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Abstract 12 

Remote sensing of urban environments has unveiled a significant shift from single-city investigations to 13 

the inclusion of multiple cities. Originated from the ideas of the Remote Sensing of Environment special 14 

issue entitled "Remote Sensing of the Urban Environment: Beyond the Single City," this paper offers a 15 

comprehensive examination of the state of the science in multi-city remote sensing, and aims at fostering 16 

the rapid advancement of this emerging field to address global sustainability challenges and support 17 

knowledge development needed for a new discipline – urban sustainability science (USS). Through a 18 

synthesized review of eight key research fields within urban remote sensing [i.e., land use and land cover 19 

(LULC) and change, urban vertical structure, urban heat islands, hazards, energy use and emissions, air 20 

quality, carbon budgets, and green space], the paper provides insights into the underlying rationale for 21 

conducting multi-city studies, the criteria employed in the selection of cities, the societal applications, as 22 

well as the opportunities and future directions for expanding the scope of assessments in multi-city 23 

remote sensing.  24 

Keywords: Urban, multi-city, remote sensing, synthesized review, future direction, urban sustainability 25 

science  26 

 27 

1. Introduction 28 

Over the past two decades, the conceptualization of urban areas has evolved from one primarily 29 

focused on localism to one that acknowledges the global reach of urban areas. Urban areas are now 30 

commonly considered nodes in a highly interconnected global network (Sassen et al., 2004; Brenner et al., 31 

2006). They are global in their demands on the environment, e.g., how they source their resources and 32 

expel their waste, propagating changes in distant teleconnected landscapes (Seto et al., 2012; Meyfroidt 33 

et al., 2022; Wiedmann et al., 2018). They are also global in that they, collectively, play an out-sized role 34 

in determining the future of many of the planet's largest sustainability challenges. Cities are responsible 35 
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for the majority of CO2 emissions, and increasingly are recognized for their sizeable fugitive methane 36 

emissions (de Foy et al., 2023), but also have an opportunity to accelerate systemic climate responses. A 37 

recent Intergovernmental Panel on Climate Change (IPCC) special report on cities emphasizes that urban 38 

climate change mitigation will determine the future of the global climate (IPCC, 2022). In addition, the 39 

social, economic, and political power to address global sustainability challenges like climate change and 40 

inequality are based in cities.  41 

We argue that this increasing urban ambit over global sustainability necessitates a shift in how 42 

urban areas are studied. Whereas historically scientific inquiry focused on the uniqueness of individual 43 

cities, the pace of urbanization, and the urgency of Earth's current environmental crisis requires a parallel 44 

urban science that can scale up to meet the demands of global sustainability challenges. For the field of 45 

urban remote sensing, this means generating an integrated understanding of an urbanizing planet and 46 

helping build the science of what makes urban areas sustainable, both of which require more multi-city 47 

studies. Here, we define ‘multi-city remote sensing’ to be studies that span two or more cities of diverse 48 

geographical patterns and can advance the understanding of urban systems at the regional or global scale 49 

with highly generalizable knowledge or insights. With the swift progress in remote sensing technology, 50 

we note that the term 'multi-city' has evolved from initially involving a small number of cities (e.g., two to 51 

three) to now encompassing dozens or even hundreds/thousands of cities. Studies of a small number of 52 

cities sometimes represent a more targeted test of specific hypotheses or they were used to apply 53 

‘experimental control’ to some variables, e.g., choosing two cities similar in all respects except for a 54 

characteristic under study. Here, we include publications that considered more than one city for the 55 

analysis in this review. 56 

In this study, we aim to summarize the current state of the science in regards to multi-city remote 57 

sensing. We provide insights into why multi-city studies are important, when and why they are usually 58 

performed, and future opportunities for growing the number of multi-city remote sensing assessments. 59 
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Our work originated from the special issue ‘Remote Sensing of the Urban Environment: Beyond the Single 60 

City’ published in the journal Remote Sensing of Environment, but offers a more in-depth perspective on 61 

multi-city remote sensing to promote the rapid growth in this emerging field. 62 

 63 

2. The shift from single- to multi-city remote sensing in urban studies 64 

Urban remote sensing analyses remain limited in scope, often focusing on a single city. In a recent 65 

meta-analysis of 644 urban remote sensing papers from 1980 to 2020, 79% focused on a single urban area 66 

or agglomeration (Reba et al., 2020). While case studies are often necessary to connect remote sensing 67 

data to in-depth insights from fieldwork, single city studies are limited in their ability to point out patterns 68 

and variations in patterns, to contribute to theory or enhance generalization, and to produce knowledge 69 

that may be transferred and applied elsewhere.   70 

In contrast, urban remote sensing studies that include multiple cities are important for several 71 

reasons: (i) Comparative analysis or common patterns and processes: By studying multiple cities, 72 

researchers can make comparative analyses of the urban environment, such as land patterns (Schneider 73 

and Woodcock, 2008; Güneralp et al., 2020), structural change (Frolking et al., 2013, Mahtta et al., 2019), 74 

and infrastructural investment (Stokes and Seto, 2019), based on different cohorts (e.g. region, climate 75 

zone, city size, stage of development). These comparisons can help to identify patterns and trends that 76 

may be unique to a particular area, as well as highlight similarities between different regions. (ii) 77 

Cumulative impacts: Urban remote sensing of multiple cities can help identify the cumulative impact of 78 

urbanization. Impacts that are not apparent at a smaller scale, can be revealed when looking across 79 

multiple cities. Understanding the cumulative impact of cities is necessary to link urban processes to 80 

planetary health. (iii) Policy development or generalizable insights: Urban remote sensing studies can help 81 

inform policy development by providing policymakers with data on urban growth and development and 82 

physical changes to the urban environment. By studying multiple cities, policymakers can better 83 



5 
 

understand the factors that contribute to successful urban planning and development, as well as the 84 

challenges that cities face in terms of sustainability, environmental management and quality of life (Huang 85 

and Liu, 2022). Instead of examining multiple cities within a single framework, an alternative approach 86 

involves conducting separate single-city studies and subsequently analyzing and comparing their findings. 87 

However, it is important to acknowledge that variations in data quality, remote sensing algorithm or its 88 

parameters, and the evaluation criteria of algorithm’s performance among these studies are likely to 89 

introduce significantly higher uncertainties compared to those encompassing multiple cities in a 90 

consistent system.  91 

 92 

Fig. 1.  Comparison of the number of remote sensing publications discussing single or multiple cities (green 93 

bars) versus those discussing multiple cities only (orange bars) from 2000 to 2022. 94 

The past decades, particularly since 2000, have witnessed an explosive growth of studies in urban 95 

remote sensing. Using the popular ScienceDirect© database, we conducted multiple searches to assess 96 

the number of journal articles published in urban remote sensing over the years and evaluated the 97 

geographic distribution of the studied cities. We first compared the number of publications discussing 98 
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single or multiple cities versus those discussing multiple cities using the formula in Fig. 1. We limited the 99 

search to title, abstract and keywords, which ensured a ‘remote sensing’ and ‘urban’ emphasis in the 100 

search results. Both types of studies show a substantial increase over the past two decades with similar 101 

exponential trends (Fig. 1). The number of publications grew from fewer than 10 per year in 2000 to over 102 

400 and 200 per year by 2022 for remote sensing studies focusing on urban/city and multiple cities/urban 103 

regions respectively. We note that research focusing on a single city study site may contain descriptive 104 

language about ‘cities’ or ‘urban regions’ in the abstract, and the number for multi-city studies is likely 105 

overestimated in Fig. 1. However, the overall trend suggests researchers’ increasing interest in broadening 106 

urban case studies. Geographically, the majority of the multi-city studies were focused on large cities in 107 

China, Europe, and North America. We expanded the aforementioned multi-city formula by further 108 

including AND China, AND (Europe OR United Kingdom OR Germany OR France OR Netherlands OR Spain), 109 

and AND ("United States" OR USA OR U.S. OR Canada OR "North America") for the three geographic 110 

regions, respectively. Results show a similar number of studies from Europe versus those from North 111 

America, which have steadily increased from less than five in 2000 to almost 20 per year more recently 112 

(Fig. 2). Remote sensing studies on Chinese cities also showed an upward trend in the past two decades, 113 

but at a faster rate. Chinese studies made a substantial contribution to the explosive increase of urban 114 

remote sensing publications. Their number of publications in 2022 is more than twice that of the studies 115 

of North American and European cities combined (Fig. 2). 116 
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 117 

Fig. 2.  Comparison of the number of remote sensing publications for multi-city studies in China (blue bars), 118 

North America (orange bars) and Europe (green bars), from 2000 to 2022. 119 

 120 
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Fig. 3. A 3D cube with axes of spatial resolution (fine to coarse), data price (low to high) and revisit time 121 

