers (also termed
block indexes) for every file to reduce the I/Os needed for point and range queries.

3 THE IMPACT OF DELETES

We now describe the design space of deletes in LSM-trees and analyze their implications on the
performance of a storage engine. Throughout this section, we refer to Figures 2, 3, and 4 to illustrate
the delete design space.

3.1 Delete Design Space

We first present the taxonomy of delete operations in LSM-trees, and then we discuss how deletes
are realized in state-of-the-art LSM-engines [17]. Further, we analyze the implications of deletes
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Fig. 2. An LSM-tree stores data across several levels of exponentially larger capacity. Each level is a collection

of sorted immutable files, each of which contains several pages of data.

on the overall performance of an LSM-engine in terms of space amplification, point and range
lookup performance, write amplification, and write stalls [92]. We also highlight the impact of
out-of-place deletes on data privacy in terms of timely deletion of user data [17, 79].

3.1.1 Primary Deletes. Primary deletes refer to delete operations that are issued on the sort key
of an LSM-based key-value data store. LSM-trees organize the data on disk based on the sort key
(or simply, the key), and deletes issued on a particular key or a key range are common in key-value
workloads [21]. Figure 2 shows a leveled LSM-tree, the structure of a key-value pair, and a tomb-
stone. A key-value pair contains typically many attributes as part of the value, and a tombstone
consists of the (deleted) key and the tombstone flag. In LSM-trees, an entry at Level i is always
more recent than an entry with the same key at Level j, if j > i . LSM-trees exploit this to logi-
cally delete using tombstones that supersede older entries with a matching key. Tombstones are
physically purged only after they reach the last level of an LSM-tree, deleting the target entries in
the intermediate levels during compactions. Primary deletes can be further classified as point and
range deletes based on the number of entries invalidated by the deletion operation.

Point Deletes. A primary point delete operation is realized logically by inserting a point tomb-
stone (or simply, a tombstone) against the key to be deleted (Figure 3). Within the memory buffer,
a tombstone may replace any older entry with a matching key in-place.2 On disk, the tombstones
are stored within a run in sorted order along with other key-value pairs. During compaction, a
tombstone deletes older entries with the same key and is retained as there might be more (older)
entries with the same delete key in subsequent compactions (Figure 3), unless we compact it with
the last level.
Persistence of logical point deletes. A tombstone is eventually discarded during its compaction

with the last level of the tree, making the logical delete persistent. Production-scale LSM-engines
typically employ a partial compaction routine to amortize the cost for compactions and avoid
prolonged write stalls. Once a level reaches a nominal saturation, instead of compacting all data
from that level, the partial compaction routines select a file from that level to be merged with the
overlapping files of the immediately following level. The file is selected in various ways, with the
two most common ways being (a) in a round-robin manner [41] and (b) the one with the lowest
overlap in an attempt to minimize the merging cost [33].

2In practice, whether or not a tombstone replaces a matching entry in place within the buffer, depends on the buffer

implementation. If the buffer is realized as a log, then all entries are preserved until the buffer is flushed.
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Fig. 3. In an LSM-tree, for every tombstone, there can be (a) one matching entry per level for leveling or (b)

one matching entry per tier per level (T per level) for tiering, where T = 3 in this example.

Range Deletes. Deleting using a range of keys is also common in many real-life key-value work-
loads [21, 59]. However, realizing range deletes is non-trivial, as (i) the I/O cost for in-place range
deletes is remarkably high due to write stalls, and (ii) out-of-place range delete solutions bear an
intrinsic trade-off with the cost for both point and range queries. Thus, most production systems
do not support primary range deletes [40, 41, 47, 81, 89]. Some systems, like RocksDB, adopt the
out-of-place solution to support range delete operations by generating special range tombstones
that are stored in a separate range tombstone block within the disk files [33]. In addition, a his-
togram is maintained in memory that stores information on the ranges of deleted keys along with
their deletion-timestamp to ensure query correctness. During data access, every point and range
query must consult this histogram to guarantee that the query result set does not contain any in-
valid data. Thus, while range tombstones allow realizing range deletes efficiently, it comes at the
cost of increased latency for point and range queries [20, 59].

Persistence of logical range deletes. Similar to point deletes, range deletes are persisted when the
files that contain the range tombstones are compacted with the last level of an LSM-tree. Thus, in
practice, a complete full-tree compaction is periodically employed to ensure delete persistence [44].
During such compactions, all reads and writes to the data store are stalled, which results in latency
spikes [20, 59].

Persistence Latency. The latency for persisting a logical delete depends on the workload and
the data size. The left part of Figure 4 illustrates the operation “delete all entries with ID = k”.
Within the system, the operation inserts a tombstone, k∗, that logically invalidates k. On disk,
there might be several entries with a matching key k, and these entries may be located at any level
between 1 and L. Thus, to ensure persistent deletion of all matching entries, k∗ must participate
in L compactions, one at each level of a leveled LSM-tree. Since compactions are triggered when a
level reaches a nominal capacity, the rate of unique insertions is effectively driving the compactions.
The size of a level grows exponentially withT , therefore, a taller tree requires exponentially more
unique insertions to propagate a tombstone to the last level. Figure 4 shows the threshold time for
persisting logical deletes, denoted by Dth , along with the time spent by the tombstone k∗ in every
level of the LSM-tree. Formally, ti denotes the time spent by k∗ in Level i before it is compacted
with Level i+1. Thus,

∑L−1
i=1 ti corresponds to the cumulative time spent by k∗ in the tree before it is
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Fig. 4. The problem space of out-of-place deletes in LSM-trees.

persisted, and thus denotes the delete persistence latency for k∗. State-of-the-art LSM-tree-based
data stores are unable to provide any latency guarantees for delete persistence as ti is typically
driven by factors that are difficult to control. Overall, we observe that the delete persistence latency
depends on (i) the rate of unique insertions, (ii) the current height of a tree, (iii) the size ratio of
a tree, and (iv) the compaction file picking policy. Thus, in practice,

∑L−1
i=1 ti may be significantly

larger than Dth , in effect, violating the requirements for timely persistence of deletes.

Adversarial Workloads. Tombstones may be recycled in intermediate levels of the tree leading
to unbounded delete persistence latency and perpetual retention of invalid entries [20]. For example,
a workload that mostly modifies hot data (in the first few levels) will grow the tree very slowly,
keeping its structure mostly static. Another example is a workload with interleaved inserts and
deletes, with the deletes issued on a few recently inserted entries that are at the smaller levels.
In both cases, a newly inserted tombstone may be recycled in compactions high up the tree that
consolidate entries rather than propagate towards the last level.

3.1.2 Secondary Deletes. We refer to deletes based on an attribute other than the sort key as sec-
ondary deletes. In many practical use cases, we may need to organize data based on a sort key (e.g.,
the RowID), but we have deletes on a different attribute (e.g., timestamp). Secondary point deletes
are not native of key-value workloads. In fact, the most prudent approach to support secondary
point deletes is to construct a secondary index on the (secondary) delete key and convert them
secondary point deletes to primary point deletes. On the other hand, secondary range deletes

are quite common in practice. Consider the operation “delete all entries that are older than D days”,
similar to the second scenario from the introduction. In Figure 2, we highlight the sort key (ID) and
the delete key (timestamp) of a key-value pair. As the entries in a tree are sorted on the sort key,
an entry with a qualifying delete key may be anywhere in the tree, and this delete pattern is not
efficiently supported. Rather, systems often resort to full-tree compactions (right part of Figure 4).

3.1.3 Limitations of the State of the Art. In state-of-the-art LSM-engines, deletes are considered
as “second-class citizens”. In practice, to ensure time-bounded persistence of logical deletes and
to facilitate secondary range deletes, data stores resort to periodic full-tree compaction [24, 44].
However, this is an extremely expensive solution as it involves superfluous disk I/Os, increases
write amplification and results in latency spikes. To reduce excessive I/Os, RocksDB implements a
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file selection policy based on the number of tombstones [33]. This reduces the number of invalid
entries, but it does not offer persistent delete latency guarantees.

3.2 Implications of Out-of-place Deletes

Next, we quantify the implications of out-of-place deletes on read performance, and space and
write amplification.

Model Details.We assume an LSM-tree with size ratioT , that stores N entries across L+ 1 levels.
The size of the memory buffer is M = P · B · E, where P is the number of disk pages in the buffer,
B is the number of entries per page, and E is the average size of an entry. The capacity of this tree
is
∑L

i=0M · T i , where M · T i is the capacity of Level i . The N entries inserted in the tree includes
δp point tombstones and δr range tombstones that have an average selective of σ . Table 1 shows
all the parameters used in our modeling.

3.2.1 Space Amplification. Deletes increase space amplification by (i) the tombstones and (ii)
the invalidated entries (for every key, there might be several invalid versions). Space amplification
increases storage cost and the overhead for data organization (sorting) and processing (read I/Os
during compaction). Commercial databases often report space amplification of about 11% [59],
however, this corresponds to T = 10, a single point in the vast design continuum.

Analysis. Following prior work [28], we define space amplification as the ratio between the size

of superfluous entries and the size of the unique entries in the tree, samp =
csize(N )−csize(U )

csize(U ) ,

where csize(N) is the cumulative size of all entries and csize(U ) is the cumulative size of all
unique entries. Note that samp ∈ [0,∞), and that if all inserted keys are unique there is no space
amplification.

Without Deletes.Assume a workload with inserts and updates (but no deletes) for a leveled LSM-
tree. In the worst case, all entries in levels up to L − 1 can be updates for the entries in Level L,
leading to space amplification O (1/T ). For a tiered LSM-tree, the worst case is when the tiers of a
level overlap, and the first L−1 levels contain updates for Level L. This leads to space amplification
O (T ).

WithDeletes. If the size of a tombstone is the same as the size of a key-value entry, the asymptotic
worst-case space amplification remains the same as that with updates for leveling. However, in
practice, a tombstone is orders of magnitude smaller than a key-value entry. We introduce the
tombstone size ratio λ =

size(tombstone)
size(key-value) ≈

size(key)
size(key)+size(value) , where size(key) and size(value) is the

average size of a key and an entry, respectively. λ is bounded by (0, 1], and a smaller λ implies that
a few bytes (for tombstones) can invalidate more bytes (for key-values) and lead to larger space

amplification given by O (
(1−λ) ·N+1

λ ·T ). For tiering, in the worst case, tombstones in the recent-most

tier can invalidate all entries in that level, resulting in space amplification O ( N
1−λ ).

3.2.2 Read Performance. Point tombstones are hashed to the BFs the same way as valid keys,
and thus increase the false positive rate (FPR) for the filters as well as the I/O cost for point
lookups. Also, the deleted entries cause the range queries to scan invalid data before finding the
qualifying keys. Consider that a range delete with 0.5% selectivity over a 100GB database invali-
dates 500MB, which might have to be scanned (and discarded) during query execution.

