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Abstract

Remote sensing of urban environments has unveiled a significant shift from single-city investigations to
the inclusion of multiple cities. Originated from the ideas of the Remote Sensing of Environment special
issue entitled "Remote Sensing of the Urban Environment: Beyond the Single City," this paper offers a
comprehensive examination of the state of the science in multi-city remote sensing, and aims at fostering
the rapid advancement of this emerging field to address global sustainability challenges and support
knowledge development needed for a new discipline — urban sustainability science (USS). Through a
synthesized review of eight key research fields within urban remote sensing [i.e., land use and land cover
(LULC) and change, urban vertical structure, urban heat islands, hazards, energy use and emissions, air
quality, carbon budgets, and green space], the paper provides insights into the underlying rationale for
conducting multi-city studies, the criteria employed in the selection of cities, the societal applications, as
well as the opportunities and future directions for expanding the scope of assessments in multi-city
remote sensing.

Keywords: Urban, multi-city, remote sensing, synthesized review, future direction, urban sustainability

science

1. Introduction

Over the past two decades, the conceptualization of urban areas has evolved from one primarily
focused on localism to one that acknowledges the global reach of urban areas. Urban areas are now
commonly considered nodes in a highly interconnected global network (Sassen et al., 2004; Brenner et al.,
2006). They are global in their demands on the environment, e.g., how they source their resources and
expel their waste, propagating changes in distant teleconnected landscapes (Seto et al., 2012; Meyfroidt
et al., 2022; Wiedmann et al., 2018). They are also global in that they, collectively, play an out-sized role

in determining the future of many of the planet's largest sustainability challenges. Cities are responsible
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for the majority of CO, emissions, and increasingly are recognized for their sizeable fugitive methane
emissions (de Foy et al., 2023), but also have an opportunity to accelerate systemic climate responses. A
recent Intergovernmental Panel on Climate Change (IPCC) special report on cities emphasizes that urban
climate change mitigation will determine the future of the global climate (IPCC, 2022). In addition, the
social, economic, and political power to address global sustainability challenges like climate change and
inequality are based in cities.

We argue that this increasing urban ambit over global sustainability necessitates a shift in how
urban areas are studied. Whereas historically scientific inquiry focused on the uniqueness of individual
cities, the pace of urbanization, and the urgency of Earth's current environmental crisis requires a parallel
urban science that can scale up to meet the demands of global sustainability challenges. For the field of
urban remote sensing, this means generating an integrated understanding of an urbanizing planet and
helping build the science of what makes urban areas sustainable, both of which require more multi-city
studies. Here, we define ‘multi-city remote sensing’ to be studies that span two or more cities of diverse
geographical patterns and can advance the understanding of urban systems at the regional or global scale
with highly generalizable knowledge or insights. With the swift progress in remote sensing technology,
we note that the term 'multi-city' has evolved from initially involving a small number of cities (e.g., two to
three) to now encompassing dozens or even hundreds/thousands of cities. Studies of a small number of
cities sometimes represent a more targeted test of specific hypotheses or they were used to apply
‘experimental control’ to some variables, e.g., choosing two cities similar in all respects except for a
characteristic under study. Here, we include publications that considered more than one city for the
analysis in this review.

In this study, we aim to summarize the current state of the science in regards to multi-city remote
sensing. We provide insights into why multi-city studies are important, when and why they are usually

performed, and future opportunities for growing the number of multi-city remote sensing assessments.
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Our work originated from the special issue ‘Remote Sensing of the Urban Environment: Beyond the Single
City’ published in the journal Remote Sensing of Environment, but offers a more in-depth perspective on

multi-city remote sensing to promote the rapid growth in this emerging field.

2. The shift from single- to multi-city remote sensing in urban studies

Urban remote sensing analyses remain limited in scope, often focusing on a single city. In a recent
meta-analysis of 644 urban remote sensing papers from 1980 to 2020, 79% focused on a single urban area
or agglomeration (Reba et al., 2020). While case studies are often necessary to connect remote sensing
data to in-depth insights from fieldwork, single city studies are limited in their ability to point out patterns
and variations in patterns, to contribute to theory or enhance generalization, and to produce knowledge
that may be transferred and applied elsewhere.