(short to long), which includes 35 sample satellite sensors for multi-city studies. The blue-to-yellow color 122 

scheme shows the increase of data price from low/free to high. 123 

The development of new remote sensing satellite systems has also helped to increase the number 124 

of multi-city studies. The trends of higher spatial resolution (to capture various degrees of heterogeneity), 125 

cheaper data acquisition costs, and shorter revisit time for state-of-the-art satellite sensors have become 126 

a game changer by offering urban researchers high flexibility to study or compare urban regions of diverse 127 

geographic characteristics. Fig. 3 includes 33 satellite sensors that have been used in multi-city studies 128 

distributed in a 3D cube with axes of spatial resolution (fine to coarse), data price (low to high) and revisit 129 

time (short to long). We used a blue-to-yellow color scheme to show the differences in data price from 130 

low/free to high. While high or very high spatial resolution data (finer than 5 m) remains costly, the 131 

associated sensors have a much shorter revisit time than their predecessors (e.g., 1.1 days WorldView-2 132 

versus 16 days Landsat-8), because they are flown in a constellation. The short revisit time facilitates rapid 133 

monitoring of and responses to urban changes. A number of sensors are now offering free data access 134 

with resolutions suitable for numerous aspects of the urban studies (e.g., global impervious surface 135 

mapping with 10 m resolution Sentinel-2 imagery; Sun et al., 2022). 136 

It is important to note that more data points will not necessarily advance insights into how urban 137 

systems work or lead to better decision-making. As with all sciences, the sample is important. Cities in 138 

multiple city studies need to be selected so that insights can be created that can be extrapolated beyond 139 

the cities in the study. For example, there is a documented gap in geographic coverage of low and lower-140 

middle income countries in urban remote sensing, as well as an overfocus on megacities, where only 11% 141 

of the world's urban population resides (Reba and Seto, 2020). More multi-city studies that focus on 142 

Chinese, European or North American megacities will not help to build insights about the small and 143 

medium sized towns of the Global South where most future urban growth will occur. 144 
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 145 

3. Multi-city remote sensing: development, rationale, societal impact, and challenges  146 

Remote sensing contributes to sustainable urban development from a variety of perspectives. 147 

Here, we provide a synthesized review of representative urban remote sensing topics that have 148 

traditionally or recently captured the attention of urban researchers and practitioners, including land use 149 

and land cover (LULC) and change, urban vertical structure, urban heat islands, hazards, energy use and 150 

emissions, air quality, carbon budgets, and green space. The review of each topic was performed from the 151 

multi-city angle, where we would like to answer the following questions: (i) What was the rationale for 152 

multi-city studies? (ii) How were the studied cities chosen and how were they distributed geographically? 153 

(iii) What was the societal impact of those multi-city studies? And (iv) what challenges or gaps remain to 154 

be addressed?   155 

 156 

3.1. Land use and land cover (LULC) and change 157 

LULC assessment has long been an integral part of multi-city studies. Accurately identifying 158 

changes in urban LULC can provide valuable insights into the drivers and socioeconomic effects of 159 

urbanization. Here, studies over the past decade were retrieved using “land cover”, “land use”, and 160 

“multi-city” as the keyword, with single city studies and articles not based on a remote sensing method 161 

excluded. The majority of studies on multi-city LULC have focused on a regional scale, with only a few 162 

studies examining a number of megacities across the globe. 163 

The rationales for multi-city LULC studies are multifaceted, as they often intersect with other 164 

research fields. Both generalizability and representativeness are important rationales for multi-city LULC 165 

studies, which are associated with the study's scale and objective. Here, generalizability and transferability 166 

were considered interchangeable as the diverse landscapes in multiple cities can improve the ability of 167 

the developed model to adapt to new, previously unseen urban environments. Regional-scale studies 168 
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mostly selected major cities covering large administrative regions (Srivastava et al., 2019), such as the 23 169 

cities in the Changsha–Zhuzhou–Xiangtan region (Fan et al., 2022; Liu et al., 2020), and three metropolitan 170 

areas in China (Li et al., 2020b). On the other hand, studies on a larger scale, such as a national to a global 171 

scale, tended to place a greater emphasis on representativeness (Angel et al., 2011; Chi et al., 2015; Huang 172 

et al., 2020; Huang et al., 2021). Furthermore, the objective of the study can also influence the rationale 173 

in multi-city LULC studies. For instance, the high variation in the severity of air pollution was one of the 174 

primary drivers for studies that integrate land use and air pollution across cities (Han et al., 2021). 175 

The selection of cities in multi-city LULC studies was primarily based on their regional or global 176 

significance or rapid urban expansion. For instance, in regional-scale studies concerning urban 177 

sustainability, the importance of cities, as measured by factors such as population and economic status, 178 

is a primary criterion (Fekete & Priesmeier, 2021; Ju et al., 2022; Liu et al., 2020; Yue et al., 2019). The rate 179 

of urban expansion is another commonly used criterion (Koroso et al., 2020; Yao et al., 2022). 180 

Furthermore, in papers that focus on method development, the selection of cities is often more concerned 181 

with the availability of data for validation purposes (Bousbih et al., 2022). 182 

At all scales of multi-city LULC studies, remote sensing plays an important role in identifying 183 

representative and universal drivers of land use changes (Gutman et al., 2008; Karra et al., 2021; Yang and 184 

Huang, 2021; Zhang et al., 2022b). Changes due to urban LULC at the parcel level, such as the expansion 185 

of impervious surface areas, taller buildings, and the creation of green spaces, can have substantial 186 

environmental implications. For example, a reduction in grasslands and an expansion of urban areas have 187 

resulted in carbon losses and water quality deterioration (Lai et al., 2016; Liu et al., 2019; Teixeira et al., 188 

2014). Furthermore, the varying climatic backgrounds across different cities have led to differences in the 189 

impact of land cover on the urban thermal environment (Masoudi et al., 2019; Wang et al., 2020). 190 

Nonetheless, certain limitations, such as data availability, quality, and comparability across different 191 

regions or time periods remain to be addressed (Wu et al., 2019). 192 
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 193 

3.2. Urban vertical structure 194 

Urban vertical structure estimation aims to expand our ability to capture and analyze urban spatial 195 

heterogeneity from horizontal land cover to its vertical structure. Urban areas have been intensively 196 

mapped in 2D while their vertical dimension is drawing increasing attention due to its important 197 

contribution to understanding urban ecosystem functioning, such as population distribution, energy use, 198 

and economic growth (Koziatek & Dragićević, 2017; Zhou et al., 2022). This section focuses on the 199 

extraction of urban vertical structure, due to its pivotal role in 3D mapping and its prevalence in recent 200 

multi-city studies. 201 

Compared to land cover, urban vertical structure often exhibits greater variance. Densely 202 

inhabited cities tend to have taller buildings (e.g., more skyscrapers) and rougher surfaces than those less 203 

populated (Barr and Luo, 2021). From the perspective of geomatics or civil engineering, efforts have been 204 

devoted to reconstructing or simulating urban environments at a fine scale (e.g., individual building or 205 

tree level), while developing models (or software products) that are (semi-)automatic or more ideally end-206 

to-end to improve efficiency and reduce costs. Multiple cities are needed for model calibration or 207 

validation to meet user needs over diverse urban regions. Since the 2010s, there have been tremendous 208 

efforts to develop benchmark datasets that can serve as a baseline for assessing models’ generalization 209 

ability in 3D mapping. A notable example is the International Society for Photogrammetry and Remote 210 

Sensing (ISPRS) 3D Building Reconstruction benchmark providing building roof 3D structures in two cities, 211 

Vaihingen, Germany and Toronto, Canada (Rottensteiner et al., 2014). One recent trend is the adoption 212 

of machine learning (ML), particularly deep learning (DL) in vertical structure estimation (e.g., Cao and 213 

Huang, 2021; Yan and Huang, 2022). Because deep neural networks have a large number of parameters, 214 

a key to strong model generalization ability is feeding the model with massive amounts of training data 215 

that represent various types of urban environments. In an effort to extract building height over 42 Chinese 216 
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cities, Cao and Huang (2021) used buildings located in 4,723 sample grids (1x1 km each) from an existing 217 

dataset across the studied cities. From the perspective of sustainable development, multi-city studies or 218 

intra-city comparisons can expand our ability to discover the patterns or underlying mechanisms of urban 219 

system functioning across cities at the regional to global scale. For example, Pérez-Urrestarazu et al. 220 

(2016) systematically reviewed and analyzed the ecological, environmental and social impact of vertical 221 

greening systems (vegetation to spread over building facades or interior walls) on the sustainability of 222 

densely built urban areas. Zhou et al. (2022) discovered that urban built-up heights are significantly 223 

correlated with inequality in the Global South by examining global cities in 159 countries.   224 

The majority of urban vertical structure studies have focused on large cities, especially those in 225 

countries or regions of strong economic development, such as Europe, China and the U.S. The rationale 226 

for selecting specific cities was vague or not mentioned in most studies. Those that did mention the 227 

criteria often provided a qualitative description, including phrases like “diverse buildings” or 228 

“representative urban structures” (e.g., Cao and Huang, 2021; Tan et al., 2022). While not explicitly 229 

discussed, data availability may have also affected the geographic distribution of those studies. Different 230 

from classic land cover mapping, developing a 3D model requires the vertical information of urban 231 

structure as input, which is labor intensive and costly to collect. However, recent attempts have 232 

demonstrated the potential to address this challenge by applying street view images to efficiently and 233 

accurately estimate building/tree height or street canyons (e.g., Li et al., 2018; He and Li, 2021).     234 