Analysis: Point Lookups. A point lookup probes one (or more) BF before performing any disk
I/O. The FPR of a BF depends on the number of bits allocated to the filter in the memory (m) and

the number of entries (N ) hashed into the filter, and is given by e−m/N ·(ln (2))2 . For leveling, the
average worst-case point lookup cost on non-existing entries isO (e−m/N ), and for tiering, the cost
becomesO (T · e−m/N ) [26]. For lookups on existing entries, this cost increases by 1 as the lookup
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Table 1. Lethe+ Parameters

Symbol Description Reference value

N Number of entries inserted in tree (including tombstones) 220 entries

L Number of tree-levels on disk with N entries 3 levels

T Size ratio of the LSM-tree 10
P Size of memory buffer in disk pages 512 disk pages

B Number of entries in a disk page 4 entries
E Average size of a key-value entry 1024 bytes

M Memory buffer size 16 MB

m Total main memory allocated to BFs 10 MB
ϕ False positive rate of BF with N entries in the tree -

I Ingestion rate of unique entries in tree 1024 entries/sec

s Selectivity of a long range lookup -
δp Number of point deletes issued 3 × 105 entries
λ Tombstone size/average key-value size 0.1
δr Number of range deletes issued 103 entries

σ Average selectivity of range deletes 5 × 10−4
Nδ Approximate number of entries after persisting deletes -
Lδ Number of tree-levels on disk with Nδ entries -

ϕδ False positive rate of BF with Nδ entries in the tree -

h Number of disk pages per delete tile 16 disk pages

has to probe at least one page. Since tombstones are hashed into the BFs, retaining tombstones
and invalid entries increases their FPR, thus hurting point lookups.

Analysis: Range Lookups. A range query on the sort key reads and merges all qualifying disk
pages. The I/O cost of a short range query accessing at most two pages per level isO (L) for leveling
andO (L·T ) for tiering. The I/O cost for long range lookups depends on the selectivity of the lookup
range, and isO (s ·N /B) for leveling andO (s ·T ·N /B) for tiering. When answering range queries,
tombstones and invalid entries have to be read and discarded, slowing down the range queries.

3.2.3 Write Amplification. Before being consolidated, an invalid entry may participate in mul-
tiple compactions. Repeatedly compacting invalid entries increases write amplification, which is
particularly undesirable for installations that the durable storage has limited write endurance [59].

Analysis. We define write amplification, wamp as the ratio of the total bytes written on disk that
correspond to unmodified entries to the total bytes written corresponding to new or modified

entries, wamp =
csize(N +)−csize(N )

csize(N ) . N + is the number of all the entries written to disk including

the entries re-written as unmodified after a compaction. For leveling, every entry participates on
average in T /2 compactions per level which makes N + = N · L · T /2. For tiering, every entry is
written on disk once per level, implying N + = N · L. Thus,wamp for leveled and tiered LSM-trees
are given byO (L ·T ) andO (T ), respectively. Note that, as the data size increases, entries participate
in more compactions unmodified including invalid entries further increasing write amplification.

3.2.4 Persistence Latency and Data Privacy. The lack of guarantees in persistence latency has
severe implications on data privacy.With new data privacy protection acts [2, 39] and the increased
protection of rights like the right-to-be-forgotten, data companies are legally obliged to persistently
delete data offering guarantees [31] and rethink the end-to-end data lifecycle [74].
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Analysis.We define delete persistence latency as the worst-case time required, following the inser-
tion of a tombstone, to ensure that the tree is void of any entry with a matching (older) key to that
of the tombstone. This time depends on the insertion rate of unique key-value entries (I ) and the
height of the tree (L−1), and is the time needed to insert the minimum number of unique keys that

is sufficient to trigger enough compactions. For leveling, delete persistence latency is O (T
L−1 ·P ·B

I
)

and for tiering is O (T
L ·P ·B
I

). This shows that for an LSM-tree with a large number of entries (T L)
that is built by an update-intensive workload, the delete persistence latency can be remarkably
high.

3.3 Implications of the Storage Layout

Every file of an LSM-tree is sorted using the sort key. While this supports read, update, and delete
queries on the sort key it cannot support operations on a secondary attribute.

Secondary Range Deletes. Secondary range deletes refer to the operation of deleting a range on
entries based on a delete key that is different from the sort key. In a key-value store, the delete key
is typically part of the “value” field of an entry. As there is no ordering of the entries qualifying for a
secondary range delete operation, they might be scattered across several levels of the tree, across
several files in every level, and across several pages within each file. Thus, such operations can
only be supported by eagerly performing a full-tree compaction. This stalls all write operations,
causing huge latency spikes. The cost incurred by a secondary range delete depends on the total
number of data pages on disk, and is independent of the selectivity of the range delete operation.
Irrespective of the merging strategy, this cost is O (N /B), where B is the page size.

4 PERSISTING DELETES: LETHE
+

DesignGoals. Lethe+ aims (i) to provide persistence guarantees for point and range deletes and (ii)
to enable practical secondary range deletes. We achieve the first design goal by introducing FADE,
a family of delete-aware compaction strategies. We achieve the second goal by introducing Key
Weaving Storage Layout, a new continuum of physical data layouts that arranges entries on disk
in an interweaved fashion based on both the sort and the delete key. Lethe+ achieves these goals
using a minimal amount of extra metadata, without hurting overall performance, while offering
better resource utilization in the presence of deletes.

4.1 FADE

We first introduce the FADE family of compaction strategies that ensures that all tombstones are
persisted within a delete persistence threshold (Dth ). Dth is typically specified by the application
or user [31, 74] as part of the service level agreement (SLA) that concerns the data retention policy.
All data streams bound by the same data retention SLA, have the same delete persistence latency.

4.1.1 Overview. Compactions in LSM-trees influence their behavior by dictating their space am-
plification, write amplification, point and range read performance, and delete persistence latency.
FADE uses additional information about the age of a file’s tombstones and the estimated invalidated
entries per tombstone to ensure that every tombstone adheres to the user/application-providedDth

by assigning to every file a time-to-live (TTL). As long as Dth is respected, FADE offers different
strategies for secondary optimization goals including minimizing write amplification, minimizing
space amplification, or maximizing system throughput.

4.1.2 Time-to-Live. To ensure that all delete operations issued on an LSM-tree are persisted
beforeDth , FADE propagates the tombstones through all intermediate levels to the last level within
that threshold from its insertion. FADE achieves this by assigning a smaller TTL, di , for every file
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in every Level i , such that
∑L−1

i=1 di = Dth (we do not have TTL-based flush for the memtable). By
assigning a TTL for the tombstones of a level, FADE may need to trigger compactions proactively
based on this TTL. We highlight that the number of compactions triggered by FADE depends on how
we break down the delete persistence threshold (Dth) into the level-TTLs (di ). A naïve way to allocate
TTL to the levels in a tree is to use di = Dth/(L − 1). While this may guarantee that a tombstone
reaches the last level withinDth , it also leads to increased compaction time and resource starvation
as larger levels have exponentially more files; hence, a large number of files may exhaust their TTL
simultaneously.While thismay be facilitated through simultaneous compactions using thread- and
storage-level parallelism, in practice, the degree of this parallelism is bounded and limited by the
number of physical computing cores available in a system. Moreover, performing a high number of
compactions concurrently (i) saturates the device bandwidth and (ii) stalls ongoing operations for
long durations, thus increasing tail latency. Hence, to avoid needing a high number of concurrent
compactions for timely deletion, we assign exponentially increasing TTLs to the tree levels moving
downward, and by doing so, we guarantee that the number of files exhausting the respective TTL
remains uniform over time. Below, we prove that this exponential assignment is indeed optimal in
the sense that it minimizes the number of compactions triggered, effectively, reducing the amount
of extra work performed while ensuring timely delete persistence.

Determining the Optimal Allocation Strategy for di . We formulate finding the optimal di
for every level of a tree as an optimization problem. We assume an LSM-tree with L levels on
disk that uses partial compaction, and all intermediate disk levels are always nearly saturated (i.e.,
adding one additional file would cause a level to be saturated). Further, we assume a uniform rate
of ingestion to the database which fills up the LSM-buffer every c time units, triggering a buffer
flush. This means that for an LSM-tree with partial compaction (where every level is always almost
saturated), a buffer flush every c time units triggers a cascade of compactions, moving one file from
each of those levels (except the last one) to the next one. Now, assume that at steady state, Level
i contains fi files (0 < i < L), with fi = f1 · T i−1. Among these, дi (дi ≤ fi ) files are assumed to
have the same age for the oldest tombstone contained in them, and thus, are expected to exhaust
the level TTL (di ) at the same time. Assuming uniform distribution on the ingested keys, we have
дi = д1 ·T i−1, ∀0 < i < L. This is because each file from Level i is expected to overlap with T files
in Level i + 1 in terms of the key domain. All tombstones ingested to the LSM-tree are bound by
the same delete persistence threshold, Dth .
Now the goal of our optimization is to distribute Dth among the L − 1 disk levels so that the

number of compactions triggered by FADE (and not by level saturation) is minimized while ensur-
ing all tombstones reach the last level (and are persistently removed) within Dth . The objective
function can be expressed as follows.

arд min
d1, ...,dL−1

L−1∑
i=1

E
[
#compactions triggered by FADE in Level i

]

s .t .
L−1∑
i=1

di = Dth ,di ≥ 0, ∀i ∈ 1, 2, . . . ,L − 1

(1)

For each Level i , the number of compactions triggered internally by the LSM-tree due to satu-
ration within the level-TTL di is di/c . During compaction, a file from the saturated level is chosen
uniformly and randomly, and thus, for a file that contains a tombstone with timestamp t ≤ di , the
probability that is chosen is 1/fi . However, if it is not chosen after di/c compactions, FADE will
trigger a TTL-based compaction that would move the specific file to Level i + 1. We can treat it as
a Bernoulli distribution with probability (1 − 1/fi )di /c . Now, for the дi similar files in Level i , the
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Fig. 5. FADE persists tombstones within the delete persistence threshold, thus improving overall

performance.

expected number of TTL-driven compactions triggered by FADE is given byдi · (1−1/fi )di /c based
on the linearity of expectation. In other words, we can transform the above objective function as
follows.

arд min
d1, ...,dL−1

L−1∑
i=1

дi ·
(
1 − 1

fi

)di /c
= arд min

d1, ...,dL−1

L−1∑
i=1

д1 ·T i−1 ·
(
1 − 1

f1 ·T i−1

)di /c

Neglecting higher order terms, we approximate (1 − 1
f1 ·T i−1 )

di /c as e
−di /c
f1 ·T i−1 . Further, since д1 is

a constant positive integer, we can write down the Lagrange multiplier as below. We define
L(d1, . . . ,dL−1; λ) as follows:

L(d1, . . . ,dL−1; λ) =
L−1∑
i=1

T i−1 · e
−di /c
f1 ·T i−1 + λ · �

�

L−1∑
i=1

di − Dth
�
�

Next, we take the partial derivative in terms of di and equating it to 0, we have:

T i−1 · e
−di /c
f1 ·T i−1 ·

(
− c

f1 ·T i−1

)
+ λ = − c

f1
· e

−di /c
f1 ·T i−1 + λ = 0

Observe that λ, f1, c,T are constant, and as this equation holds for every di , we further have:

f1
c
· λ = e

−d1
c ·f1 ·T 0 = e

−d2/c
c ·f1 ·T 1 = · · · = e

−dL−1/c
c ·f1 ·T L−2

which indicates that di/T
i−1 should be a constant, and thus, di should grow by a factor of T . This

outlines the optimal allocation strategy for Dth adopted by FADE.