In contrast, urban remote sensing studies that include multiple cities are important for several
reasons: (i) Comparative analysis or common patterns and processes: By studying multiple cities,
researchers can make comparative analyses of the urban environment, such as land patterns (Schneider
and Woodcock, 2008; Giineralp et al., 2020), structural change (Frolking et al., 2013, Mahtta et al., 2019),
and infrastructural investment (Stokes and Seto, 2019), based on different cohorts (e.g. region, climate
zone, city size, stage of development). These comparisons can help to identify patterns and trends that
may be unique to a particular area, as well as highlight similarities between different regions. (ii)
Cumulative impacts: Urban remote sensing of multiple cities can help identify the cumulative impact of
urbanization. Impacts that are not apparent at a smaller scale, can be revealed when looking across
multiple cities. Understanding the cumulative impact of cities is necessary to link urban processes to
planetary health. (iii) Policy development or generalizable insights: Urban remote sensing studies can help
inform policy development by providing policymakers with data on urban growth and development and

physical changes to the urban environment. By studying multiple cities, policymakers can better
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understand the factors that contribute to successful urban planning and development, as well as the
challenges that cities face in terms of sustainability, environmental management and quality of life (Huang
and Liu, 2022). Instead of examining multiple cities within a single framework, an alternative approach
involves conducting separate single-city studies and subsequently analyzing and comparing their findings.
However, it is important to acknowledge that variations in data quality, remote sensing algorithm or its
parameters, and the evaluation criteria of algorithm’s performance among these studies are likely to
introduce significantly higher uncertainties compared to those encompassing multiple cities in a

consistent system.
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Fig. 1. Comparison of the number of remote sensing publications discussing single or multiple cities (green
bars) versus those discussing multiple cities only (orange bars) from 2000 to 2022.

The past decades, particularly since 2000, have witnessed an explosive growth of studies in urban
remote sensing. Using the popular ScienceDirect® database, we conducted multiple searches to assess
the number of journal articles published in urban remote sensing over the years and evaluated the

geographic distribution of the studied cities. We first compared the number of publications discussing
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single or multiple cities versus those discussing multiple cities using the formula in Fig. 1. We limited the
search to title, abstract and keywords, which ensured a ‘remote sensing’ and ‘urban’ emphasis in the
search results. Both types of studies show a substantial increase over the past two decades with similar
exponential trends (Fig. 1). The number of publications grew from fewer than 10 per year in 2000 to over
400 and 200 per year by 2022 for remote sensing studies focusing on urban/city and multiple cities/urban
regions respectively. We note that research focusing on a single city study site may contain descriptive
language about ‘cities’ or ‘urban regions’ in the abstract, and the number for multi-city studies is likely
overestimated in Fig. 1. However, the overall trend suggests researchers’ increasing interest in broadening
urban case studies. Geographically, the majority of the multi-city studies were focused on large cities in
China, Europe, and North America. We expanded the aforementioned multi-city formula by further
including AND China, AND (Europe OR United Kingdom OR Germany OR France OR Netherlands OR Spain),
and AND ("United States" OR USA OR U.S. OR Canada OR "North America") for the three geographic
regions, respectively. Results show a similar number of studies from Europe versus those from North
America, which have steadily increased from less than five in 2000 to almost 20 per year more recently
(Fig. 2). Remote sensing studies on Chinese cities also showed an upward trend in the past two decades,
but at a faster rate. Chinese studies made a substantial contribution to the explosive increase of urban
remote sensing publications. Their number of publications in 2022 is more than twice that of the studies

of North American and European cities combined (Fig. 2).
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118  Fig. 2. Comparison of the number of remote sensing publications for multi-city studies in China (blue bars),

119 North America (orange bars) and Europe (green bars), from 2000 to 2022.
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Fig. 3. A 3D cube with axes of spatial resolution (fine to coarse), data price (low to high) and revisit time
(short to long), which includes 35 sample satellite sensors for multi-city studies. The blue-to-yellow color
scheme shows the increase of data price from low/free to high.

The development of new remote sensing satellite systems has also helped to increase the number
of multi-city studies. The trends of higher spatial resolution (to capture various degrees of heterogeneity),
cheaper data acquisition costs, and shorter revisit time for state-of-the-art satellite sensors have become
a game changer by offering urban researchers high flexibility to study or compare urban regions of diverse
geographic characteristics. Fig. 3 includes 33 satellite sensors that have been used in multi-city studies
distributed in a 3D cube with axes of spatial resolution (fine to coarse), data price (low to high) and revisit
time (short to long). We used a blue-to-yellow color scheme to show the differences in data price from
low/free to high. While high or very high spatial resolution data (finer than 5 m) remains costly, the
associated sensors have a much shorter revisit time than their predecessors (e.g., 1.1 days WorldView-2
versus 16 days Landsat-8), because they are flown in a constellation. The short revisit time facilitates rapid
monitoring of and responses to urban changes. A number of sensors are now offering free data access
with resolutions suitable for numerous aspects of the urban studies (e.g., global impervious surface
mapping with 10 m resolution Sentinel-2 imagery; Sun et al., 2022).