Urban vertical structure datasets serve as a foundation to support a range of societal applications 235 

across cities, including urban heat island effects (Berger et al., 2017), urban energy use (Li et al., 2017), 236 

urban nighttime image analysis (Tan et al., 2022), heritage recording (Remondino, 2011), air pollution 237 

dispersal (Yang et al., 2020), population distribution (Biljecki et al., 2016), inequities (Zhou et al., 2022), 238 

and economic growth or GDP (Frolking et al., 2022). They are also key to implementing “digital twins”, 239 
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which aim to simulate the urban environment and tackle complex urban challenges in an immersive 3D 240 

environment (Dembski et al., 2020). 241 

Urban vertical structure estimation has revealed a promising trend of expanding from single cities 242 

to multiple cities. This observation holds especially true with the growing accessibility of very-high-243 

resolution imagery obtained from satellites or Unmanned Aircraft Systems (UAS), coupled with advanced 244 

modeling and computer vision approaches. However, when it comes to large area coverage, the spatial 245 

resolution of most products remains comparatively low. This may have restricted many building-level 246 

applications to ‘case studies’ over one or a limited number of cities. With the increasing availability of 247 

urban vertical structure data, the maturity of the modeling algorithms, and the advance of computing 248 

power, fine-scale 3D models are expected to be widely available in a multi-city setting. In comparison to 249 

mapping the outdoor environments, extracting the inner 3D structure of the buildings (i.e., indoor 250 

mapping) has received increasing attention more recently. However, the indoor environment is even 251 

more complex. Particularly, intensive manual intervention is required in indoor mapping, which makes 252 

city-scale or cross-city mapping a challenging task (Ying et al., 2020). 253 

 254 

3.3. Surface urban heat island  255 

The surface urban heat island (SUHI) has long been a target of multi-city studies as researchers 256 

seek to characterize the spatiotemporal behavior of the SUHI and to relate its characteristics to various 257 

influencing factors. Up to about 2010, most studies focused on individual cities (Zhou et al. 2019); in the 258 

period since 2018 we identified approximately 150 multi-city studies. Just over half focus on a select 259 

country, with smaller but similar percentages (12-16%) that identify a global, continental/regional and 260 

sub-national scale as the focus.  261 

The rationale for these studies is most often ‘generalizability’ or ‘representativity’.  262 

Representativity focused studies often use a small number of cities, magnifying the importance of 263 
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selection criteria.  Around 15% of studies self-characterize as ‘comprehensive’ – often (but not exclusively) 264 

associated with global or national scale assessments with large numbers of cities. Some comprehensive 265 

studies target a smaller geographic scale and restrictive selection criteria, e.g., all megacities within a 266 

particular nation. Study rationales also include: methodological assessments, specific tests or 267 

comparisons, or a more general ‘characterization’ of conditions.  Multi-city studies incorporate anywhere 268 

from 2 to over 10,798 cities (She et al., 2022). Over 50% of studies used more than 50 cities, and more 269 

than 10% processed more than 1000 cities. Sample size is associated with spatial scale of the study: the 270 

very largest studies are typically global scale, with a few national (China and USA) scale studies.  Some 271 

recent articles assess urbanization with respect to impervious surface cover rather than providing a 272 

distinct city ‘count’ (Sismanidis et al., 2022; Zhou et al. 2022).   273 

Selection of cities use a variety of criteria with population and climate zone most frequently 274 

noted. Physiographic setting, city political, socioeconomic and/or cultural importance and urban area 275 

were also frequently used. The availability of ancillary data has become more important for studies that 276 

seek to better understand the mechanisms associated with the SUHI and its interaction with other aspects 277 

of the urban environment. Some examples include: relations between SUHI and the canopy air 278 

temperature heat island (e.g., Du et al., 2021; Hu et al., 2019; Venter et al., 2021), linkages between air 279 

quality and the heat island (e.g., Han et al. 2020), the influence of anthropogenic heat (e.g., Jin et al., 2020; 280 

see also Section 3.5), and meteorological controls on the heat island (Lai et al., 2021). Applying multiple 281 

criteria was common and, in such instances, criteria were often applied sequentially – e.g., cities were 282 

first selected on the basis of area and/or population and then further categorized by climate zone. A 283 

number of studies target all cities at a particular scale of a given size (population or area).  284 

Three regional science and societal application themes arise. First is the use of multi-city studies 285 

to advance our understanding of SUHI formation and evolution, either holistically or in relation to 286 

influencing factors, especially the background climate (and associated biome), but also urban form (e.g. 287 
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Stuhlmacher et al., 2022), structure (Cao et al., 2022) and vegetation (Chakraborty and Lee, 2019). Other 288 

factors include energy use and human activity modifications, for example COVID-related shutdowns (e.g. 289 

Alqasemi et al., 2021; Liu et al., 2022) or how the SUHI is related to socioeconomic conditions (Chakraborty 290 

et al., 2019). Second is methodological advances in how multi-city SUHI are studied, e.g., use of Local 291 

Climate Zones (Bechtel et al., 2019), or how ‘urban’ is defined (Chakraborty et al., 2020; Zhou et al., 2022). 292 

These methodological advances are intended to provide more consistent approaches for identifying urban 293 

areas to allow more comprehensive understanding of the SUHI and overcome limitations that may exclude 294 

smaller and/or less urbanized regions. A third theme is information to help guide heat mitigation and 295 

adaptation strategies and urban planning policies. While some studies provide specific advice, usually 296 

linked to climate region or climate parameters, many papers are generic in their guidance, not surprising 297 

given a common focus is often the identification of SUHI spatiotemporal variations. Application of findings 298 

to SUHI mitigation must be considered with caution because the heat island intensity is highly dependent 299 

on the reference non-urban conditions and the intended target of most heat mitigation is canopy layer 300 

air temperatures or heat stress (Sismanidis et al., 2022; Martilli et al., 2020).   301 

Multi-city SUHI studies must continue to incorporate ground-based in-situ measurements, 302 

particularly air temperature, but also air quality and surface energy balance parameters, synchronous with 303 

remote observations, to advance a more holistic understanding of the urban physical environment. 304 

Incorporating more physical factors that affect the spatiotemporal characteristics of urban (and rural) 305 

surface temperature into the analysis is needed; e.g. building height or 3D structure; socioeconomic 306 

information; vegetation details; air quality; and energy consumption. Some of these (3D structure) pose 307 

a challenge for large scale studies (Liu et al., 2021) that may demand higher resolution satellite imagery 308 

with global coverage. Others, such as socioeconomic and energy consumption data are complicated by 309 

jurisdictional differences that can limit multi-scale and multi-city analysis. Combining satellite remote 310 

sensing with numerical modeling of surface and canopy layer air temperatures is also important for multi-311 
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city studies to broaden physical process understanding. Finally, in the quest to determine cumulative 312 

impacts and to provide policy relevant information, it is necessary for multi-city studies to take on the 313 

challenge of assessing urban heat mitigation strategies, especially at the intra-urban scale, while 314 

remembering that the surface temperature observed is both an incomplete representation of the full 315 

urban surface and is different from urban air temperature – the focus of much urban climate adaptation 316 

efforts.  317 

 318 

3.4. Urban hazards  319 

Satellite remote sensing is an important tool for assessment of hazards and the damage that arises 320 

from particular events. Here we examine multi-city studies reported for four categories of hazards: ground 321 

movements (such as earthquakes and landslides), damage assessment, flooding, and heat waves. Air 322 

quality is covered separately in section 3.6.  323 

3.4.1. Ground movements 324 

Raspini et al. (2022) in their review of satellite radar interferometry used to study ground-325 

movements arising from earthquakes or landslides showed the vast majority of studies that involve cities 326 

are case-study based. Recent advances afforded by the global coverage of Sentinel-1 has made possible 327 

investigations over larger regions that include multiple cities. Del Soldato et al. (2019) provided an 328 

example of a regional scale monitoring system using satellite interferometric data. The regional scale 329 

incorporates a range of urban settlement sizes and provides the ability to detect temporal changes related 330 

to slow-moving landslides and subsidence. Bianchini et al. (2021) used multi-temporal satellite 331 

interferometry as part of an integrated system that incorporates ground-based instruments for landslide 332 

management and mitigation strategies over the region. Crosetto et al. (2020) described ground motion 333 

services at national and continental scales for Europe that have many urban applications. Confuorto et al. 334 
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(2021) determined a greater frequency of detected anomalies over urban areas in Tuscany, Italy relative 335 

to other study areas, helping identify risks to urban environment.  336 

3.4.2. Damage assessments  337 

At fine spatial scales, remote sensing can contribute to assessment of damage arising due to 338 

earthquakes or conflict in urban areas. Damage from earthquakes in urban settings is often largely a case-339 

based type assessment (Cooner et al. 2016), but multiple cities may be used as part of training for 340 

algorithms that assess destruction detection (Ali et al., 2020) wherein developing transferrable models 341 

requires a large dataset of labeled buildings that cover different building types (Matin and Pradan, 2021). 342 

Night time light (NTL) analysis also provides an ability to assess earthquake-impacted areas at regional 343 

scales (Levin, 2023). Speed of assessment is critical to this application given the need for emergency 344 

response.  Recovery monitoring is also relevant.  There is a need to overcome the manual (and slow) visual 345 

interpretation of images, especially for fine scale assessments.   346 

Cities and urban infrastructure are often a focus of remote sensing monitoring for conflict impacts 347 