Updating di . For a given tree height, every file is assigned a TTL depending on the level it is being
compacted into. As more data entries are inserted, the tree might grow in height. At that point,
the TTLs throughout the tree have to be updated. Note that di is updated only when a new level is
added to the tree, and as the tree grows in height, updating di becomes exponentially less frequent.
FADE only performs a lightweight check after every buffer flush to check if the height of the tree
has increased. Figure 5 shows how to update di when a new level is added.

4.1.3 FADEMetadata. Tombstones for point deletes are stored along with valid key-value pairs,
and range tombstones are stored in a separate block. In addition to the tombstones, FADE requires
the values of two metrics per file: (i) the age of the oldest tombstone contained (amax ) and (ii) the
estimated invalidation count (b) of the file tombstones. After every flush, a file is assigned with its
current amax and b.
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In practice, LSM-engines store file metadata, including (i) the file creation timestamp and (ii)
the distribution of the entries per file in the form of a histogram. For example, RocksDB assigns a
monotonically increasing insertion-driven sequence number (seqnum) to all entries, and stores the
number of entries (num_entries) and point tombstones (num_deletes) for every file. FADE takes
advantage of this existing metadata. It uses seqnum to compute amax and uses num_entries and
num_deletes to compute b. Thus, in practice, FADE has no additional metadata footprint.

Computing amax . The amax of a file f , termed amax
f

, is the age of the oldest (point or range)

tombstone contained in a file, and is calculated using the difference between the current system
time and time the oldest tombstone of that file was inserted in the memory buffer. File without
tombstones have amax

f
= 0. Storing amax

f
requires one timestamp (8 bytes) per file, a negligible

overhead.

Computingbbb. The estimated number of invalidated entries by the tombstones of a file f , termed
bf , is calculated using (i) the exact count of point tombstones in the file (pf ) and (ii) an estimation of
the entries of the entire database invalidated by the range tombstones of the file (rdf ), as bf = pf +
rdf . It is not possible to accurately calculate rdf without accessing the entire database, hence, we
estimate this value using the system-wide histograms that are already maintained by the data store.
The value of bf is computed on the fly without needing any additional metadata. For a key-domain

bounded in [Kmin ,Kmax ], we have
∫ Kmax

Kmin φ (x )dx = 1, where φ (x ) gives the probability density
function for the keys inserted. We assume φ (x ) remains the same throughout the whole tree. We

estimate the number of keys in a tree within a range (rmin , rmax ) by N ′ ·
∫ rmax

rmin φ (x )dx , where
N ′ denotes the cumulative number of entries in levels i + 1 through L. Thus, for a file in Level 1
that contains q non-overlapping range tombstones, the number of entries to be deleted by the

range tombstones is approximated by N ′ ·∑q
j=1

∫ rmax
j

rmin
j

φ (x )dx . Therefore, as a file gets compacted

and pushed further down the tree, the number of entries that are affected by a range tombstone
decreases exponentially with the tree-level. For a file f in Level i , Equation (2) estimates bf .

b
(i )
f
= pf + N ·

(
1 − 1

T L−i

)
·

q∑
j=1

∫ rmax
j

rmin
j

φ (x )dx (2)

However, in practice, this function may vary across levels due to the presence of point deletes,

range deletes, and secondary range deletes in a workload. In Equation (3), we estimate b (i )
f

using

only the number of logically valid keys in the tree. In practice, we track the number of files per

level, and we just estimate b (i )
f

in a bottom-up manner starting from the last level.

b
(i )
f
= pf +

��
�
N ·
(
1 − 1

T L−i

)
−

L∑
k=i+1

(#files in level k) · b (k )
f

��
�
· T − 1

T
·

q∑
j=1

∫ rmax
j

rmin
j

φ (x )dx (3)

Updating amax and bbb. Similarly to all file metadata, amax and b are first computed when a file
is created after a buffer flush. Thereafter, for newly compacted files, amax and b are recomputed
before they are written back to disk. When a compaction simply moves a file from one disk level
to the next without physically sort-merging (i.e., when there are no overlapping keys), b remains
unchanged and amax is recalculated based on the time of the latest compaction. Note that since all
metadata is in memory, this does not cause an I/O.

4.1.4 Compaction Policies. Compactions ensure that both insert and read costs are amortized.
For every compaction, there are two policies to be decided: the compaction trigger policy and the
file selection policy. State-of-the-art LSM-engines initiate a compaction when a level is saturated
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(i.e., larger than a nominal size threshold) and either pick a file at random, or the one with the
smallest overlap with the subsequent level to minimize the merging cost.

Compaction Trigger. FADE augments the state-of-the-art by triggering a compaction, not only
when a level is saturated, but also when a file has an expired TTL. FADE triggers a compaction in a
level that has at least one file with expired TTL regardless of its saturation. If no TTL has expired,
but a level is saturated, a compaction in that level is triggered.

File Selection. FADE decides which files to compact based on the trigger that invoked it. It has
three modes: (i) the saturation-driven trigger and overlap-driven file selection (SO), which
is similar to the state of the art and optimizes for write amplification, (ii) the saturation-driven
trigger and delete-driven file selection (SD), which selects the file with the highest b to ensure
that as many tombstones as possible are compacted and to optimize for space amplification, and
(iii) the delete-driven trigger and delete-driven file selection (DD), which selects a file with
an expired tombstone to adhere to Dth . A tie in SD and DD is broken by picking the file that
contains the oldest tombstone, and a tie in SO by picking the file with the most tombstones.
In case of a tie among levels, the smallest level is chosen for compaction to avoid write stalls
during compaction. For a tie among files of the same level, FADE chooses the file with the most
tombstones.

4.1.5 Implications on Performance. We now analyze the impact and cost of FADE by quantify-
ing its implications on the performance of the storage engine. FADE guarantees that all point and
range tombstones are persisted by the time their lifetime reaches Dth (∀f ,amax

f
< Dth ). We refer

to the size of the tree as N and to the size of the tree that has all entries persisted within Dth as
Nδ .
Assume that N entries including tombstones corresponding to δp point deletes, and δr range

deletes with an average selectivity σ , are inserted to a tree over an arbitrary duration of d∗ ≥ Dth .
FADE guarantees that after d∗, all point and range deletes d∗ − Dth duration prior to the current
time are persisted. Nδ denotes the total number of entries present the tree after d∗, and as d∗ → ∞
and d∗ >> Dth , Nδ → N − 2δp − (1 + σ ) · δr .
Space amplification. FADE removes tombstones and logically invalidated entries from the tree
on a rolling basis by compacting them in a time-bound fashion. By doing so, it diminishes the
space amplification caused by out-of-place deletes, limiting samp to O (1/T ) for leveling and O (T )
for tiering, even for a workload with deletes.

Write amplification. Ensuring delete persistence within Dth , forces compactions on files with
expired TTLs. Therefore, during a workload execution, initially FADE leads to momentary spikes
in write amplification. The initial high write amplification, however, is amortized over time. By
eagerly compacting tombstones, FADE purges most invalidated entries. Thus, future compactions
involve fewer invalidated entries, leading to smaller write amplificationwhich is comparable to the
state of the art, as we show in Section 5. For an update-heavy workload a single delete invalidates
several entries, and persisting a tombstone faster reduces the superfluous disk I/Os resulting from
re-writing of the invalidated entries.

Read performance. FADE has a marginally positive effect on read performance. By compacting
invalidated entries and point tombstones, FADE reduces the number of entries hashed in the BFs,
leading to smaller overall FPR for a given amount of available memory, hence, the cost for point
lookups on existing and non-existing keys is improved asymptotically (Table 2). In the case that
Nδ entries can be stored in Lδ < L levels on disk, the lookup cost will benefit by accessing fewer
levels. Long range lookup cost is driven by the selectivity of the query, and this cost is lower for
FADE as timely persistence of deletes causes the query iterator to scan fewer invalidated entries.
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Table 2. Comparative Analysis of State of the Art and FADE (� = better, � = worse, • = same, � = tunable)

Metric
State-of-the-art [26, 28] FADE KiWi Lethe+(with FADE and KiWi+ integrated)

Leveling Tiering Leveling Tiering Leveling Tiering Leveling Tiering

Entries in tree O (N ) O (N ) O (Nδ ) � O (Nδ ) � O (N ) • O (N ) • O (Nδ ) � O (Nδ ) �

Space amplification without deletes O (1/T ) O (T ) O (1/T ) • O (T ) • O (1/T ) • O (T ) • O (1/T ) • O (T ) •

Space amplification with deletes O ( (1−λ) ·N+1
λ ·T ) O ( N

1−λ ) O (1/T ) � O (T ) � O ( (1−λ) ·N
λ ·T ) • O ( N

1−λ ) • O (1/T ) � O (T ) �

Total bytes written to disk O (N · E · L ·T ) O (N · E · L) O (Nδ · E · Lδ ·T ) � O (Nδ · E · Lδ ) � O (N · E · L ·T ) • O (N · E · L) • O (Nδ · E · Lδ ·T ) � O (Nδ · E · Lδ ) �

Write amplification O (L ·T ) O (L) O (L ·T ) • O (L) • O (L ·T ) • O (L) • O (L ·T ) • O (L) •

Delete persistence latency O (T
L−1 ·P ·B

I
) O (T

L ·P ·B
I

) O (Dth ) � O (Dth ) � O (T
L−1 ·P ·B

I
) • O (T

L ·P ·B
I

) • O (Dth ) � O (Dth ) �

Zero result point lookup cost O (e−m/N ) O (e−m/N ·T ) O (e−m/Nδ ) � O (e−m/Nδ ·T ) � O (h · e−m/N ) � O (h · e−m/N ·T ) � O (e−m/Nδ ·∏L
i=1T

1
T L−i ) � O (T · e−m/Nδ ·∏L

i=1T
1

T L−i ) �

Non-zero result point lookup cost O (1) O (1 + e−m/N ·T ) O (1) • O (1 + e−m/Nδ ·T ) � O (1 + h · e−m/N ) � O (1 + h · e−m/N ·T ) � O (1 + e−m/Nδ ·∏L
i=1T

1
T L−i ) � O (1 +T · e−m/Nδ ·∏L

i=1T
1

T L−i ) �

Short range point lookup cost O (L) O (L ·T ) O (Lδ ) � O (Lδ ·T ) � O (h · L) � O (h · L ·T ) � O (P ·∑L
i=1T

i/hi ) � O (P ·∑L
i=1T

i+1/hi ) �

Long range point lookup cost O ( s ·N
B

) O (T ·s ·N
B

) O ( s ·Nδ

B
) � O (T ·s ·Nδ

B
) � O ( s ·N

B
) • O (T ·s ·N

B
) • O ( s ·Nδ

B
) � O (T ·s ·Nδ

B
) �

Insert/Update cost O ( L ·T
B
) O ( L

B
) O ( Lδ ·T

B
) � O ( Lδ

B
) � O ( L ·T

B
) • O ( L

B
) • O ( Lδ ·T

B
) � O ( Lδ

B
) �

Secondary range delete cost O (N /B) O (N /B) O (Nδ /B) � O (Nδ /B) � O ( N
B ·h ) � O ( N

B ·h ) � O ( Nδ

B ·h ) � O ( Nδ

B ·h ) �

PersistenceGuarantees. FADE ensures that all tombstones inserted into an LSM-tree and flushed
to the disk will always be compacted with the last level within the user-definedDth threshold. Any
tombstone retained in the write-ahead log (WAL) is consistently purged if the WAL is purged
at a periodicity that is shorter than Dth , which is typically the case in practice. Otherwise, we use
a dedicated routine that checks all live WALs that are older than Dth , copies all live records to a
new WAL, and discards the records in the older WAL that made it to the disk.
In practice, the attained threshold might be Dth + ϵ , as Lethe+ can trigger TTL-driven com-

pactions only after every buffer flush. Thus, systems use as threshold Dth − ϵ to ensure timely
delete persistence. The value of ϵ depends on the frequency of buffer flushes from the memory
which is a function of the ingestion rate of entries (or unique entries, if entries are updated in
place within the buffer). FADE ensures that all tombstones inserted in a tree are compacted with
the last tree-level within a given time duration that is specified by the deletes persistence latency.
The key enabling components that allow FADE to achieve this are (i) a TTL for every tree-level
that is tuned based on the design of a data store and (ii) a new compaction trigger and file picking
policy that greedily compacts files that have an expired TTL. The complete algorithm for FADE is
presented in Algorithm 1.