It is important to note that more data points will not necessarily advance insights into how urban
systems work or lead to better decision-making. As with all sciences, the sample is important. Cities in
multiple city studies need to be selected so that insights can be created that can be extrapolated beyond
the cities in the study. For example, there is a documented gap in geographic coverage of low and lower-
middle income countries in urban remote sensing, as well as an overfocus on megacities, where only 11%
of the world's urban population resides (Reba and Seto, 2020). More multi-city studies that focus on
Chinese, European or North American megacities will not help to build insights about the small and

medium sized towns of the Global South where most future urban growth will occur.
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3. Multi-city remote sensing: development, rationale, societal impact, and challenges

Remote sensing contributes to sustainable urban development from a variety of perspectives.
Here, we provide a synthesized review of representative urban remote sensing topics that have
traditionally or recently captured the attention of urban researchers and practitioners, including land use
and land cover (LULC) and change, urban vertical structure, urban heat islands, hazards, energy use and
emissions, air quality, carbon budgets, and green space. The review of each topic was performed from the
multi-city angle, where we would like to answer the following questions: (i) What was the rationale for
multi-city studies? (ii) How were the studied cities chosen and how were they distributed geographically?
(iii) What was the societal impact of those multi-city studies? And (iv) what challenges or gaps remain to

be addressed?

3.1.Land use and land cover (LULC) and change

LULC assessment has long been an integral part of multi-city studies. Accurately identifying
changes in urban LULC can provide valuable insights into the drivers and socioeconomic effects of
urbanization. Here, studies over the past decade were retrieved using “land cover”, “land use”, and
“multi-city” as the keyword, with single city studies and articles not based on a remote sensing method
excluded. The majority of studies on multi-city LULC have focused on a regional scale, with only a few
studies examining a number of megacities across the globe.

The rationales for multi-city LULC studies are multifaceted, as they often intersect with other
research fields. Both generalizability and representativeness are important rationales for multi-city LULC
studies, which are associated with the study's scale and objective. Here, generalizability and transferability
were considered interchangeable as the diverse landscapes in multiple cities can improve the ability of

the developed model to adapt to new, previously unseen urban environments. Regional-scale studies
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mostly selected major cities covering large administrative regions (Srivastava et al., 2019), such as the 23
cities in the Changsha—-Zhuzhou—Xiangtan region (Fan et al., 2022; Liu et al., 2020), and three metropolitan
areas in China (Li et al., 2020b). On the other hand, studies on a larger scale, such as a national to a global
scale, tended to place a greater emphasis on representativeness (Angel et al., 2011; Chi et al., 2015; Huang
et al., 2020; Huang et al., 2021). Furthermore, the objective of the study can also influence the rationale
in multi-city LULC studies. For instance, the high variation in the severity of air pollution was one of the
primary drivers for studies that integrate land use and air pollution across cities (Han et al., 2021).

The selection of cities in multi-city LULC studies was primarily based on their regional or global
significance or rapid urban expansion. For instance, in regional-scale studies concerning urban
sustainability, the importance of cities, as measured by factors such as population and economic status,
is a primary criterion (Fekete & Priesmeier, 2021; Ju et al., 2022; Liu et al., 2020; Yue et al., 2019). The rate
of urban expansion is another commonly used criterion (Koroso et al.,, 2020; Yao et al.,, 2022).
Furthermore, in papers that focus on method development, the selection of cities is often more concerned
with the availability of data for validation purposes (Bousbih et al., 2022).

At all scales of multi-city LULC studies, remote sensing plays an important role in identifying
representative and universal drivers of land use changes (Gutman et al., 2008; Karra et al., 2021; Yang and
Huang, 2021; Zhang et al., 2022b). Changes due to urban LULC at the parcel level, such as the expansion
of impervious surface areas, taller buildings, and the creation of green spaces, can have substantial
environmental implications. For example, a reduction in grasslands and an expansion of urban areas have
resulted in carbon losses and water quality deterioration (Lai et al., 2016; Liu et al., 2019; Teixeira et al.,
2014). Furthermore, the varying climatic backgrounds across different cities have led to differences in the
impact of land cover on the urban thermal environment (Masoudi et al.,, 2019; Wang et al., 2020).
Nonetheless, certain limitations, such as data availability, quality, and comparability across different

regions or time periods remain to be addressed (Wu et al., 2019).
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3.2. Urban vertical structure

Urban vertical structure estimation aims to expand our ability to capture and analyze urban spatial
heterogeneity from horizontal land cover to its vertical structure. Urban areas have been intensively
mapped in 2D while their vertical dimension is drawing increasing attention due to its important
contribution to understanding urban ecosystem functioning, such as population distribution, energy use,
and economic growth (Koziatek & Dragicevi¢, 2017; Zhou et al., 2022). This section focuses on the
extraction of urban vertical structure, due to its pivotal role in 3D mapping and its prevalence in recent
multi-city studies.