(Van Den Hoek, 2021; Kaplan et al., 2022). Geographic study areas are often regional or national in scope 348 

and thus the multi-city context is often implicit. Jiang et al. (2017) undertook an analysis of multiple cities 349 

in Syria and Yemen respectively using NTL. This allows national scale assessment as well as the ability to 350 

compare impacts between cities. Mueller et al. (2021) showed the application of an automated method 351 

for assessing building destruction for major cities in Syria where multiple sites are used to demonstrate 352 

the generalizability of the method. Their work advances the ability to detect building destruction and 353 

identifies that a strong reliance remains on human interpretation, especially at the building scale. Zhang 354 

et al. (2020) used NTL for assessing the crisis in Venezuela between 2012-2018 that incorporated a multi-355 

city component used to help track migration of residents from urban centers to suburbs that again 356 

targeted regional to national scales but which enables comparisons between cities. The need for multi-357 
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city study is implicit in Bennett et al.’s (2022) recommendation of the need to produce analysis-ready, 358 

conflict-wide very high resolution remotely sensed imagery mosaics to harmonize monitoring.  359 

3.4.3. Flooding 360 

Remote sensing using synthetic aperture radar (SAR) has mapped flooding in urban areas but 361 

methods and applications intended for assessing flooding urban areas have been less frequently examined 362 

(Zhao et al., 2022). More generally, flood mapping in urban areas is challenging due to the built structure 363 

(e.g. Schumann et al., 2022). Multi-city studies are valuable for providing training data for ML/DL methods, 364 

but getting appropriate training data is difficult. Zhao et al. (2022) examined six different urban flood cases 365 

from four study sites; their multi-city approach is based on the occurrence of the event and a desire for 366 

generalizability of their method. As with other hazard events, single city case studies are important for 367 

methodological development and testing. The choice of sites relates to the need for other datasets, the 368 

event itself, and an assessment of the performance of their method at a river confluence – i.e., physical 369 

geographic setting was a consideration (Mason et al., 2021).    370 

3.4.4. Heatwaves 371 

Heatwaves are an important urban hazard that is often represented as a motivation in SUHI 372 

studies. Satellite-derived urban surface temperature is often used as a proxy to assess urban heat stress 373 

during heat waves but Chakraborty et al. (2022) showed that spatial variability of heat stress is not well 374 

captured by these observations. Their results imply that caution must be used in the use of remotely 375 

sensed surface temperature to guide heat mitigation in cities (see also the cautions in the SUHI section).  376 

Their use of European cities was targeted to provide a broad range of cities for representativity, but their 377 

limited range of climates motivates work for cities in arid and humid regions.  378 

Keramitsoglou et al. (2016) provided an example of an explicit multi-city study that focused on 379 

heatwave identification and reducing its risks in urban areas. They examined multiple cities in Europe and 380 

North Africa to assess a geostationary satellite-based method to monitor air temperature in real time.  381 
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The multi-city application was intended to serve a range of end users of the data and the evaluation used 382 

15 cities so as to provide variety in environmental conditions, with explicit recognition of different climate 383 

zones. The selection of cities allowed performance variations dependent on city topographic setting to be 384 

diagnosed, along with diurnal variations in performance. The multi-city approach enables a broader 385 

application of the data including heatwave monitoring and energy demand and to allow its interface with 386 

other local and regional data sources.   387 

3.4.5. Summary of urban hazards 388 

As might be anticipated, many urban hazards studies relate to a single city or small regions linked 389 

to a particular hazard, e.g. hurricane damage assessments (Al-Amin Hoque et al., 2017) or to 390 

methodological development. Multi-city studies are often implicit rather than explicit through 391 

coordination at larger scales. Generalizability, e.g., for training of algorithms, was noted for a number of 392 

studies. Multi-city studies also broaden the area assessed, serve more end-users, and allow comparison 393 

of impacts between cities, even if the multi-city aspect was initially unintentional. Hazard occurrence is 394 

the main driver of how studied cities were chosen for post-event type studies, with the need to link to 395 

other datasets, and background climate/physiographic setting also influencing city choice.  Societal impact 396 

comes from the ability of multi-city remote sensing to provide rapid and effective disaster response and 397 

recovery assessment. More broadly, multi-city hazard studies contribute to building resilience through 398 

understanding impacts of past events and for developing mitigation strategies and forecasting/warning 399 

systems, e.g., for heatwaves. Looking forward, some general challenges relate to the need for sufficient 400 

spatial resolution (or downscaling techniques) to match the scale of the hazard assessment being 401 

undertaken, rapid revisit time and freely available data (Poursanidis and Chrysoulakis, 2017).  402 

Complementary high-performance computing or use of cloud-based services is needed to provide the fast 403 

analysis required to be relevant for operational response to hazard occurrence. Methodological 404 

developments to reduce reliance on human interpretation (e.g., for building-scale damage assessments) 405 
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and to better relate satellite derived quantities to the relevant hazard (e.g., directional brightness 406 

temperature vs urban canopy layer heat) are also needed.  407 

 408 

3.5. Energy use and emissions  409 

The discharge of energy caused by human activities can have a significant effect on the surface 410 

energy balance in urban environments (Zhou et al., 2012). Remote sensing techniques have enabled a 411 

better understanding of human impacts on the urban environment by providing wider geographical 412 

coverage and finer spatial detail of energy use and heat emissions caused by human activities (Yu et al., 413 

2021b).  Combining multi-source remote sensing data with inventory-based anthropogenic heat emission 414 

(AHE) and energy use methods offers significant advantages in estimating AHE and energy consumption 415 

at a large scale (Sailor and Lu, 2004), which has enabled the comparison between multiple cities, 416 

facilitating an improved understanding of human impacts on urban environments of varying backgrounds 417 

of climate (Chrysoulakis et al., 2016), population density (Cao et al., 2014), and socioeconomic status (Yue 418 

et al., 2019). 419 

Most multi-city energy use and emission studies were motivated by the need to develop new 420 

methodologies. There is a growing need for global and national estimates of AHE and energy use in order 421 

to better understand human impacts on the urban environment (Chen et al., 2020). Several studies on 422 

AHE have used data from multiple remote sensing sources, including LULC, DMSP/OLS NTL, Normalized 423 

Difference Vegetation Index (NDVI), land surface temperature, and global urban footprint, in combination 424 

with population density data (He et al., 2020), road network data (Qian et al., 2022), point-of-interest data 425 

(Wang et al., 2022b), or urban building characteristics (Yu et al., 2021a), to improve AHE mapping and 426 

investigate spatial variations across multiple cities with diverse socioeconomic backgrounds (Chen et al., 427 

2012; Yang et al., 2014). Many energy use studies have chosen to use the total brightness of NTL imagery 428 

as a key indicator to examine the distribution of electricity consumption in cities around the world, such 429 



21 
 

as Australia (Townsend and Bruce, 2010), China (Cao et al., 2014; He et al., 2012; Shi et al., 2014; Zhao et 430 

al., 2012), and globally (Shi et al., 2016; Xie and Weng, 2016). 431 

In many multi-city energy use and emission studies, city selection was primarily based on factors 432 

such as the cities' significance or their climate background. For instance, metropolitan areas (e.g., Beijing, 433 

Shanghai) and urban agglomeration areas (e.g., Pearl River Delta, Yangtze River Delta) in China were 434 

frequently chosen (e.g., Chen et al., 2020; Qian et al., 2022). These cities were compared in detail in terms 435 

of their AHE and electricity consumption over a long time period. In Europe, city selections were often 436 

based on the climate background of the city. For instance, in the URBan Anthropogenic heat FLUX from 437 

Earth observation Satellites (URBANFLUXES) project, three distinct European cities situated in different 438 

climate zones were selected (Chrysoulakis et al., 2016). 439 

The enhanced estimates of energy consumption and emissions in multi-city studies can help to 440 

reveal diverse spatial patterns of electricity energy consumption and better understand the impact of 441 

human activities on urban thermal environments. Incorporating regional AHE profiles into numerical 442 

modeling systems has enabled researchers to better understand the significance of AHE in urban energy 443 

balance (Sailor et al., 2015), as well as estimate its potential impacts on urban climate and air quality. Due 444 

to a lack of data on AHE, urban modelers are often forced to either turn AHE off or use representative 445 

profiles that do not account for spatial variations in AHE within the city (Block et al., 2004; Dokukin and 446 

Ginzburg, 2020; Gabey et al., 2019). Remote sensing data has facilitated the development of regional AHE 447 

datasets, which have been incorporated into the Weather Research and Forecasting (WRF) model to 448 

investigate the impact of AHE on urban meteorology and air quality in multiple cities across the Yangtze 449 

River Delta region of China (Xie et al., 2016). 450 

 451 

3.6. Air quality  452 
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Air pollution has become a worldwide concern due to its impacts on human health, weather, and 453 

climate (e.g., Anenberg et al., 2022; de Sario et al., 2013). Monitoring the spatiotemporal variations of 454 

gaseous pollutants is important to assess air quality and health risks for developing mitigation policies 455 

(e.g., Peng et al., 2016; Song et al., 2019). In recent years, air quality has been a growing target of multi-456 

city studies due to rapid urbanization. For example, Anenberg et al. (2019) estimated fine particulate 457 

matter PM2.5 mortality in 250 most populous cities worldwide. Southerland et al. (2022) used the Global 458 