Practical Values for Dt h . The delete persistence threshold of different applications vary widely.
In commercial systems, LSM-engines are forced to perform a full-tree compaction every 7, 30, or
60 days based on the SLA requirements [44].

Blind Deletes. A tombstone against a key that does not exist or is already invalidated causes a
blind delete. Blind deletes ingest tombstones against keys that do not exist in a tree, and these
superfluous tombstones affect the performance of point and range queries [44]. This incurs addi-
tional storage overhead, reduces the accuracy of the Bloom filters of the files that will carry this
tombstone to the last level during its lifetime, and leads to unnecessary re-writes increasing the
amortized write amplification. In addition, excessive tombstones adversely affect range queries, as
the range query iterator has to go over all data, including invalid entries and tombstones of the
value range, before discarding the unnecessary entries [44].

A simple solution to avoid blind deletes is to perform a point lookup on the target key, and insert
a tombstone only if the lookup reports a positive match. This, however, requires at least one I/O
for every delete issued on existing key, and up to O (1 + e−m/N ) for leveling and O (1 +T · e−m/N )
I/Os for tiering in the average worst-case. To avoid blind deletes, FADE probes the corresponding
BFs and inserts a tombstone only if the filter probe returns positive. Thus, FADE may insert only
a very small fraction of blind deletes driven by the FPR.

4.2 Key Weaving Storage Layout (KiWi)

To facilitate secondary range deletes, we introduce KiWi, a continuum of physical storage layouts
that arranges the data on disk in an interweaved sorted order on the sort key and delete key.
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ALGORITHM 1: FADE
Input : delete persistence latency (Dth ); levels in tree (Lold ); size ratio (T ); size of memory buffer (M )

FADE():

begin

Lnew = getCurrentTreeLevel()

d0 = 0

if Lnew > Lold then

for i ∈ [1 : Lnew − 1] do
di = di−1 + Dth · (T − 1)/(T Lnew−1 − 1) · T i−1

for i ∈ [1 : Lnew − 1] do
csize(i) = 0, t t li = 0, capi = M · T i

for j ∈ [1 : getFileCountInLevel(i)] do
csize(i) += size(j)

if di < aдej then
t t li++

score[i] = csize(i)/capi + t t li

compact_level = getLevelToCompact(score[])

compact_f ile = getFileToCompact(compact_level)
initiate compaction with compact_f ile

getLevelToCompact(score[]):

begin

c_level = score[0]

for i ∈ [1 : Lnew − 1] do
if score[i] > score[i − 1] then

c_level = i

return c_level

getFileToCompact(compact_level):

begin

j = 0

for i ∈ [1 : getFileCountInLevel(compact_level)] do
if dcompact_level ≥ aдei then

return f [j]

else

f _aдe[j++] = aдei
f _density[j++] = bi

return f [0]

KiWi supports secondary range deletes without performing a full-tree compaction, at the cost of
minimal extra metadata and a tunable penalty on read performance.

4.2.1 The Layout. Figure 6 presents the internal structure of KiWi. Essentially, KiWi adds one
new layer in the storage layout of LSM trees. In particular, in addition to the levels of the tree, the
files of a level, and the page of a file, we now introduce delete tiles that belong to a file and consist
of pages. In the following discussion, we use S to denote the sort key and D for the delete key.

Level Layout.The structure of the levels remains the same as that of the state-of-the-art LSM trees.
Every level is a collection of files containing non-overlapping ranges of S. The order between files
in a level follows S. Formally, if i < j, all entries in file i have smaller S than those in file j.

File Layout. The contents of the file are delete tiles, which are collections of pages. Delete tiles
contain non-overlapping ranges of S, hence from the perspective of the file, the order of the delete
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Fig. 6. Key Weaving Storage Layout stores data in an interweaved fashion on the sort and delete key to

facilitate efficient secondary range deletes without hurting read performance.

tiles also follows S. Formally, if k < l , all entries in delete tile k have smaller S than those in
file l .

Delete Tile Layout. Contrary to the above, the pages of a delete tile are sorted on D. Formally,
for p < q, page p of a given delete tile contains entries with smallerD than page q, while we have
no information about S. Organizing the contents of a tile ordered on the delete key D allows us
to quickly execute range deletes because the entries under deletion are always clustered within
contiguous pages of each tile, which can be dropped in their entirety.

Page layout. The order of entries within each page does not affect the performance of secondary
range deletes, however, it significantly affects lookup cost, once a page is fetched to memory. To
facilitate quick in-memory searches within a page [87], we sort the entries of each page based onS.

4.2.2 Facilitating Secondary Range Deletes. KiWi exploits the fact that within a delete tile, the
disk pages are sorted on the delete key. Hence, the entries targeted by a secondary range delete
populate contiguous pages of each tile (in the general case of every tile of the tree). The benefit of
this approach is that these pages can be dropped without having to be read and updated. Rather,
they are removed from the otherwise immutable file and released to be reclaimed by the underlying
file system. We call this a full page drop. Pages containing entries at the edge of the delete range
might also contain some valid entries. These pages are read to memory, and the valid entries are
identified with a tight for-loop onD (since they are sorted on S). We call these partial page drops.
The cost of reading and re-writing these pages is effectively the I/O cost of secondary range deletes
with KiWi. In practice, the number of partially dropped pages is limited to one page per delete tile
on average. The KiWi algorithm is presented in Algorithm 2.

4.2.3 Tuning and Metadata. We now discuss the tuning knobs and the metadata of KiWi.

Delete Tile Granularity. Every file contains a number of delete tiles, and each tile contains a
number of pages. The basic tuning knob of KiWi is the number of pages per delete tile (h), which
affects the granularity of delete ranges that can be supported. For a file with P disk pages, the
number of delete tiles per file is P/h. The smallest granularity of a delete tile is when it consists
of only a single disk page, i.e., for h = 1. In fact, h = 1 creates the same layout as the state of the
art, as all contents are sorted on S and every range delete needs to update all data pages. As h
increases, delete ranges with delete fraction close to 1/h will be executed mostly by full drops. On
the other hand, for higher h read performance is affected. The optimal decision for h depends on
the workload (frequency of lookups and range deletes), and the tuning (memory allocated to BFs
and size ratio).
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ALGORITHM 2: KiWi
Input : FPR of BFs (ϕδ ); file size (fsize ); frequency of empty point queries (fEPQ ); frequency of non-empty point

queries (fPQ ); frequency of short range queries (fSRQ ); frequency of secondary range deletes (fSRD )

KiWi(file f , source level Li):

begin

hopt = GetDeleteTileGranularity()

select set of files F from target level Li+1 overlapping with f

Merge all keys in F and repartition them as a set of files, F ′, each of size fsize
for fj ∈ F ′ do

for every consecutive hopt entries in fj do

sort entries based on delete key D and partition into P pages

for each page in P do
sort entries based on sort key S

persist F ′ to Li+1 on disk

if Li+1 exceeds capacity then

FADE()

choose file fnext from level Li+1 for compaction

KiWi(fnext , Li+1)

GetDeleteTileGranularity():

begin

levels = getCurrentTreeLevel()

paдes = getCurrentPageCountInTree()

hopt = 1

if fSRD ≥ 1 then

hopt = ((fSRD · paдes )/(ϕδ · levels · (fEPQ + fPQ ) + levels · fSRQ ))0.5

return round (hopt )

Bloom Filters and Fence Pointers. We next discuss Bloom filters and fence pointers in the
context of KiWi.
Bloom filters. KiWi maintains BFs on S at the granularity of disk page. Maintaining separate BFs

per page requires no BF reconstruction for full page drops, and light-weight CPU cost for partial
page drops. The same overall FPR is achieved with the same memory consumption when having
one BF per page, since a delete tile contains no duplicates [13].
Fence pointers. KiWi maintains fence pointers on S that keep track of the smallest sort key for

every delete tile. Fence pointers on S, aided by the BFs, accelerate lookups. To support secondary
range deletes, for every delete tile, KiWi maintains in memory a separate fence pointer structure
on D. We refer to this as delete fence pointers. The delete fence pointers store the smallest D of
every page enabling full page drops of the corresponding pages without loading and searching the
contents of a delete tile.

Memory Overhead. While KiWi does not require any additional memory for BFs, it maintains
two fence pointer structures – one onS per delete tile and one onD per page. Since the state of the
art maintains fence pointers onS per page, the space overhead for KiWi is the additional metadata
per tile. Assuming sizeo f (S) and sizeo f (D) are the sizes in bytes for S and D respectively, the
space overhead is:

MemKiW i −MemSoA

= N
B ·h · sizeo f (S) +

N
B
· sizeo f (D) − N

B
· sizeo f (S)

= #delete_tiles · (sizeo f (S) + h · (sizeo f (D) − sizeo f (S))) ,
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whereMemSoA andMemKiW i represents the memory overhead due to BFs and fences pointers in
the state-of-the-art LSM-engnies and in KiWi, respectively. Note that if sizeo f (S) = sizeo f (D),
the space overhead for KiWi is only one sort key per delete tile, and if sizeo f (D) < h−1

h
·sizeo f (S),

KiWi could lead to less overall size of metadata.

4.2.4 CPUOverhead. KiWi navigates an intrinsic trade-off between the CPU cost for additional
hashing for Bloom filters and the I/O cost associated with data movement to and from disk. For
non-zero result point queries, KiWi performs L ·h/2 times more hash calculations compared to the
state of the art, and L · h times in case of zero-result point queries. In practice, commercial LSM-
engines, such as RocksDB, use only a single MurmurHash hash digest to calculate which Bloom
filter bits to set [59, 91]. This reduces the overall cost of hash calculation by almost one order of
magnitude. We measured the time to hash a single 64-bit key using the MurmurHash to be 80ns ,
which is significantly smaller than the SSD access latency of 100μs [66]. This allows Lethe+ to
strike a navigable trade-off between the CPU and I/O costs, and for the optimal value of h, Lethe+

achieves a significantly superior overall performance as compared to the state of the art.