Compared to land cover, urban vertical structure often exhibits greater variance. Densely
inhabited cities tend to have taller buildings (e.g., more skyscrapers) and rougher surfaces than those less
populated (Barr and Luo, 2021). From the perspective of geomatics or civil engineering, efforts have been
devoted to reconstructing or simulating urban environments at a fine scale (e.g., individual building or
tree level), while developing models (or software products) that are (semi-)automatic or more ideally end-
to-end to improve efficiency and reduce costs. Multiple cities are needed for model calibration or
validation to meet user needs over diverse urban regions. Since the 2010s, there have been tremendous
efforts to develop benchmark datasets that can serve as a baseline for assessing models’ generalization
ability in 3D mapping. A notable example is the International Society for Photogrammetry and Remote
Sensing (ISPRS) 3D Building Reconstruction benchmark providing building roof 3D structures in two cities,
Vaihingen, Germany and Toronto, Canada (Rottensteiner et al., 2014). One recent trend is the adoption
of machine learning (ML), particularly deep learning (DL) in vertical structure estimation (e.g., Cao and
Huang, 2021; Yan and Huang, 2022). Because deep neural networks have a large number of parameters,
a key to strong model generalization ability is feeding the model with massive amounts of training data

that represent various types of urban environments. In an effort to extract building height over 42 Chinese
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cities, Cao and Huang (2021) used buildings located in 4,723 sample grids (1x1 km each) from an existing
dataset across the studied cities. From the perspective of sustainable development, multi-city studies or
intra-city comparisons can expand our ability to discover the patterns or underlying mechanisms of urban
system functioning across cities at the regional to global scale. For example, Pérez-Urrestarazu et al.
(2016) systematically reviewed and analyzed the ecological, environmental and social impact of vertical
greening systems (vegetation to spread over building facades or interior walls) on the sustainability of
densely built urban areas. Zhou et al. (2022) discovered that urban built-up heights are significantly
correlated with inequality in the Global South by examining global cities in 159 countries.

The majority of urban vertical structure studies have focused on large cities, especially those in
countries or regions of strong economic development, such as Europe, China and the U.S. The rationale
for selecting specific cities was vague or not mentioned in most studies. Those that did mention the
criteria often provided a qualitative description, including phrases like “diverse buildings” or
“representative urban structures” (e.g., Cao and Huang, 2021; Tan et al., 2022). While not explicitly
discussed, data availability may have also affected the geographic distribution of those studies. Different
from classic land cover mapping, developing a 3D model requires the vertical information of urban
structure as input, which is labor intensive and costly to collect. However, recent attempts have
demonstrated the potential to address this challenge by applying street view images to efficiently and
accurately estimate building/tree height or street canyons (e.g., Li et al., 2018; He and Li, 2021).

Urban vertical structure datasets serve as a foundation to support a range of societal applications
across cities, including urban heat island effects (Berger et al., 2017), urban energy use (Li et al., 2017),
urban nighttime image analysis (Tan et al., 2022), heritage recording (Remondino, 2011), air pollution
dispersal (Yang et al., 2020), population distribution (Biljecki et al., 2016), inequities (Zhou et al., 2022),

and economic growth or GDP (Frolking et al., 2022). They are also key to implementing “digital twins”,
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which aim to simulate the urban environment and tackle complex urban challenges in an immersive 3D
environment (Dembski et al., 2020).

Urban vertical structure estimation has revealed a promising trend of expanding from single cities
to multiple cities. This observation holds especially true with the growing accessibility of very-high-
resolution imagery obtained from satellites or Unmanned Aircraft Systems (UAS), coupled with advanced
modeling and computer vision approaches. However, when it comes to large area coverage, the spatial
resolution of most products remains comparatively low. This may have restricted many building-level
applications to ‘case studies’ over one or a limited number of cities. With the increasing availability of
urban vertical structure data, the maturity of the modeling algorithms, and the advance of computing
power, fine-scale 3D models are expected to be widely available in a multi-city setting. In comparison to
mapping the outdoor environments, extracting the inner 3D structure of the buildings (i.e., indoor
mapping) has received increasing attention more recently. However, the indoor environment is even
more complex. Particularly, intensive manual intervention is required in indoor mapping, which makes

city-scale or cross-city mapping a challenging task (Ying et al., 2020).

3.3.Surface urban heat island

The surface urban heat island (SUHI) has long been a target of multi-city studies as researchers
seek to characterize the spatiotemporal behavior of the SUHI and to relate its characteristics to various
influencing factors. Up to about 2010, most studies focused on individual cities (Zhou et al. 2019); in the
period since 2018 we identified approximately 150 multi-city studies. Just over half focus on a select
country, with smaller but similar percentages (12-16%) that identify a global, continental/regional and
sub-national scale as the focus.