Human Settlement Grid to identify 13,160 urban areas with population more than 50,000 and a global 459 

PM2.5 dataset that combines satellite-retrieved aerosol optical depth, with models and ground 460 

observations for a 20-year analysis to demonstrate that most of the world’s urban population lives in 461 

areas with unhealthy levels of PM2.5. The COVID-19 lockdown periods provided a unique opportunity to 462 

assess air pollution in response to changes in human activity patterns. Cooper et al. (2022) assessed the 463 

ambient NO2 changes in 215 global cities during the COVID-19 lockdowns and found that the sensitivity 464 

of NO2 to lockdowns varies by country and emissions sector, demonstrating the critical need for spatially 465 

resolved observational information provided by satellite-derived surface concentration estimates. Adam 466 

et al. (2021) also provides a critical review on air quality changes in cities during the COVID-19 lockdowns. 467 

Here, we focused journal articles on air quality studies using remote sensing data with single city studies 468 

excluded. 469 

The rationale for conducting multi-city studies of air quality primarily revolves around three 470 

aspects. First, there is a critical need to explore the spatiotemporal variations of air pollutants in the 471 

context of urbanization and urban expansion recognizing that cities are important sites of air pollutant 472 

emissions and processes and not all cities are well characterized by ground-based observing systems (Li 473 

and Huang, 2020).  The sources of air pollutants comprise both anthropogenic emissions from industrial 474 

production, transportation exhausts, and emissions related to building heating and cooling as well as 475 

natural factors, such as wildfires and dust storms (Wei et al., 2023). Anthropogenic emissions have gained 476 
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increasing attention, particularly in developing countries' cities, due to rapid urbanization accompanied 477 

by economic development (Kumar et al., 2020; Zhang et al., 2022c). Park et al. (2021) found that cities 478 

show distinct emission patterns according to their geographic location. Second, the availability of remote 479 

sensing data provides the possibility to study intra-city and inter-city air quality conditions for improved 480 

policy-making (e.g., Wei et al. 2021). Satellite derived emissions are able to provide independent 481 

information to verify bottom-up emission estimates and to assess the effectiveness of emission control 482 

measures, especially for locations that lack surface observation networks and/or do not have detailed 483 

emission inventories. Multi-city studies have benefited significantly from remote-sensing-based long-term 484 

and gapless air pollution datasets (e.g., Peng et al., 2016; van Donkelaar et al., 2016; Wei et al., 2022, 485 

2023), with high temporal frequency and spatial continuity characteristics. Third, gathering information 486 

on air quality across multiple cities offers the potential to discern general patterns of cities with distinct 487 

characteristics at regional or global scales. For example, during the COVID-19 lockdowns, improvements 488 

in air quality with reduced concentrations of air pollutants such as NO2, PM2.5, CO, and SO2 have been 489 

observed in many global cities, but with high variations across cities (e.g., Cooper et al., 2022; Sannigrahi 490 

et al., 2021). 491 

Cities included in multi-city air pollution studies were chosen based on various factors, such as 492 

known high levels of air pollution (Sannigrahi et al., 2021; Song et al., 2019), large population size 493 

(Anenberg et al., 2019), and significance of the city, including metropolitan or provincial capital status, 494 

with different climate characteristics (e.g., Ali et al., 2021; Pei et al., 2020). Some assessments required 495 

the studied cities to provide a strong contrast of the urban source from its background and in some cases 496 

have a homogeneous wind field free from topographic influences (e.g., Lu et al. 2015, Goldberg et al. 497 

2019). Additionally, some studies selected cities as representative samples from different regions or 498 

categories for generalizability (Cooper et al., 2022; Vadrevu et al., 2020). 499 
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Research on air quality monitoring and assessment across multiple cities can be instrumental in 500 

the development of mitigation policies for air pollution. By integrating remote sensing and socio-economic 501 

and health data, multi-city air quality studies have the potential to enhance our understanding of air 502 

pollutant exposure and associated health risks (Song et al., 2019; Southerland et al., 2022). Multi-city 503 

studies have revealed that the sources of air pollutants differ across cities worldwide through various 504 

transport pathways (Duncan et al., 2016). Excessive urban expansion has been found to exacerbate air 505 

pollution in local cities in a non-linear manner, while improving air quality in neighboring cities (Zhang et 506 

al., 2022c; Zhou et al., 2018). Additionally, urban form, population densities, and ambient air pressure 507 

were found to be among the several factors that have impacts on air quality. Multi-city air quality studies 508 

still face uncertainties due to issues with remote sensing data from multiple sources, such as scale 509 

mismatches between in-situ measurements and remote sensing observations in generating gridded air 510 

quality data. For instance, Wang et al. (2021) found that using different methods to derive air pollution 511 

exposure data can result in different estimates of premature mortality changes, underscoring the 512 

importance of robust methods for estimating gridded datasets of air pollutants. Creating gridded datasets 513 

of air pollutants with high frequency and accurate spatiotemporal patterns remains a challenge due to 514 

the high heterogeneity of spatiotemporal variations of air pollutants. 515 

 516 

3.7. Carbon budgets  517 

Urban areas play a critical role in climate change both as the primary emitters of anthropogenic 518 

greenhouse gasses, as hotspots of vulnerability to the impacts of climate change, and as the stage where 519 

policy and action to mitigate climate change is playing out. More than 1100 cities have committed to halve 520 

carbon emissions by 2030 and reach net zero by 2050 (United Nations, 2023). As such, tracking urban 521 

carbon budgets is important both for monitoring the collective contribution of urban activities to climate 522 

change, but also for local level decision-making aimed at mitigating carbon emissions.  Remote sensing on 523 
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urban carbon budgets has contributed to four main areas of research: (1) measuring and mapping 524 

emissions directly, (2) monitoring the progress of mitigation strategies, (3) estimating the impact of land 525 

changes from urbanization on carbon sinks, and (4) measuring the contribution of urban vegetation to 526 

carbon sequestration. This work has relied on a diversity of sensors: multi-spectral daytime imagers 527 

onboard Sentinel, Landsat, and MODIS/VIIRS to monitor change in carbon stocks, nighttime radiometers 528 

like VIIRS-DNB and DMSP-OLS and NO2 instruments like TROPOMI to refine the spatial distribution of 529 

emissions, and instruments that measure the vertical column density of CO2 directly (SCIAMACHY, TANSO-530 

FTS, GOSAT/GOSAT2, TanSat, OCO-2, and OCO-3). 531 

The multi-city studies we reviewed on carbon budgets incorporated anywhere from 2 to 653 cities.  532 

Half of the studies used less than 27 cities, and only 4% processed more than 350 cities.  The main rationale 533 

for including multiple cities was to be comprehensive – to understand collective urban carbon emissions 534 

in a particular geography (e.g., global studies, national studies, or studies that completely covered a 535 

smaller geographic scale like a province or urban agglomeration). Assessments of Chinese cities 536 

constituted the majority of the studies examined. Most of these studies aimed to be comprehensive in 537 

their scope – either capturing all of the prefecture level cities in China (of which there are currently 278), 538 

or all of the cities within a particular region or urban agglomeration [e.g., the Pearl River Delta (Cui et al., 539 

2019) or Beijing-Tianjin-Hebei agglomeration (Chen et al., 2022)].   540 

We found few studies that chose a sample of cities intentionally for representation. Selection of 541 

cities is often linked to having available ground-based measurements, satisfying criteria that enables a 542 

satellite algorithm to work, or having sufficient observations (Kort et al., 2012; Zheng et al., 2020). Studies 543 

with representative samples tended to be urban vegetation and carbon sequestration assessments, which 544 

focused on choosing cities in different biomes, with different topographies and climatic conditions. The 545 

second most popular schema for choosing a city sample was based on population, for example, focusing 546 
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on cities with populations over a certain threshold.  All of the global studies we reviewed focused on large 547 

well-known global cities or megacities.   548 

The carbon budgets of large cities are important to understand due to their outsized role in 549 

producing global direct emissions. In 2017, 18% of all global emissions came from just 100 cities (Moran 550 

et al., 2018). However, the vast majority of urbanization is occurring in small to medium sized cities of the 551 

developing world (Zimmer et al., 2020)—so these understudied places are projected to have a growing 552 

impact on climate change, while arguably offering the least cost pathway to low-emission, climate resilient 553 

urbanization. Furthermore, secondary cities generally lack the institutional and technical capacity as well 554 

as the financial resources for climate response that are available to larger “global” cities. 555 

Pan et al., (2021) reviewed the potential of CO2 satellite monitoring for climate governance – an 556 

emerging critical need – and note a number of studies with multiple cities. We expect there to be an 557 

escalation in the number of multi-city studies that measure urban emissions by satellite in the near future. 558 

Satellite monitoring of urban CO2 has been limited by the current satellites, which were designed to 559 

measure regional biospheric carbon fluxes or global atmospheric CO2, not anthropogenic CO2 (Nassar et 560 

al., 2017). Sensors must have high revisit frequency over the same urban area to constrain emissions 561 

estimates, particularly with clouds and urban air pollution, so the low repeat cycle of satellites like OCO-562 

2 and GOSAT is limiting for urban monitoring. Several future satellite missions are planned that will be 563 

well-suited to monitor carbon dioxide (Pasternak et al., 2017), GHGSat-C2 (Ligori et al., 2019), and OCO-3 564 