4.2.5 Implications on Performance. KiWi offers a tunable trade-off between the cost of sec-
ondary range deletes and that of lookups, but does not influence write performance (including
space and write amplifications).

Point Lookup. A point read follows the same search algorithm as in the state of the art [27]. In
every level, a lookup searches the fence pointers (on S) to locate the delete tile that may contain
the search key. Once a delete tile is located, the BF for each delete tile page is probed. If a probe
returns positive, the page is read to memory and binary searched, since the page is sorted on S. If
the key is found, the query terminates. If not, the I/O was due to a false positive, and the next page
of the tile is fetched. The I/O cost for a query on an existing entry isO (1 + h · e−m/N ) for leveling
andO (1+T ·h · e−m/N ) for tiering. A zero-result lookup, however, has to read all the pages within
a delete tile in the worst case, and the cost for this in leveling and tiering is given byO (h · e−m/N )
and O (h · e−m/N ·T ), respectively.
Range Lookup. In general, a range lookup may span several delete tiles spread in one or more
consecutive files. KiWi affects the performance of range lookups only at the terminal delete tiles
that contain the bounds on the range – all delete tiles in between that are subsumed by the range
always need to be read to memory. For the terminal delete tiles, the lookup needs to scan on
average h/2 more pages per tile instead of only the qualifying pages. Thus, the cost of short range
lookups for KiWi becomesO (h · L) for leveling andO (h · L ·T ) for tiering. For long range lookups,
the increase in cost gets amortized over the number of qualifying delete tiles, and remains the
same asymptotically, i.e., O (s · N /B) and O (T · s · N /B) for leveling and tiering, respectively.

Secondary Range Lookups.With the interweaved layout, KiWi can also support efficient range
lookups on the delete key. While state-of-the-art LSM-engines need to maintain a secondary index
on the delete key, they still pay a heavy cost for scanning acrossmany scattered pages. KiWi utilizes
the ordering of the data on the delete key and can realize secondary range queries at a much lower
I/O cost.

4.2.6 Navigable Design. A fundamental design goal for KiWi is to navigate the trade-off be-
tween the cost of secondary range deletes and lookups. KiWi offers a navigable continuum of storage
layouts that can be tuned to obtain the optimal value for h based on the workload characteristics
and performance requirements. Assuming that the workload can be described by the fractions
of (a) empty point queries fEPQ , (b) non-empty point queries fPQ , (c) short range queries fSRQ ,
(d) long range queries fLRQ with selectivity s , (e) secondary range deletes fSRD , and (f) ingestion
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operations (i.e., inserts, updates, and deletes) fI , we can compare the cost running this workload
for Lethe+ and the state of the art.

Cost for State of the Art.We plug in the average worst-case cost in Equation (4) based on Table
2 to estimate the I/O cost for running a workload in a state-of-the-art LSM-engine [26–29, 33, 34,
41, 44, 89].

CostSoA = fEPQ · ϕ · L + fPQ · (1 + ϕ · L) + fSRQ · L + fLRQ · s · N /B + fSRD · N /B
+ fI · L ·T /B (4)

Note that the cost of point queries depends on the FPR of Bloom filters, denoted by ϕ. The value of
ϕ depends on the implementation of the Bloom filters, i.e., the amount of memory assigned to the
filters, which in turn, affects its FPR. State-of-the-art LSM-based production systems [33, 34, 41,
44, 89] assume a fixed number of memory (bits-per-entry) for all Bloom filters in a tree, and thus,

have a fixed FPR for all levels in a tree, given as ϕ = e−
bits

entr ies
·ln(2)2 . For systems that implement

optimal memory distribution by allocating optimal bits-per-entry to the Bloom filters of each level
in an LSM-tree [26–29], the FPR for the tree is computed as:

ϕ =
T

T
T−1

T
· e−

bits
entr ies

·ln(2)2 (5)

As these systems do not implement delete tiles (i.e., h = 1), the costs do not depend on h.

Cost for KiWi. In contrast, the cost of queries and secondary range deletes in KiWi depends on
the delete tile granularity, h, and the overall workload execution cost is computed as shown in
Equation (6).

CostKiW i = fEPQ · ϕδ · Lδ · h + fPQ · (1 + ϕδ · Lδ · h) + fSRQ · Lδ · h + fLRQ · s · Nδ /B

+fSRD · Nδ /(B · h) + fI · Lδ ·T /B (6)

As discussed in Section 4.2.5, in the worst case, the cost of empty point lookups and short range
queries increases by a factor of h, whereas that for secondary range deletes diminishes by a factor
of h, in the worst case. ϕδ denotes the false positive rate of the BFs when the logically invalidated
entries are purged in a time-bound manner (i.e., within Dth ) by FADE. The cost for non-empty
point lookups is influenced marginally in the presence of BFs as lookups on existing keys must
always perform one disk I/O to fetch the page containing the target entry. KiWi can support any
Bloom filter implementation.

Optimal Delete Tile Granularity for KiWi. For workloads with secondary range deletes, KiWi
can tune the storage layout to find the optimal value for the delete tile granularity. This is achieved
by using the frequency of point and short range read operations relative to the frequency of sec-
ondary range deletes, as the cost of ingestion and long range queries is not a function of h. In order
to find the optimal value of h, we minimize the cost of KiWi. We begin by re-writing Equation (6)
as follows.

CostKiW i = h · [ϕδ · Lδ · ( fEPQ + fPQ ) + fSRQ · Lδ ] +
1

h
· Nδ

B
· fSRD +

Nδ

B
· s · fLRQ +

T

B
· Lδ · fI

= Q1 · h +Q2/h +C1 (7)

where Q1 = ϕδ · Lδ · ( fEPQ + fPQ ) + fSRQ · Lδ and Q2 = Nδ /B · fSRD are the quotients of the
terms depending on h and C1 = Nδ /B · s · fLRQ +T /B · Lδ · fI is the sum of the remaining terms
independent of h. Next, we differentiate Equation (7) with respect to h to minimize the cost.

∂CostKiW i

∂h
= Q1 −Q2/h

2 (8)
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The minimum cost that leads to the optimal delete tile granularity, h∗, is given by:

h∗ =
√
Q2/Q1 =

(
fSRD · Nδ /B

ϕδ · Lδ · ( fEPQ + fPQ ) + Lδ · fSRQ

)1/2
(9)

The optimal delete tile granularity computed based on Equation (9) is rounded off to its nearest
integer with the bounds for h∗ being [1, P], where P is the number of pages in a file. Equation (9)
also shows that the data layout proposed by KiWi depends only on (i) the proportions of lookups
and secondary range deletes in a workload, (ii) the number of entries in a tree (levels) and (iii)
in each disk page, (iv) the size ratio of the tree, and (v) the FPR of the Bloom filters. Thus, for
a fixed LSM tuning, KiWi is only affected by three workload parameters, the frequency of point
lookups, short range queries, and secondary range delete parameters. The Pareto frontier for KiWi
is constructed by the relative proportion of (short) reads and secondary range deletes in a workload.

4.3 Level-Wise Key Weaving Storage Layout (KiWi+)

We now go one step further than KiWi to push the Pareto frontier constructed by the costs of
(short) reads and secondary range deletes. We introduce KiWi+ that applies KiWi on a per-level
basis to find the optimal data layout for each level of an LSM-tree. KiWi+ takes into account that the
non-empty point lookups may terminate early, i.e., at any intermediate level of a tree, and further
enhances the non-empty point lookup performance while retaining all the benefits of KiWi.

4.3.1 The KiWi+ Layout. The data layout principles for KiWi+ remain the same as that of KiWi,
as shown in Figure 6. However, unlike KiWi, where the number of pages in each delete tile (h∗)
is the same regardless of which tree-level the tile belongs to, the delete tile granularity for each
level may be different in KiWi+, subject to the (specification and temporality of the) workload and
LSM tuning. The intuition is that the capacity of shallower levels in a tree is exponentially decreas-
ing, and thus their impact of the secondary range lookup performance is significantly smaller the
impact of the larger levels. Moreover, for workloads with even a small degree of temporality, the
expected number of non-empty point lookups terminating early at a shallower level is significantly
higher. Driven by these LSM-properties, KiWi+ optimizes the overall performance of an LSM-tree
by finding the optimal delete tile granularity for each level separately.

Delete Tile Granularity. The basic tuning knob for KiWi+ is hi , which denotes the delete tile
granularity for Level i in a tree. The number of delete tiles in a file in Level i , therefore, becomes
P/hi , and hi ∈ [1, P]. The intuition is that shallower levels, which hold fewer entries, are ex-
pected to serve a relatively larger proportion of non-empty point lookups, and thus, the delete tile
granularity will be smaller. A smaller hi for shallower levels will boost the point lookup perfor-
mance significantly for both empty and non-empty queries, and its impact on the secondary range
lookup performance is expected to be marginal. The complete algorithm for KiWi+ is presented in
Algorithm 3.

4.3.2 Memory Overhead. The Bloom filter implementation for KiWi+ remains the same as that
in the state of the art (and KiWi). However, by having a smaller delete tile granularity for shallower
levels, KiWi+ reduces thememory overhead due to fence pointers. In particular, as KiWi+ has fewer
delete tiles overall as compared to KiWi, it reduces the memory required for delete fence pointers
which are maintained at the granularity of delete tile.

MemKiW i+ −MemSoA = P ·
L∑
i=1

T i

hi
· sizeo f (S) + N

B
· sizeo f (D) − N

B
· sizeo f (S) (10)
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whereMemSoA andMemKiW i+ represent the memory overhead due to BFs and fences pointers for
the state of the art and KiWi, respectively. In practice, as KiWi+ has fewer delete tiles overall as
compared to KiWi, it reduces the memory required for delete fence pointers which are maintained
at the granularity of delete tile.

4.3.3 CPU Overhead. KiWi+ reduces the CPU overhead by reducing the average number of
Bloom filter probes performed for point lookups. For shallower levels with smaller delete tile gran-
ularity, we expect the amount of filter probes per point lookup to reduce in KiWi+ as compared
with KiWi. Theoretically, KiWi+ performs

∑L
i=1 hi/2 disk I/Os on average for non-empty point

lookups and twice that number for empty point lookups.

4.3.4 Implications on Performance. While the ingestion and long range lookup performance of
KiWi+ remains the same as those of KiWi, KiWi+ strikes a better balance between the cost of
secondary range deletes and that of (short) lookups.

Point Lookup. Point lookups are realized significantly faster in KiWi+ while performing few
disk I/Os. With different delete tile granularity at different levels of a tree, the average worst-
case cost for non-empty point lookups in KiWi+ is given as O (1 +

∑L−1
i=1 hi · ϕi ) for leveling and

O (1 +T ·∑L−1
i=1 hi · ϕi ) for tiering. For empty point lookups this cost is given asO (

∑L
i=1 hi · ϕi ) for

leveling and O (T ·∑L
i=1 hi · ϕi ) for tiering.