The rationale for these studies is most often ‘generalizability’ or ‘representativity’.

Representativity focused studies often use a small number of cities, magnifying the importance of
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selection criteria. Around 15% of studies self-characterize as ‘comprehensive’ —often (but not exclusively)
associated with global or national scale assessments with large numbers of cities. Some comprehensive
studies target a smaller geographic scale and restrictive selection criteria, e.g., all megacities within a
particular nation. Study rationales also include: methodological assessments, specific tests or
comparisons, or a more general ‘characterization’ of conditions. Multi-city studies incorporate anywhere
from 2 to over 10,798 cities (She et al., 2022). Over 50% of studies used more than 50 cities, and more
than 10% processed more than 1000 cities. Sample size is associated with spatial scale of the study: the
very largest studies are typically global scale, with a few national (China and USA) scale studies. Some
recent articles assess urbanization with respect to impervious surface cover rather than providing a
distinct city ‘count’ (Sismanidis et al., 2022; Zhou et al. 2022).

Selection of cities use a variety of criteria with population and climate zone most frequently
noted. Physiographic setting, city political, socioeconomic and/or cultural importance and urban area
were also frequently used. The availability of ancillary data has become more important for studies that
seek to better understand the mechanisms associated with the SUHI and its interaction with other aspects
of the urban environment. Some examples include: relations between SUHI and the canopy air
temperature heat island (e.g., Du et al., 2021; Hu et al., 2019; Venter et al., 2021), linkages between air
quality and the heat island (e.g., Han et al. 2020), the influence of anthropogenic heat (e.g., Jin et al., 2020;
see also Section 3.5), and meteorological controls on the heat island (Lai et al., 2021). Applying multiple
criteria was common and, in such instances, criteria were often applied sequentially — e.g., cities were
first selected on the basis of area and/or population and then further categorized by climate zone. A
number of studies target all cities at a particular scale of a given size (population or area).

Three regional science and societal application themes arise. First is the use of multi-city studies
to advance our understanding of SUHI formation and evolution, either holistically or in relation to

influencing factors, especially the background climate (and associated biome), but also urban form (e.g.
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Stuhlmacher et al., 2022), structure (Cao et al., 2022) and vegetation (Chakraborty and Lee, 2019). Other
factors include energy use and human activity modifications, for example COVID-related shutdowns (e.g.
Algasemietal., 2021; Liu et al., 2022) or how the SUHI is related to socioeconomic conditions (Chakraborty
et al., 2019). Second is methodological advances in how multi-city SUHI are studied, e.g., use of Local
Climate Zones (Bechtel et al., 2019), or how ‘urban’ is defined (Chakraborty et al., 2020; Zhou et al., 2022).
These methodological advances are intended to provide more consistent approaches for identifying urban
areas to allow more comprehensive understanding of the SUHI and overcome limitations that may exclude
smaller and/or less urbanized regions. A third theme is information to help guide heat mitigation and
adaptation strategies and urban planning policies. While some studies provide specific advice, usually
linked to climate region or climate parameters, many papers are generic in their guidance, not surprising
given a common focus is often the identification of SUHI spatiotemporal variations. Application of findings
to SUHI mitigation must be considered with caution because the heat island intensity is highly dependent
on the reference non-urban conditions and the intended target of most heat mitigation is canopy layer
air temperatures or heat stress (Sismanidis et al., 2022; Martilli et al., 2020).

Multi-city SUHI studies must continue to incorporate ground-based in-situ measurements,
particularly air temperature, but also air quality and surface energy balance parameters, synchronous with
remote observations, to advance a more holistic understanding of the urban physical environment.
Incorporating more physical factors that affect the spatiotemporal characteristics of urban (and rural)
surface temperature into the analysis is needed; e.g. building height or 3D structure; socioeconomic
information; vegetation details; air quality; and energy consumption. Some of these (3D structure) pose
a challenge for large scale studies (Liu et al., 2021) that may demand higher resolution satellite imagery
with global coverage. Others, such as socioeconomic and energy consumption data are complicated by
jurisdictional differences that can limit multi-scale and multi-city analysis. Combining satellite remote

sensing with numerical modeling of surface and canopy layer air temperatures is also important for multi-
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city studies to broaden physical process understanding. Finally, in the quest to determine cumulative
impacts and to provide policy relevant information, it is necessary for multi-city studies to take on the
challenge of assessing urban heat mitigation strategies, especially at the intra-urban scale, while
remembering that the surface temperature observed is both an incomplete representation of the full
urban surface and is different from urban air temperature — the focus of much urban climate adaptation

efforts.