(Eldering et al., 2019), among others.   565 

 566 

3.8. Green space 567 

Urban green space refers to the vegetated urban land cover of various uses, such as street trees, 568 

parks, community gardens, sporting fields, stream banks, greenways, green roofs, and lawns, which 569 

provide essential ecosystem services to improve the quality of life for city dwellers (Wolch et al., 2014). 570 
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Mapping and analyzing urban green space can be treated either as part of a broader LULC mapping task, 571 

or an independent mission. In either way, multi-city urban green space studies have been largely driven 572 

by the research purposes of understanding the differences and similarities in the spatial patterns of 573 

vegetation fragmentation, growth or phenology, as well as the effects of urbanization on the dynamics of 574 

these patterns (e.g., Zhou et al., 2016; Ruan et al., 2019; Kowea et al., 2021). This is especially true for the 575 

Land Surface Phenology (LSP) research, where the response of plant phenology to the changing climate 576 

and rapid urbanization are highly complex. Studying its patterns over multiple, diverse cities provides a 577 

mechanistic understanding of the drivers of plant phenology in an urban setting (Zhou, 2022).     578 

Studies of urban green space have been traditionally conducted in major cities over developed 579 

regions in the northern hemisphere (such as Europe and North America), where green space was treated 580 

as having higher economic and ecosystem service values compared to that in many developing countries 581 

(Cilliers et al., 2009; Kowe et al., 2021). However, there has been a recent trend of expanding study areas 582 

into cities of China, Southeast Asia, and South America (e.g., Nor et al., 2017; Zhou et al., 2018; Ju et al., 583 

2022). The main criteria for city selection are relatively consistent across studies, which tend to cover mid- 584 

and large-size cities of high geographic or climate variations, as well as varying demographic and economic 585 

conditions. Climate is a particularly important criterion since it directly affects vegetation growth, species 586 

distribution, and phenology, leading to significant variation across cities.  587 

While urban green space has long been recognized to provide a plethora of ecosystem services to 588 

support the physical and psychological wellbeing of city dwellers since the nineteenth century (Swanwick 589 

et al., 2003; Dickinson and Hobbs, 2017), most studies were based on field observations. Remote sensing 590 

provides a spatially explicit monitoring capacity of urban vegetation over broad areas, which has led to in-591 

depth knowledge or new angles in understanding the value and role of the green space. Representative 592 

applications include studies of urban heat islands (Nastran et al., 2019), the cooling effect (Aram et al., 593 
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2019), sustainability (Badiu et al., 2016), risk of death (Bixby et al., 2015), environmental justice (Kabisch 594 

et al., 2016), biodiversity (Sultana et al., 2022), and health of children and seniors (Sikorska et al., 2020). 595 

Urban green space as an attentive subject in remote sensing has a relatively short history starting 596 

in the 2000s. While it becomes increasingly routine to remotely capture the spatial coverage and temporal 597 

dynamics of urban green space, most of the multi-city algorithms were developed at a coarse resolution 598 

(e.g., 30 m). Such a resolution tends to overlook small-scale urban green space, which spreads across the 599 

entire urban region (e.g., street trees). When considered in their totality, a significant amount of urban 600 

vegetation is likely to be ignored in the analysis (Godwin et al., 2015; Shahtahmassebi et al., 2021). 601 

Researchers had to use spectral unmixing to extract urban vegetation fraction. While airborne LiDAR and 602 

very-high resolution sensors offer an effective means to take a fine scale look at urban green space (e.g., 603 

at individual tree level), most studies were still conducted at the local scale focusing on one single city or 604 

municipality (Kowe et al., 2021). This issue could be addressed by the increased availability of very-high 605 

resolution or hyperspectral imagery, an openly accessible field data network (e.g., tree height, species 606 

types, biomass, and infestation) across cities, and advanced cloud computing power (e.g., Google Earth 607 

Engine, Gorelick et al., 2017).  608 

 609 

4. Multi-city studies in the special issue 610 

This special issue aims to review and synthesize the latest cutting-edge advances in remote 611 

sensing multi-city studies. The guest editors received a total of 56 abstract submissions (for pre-approval) 612 

and 44 full manuscript submissions. Following a rigorous peer-review process, 19 papers were accepted 613 

and included in the special issue. These accepted papers are broadly focused on urban LCLU and its change 614 

(8 papers), followed by studies of urban vertical structure (4), SUHI (3), hazards (1), green space (1), 615 

surface albedo as a joint effect of urban LCLU, green space, and climate (1), and a review of multi-city 616 

remote sensing (this paper). Table 1 provides more details about these special issue papers (excluding the 617 
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review paper), including the author, specific research topic, novel contribution, and the cities studied. 618 

Overall, these studies remain focused on major cities (or city clusters or metropolitan areas) in China, the 619 

U.S., and Europe, which follows the existing trend discovered in our review. Most of the studies did not 620 

explicitly explain the rationale behind choosing multiple cities, although some of them did point out key 621 

factors, such as model generalization for effective knowledge transfer (Daams et al., 2023), and the 622 

comparison of peer cities to inform urban sustainable development (Chakraborty & Stokes, 2023). The 623 

criteria for city selection were designed to meet specific research goals, which is consistent with our 624 

review findings. We also found a common strategy to boost city representation by incorporating urban 625 

regions of diverse geographic regions, sizes, and/or climatic zones. These studies provide a representative 626 

sampling of the characteristics of the multi-city studies described as part of the review. 627 

Table 1.  628 

List of the special issue papers, describing author, research topic, novelty, and cities studied. 629 

Author Research Topic Novel Contribution Cities Studied 

Cao & Huang 
(2023) 

Building 
change 
detection  

• Reduced needs for manual labeling.  

• Enhanced model performance via 
uncertainty-aware pseudo label 
generation, a noise-robust network, and 
reducing data distribution differences 
between time-series images at multiple 
levels. 

27 major cities in 
China 

Chakraborty & 
Stokes (2023) 

Urban change 
detection 

• Developed a data-driven approach using 
neural networks to learn city-specific NTL 
time-series models of the expected 
baseline behavior.  

• Capable of detecting both 
positive/negative and gradual/abrupt 
changes. 

11 cities across 
North America, 
Asia, and Africa 

Chen P. et al. 
(2023) 

Building height 
estimation 

• Synergized Photogrammetry and Deep 
learning methods (BHEPD). 

• Enhanced accuracy of heights estimation, 
particularly for high-rise, high-density, and 
multi-scale buildings. 

8 major cities in 
China 

Chen T.K. et al. 
(2023) 

Human 
settlement 
detection 

• Demonstrated, for the first time, the 
potential of deep learning to detect 

Multiple northern 
states of India, 
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human settlements in mountains at the 
sub-pixel level. 

and the nations of 
Nepal and Bhutan 

Daams et al. 
(2023) 

Metropolitan 
boundary 
mapping  

• Introduced a consistent measure of 
metropolitan boundaries. 

• Highlighted the typically unobserved role 
that study area definition and selection 
may play in affecting outcomes in remote 
sensing studies in urban settings. 

687 European 
metropolitan 
areas 

Frolking et al. 
(2022) 

Global trends 
of urban 
building 
volumes 

• Quantified trends in urban microwave 
backscatter across large cities and three 
decades. 

• Analyzed the relationship of urban 
microwave backscatter to building 
volume, and to city-scale economic 
activity. 

477 large cities 
across China, 
Europe, and the 
U.S. 

He et al. (2023) 
Sub-pixel urban 
land cover 
mapping 

• Combined the learning ability of the data-
driven idea with the spatial correlation 
modeling process. 

• Developed a learnable correlation based 
sub-pixel mapping network (LECOS). 

Major cities in 
China 

Hong et al. 
(2023) 

Cross-city 
semantic 
segmentation 

• Built a new set of multimodal remote 
sensing benchmark datasets (including 
hyperspectral, multispectral, SAR). 

• Developed a high-resolution domain 
adaptation network (HighDAN) to 
promote the AI model’s generalization 
ability. 

Two cross-city 
scenes in 
Germany and in 
China, 
respectively 

Hu et al. (2023) 

Assessments of 
human 
exposure to 
extreme heat 

• Generated hourly human heat exposure 
maps at 1-m spatial resolution during heat 
waves and non-heat wave days. 

• Investigated spatiotemporal patterns and 
the impacts of urbanization intensity and 
urban morphology on heat exposure. 

Three cities in the 
U.S. 

Li B. et al. 
(2023) 

Terrain 
elevation 
correction 

• Developed an auto-refinement method 
for correcting the terrain elevation 
product of ICESat-2 in urban areas. 

• Mixed terrain elevation data from the 
strong- and weak-beam observations to 
ensure broad applicability. 

Three cities in the 
U.S., the 
Netherlands, and 
New Zealand, 
respectively 

Li L. et al. 
(2023) 

Drivers of 
urban greening 
or browning 

• Used satellite-derived enhanced 
vegetation index to examine the 
greenness trends in China for 2000–2019. 

• Developed a conceptual framework to 
differentiate between the contributions of 
biogeochemical and land-cover change 
drivers to the greenness trends. 