Range Lookup. The long range lookup performance for KiWi+ remains the same as that for the
state of the art (and KiWi). However, the short range lookup performance is affected by the delete
tile granularity, as a short range lookupmay have to read up tohi pages per level on average before
constructing the result set. Thus, the cost for short range lookups for KiWi+ becomes O (

∑L
i=1 hi )

for leveling and O (T ·∑L
i=1 hi ) for tiering.

KiWi+ is essentially a design superset of KiWi, hence, when tuned optimally based on the work-
load characteristics, KiWi+ offers better overall performance compared to KiWi.

4.3.5 Navigating the Trade-Off with KiWi+. With the level-wise key interweaved layout, KiWi+

can navigate the trade-off between (short) lookups and secondary range deletes elegantly while
improving the overall performance of an LSM-based storage engine. KiWi+ offers a navigable
continuum of storage layouts that can be tuned to extract maximum performance from LSM-based
storage engines if the workload characteristics and performance requirements are known a priori.
Below, we show how we obtain the level-wise optimal delete tile granularity with KiWi+ and how
that compares against the state of the art.

Cost for KiWi+. The costs of point and short range lookups and that of secondary range deletes
in KiWi+ depend on the delete tile granularity for each level of the tree. Equation (11) shows the
expected cost (in terms of disk I/Os) for Level i (1 ≤ i ≤ L) of a tree while executing a workload.

CostKiW i+i
= fEPQ · ϕδ · hi + fPQ · [Ei · (1 + ϕδ · (hi − 1)/2) + (1 − Ei − E ′i ) · ϕδ · hi ]

+fSRQ · hi + fLRQ · s · P ·T i + fSRD · P ·T i/hi + fI ·T /B (11)

where Ei and E ′i are defined as follows. A non-empty point lookup terminates in Level i with
probability Ei ; in a level earlier than Level i with probability E

′
i , andwith probability E

′′
i = 1−Ei−E ′i

in levels following Level i . The total workload executing cost can be estimated as
∑L

i=1CostKiW i+i
.

Computing the Probability of a Query Terminating in a Given Level. For a workload that
has the same ingestion and point lookup distributions, the probability terms Ei , E

′
i , and E

′′
i can be

estimated as follows.

Ei =
T i∑L
j=0T

j
E ′i =

i−1∑
k=0

Ek =

∑i−1
j=0T

j

∑L
j=0T

j
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ALGORITHM 3: KiWi+

Input : FPR of BFs (ϕδ ); file size (fsize ); size ratio of the tree (T ); frequency of empty point queries (fEPQ );

frequency of non-empty point queries (fPQ ); frequency of short range queries (fSRQ ); frequency of

secondary range deletes (fSRD )

KiWiPlus(file f , source level Li):

begin

h
opt
i = GetDeleteTileGranularityPlus(i + 1)

select set of files F from target level Li+1 overlapping with f

Merge all keys in F and repartition them as a set of files, F ′, each of size fsize
for fj ∈ F ′ do

for every consecutive h
opt
i entries in fj do

sort entries based on delete key D and partition into P pages

for each page in P do
sort entries based on sort key S

persist F ′ to Li+1 on disk

if Li+1 exceeds capacity then
FADE()
choose file fnext from level Li+1 for compaction

KiWiPlus(fnext , Li+1)

GetDeleteTileGranularityPlus(i):

begin

h
opt
i = 1

if fSRD ≥ 1 then

Ei = T
i /
∑L
j=0 T

j

E
′′
i =
∑L
j=i+1T

j /
∑L
j=0 T

j

h
opt
i = ((fSRD · P · T i )/(ϕδ · (fEPQ + fPQ · E

′′
i ) + ϕδ · fPQ · Ei /2 + fSRQ ))0.5

return round (h
opt
i )

For a tree with partial compactions, as all levels are always nearly saturated, the number of entries
in Level i is T times larger than that in Level i − 1 (1 ≤ i ≤ L). Thus, Ei and E ′i can be estimated
by the fraction of data contained in Level i and the cumulative fraction of data contained in Level
0 through Level i − 1, respectively. The probability the target entry is found at a level larger than
Level i , i.e., E ′′i , can be simply computed as complementary probability of Ei +E

′
i , as shown below.

E ′′i = 1−Ei−E ′i = 1− T i∑L
j=0T

j
−
∑i−1

j=0T
j

∑L
j=0T

j
= 1−

T i +
∑i−1

j=0T
j

∑L
j=0T

j
=

∑L
j=0T

j −T i −∑i−1
j=0T

j

∑L
j=0T

j
=

∑L
j=i+1T

j

∑L
j=0T

j

Optimal Delete Tile Granularity for KiWi+. In order to find the optimal value of hi for each
level, we minimize the per-level cost of KiWi+. We begin by re-writing Equation (11) as follows.

CostKiW i+i
= fEPQ · ϕδ · hi + fPQ · [Ei · (1 + ϕδ · (hi − 1)/2) + (1 − Ei − E ′i ) · ϕδ · hi ]

+ fSRQ · hi + fLRQ · s · P ·T i + fSRD · P ·T i/hi + fI ·T /B
= hi · [fEPQ · ϕδ + fPQ · E ′′i · ϕδ + fPQ · Ei · ϕδ /2 + fSRQ ] + fSRD · P ·T i/hi

+ fLRQ · s · P ·T i + fI ·T /B
= Q3 · hi +Q4/hi +C2 (12)

whereQ3 = fEPQ ·ϕδ + fPQ ·E ′′i ·ϕδ + fPQ ·Ei ·ϕδ /2+ fSRQ andQ4 = fSRD ·P ·T i are the quotients
of the terms depending on hi and C2 = fLRQ · s · P ·T i + fI ·T /B is the sum of the terms that are
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independent of hi . Differentiate Equation (7) with respect to hi , we get:

∂CostKiW i+i

∂hi
= Q3 −Q4/h

2
i (13)

The optimal delete tile granularity for Level i , h∗i , is computed as follows.

h∗i =
√
Q4/Q3 =

(
fSRD · P ·T i

ϕδ · ( fEPQ + fPQ · E ′′i ) + ϕδ · fPQ · Ei/2 + fSRQ

)1/2
(14)

4.4 Extending KiWi and KiWi+ for Tiered LSMs

We now show how we can apply the interweaved data layout of KiWi and KiWi+ to tiered LSM-
tree variants. For this, we update the costs of point lookup, range lookup, and data ingestion, based
on Table 2. The optimality analysis stays almost the same as that of a leveled LSM-tree.

4.4.1 KiWi for Tiered LSMs. First, we present the analysis for KiWi, where we have a fixed
delete tile granularity (h) across all levels of the tree. The costs of running the workload with
a state-of-the-art tiered LSM-tree and for a tiered LSM-tree with KiWi data layout are given by
Equation (15) and (16), respectively.

CostSoA = fEPQ ·T · ϕ + fPQ · (1 +T · ϕ) + fSRQ ·T · L + fLRQ ·T · s · N /B + fSRD · N /B + fI · L/B (15)

CostKiW i = fEPQ ·T · ϕδ · h + fPQ ·T · (1 + ϕδ · h) + fSRQ ·T · Lδ · h + fLRQ ·T · s · Nδ /B

+fSRD · Nδ /(B · h) + fI · Lδ /B (16)

Re-arranging Equation (16), we have:

CostKiW i = h · [ϕδ ·T · ( fEPQ + fPQ ) + fSRQ ·T · Lδ ] +
1

h
· Nδ

B
· fSRD

+
Nδ

B
· s ·T · fLRQ +

1

B
· Lδ · fI + fPQ ·T

= Q1 · h +Q2/h +C1 (17)

where Q1 = ϕδ · T · ( fEPQ + fPQ ) + fSRQ · T · Lδ and Q2 = Nδ /B · fSRD are the quotients of the
terms dependent on h and C1 = Nδ /B · s ·T · fLRQ + 1/B · Lδ · fI + fPQ ·T . Next we re-apply the
optimization technique in Equation (9) to obtain the optimal delete tile granularity (h∗):

h∗ =
√
Q2/Q1 =

(
fSRD · Nδ /B

ϕδ ·T · ( fEPQ + fPQ ) + Lδ ·T · fSRQ

)1/2
(18)

This shows that h∗ in the leveling layout should be as
√
T× larger than the tiering layout.

4.4.2 KiWi+ for Tiered LSMs. Lastly, we compute the optimal level-wise delete tile granularity
for KiWi+. For this, we revise Equation (11) as follows.

CostKiW i+i
= fEPQ ·T · ϕδ · hi + fPQ ·T · [Ei · (1 + ϕδ · (hi − 1)/2) + (1 − Ei − E ′i ) · ϕδ · hi ]

+ fSRQ ·T · hi + fLRQ ·T · s · P ·T i + fSRD · P ·T i/hi + fI · 1/B
= hi ·T · [fEPQ · ϕδ + fPQ · E ′′i · ϕδ + fPQ · Ei · ϕδ /2 + fSRQ ] + fSRD · P ·T i/hi

+ fLRQ ·T · s · P ·T i + fI · 1/B
= Q3 · hi +Q4/hi +C2 (19)
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where Q3 = fEPQ · T · ϕδ + fPQ · E ′′i · ϕδ + fPQ · Ei · ϕδ /2 + fSRQ and Q4, C2 remain the same as
Equation (12). We then re-apply the minimization Equation (14) to derive

h∗i =
√
Q4/Q3 =

1
√
T
·
(

fSRD · P ·T i

ϕδ · ( fEPQ + fPQ · E ′′i ) + ϕδ · fPQ · Ei/2 + fSRQ

)1/2
(20)

The result is consistent with the conclusion we have for KiWi, that is, h∗i in the leveling layout

should be
√
T× larger than the tiering layout.

4.5 Lethe
+

Lethe+ puts together the benefits of FADE and KiWi+ to better support deletes in LSM-trees. For
a given workload and a persistence delete latency threshold, Lethe+ offers maximal performance,
by carefully tuning the cost of persistent deletes, and their impact on the overall performance of
the system. The key tuning knobs are (i) the delete persistence threshold (Dth ) and (ii) delete tile
granularity for the L levels of the tree (hi ). The delete persistence threshold is specified as part of
the data retention SLA, and Lethe+ sets the TTL for the tree-levels to ensure timely persistence.

For a workload with secondary range deletes, Lethe+ tunes the storage layout to find the optimal
value for the delete tile granularity using the frequency of read operations relative to the frequency
of secondary range deletes. In order to find the optimal value of hi for each level, we minimize the
cost of Lethe+ as presented in Equation (14).

For example, for a 400GB database with 1KB entry size, 4KB page size, and 1MB buffer/file size,
if between two range deletes we execute 50M point queries of any type, 10K short range queries,
and have ϕ = 0.0082 and T = 10, using Equation (14), we have that the optimal values of hi are:
h1 = h2 = 2, h3 = 7, h4 = 18, h5 = 29, and h6 = 36. With the interweaved data layout generated by
KiWi+, we minimize the overall cost of running the workload, as we will see in the experimental
analysis.