3.4. Urban hazards

Satellite remote sensing is an important tool for assessment of hazards and the damage that arises
from particular events. Here we examine multi-city studies reported for four categories of hazards: ground
movements (such as earthquakes and landslides), damage assessment, flooding, and heat waves. Air
quality is covered separately in section 3.6.
3.4.1. Ground movements

Raspini et al. (2022) in their review of satellite radar interferometry used to study ground-
movements arising from earthquakes or landslides showed the vast majority of studies that involve cities
are case-study based. Recent advances afforded by the global coverage of Sentinel-1 has made possible
investigations over larger regions that include multiple cities. Del Soldato et al. (2019) provided an
example of a regional scale monitoring system using satellite interferometric data. The regional scale
incorporates a range of urban settlement sizes and provides the ability to detect temporal changes related
to slow-moving landslides and subsidence. Bianchini et al. (2021) used multi-temporal satellite
interferometry as part of an integrated system that incorporates ground-based instruments for landslide
management and mitigation strategies over the region. Crosetto et al. (2020) described ground motion

services at national and continental scales for Europe that have many urban applications. Confuorto et al.
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(2021) determined a greater frequency of detected anomalies over urban areas in Tuscany, ltaly relative
to other study areas, helping identify risks to urban environment.
3.4.2. Damage assessments

At fine spatial scales, remote sensing can contribute to assessment of damage arising due to
earthquakes or conflict in urban areas. Damage from earthquakes in urban settings is often largely a case-
based type assessment (Cooner et al. 2016), but multiple cities may be used as part of training for
algorithms that assess destruction detection (Ali et al., 2020) wherein developing transferrable models
requires a large dataset of labeled buildings that cover different building types (Matin and Pradan, 2021).
Night time light (NTL) analysis also provides an ability to assess earthquake-impacted areas at regional
scales (Levin, 2023). Speed of assessment is critical to this application given the need for emergency
response. Recovery monitoring is also relevant. There is a need to overcome the manual (and slow) visual
interpretation of images, especially for fine scale assessments.

Cities and urban infrastructure are often a focus of remote sensing monitoring for conflict impacts
(Van Den Hoek, 2021; Kaplan et al., 2022). Geographic study areas are often regional or national in scope
and thus the multi-city context is often implicit. Jiang et al. (2017) undertook an analysis of multiple cities
in Syria and Yemen respectively using NTL. This allows national scale assessment as well as the ability to
compare impacts between cities. Mueller et al. (2021) showed the application of an automated method
for assessing building destruction for major cities in Syria where multiple sites are used to demonstrate
the generalizability of the method. Their work advances the ability to detect building destruction and
identifies that a strong reliance remains on human interpretation, especially at the building scale. Zhang
et al. (2020) used NTL for assessing the crisis in Venezuela between 2012-2018 that incorporated a multi-
city component used to help track migration of residents from urban centers to suburbs that again

targeted regional to national scales but which enables comparisons between cities. The need for multi-
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city study is implicit in Bennett et al.’s (2022) recommendation of the need to produce analysis-ready,
conflict-wide very high resolution remotely sensed imagery mosaics to harmonize monitoring.
3.4.3. Flooding

Remote sensing using synthetic aperture radar (SAR) has mapped flooding in urban areas but
methods and applications intended for assessing flooding urban areas have been less frequently examined
(zhao et al., 2022). More generally, flood mapping in urban areas is challenging due to the built structure
(e.g. Schumann et al., 2022). Multi-city studies are valuable for providing training data for ML/DL methods,
but getting appropriate training data is difficult. Zhao et al. (2022) examined six different urban flood cases
from four study sites; their multi-city approach is based on the occurrence of the event and a desire for
generalizability of their method. As with other hazard events, single city case studies are important for
methodological development and testing. The choice of sites relates to the need for other datasets, the
event itself, and an assessment of the performance of their method at a river confluence —i.e., physical
geographic setting was a consideration (Mason et al., 2021).
3.4.4. Heatwaves

Heatwaves are an important urban hazard that is often represented as a motivation in SUHI
studies. Satellite-derived urban surface temperature is often used as a proxy to assess urban heat stress
during heat waves but Chakraborty et al. (2022) showed that spatial variability of heat stress is not well
captured by these observations. Their results imply that caution must be used in the use of remotely
sensed surface temperature to guide heat mitigation in cities (see also the cautions in the SUHI section).
Their use of European cities was targeted to provide a broad range of cities for representativity, but their
limited range of climates motivates work for cities in arid and humid regions.