1560 cities across 
China 
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Liu et al. (2023) 

Sensitivity of 
SUHI intensity 
estimates to 
non-urban 
reference  

• Provided the first test on the sensitivity of 
SUHI intensity trend estimate to seven 
methods of non-urban reference 
delineation. 

• The selection of different non-urban 
references significantly altered SUHI 
intensity. 

281 Chinese cities 

Ma P. et al. 
(2024) 

Deformation 
estimation 

• Developed a bidirectional gated recurrent 
unit (BiGRU) model to correct random and 
seasonal atmospheric delays in InSAR 
time series. 

• Mapped the first overall subsidence 
velocity of the Irrawaddy Delta city cluster 
and deformation in Myanmar.  

Three city clusters 
in China and 
Myanmar 

Ma X. et al. 
(2023) 

Fine-scale 
building height  

• Developed a generalizable approach to 
map large-scale distributions of building 
heights. 

• Extrapolated GEDI-derived samples 
discretely to the continuous building 
height map at the 150-m grid size. 

41 cities in the 
Chinese Yangtze 
River Delta (YRD) 
region 

Wu et al. 
(2024) 

Surface albedo 

• Generated a 30-m-resolution annual 
surface albedo dataset for global cities 
from 1986 to 2020. 

• Revealed an overall decreasing trend of 
albedo with its variance well explained by 
urban greening.  

3037 major cities 
worldwide 

Yang & Zhao 
(2023) 

Patterns and 
drivers of SUHI 
seasonal 
hysteresis 

• Identified the direction and shape of SUHI 
seasonal hysteresis across Chinese cities. 

• Urban-rural differences in 
evapotranspiration and surface albedo 
were recognized as the primary 
contributors. 

Major Chinese 
urban clusters 

Zhang et al. 
(2023) 

Automatic 
detection of 
inland/seaward 
urban sprawl 

• Developed a fully automatic algorithm for 
detecting urban sprawl without manually 
collecting training samples. 

• Uncovered a neglected but dramatic 
seaward urban sprawl process in Chinese 
coastal cities. 

75 coastal cities in 
China 

Zhong et al. 
(2023) 

Global urban 
high-resolution 
land-use 
mapping 

• Constructed a very high resolution urban 
land-use dataset. 

• Developed an automatic multi-city 
mapping and analysis (GAMMA) 
framework. 

Capital cities of 
193 member 
states of the 
United Nations 
and 34 provincial 
cities in China 

 630 

5. Opportunities and future directions 631 
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5.1. New sensor systems for data acquisition 632 

Urban features, such as buildings, roads, and trees, exhibit significant heterogeneity in terms of 633 

their sizes, shapes, and spatial patterns. This diversity is particularly evident in areas encompassing 634 

multiple cities, where, in addition to within-urban heterogeneity, urban planning and design are 635 

influenced by various factors such as climate, population, land cover, economic development, cultural 636 

heritage, governance, technology, and community needs. Over the past four decades, spatial resolution 637 

has remained a crucial parameter in urban remote sensing, enabling the detection and differentiation of 638 

urban features (Welch, 1982; Weng, 2012). With the rapid advancements in satellite sensor technologies, 639 

it is anticipated that sub-meter resolution satellite data will become the standard input for urban studies, 640 

allowing for the capture of fine-grained spatial variations in urban features across diverse cities. For 641 

instance, the upcoming Albedo satellite constellation is poised to provide high-resolution imagery from 642 

space at a remarkable resolution of 10 cm (Albedo Space Corporation, 2023).  643 

When using proprietary remote sensing data, single city studies are inherently more affordable 644 

than multi-city studies. However, the growing influx of remote sensing companies entering the market is 645 

anticipated to enhance the cost-effectiveness of studying multiple cities, despite the present higher costs. 646 

By utilizing satellite constellations and harmonizing data from multiple sensor systems, it will be possible 647 

to observe cities more frequently, enabling the timely monitoring of large-scale urban development and 648 

facilitating rapid responses to support disaster recovery efforts. 649 

In the past decade, artificial intelligence (AI) has brought fundamental changes in the field of 650 

remote sensing data processing. However, there has been a limited focus on the development of 651 

intelligent systems for data acquisition. Currently, UAS or drones are predominantly operated by human 652 

pilots who rely on experience in flight path design, knowledge of local urban environments to ensure 653 

successful data acquisition, and use one drone at a time. Consequently, drone surveys are often confined 654 

to small areas within a single city. The integration of AI holds great potential in addressing this limitation. 655 
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By leveraging existing urban environmental information, AI can facilitate automated communication 656 

among multiple drone sensors and enable the online design of optimal flight paths during data acquisition 657 

campaigns (see Fig. 4). This would enable broader coverage across multiple cities and enhance the 658 

efficiency and effectiveness of drone-based surveys. 659 

 660 

Fig. 4. Leveraging artificial intelligence and existing urban environmental information (e.g., a heat map 661 

indicating priority regions) to facilitate automated communication among drones and enable the online 662 

design of optimal flight paths during data acquisition campaigns.  663 

 664 

5.2. Open remote sensing  665 

Multi-city remote sensing studies have a close connection to open remote sensing. The availability 666 

of open remote sensing data, e.g., from MODIS, Landsat and Sentinel are key to the ability to undertake 667 

multi-city studies and have greatly contributed to our understanding of urban environments. Landsat in 668 

particular has provided an important advance allowing multi-city analysis at resolutions appropriate to 669 

assess urban areas over regional to global scales, now being complemented by Sentinel (Wulder et al. 670 
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2022).  On a larger scale, openness is a key requirement of Big Earth Data science value-chain framework 671 

(Guo et al. 2020). 672 

Beyond the provision of open remote sensing data, the establishment of open processing chains 673 

using open algorithms or open (or semi-open) data processing platforms are important to multi-city 674 

studies. The Global Human Settlement project supported by the European Commission is an example of 675 

a multi-city relevant open project that provides global scale spatial information related to cities based on 676 

open remote sensing. Another is the World Urban Database and Access Portal Tools (WUDAPT) project.  677 

Using an open framework, WUDAPT implements a method to implement the Local Climate Zone (LCZ) 678 

scheme defined by Stewart and Oke (2012) that classifies land areas using a number of attributes expected 679 

to influence the air temperature of the zone. WUDAPT provides an online open access LCZ generator 680 

(Demuzere et al., 2021) that uses open source earth observation data along with Google Earth Engine’s 681 

random forest classifier to undertake the LCZ classification. This provides a basis for standardizing the 682 

assessment of cities at the global scale (Demuzere et al., 2022). The increasingly finer spatial resolution of 683 

urban applications, such as numerical modeling of urban climates, is now driving demand for higher spatial 684 

resolution open remote sensing data. Inputs to these models from open remote sensing, from projects 685 

such as WUDAPT, extend our ability to better understand multi-city physical processes beyond the 686 

snapshots provided by remote sensing and to developing forecasting abilities at the urban scale (e.g. 687 

Masson et al., 2020).   688 

The sparse availability of high resolution open remote sensing and complementary/ancillary data 689 

is a critical limitation to expanding single city analyses on urban morphology and urban systems across 690 

multiple cities. For example, detailed characterization of urban morphology is provided by LiDAR, but 691 

these datasets are more variable in their openness (Heldens et al., 2019). Middel et al. (2022) identified 692 

data ownership issues as a concern. Data generated by citizens, an important addition to open remote 693 

sensing datasets that enables further analysis (Zhu et al., 2019), are often owned by private companies, 694 
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and access to 3D urban morphology models for some applications can be restricted. Gomes et al. (2020), 695 

in their overview of platforms for EO data management and analysis, noted variability in the ‘openness’ 696 

of these platforms. Google Earth Engine for example provides an easy to use and mature system for users, 697 

but is a closed platform that cannot ensure reproducibility of analysis. Such platforms are necessitated by 698 

the large amounts of remote sensing data (Sudmanns et al., 2019). Sudmanns et al. (2022) argued for 699 

open source EO data cubes as a scalable and versatile technical solution to provide an analytical platform 700 

for big EO data and Wellmann et al. (2020) advocated for urban scale, and possibly nationally centralized, 701 

data cubes to build around the typical urban-scale geographic information system information that most 702 

cities have to more broadly integrate remote sensing data at different scales for the city. The combination 703 

of open (non-remotely sensed) data poses its own challenges (Zhu et al., 2019) that include the various – 704 

and different – scales at which open urban and open remote sensing data are collected, the potential for 705 

data sparsity to occur given the uneven collection of open urban data and biases in the open urban 706 

datasets. Ultimately, the provision of open data and processing chains will contribute to increased 707 

applications, diversification and expanded knowledge of urban systems, based on the benefits of past 708 

open data policies (Wagemann et al., 2020). Data intensive science – the ‘fourth paradigm of research’ – 709 

imagines knowledge discovery based on data-intensive science (Goodey et al., 2022). Remote sensing 710 

based on open data and employing tools of AI are now beginning to emerge (e.g., Corbane et al., 2021) 711 

that will directly contribute to the needs of multi-city studies.  712 

 713 

5.3. Smart data processing and analytical systems  714 

The efficient collection, management, storage, and analysis of remote sensing data have become 715 

increasingly vital for the development of intelligent decision systems, offering unprecedented 716 

opportunities in the field of urban studies (Liu et al., 2016). Many studies on urban remote sensing, e.g., 717 