Implementation. Lethe+ is implemented on top of RocksDB which is an open-source LSM-based
key-value store widely used in the industry [32, 33]. The current implementation of RocksDB is
implemented as leveling (only Level 1 is implemented as tiered to avoid write-stalls) and has a
fixed size ratio (defaults to 10). We develop a new API for Lethe+ to have fine-grained control on
the infrastructure. The API allows us to initiate compactions in RocksDB based on custom triggers
and design custom file picking policies during compactions. RocksDB already stores metadata for
every file, which includes the number of entries and deletes and the aдe for each file. The delete
persistence threshold is taken as a user-input at setup time and is used to dynamically set the
level-TTLs.

5 EVALUATION

We evaluate Lethe+ against state-of-the-art LSM-tree designs for a range of workloads with deletes
and different delete persistence thresholds.

Experimental Setup. We use a server with two Intel Xeon Gold 6230 2.1GHz processors each
having 20 cores with virtualization enabled and with 27.5MB L3 cache, 384GB of RDIMM main
memory at 2933MHz and 240GB SSD.

Default Setup. Unless otherwise mentioned the experimental setup consists of an initially empty
database with ingestion rate at 210 entries per second. The size of each entry is 1KB, and the
entries are uniformly and randomly distributed across the key domain and are inserted in random
order. The size of the memory buffer is 1MB (implemented as a skip list). The size ratio for the
LSM-tree is set to 10, and we use 10 bits per entry for the Bloom filters. To determine the raw
performance, write operations are considered to have a lower priority than compactions. For all
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Fig. 7. Lethe+ reduces space amplification (a) and performs fewer larger compactions (b, c) to persist deletes

timely, and in the process, by purging logically invalidated entries eagerly also improves read throughput

(d).

experiments performed, the implementation for Lethe+ differs from the RocksDB setup in terms
of only the compaction trigger and the file picking policy. We have both block cache and direct
I/O enabled and the WAL disabled. Deletes are issued only on keys that have been inserted in the
database and are uniformly distributed within the workload. We insert 1GB data in the database
with compactions given a higher priority than writes. The delete persistence threshold is set to
16.67%, 25%, and 50% of the experiment’s run-time. This experiment mimics the behavior of a
long-running workload. The delete persistence threshold values chosen for experimentation are
representative of practical applications, where the threshold is 2 months (16.67%), 3 months (25%),
6 months (50%), respectively, for a commercial database running for 1 year [31]. All lookups are
issued after the whole database is populated.

Metrics. The compaction related performance metrics including (i) total number of compactions
performed, (ii) total bytes compacted, (iii) number of tombstones present in a tree, and the (iv) age of
files containing tombstones are measured by taking a snapshot of the database after the experiment.
Space and write amplification are then computed using the equations from Sections 3.2.1 and 3.2.3.

Workload. Given the lack of delete benchmarks, we designed a synthetic workload generator,
which produces a variation of YCSBWorkload A, with 50% general updates and 50% point lookups.
In our experiments, we vary the percentage of deletes between 2% to 10% of the ingestion.

5.1 Achieving Timely Delete Persistence

Lethe+ Reduces Space Amplification.We first show that Lethe+ significantly reduces space am-
plification by persisting deletes timely. We set up this experiment by varying the percentage of
deletes in a workload for both RocksDB and Lethe+, for three different delete persistence thresh-
olds. The plot is shown in Figure 7(a). For a workload with no deletes, the performances of Lethe+

and RocksDB are identical. This is because in the absence of deletes, Lethe+ performs compactions
triggered by level-saturation, choosing files with minimal overlap. In the presence of deletes, driven
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Fig. 8. (a) Lethe+ always persists deletes in a timelymanner at the cost of a slightly higher write amplification.

The higher write amplification in Lethe+ gets amortized over time (b), which allows Lethe+ to scale similarly

to RocksDB (c).

by the delete persistence threshold (Dth ), Lethe
+ compacts files more frequently to ensure compli-

ance with the threshold. It deletes the logically invalidated entries persistently, and in the process,
diminishes the space amplification in the database. Even when Dth is set to 50% of the workload
execution duration, Lethe+ reduces space amplification by about 48%. For shorterDth , the improve-
ments in space amplification are further pronounced by Lethe+.

Lethe+ Performs Fewer Compactions. Figures 7(b) and (c) show that Lethe+ performs fewer
compactions as compared to RocksDB, but compacts more data during every compaction. Lethe+

performs compactions on a rolling basis based on Dth . After each experiment, Lethe+ was found
to have fewer files on disk as compared to RocksDB. This is because, Lethe+ compacts invalidated
entries in a greedy manner, and for a workload with even a small fraction (2%) of deletes, it reduces
the number of compactions performed by 45%, as shown in Figure 7(b). However, while compact-
ing files with expired TTLs, the chosen file may overlap with a relatively higher number of files
from the target level, and thus Lethe+ compacts 4.5% more data when Dth is set as 50% of the
experiment’s run-time, as shown in Figure 7(c).

Lethe+ Achieves Better Read Throughput. In this experiment, we show that Lethe+ offers a
superior read performance as compared to RocksDB. For this experiment, we populate the data-
base with 1GB data and then issue point lookups on existing entries. Note that the lookups may
target entries have been deleted by a tombstone after they were inserted. With more deletes in
the workload, the number of invalidated entries (including tombstones) hashed into the BFs in-
creases. Lethe+ purges these superfluous entries by persisting them in a time-bound manner, and
thus, cleans up the BFs and improves their FPR when operating on fixed filter memory budget.
A lookup on a persistently deleted key returns negative without performing a disk I/O to read a
tombstone. Overall, Figure 7(d) shows that Lethe+ improves lookup performance by up to 17% for
workloads with deletes.

Lethe+ Ensures TimelyDelete Persistence. Figure 8(a) shows the distribution of the tombstones
ages at the end of the experiment to demonstrate that Lethe+ ensures timely persistent deletion.
The X-axis shows the age of all files that contain tombstones, and the Y-axis shows the cumulative
number of tombstones at the instant of the snapshot with the age corresponding to the X-axis
value or smaller. The goal of Lethe+ is to have fewer tombstones of smaller age than the state of
the art, with all tombstones having age less than Dth . We show that in comparison with RocksDB,
Lethe+ persists between 40% and 80% more tombstones, and does so while honoring the delete
persistence threshold. For Dth = 50% of the experiment’s run-time, while RocksDB has ∼40, 000
tombstones (i.e., ∼40% of all tombstones inserted) distributed among files that are older than Dth ,
Lethe+ persists all deletes within the threshold.

Write Amplification gets Amortized for Lethe+. This experiment demonstrates that the higher
write amplification caused by the initial eager merging of Lethe+ is amortized over time. For Lethe+,
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Fig. 9. (a) While KiWi has the same delete tile granularity (h) across all levels of the tree, KiWi+ assigns the

delete tile granularity optimally for each level, and by doing so, KiWi+ (b) achieves significantly superior

performance for secondary range deletes, as well as (c) for the overall workload execution.

we set Dth to 60 seconds and take snapshots at an interval of 180 seconds during the execution
of the experiments. At every snapshot, we measure the cumulative bytes written over the past
intervals.Wemeasure the samemetric for RocksDB (that does not support setting aDth ), and use it
to normalize the bytes written, and then we plot the normalized bytes written against time (across
snapshots) in Figure 8(b). We observe that due to eager merging, Lethe+ writes 1.4× more data
compared to RocksDB in the first snapshot. However, by persisting invalid entries upfront, Lethe+

purges superfluous entries from the tree, and hence, compacts fewer entries during subsequent
compactions. This reduces the normalizedwrites by Lethe+ over time. At the end of the experiment,
we observe that Lethe+ writes only 0.7% more data as compared to RocksDB. In this experiment,
we set theDth to be 15× smaller than the experiment duration to model the worst case. In practice,
insertions in LSM-engines continue for much longer (even perpetually) and Dth is set to a small
constant duration. In this scenario, Lethe+’s write amplification will be quickly amortized.

Lethe+ Scales Similarly to the State of the Art. This experiment shows that Lethe+ and the state
of the art follow the same performance trends as data volume grows. We set up this experiment
with the default configuration, and we vary data size. In addition to YCSB Workload A, which
is used to compute the mixed workload latency, we use a write-only workload to measure write
latency. Figure 8(c), shows the average latency for both workloads with data size on the X-axis. We
observe that the write latency for RocksDB and Lethe+ is not affected by data size. Due to the initial
increasedwrite amplification of Lethe+, its write latency is 0.1–3% higher than that of RocksDB. For
the mixed workload, however, Lethe+ improves the average latency by 0.5–4%. This improvement
is primarily due to the higher read throughput achieved by Lethe+, as shown in Figure 7(d). For
smaller data sizes, most data entries are stored in memory or the first disk level, which reduces
read latency significantly.

5.2 Secondary Range Deletes

Next, we evaluate the secondary range delete performance for KiWi+ and compare it against KiWi
and the state of the art.

Setup. Unless otherwise mentioned, the workload comprises 0.001% secondary range delete oper-
ations along with 1% short range queries and 50% point queries. Each file is 1MB in size and has
256 pages where the size of every page is 4KB. The default selectivity of secondary range deletes
is 5%, and every short range query is expected to access at most 2 pages per level.

KiWi+ sets a level-wise optimal interweaved data layout. The data layout suggested by KiWi
has the same delete tile granularity (h) across all levels of the tree. While a global decision is
able to improve performance over the state of the art, it does not account for the temporality
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Fig. 10. We vary the number of (a) empty and (b) non-empty point query, (c) short-range query, and (d) the

size ratio of a tree to analyze their impact on the performance of Lethe+ compared to the state of the art.

and distribution of the point queries, leading to suboptimal designs. In Figure 9(a), we observe
that KiWi+ assigns a smaller delete tile granularity for smaller levels, which then increases as we
move to larger levels. This way, KiWi+ pays a smaller expected cost when probing the smaller
levels, which also has a lower probability of having the target entry. KiWi+ takes into account
the probability of the entry being present in a particular level when coming up with the optimal
data layout, and by doing so, it achieves a level-wise optimal interweaved data layout. Figure 9(a)
also shows how KiWi+ adapts to different workloads by navigating the continuum of storage
layouts.

KiWi+ Achieves Superior Secondary Range Delete Performance. Figure 9(b) shows that
with the workload-aware and level-wise optimal data layout, KiWi+ outperforms both the state
of the art and KiWi in terms of secondary range delete performance. For this experiment, we vary
the selectivity of a secondary range deletes, i.e., the fraction of the database that is deleted, and
measure the number of pages that can be fully dropped during the operation. Full page drops do
not require reading the page to memory, and thus, a higher value along the y-axis is desirable.
State-of-the-art data layouts, which are based on the sort key alone, are unable to facilitate
secondary range deletes efficiently, as they have to perform a full tree compaction, reading and
rewriting every disk page. The interweaved data layout of KiWi is able to cluster some of the
qualifying data, and as the proportion of delete grows, KiWi marks an increasing number of pages
for full drop, thus, avoiding issuing I/Os to access those pages. For a workload with 10% entries
under deletion, KiWi reduces the cost of secondary range deletes by ≈ 15%, while KiWi+ further
reduces the secondary range delete by 4×, leading to a 60% overall benefit when compared to
the state of the art. The benefit of KiWi+ grows up to 31× for a smaller fraction of deletes. For a
workload with 2% entries under deletion, KiWi+ is able to mark 26.3× more pages for full drop as
compared to KiWi. Overall, the fine-grained nature of KiWi+ is able to better capture a variety of
workloads and reduces the cost of secondary range deletes between 4× and 31×.
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Lethe+ Improves Overall Workload Performance. Figure 9(c) shows that Lethe+ improves the
overall workload performance using KiWi+ to navigate the storage layouts. We observe that as the
fraction of secondary range deletes in a workload increases (while keeping point lookups and short
range queries constant at 50M and 10K, respectively), Lethe+ reduces the average number of disk
I/Os performed per operation and achieves a higher throughput for the workload. Compared to
the state of the art, KiWi performs 27.4% fewer I/Os per operation for a workload with only 0.002%
of secondary range deletes, which is further reduced by another 36% when KiWi+ is employed As
the proportion of secondary range deletes increases, the benefits of both KiWi and KiWi+ become
significantly pronounced. As we increase the proportion of secondary range deletes by one order
of magnitude (to 0.02%), we observe that the average I/Os performed in KiWi and KiWi+ reduces
by 70% and 89%, respectively, compared to the state of the art. Overall, KiWi+’s workload-aware
level-wise optimal data layout allows it to further reduce the average operational cost over KiWi.