Keramitsoglou et al. (2016) provided an example of an explicit multi-city study that focused on
heatwave identification and reducing its risks in urban areas. They examined multiple cities in Europe and

North Africa to assess a geostationary satellite-based method to monitor air temperature in real time.
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The multi-city application was intended to serve a range of end users of the data and the evaluation used
15 cities so as to provide variety in environmental conditions, with explicit recognition of different climate
zones. The selection of cities allowed performance variations dependent on city topographic setting to be
diagnosed, along with diurnal variations in performance. The multi-city approach enables a broader
application of the data including heatwave monitoring and energy demand and to allow its interface with
other local and regional data sources.
3.4.5. Summary of urban hazards

As might be anticipated, many urban hazards studies relate to a single city or small regions linked
to a particular hazard, e.g. hurricane damage assessments (Al-Amin Hoque et al., 2017) or to
methodological development. Multi-city studies are often implicit rather than explicit through
coordination at larger scales. Generalizability, e.g., for training of algorithms, was noted for a number of
studies. Multi-city studies also broaden the area assessed, serve more end-users, and allow comparison
of impacts between cities, even if the multi-city aspect was initially unintentional. Hazard occurrence is
the main driver of how studied cities were chosen for post-event type studies, with the need to link to
other datasets, and background climate/physiographic setting also influencing city choice. Societal impact
comes from the ability of multi-city remote sensing to provide rapid and effective disaster response and
recovery assessment. More broadly, multi-city hazard studies contribute to building resilience through
understanding impacts of past events and for developing mitigation strategies and forecasting/warning
systems, e.g., for heatwaves. Looking forward, some general challenges relate to the need for sufficient
spatial resolution (or downscaling techniques) to match the scale of the hazard assessment being
undertaken, rapid revisit time and freely available data (Poursanidis and Chrysoulakis, 2017).
Complementary high-performance computing or use of cloud-based services is needed to provide the fast
analysis required to be relevant for operational response to hazard occurrence. Methodological

developments to reduce reliance on human interpretation (e.g., for building-scale damage assessments)
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and to better relate satellite derived quantities to the relevant hazard (e.g., directional brightness

temperature vs urban canopy layer heat) are also needed.

3.5. Energy use and emissions

The discharge of energy caused by human activities can have a significant effect on the surface
energy balance in urban environments (Zhou et al., 2012). Remote sensing techniques have enabled a
better understanding of human impacts on the urban environment by providing wider geographical
coverage and finer spatial detail of energy use and heat emissions caused by human activities (Yu et al.,
2021b). Combining multi-source remote sensing data with inventory-based anthropogenic heat emission
(AHE) and energy use methods offers significant advantages in estimating AHE and energy consumption
at a large scale (Sailor and Lu, 2004), which has enabled the comparison between multiple cities,
facilitating an improved understanding of human impacts on urban environments of varying backgrounds
of climate (Chrysoulakis et al., 2016), population density (Cao et al., 2014), and socioeconomic status (Yue
et al., 2019).

Most multi-city energy use and emission studies were motivated by the need to develop new
methodologies. There is a growing need for global and national estimates of AHE and energy use in order
to better understand human impacts on the urban environment (Chen et al., 2020). Several studies on
AHE have used data from multiple remote sensing sources, including LULC, DMSP/OLS NTL, Normalized
Difference Vegetation Index (NDVI), land surface temperature, and global urban footprint, in combination
with population density data (He et al., 2020), road network data (Qian et al., 2022), point-of-interest data
(Wang et al., 2022b), or urban building characteristics (Yu et al., 2021a), to improve AHE mapping and
investigate spatial variations across multiple cities with diverse socioeconomic backgrounds (Chen et al.,
2012; Yang et al., 2014). Many energy use studies have chosen to use the total brightness of NTL imagery

as a key indicator to examine the distribution of electricity consumption in cities around the world, such
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as Australia (Townsend and Bruce, 2010), China (Cao et al., 2014; He et al., 2012; Shi et al., 2014; Zhao et
al., 2012), and globally (Shi et al., 2016; Xie and Weng, 2016).

In many multi-city energy use and emission studies, city selection was primarily based on factors
such as the cities' significance or their climate background. For instance, metropolitan areas (e.g., Beijing,
Shanghai) and urban agglomeration areas (e.g., Pearl River Delta, Yangtze River Delta) in China were
frequently chosen (e.g., Chen et al., 2020; Qian et al., 2022). These cities were compared in detail in terms
of their AHE and electricity consumption over a long time period. In Europe, city selections were often
based on the climate background of the city. For instance, in the URBan Anthropogenic heat FLUX from
Earth observation Satellites (URBANFLUXES) project, three distinct European cities situated in different
climate zones were selected (Chrysoulakis et al., 2016).