(Hu & Xu, 2018; Liu et al., 2017; Pham et al., 2011; Sobrino et al., 2013), have predominantly concentrated 718 
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on individual cities or local regions, primarily attributing to the difficulties associated with compiling and 719 

processing vast amounts of data. Nevertheless, the dynamics of a town or city are influenced by its 720 

capacity to engage and interact with other towns and cities, depending on the town or city's position 721 

within the broader settlement system, encompassing factors such as hierarchical level, specialization, and 722 

accessibility. The utilization of AI in automating the processing and analysis of remote sensing data offers 723 

significant opportunities for multi-city analyses (Zhou et al., 2020), for example, enabling capabilities in 724 

mapping urban extent or population growth at large spatiotemporal scales across cities (Gao & O’Neill, 725 

2020; Li et al., 2018; Wang et al., 2022a), and facilitating the exploration of intra and inter urban 726 

environmental issues, e.g., urban heat island, greenhouse gas emissions, and air pollution (Chakraborty 727 

et al., 2019; Xu et al., 2019).  728 

The successful application of advanced technologies such as AI and ML algorithms has contributed 729 

to the increasing importance of remote sensing in addressing the challenges posed by rapid urbanization 730 

and growing populations (Youssef et al., 2020). However, the integration of AI/ML and geospatial data 731 

into urban studies faces challenges associated with data collection and algorithmic complexity in 732 

comparison to single-city studies. The effectiveness of these applications is highly dependent on the size 733 

and quality of the data used, as well as the careful selection of appropriate models. Although remote 734 

sensing data offers large spatial coverage and high availability, it may not always possess the required 735 

level of accuracy for specific uses (Tekouabou et al., 2022). Therefore, it is crucial to prioritize the use of 736 

high-quality remote sensing data to achieve optimal performance. Alternatively, integrating remote 737 

sensing data with other sources, such as open city and mobile device data, can enhance the accuracy and 738 

overall quality of existing datasets in multi-city studies. In addition to data quality, the future of AI/ML 739 

applications in multi-city studies will depend on the expansion and diversification of available models, as 740 

well as their scalability to handle the increasing volume of urban data being collected. 741 
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The rapid progress in data collection and storage capabilities, along with advancements in 742 

machine computational power, have paved the way for the development of new algorithms capable of 743 

processing large remote sensing data for diverse urban applications including multi-city studies (Liu et al., 744 

2017; Wang & Biljecki, 2022). It is worth noting that these algorithms can be more complex compared to 745 

those developed for a single city, and their complexity can be magnified by the substantial volumes of 746 

urban data being collected at present. As a result, the implementation and deployment of AI/ML for real-747 

time applications, such as multi-city energy use monitoring, poses challenges due to the significant 748 

computational capabilities required (Jordan & Mitchell, 2015). To address such challenges, one potential 749 

solution is to integrate AI methods into hosted computing platforms, such as Google Earth Engine, a cloud 750 

computing platform specifically designed for storing and processing petabyte scale datasets (Yang et al., 751 

2022).  752 

 753 

5.4. Integration with knowledge from other professional domains to create a new urban 754 

science/guidance for choosing city samples 755 

In recent years, both the National Academy of Sciences (National Academies Press, 2016) and the 756 

U.S. National Science Foundation (Advisory Committee for Environmental Research and Education, 2018) 757 

have called for a new use-inspired discipline, called urban sustainability science (USS), to develop the 758 

knowledge needed to guide urban development towards more sustainable pathways. USS inherently 759 

involves convergence research (Acuto et al., 2018; Advisory Committee for Environmental Research and 760 

Education, 2018; Lobo et al., 2019) – integrating urban disciplines and working across scales to identify 761 

interactions, thresholds, trade-offs, and feedbacks between urban socio-economic systems and 762 

environment. 763 

Multi-city remote sensing studies are core to the vision of USS. In particular, multi-city studies are 764 

needed to (i) create a new theory that transcends single urban areas (Lobo et al., 2019), (ii) examine urban 765 
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areas collectively as social, economic, infrastructural, and spatial complex systems that comply with 766 

scaling laws across local, city, regional, and national spatial scales (Bettencourt et al., 2013), and engage 767 

institutional policy that is shaping urbanization processes at multiple scales to limit unintended 768 

consequences (Seto et al., 2017; Acuto et al., 2018), (iii) identify groups of “peer cities” that may benefit 769 

from similar sustainability strategies to scale up action effectively (Advisory Committee for Environmental 770 

Research and Education, 2018), and (iv) enable the examination of planetary impacts of urbanization in 771 

aggregate, e.g., species extinction, emissions production, agricultural land loss (Seto et al., 2017). 772 

Therefore, USS is both a motivation for more multi-city remote sensing studies and an opportunity for 773 

these studies to be actionable and to point the way to sustainable urban futures.    774 

To build up an USS, multi-city remote sensing studies must rely on intentional sampling schema, 775 

that allow a study to make inferences about larger groups of urban areas, and to get insight about the 776 

fundamental character of urban processes. The generalizability and representativeness of the results of a 777 

study are directly dependent on the sample (size and distribution) of urban areas selected for data 778 

collection. Though stratified, systematic, cluster, and random samples are often used in the validation of 779 

remote sensing (Congalton and Green, 2019), they are less often explicitly used at the onset of a study, in 780 

the selection of where to gather observations. One of remote sensing’s key advantages over ground-based 781 

surveys of urban change is the ability to collect data, repetitively, and with large area coverage (Forster, 782 

1985). As such, urban remote sensing is not limited to the largest and wealthiest megacities, where ground 783 

data is already extensive, but instead can help build a science that captures the processes changing 784 

secondary cities and those in the Global South as well. Despite the potential, convenience sampling – a 785 

non-probability sampling technique where researchers choose their urban sample based on the 786 

accessibility of data or funding or because of a priori familiarity – remains a common practice in urban 787 

remote sensing studies, and limits the growth of USS. 788 

 789 
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6. Conclusion 790 

Remote sensing of urban environments is undergoing an important transition from a focus on 791 

single cities to studies that encompass multiple cities. Our project undertook a comprehensive analysis of 792 

eight key areas, namely LULC and its changes, urban vertical structure, urban heat islands, hazards, energy 793 

use and emissions, air quality, carbon budgets, and green spaces (Figure 5). The primary objective of our 794 

project was to gain insights into the underlying rationale behind conducting multi-city studies, the criteria 795 

employed for city selection, the societal applications thereof, and the potential future prospects for 796 

expanding the scope of multi-city remote sensing assessments. 797 

 798 

Fig. 5. Understanding urban environmental/physical processes as a rationale that is often part of the chain 799 

of working towards the greater societal impacts on the outer ring of the diagram in multi-city studies. 800 

The rationale behind conducting multi-city studies was found to be relevant to three key factors. 801 

First, it pertains to the generalizability or representativity of the proposed study, ensuring its applicability 802 

across diverse urban environments. Second, it addresses the need to assess patterns and underlying 803 
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mechanisms of urban system functioning across multiple cities. Third, it takes into consideration the 804 

constraints posed by data availability, quality, and comparability of field observations when focusing 805 

solely on a single city. Our review detects a notable bias towards assessments of large cities, with 806 

particular geographical emphasis on cities located in China, Europe, and North America. The selection of 807 

cities was contingent upon specific research goals, such as regional or global significance, rapid urban 808 

expansion, physiographic settings, city politics, socioeconomics, culture, biomes, topography, and climatic 809 

conditions. However, it is worth noting that multi-city studies were often implicit rather than explicit. For 810 

instance, assessments related to hazards were driven by the scale of the hazard itself, incorporating 811 

multiple cities as a result, rather than intentionally selecting multiple cities for study. The terms "diversity" 812 

and "representativity" frequently appeared in the study area section of multi-city studies. Nevertheless, 813 

specific criteria defining diversity, representativity, or the required number of cities to ensure sufficiency 814 

have yet to be established. 815 

Despite the existing challenges, the understanding of urban environmental/physical processes 816 

gained from multi-city studies has proven to be immensely beneficial to society. This knowledge informs 817 

various aspects, including economic growth, urban inequity, climate governance, risk reduction, urban 818 

planning, population dynamics, human health, and emergency response, ultimately contributing to 819 

sustainable development and management (Figure 5). In particular, the reviewed eight key fields of multi-820 

city remote sensing are not mutually exclusive. When collectively considered (e.g., integrating LCLU 821 

change, urban vertical structure, and urban hazards), they can illuminate new opportunities in evidence-822 

based urban research and practices by capturing accurate, multifaceted, and interactive urban 823 

characteristics or functions. Furthermore, several opportunities have arisen for multi-city studies. These 824 

include the availability of new sensor systems that facilitate efficient acquisition of high-quality data, the 825 

utilization of open remote sensing, encompassing open data and processing chains, to expand the range 826 

of applications, the diversification and enhancement of knowledge pertaining to urban systems, and the 827 
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development of smart data processing and analytical systems capable of handling extensive remote 828 

sensing data from diverse urban regions. It is important to note that multi-city remote sensing studies are 829 

core to the vision of a new urban science – urban sustainability science (USS).  To build up an USS, multi-830 

city remote sensing must develop an intentional city sampling schema through the integration of 831 

knowledge from other professional domains.  832 
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