Analyzing the Effects ofDifferentWorkloadComponents. In this set of experiments, we vary
the different workload components to quantify the sensitivity of Lethe+ to each operation type. For
the first two experiments, we fix the number of secondary range deletes and short-range queries,
and we increase the empty (Figure 10(a)) and non-empty (Figure 10(b)) point queries. In both
figures, we observe that as the number of point queries increases, the performance of KiWi and
KiWi+ converges to that of the state of the art. For KiWi, with 100K point queries, the average I/Os
per operation is reduced by ∼38%, which is further reduced by another ∼37% for KiWi+. However,
as the point query count increases to 10M, the performance of KiWi converges with that of the
state of the art, and that of KiWi+ offers ∼1% improvement. This convergence happens because for
a higher proportion of (empty or non-empty) point queries (fEQP or fPQ ), the objective function
of Equation (14) has a larger value at the denominator, leading to a smaller optimal value for the
delete tile granularity (h∗i ). As h

∗
i → 1 for most levels, the data interweaved data layout essentially

becomes the same as the one of the state of the art. KiWi+, with its level-wise optimization, is able
to have h∗L > 1 for the last level and, thus, still holds a slight advantage over KiWi. Further, note
that as the proportion of point queries increases, the average I/Os per operation reduces. This is
due to the fact that point queries are significantly cheaper than secondary range deletes and range
queries, hence the average operation cost decreases.
Next, we vary the number of short-range queries between 100 and 100K. In Figure 10(c), we

observe that as the number of short-range queries increases, the performance benefits on KiWi
and KiWi+ decreases and converges to the performance of the state of the art. This is in line with
Equation (14), i.e., as the proportion of short-range queries (fSRQ ) increases, the increase in the
denominator on the right-hand side reduces the optimal delete tile granularity (h∗i ). However, as the
I/O cost of a short-range query is larger than the average I/O cost of the workload, an increase in
the proportion of short-range queries leads to an increase in the overall I/O cost. Thus, unlike what
we observed in the previous two experiments, in Figure 10(c), we observe that the convergence
happens toward a higher I/O per query cost. Note that both KiWi and KiWi+ remain faster than
the state of the art.

Lethe+’s Benefits Are Not Affected By Size Ratio. In Figure 10(d), we observe that as we vary
the size ratio (T ) of the LSM-tree, while keeping other tuning knobs unchanged, the relative bene-
fits of Lethe+ remain. Note that increasing the size ratio leads to trees with fewer levels. Figure 10(d)
shows that the relative benefit offered by KiWi over the state of the art remains between 12.7% and
27.5% (20% on average) as we change the size ratio of the tree from 2 to 10, effectively transitioning
from a tree with 12 levels to one with 4 levels. KiWi+ further adds to the benefits by reducing the
average I/Os performed per operation between 47.3% and 65.6% (58% on average) compared to the
state of the art. This is because the number of pages accessed during a secondary range delete does
not depend on the height of the tree, and in state-of-the-art data layouts, we would have to access
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all pages in the tree. On the other hand, Lethe+ clusters the qualifying entries into fewer pages in
a workload-aware manner, and by doing so, it reduces the I/Os per operation for any tree height.

6 SQL SUPPORT FOR TIMELY DATA DELETION

While the legal regulations outline the users’ rights for timely deletion of their personal data, and
Lethe+ outlines the infrastructure necessary to persist logical deletes in a timely manner at the
system level, there is still a lack of support at the query language level that allows us to translate
the user deletion requirements to directives to the underlying system. To bridge this gap, we need
to (i) extract the user requirements from the policy layer and (ii) address the fact that the state-of-
the-art query languages do not (yet) describe user deletion preferences. Toward this, we present a
new set of SQL extensions that express the policy requirements for both retention-driven deletes
and on-demand data deletion, bridging the deletion policy with the system capabilities to support
timely data deletion [73]. To do this, we augment both the data definition language (DDL) and
the data manipulation language (DML) parts of SQL.

Enabling Retention-Driven Deletes. To support retention-driven data deletion, we extend (i)
the CREATE TABLEDDL and (ii) the INSERTDML in SQL. The CREATE TABLE statement now allows
an application developer to specify the different retention durations supported as a table-property.

CREATE TABLE R (column1 type1, column2 type2, ...)
WITH RET_DUR FIXED (t1 <ret1>, t2 <ret2>, ...);

The above SQL statement creates a table R that supports retention-based deletes with specific re-
tention durations of ret1, ret2, and so on. The WITH RET_DUR clause is optional, and is only
necessary for tables that need to support deletes with predefined retention durations. When a ta-
ble supports a predefined set of retention durations, each INSERT statement can use only one of
those. For example, a table that is configured to support retention durations of 30 days and 60 days
(CREATE TABLE R (...) WITH RET_DUR FIXED (t1 ’30 days’, t2 ’60 days’);), can only
receive inserts with retention durations t1 or t2. An ingestion without a retention period explic-
itly mentioned is kept perpetually following the logic of a classical insert. Note that, in general,
the predefined retention durations stem from the delete-SLAs that a specific application requires.
Following is the syntax for inserts.

INSERT INTO R (val1, val2, ...)
WITH RET_DUR t<i>;

Support for Arbitrary Retention Durations. We further extend SQL to support arbitrary re-
tention durations for deletes. To do so, we add the ARBITRARY keyword to both the CREATE TABLE
and INSERT statements. Supporting arbitrary retention durations is common in distributed frame-
works that replicate data across physical data stores in different geographic locations, each bound
by different regulatory requirements. Below, we present the full syntax for the proposed SQ
extensions.

CREATE TABLE R (column1 type1, column2 type2, ...)
WITH RET_DUR
{ARBITRARY | FIXED (t1 <ret1>, t2 <ret2>, ...)};

INSERT INTO R (val1, val2, ...)
WITH RET_DUR { <t> | t<i> } ;

Note that having a pre-defined set of retention durations provides more information to the system
compared to allowing arbitrary durations. As a result, it allows the system to better prepare to
offer efficient retention-driven deletes.
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Enabling Timely On-Demand Deletion. To support on-demand data deletion in a timely man-
ner, we introduce the keyword DPT which denotes the delete persistence threshold, that is the maxi-
mum delay between a logical delete and its persistence. Each table can provide support for several
such user-defined thresholds. Similarly to retention-based deletes, we also extend SQL to support
arbitrary delete persistence thresholds when they are not specified a priori. Below, we outline the
modifications to the DDL and DML necessary to support on-demand timely deletion requests.

CREATE TABLE S (column1 type1, column2 type2, ...)
WITH DPT
{ARBITRARY | FIXED (d1 <dpt1>, d2 <dpt2>, ...)};

DELETE FROM S WHERE (...)
WITH DPT { <d> | d<i> };

Table S can support several DPTs (dpt1, dpt2, etc.), if the delete persistence thresholds are spec-
ified beforehand, and applications can trigger on-demand deletion with any delete persistence
threshold through the DELETE command. Similarly to retention-driven deletes, timely persistent
on-demand deletion is easier to handle from a storage engine if the delete persistence thresholds
supported are known a priori during the table creation.

Putting Everything Together. Putting the proposed DDL extensions together, a table can sup-
port multiple (pre-defined or arbitrary) thresholds for both retention-based and on-demand deletes.
The complete syntax for CREATE TABLE is as follows.

CREATE TABLE T (column1 type1, column2 type2, ...)
WITH RET_DUR
{ARBITRARY | FIXED (t1 <ret1>, t2 <ret2>, ...)};
WITH DPT
{ARBITRARY | FIXED (d1 <dpt1>, d2 <dpt2>, ...)};

Note that retention-based deletes come from the application requirements, and on-demand deletion
requests are issued by the user. Further, note that while these SQL extensions allow us to express
deletion preferences, they rely on the system layer to correctly realize them.

7 RELATEDWORK

Deletion in Relational Systems. Past work on data deletion on relational systems focuses on
bulk deletes [19, 36, 55]. Efficient bulk deletion relies on similar techniques as efficient reads: sort-
ing or hashing data to quickly locate, and ideally collocate, the entries to be deleted. Efficient dele-
tion has also been studied in the context of spatial data [53] and view maintenance [11]. Contrary
to past work, Lethe+ aims to support a user-provided delete persistence latency threshold. Some
research have also focussed on building workload-aware data structure and deletion-friendly de-
signs [48, 49, 68, 69]. The research primarily targeted data structures, such as B+-trees, that realize
deletes in place. The problem of timely delete persistence, however, is particular to data structures
that follow the out-of-place delete/update paradigm.

Self-Destructing Data. In addition, past research has proposed to automatically make data dis-
appear when specific conditions are met. Vanish is a scheme that ensures that all copies of certain
data become unreadable after a user-specified time, without any specific action on the part of a
user [37, 38]. Kersten [50] and Heinis and Ailamaki [42] have proposed the concept of forgetting in
data systems through biology-inspired mechanisms as a way to better manage storage space and
for efficient data analysis capabilities, as the data generation trends continue to increase. Contrary
to this, Lethe+ supports timely data deletion that is set by users/applications.
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8 CONCLUSION

In this work, we point out that state-of-the-art LSM-based key-value stores perform suboptimally
for workloads with even a small proportion of deletes. In fact, these systems are unable to pro-
vide any latency guarantees on when a logical delete may be persisted, leading to potentially
unbounded delete persistence latency by design. Further, state-of-the-art LSM engines can not
support range deletes (secondary range deletes) on an attribute that is different from the sort key.
To address these, we build Lethe+, a deletion-aware LSM-based engine that introduces FADE, a
new family of compaction strategies, and KiWi+, a continuum of physical data storage layouts.
FADE ensures that all logical deletes are persisted in a timely manner, within a user-defined delete
persistence threshold. Timely persistence of logical deletes improves read throughput and reduces
space amplification, at the expense of a modest increase in write amplification. KiWi+ offers effi-
cient secondary range deletes, which can be tuned based on the expected workload. Further, we
propose a set of SQL extensions that serve as the bridge between the deletion user requirements as
augmented by the recent privacy policies and the system-level support for primary and secondary
persistent deletes.
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