The enhanced estimates of energy consumption and emissions in multi-city studies can help to
reveal diverse spatial patterns of electricity energy consumption and better understand the impact of
human activities on urban thermal environments. Incorporating regional AHE profiles into numerical
modeling systems has enabled researchers to better understand the significance of AHE in urban energy
balance (Sailor et al., 2015), as well as estimate its potential impacts on urban climate and air quality. Due
to a lack of data on AHE, urban modelers are often forced to either turn AHE off or use representative
profiles that do not account for spatial variations in AHE within the city (Block et al., 2004; Dokukin and
Ginzburg, 2020; Gabey et al., 2019). Remote sensing data has facilitated the development of regional AHE
datasets, which have been incorporated into the Weather Research and Forecasting (WRF) model to
investigate the impact of AHE on urban meteorology and air quality in multiple cities across the Yangtze

River Delta region of China (Xie et al., 2016).

3.6. Air quality
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Air pollution has become a worldwide concern due to its impacts on human health, weather, and
climate (e.g., Anenberg et al., 2022; de Sario et al., 2013). Monitoring the spatiotemporal variations of
gaseous pollutants is important to assess air quality and health risks for developing mitigation policies
(e.g., Peng et al., 2016; Song et al., 2019). In recent years, air quality has been a growing target of multi-
city studies due to rapid urbanization. For example, Anenberg et al. (2019) estimated fine particulate
matter PM2.5 mortality in 250 most populous cities worldwide. Southerland et al. (2022) used the Global
Human Settlement Grid to identify 13,160 urban areas with population more than 50,000 and a global
PM2.5 dataset that combines satellite-retrieved aerosol optical depth, with models and ground
observations for a 20-year analysis to demonstrate that most of the world’s urban population lives in
areas with unhealthy levels of PM2.5. The COVID-19 lockdown periods provided a unique opportunity to
assess air pollution in response to changes in human activity patterns. Cooper et al. (2022) assessed the
ambient NO; changes in 215 global cities during the COVID-19 lockdowns and found that the sensitivity
of NO; to lockdowns varies by country and emissions sector, demonstrating the critical need for spatially
resolved observational information provided by satellite-derived surface concentration estimates. Adam
et al. (2021) also provides a critical review on air quality changes in cities during the COVID-19 lockdown:s.
Here, we focused journal articles on air quality studies using remote sensing data with single city studies
excluded.

The rationale for conducting multi-city studies of air quality primarily revolves around three
aspects. First, there is a critical need to explore the spatiotemporal variations of air pollutants in the
context of urbanization and urban expansion recognizing that cities are important sites of air pollutant
emissions and processes and not all cities are well characterized by ground-based observing systems (Li
and Huang, 2020). The sources of air pollutants comprise both anthropogenic emissions from industrial
production, transportation exhausts, and emissions related to building heating and cooling as well as

natural factors, such as wildfires and dust storms (Wei et al., 2023). Anthropogenic emissions have gained
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increasing attention, particularly in developing countries' cities, due to rapid urbanization accompanied
by economic development (Kumar et al., 2020; Zhang et al., 2022c). Park et al. (2021) found that cities
show distinct emission patterns according to their geographic location. Second, the availability of remote
sensing data provides the possibility to study intra-city and inter-city air quality conditions for improved
policy-making (e.g., Wei et al. 2021). Satellite derived emissions are able to provide independent
information to verify bottom-up emission estimates and to assess the effectiveness of emission control
measures, especially for locations that lack surface observation networks and/or do not have detailed
emission inventories. Multi-city studies have benefited significantly from remote-sensing-based long-term
and gapless air pollution datasets (e.g., Peng et al., 2016; van Donkelaar et al., 2016; Wei et al., 2022,
2023), with high temporal frequency and spatial continuity characteristics. Third, gathering information
on air quality across multiple cities offers the potential to discern general patterns of cities with distinct
characteristics at regional or global scales. For example, during the COVID-19 lockdowns, improvements
in air quality with reduced concentrations of air pollutants such as NO,, PM2.5, CO, and SO; have been
observed in many global cities, but with high variations across cities (e.g., Cooper et al., 2022; Sannigrahi
et al., 2021).

Cities included in multi-city air pollution studies were chosen based on various factors, such as
known high levels of air pollution (Sannigrahi et al., 2021; Song et al., 2019), large population size
(Anenberg et al., 2019), and significance of the city, including metropolitan or provincial capital status,
with different climate characteristics (e.g., Ali et al., 2021; Pei et al., 2020). Some assessments required
the studied cities to provide a strong contrast of the urban source from its background and in some cases
have a homogeneous wind field free from topographic influences (e.g., Lu et al. 2015, Goldberg et al.
2019). Additionally, some studies selected cities as representative samples from different regions or

categories for generalizability (Cooper et al., 2022; Vadrevu et al., 2020).
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Research on air quality monitoring and assessment across multiple cities can be instrumental in
the development of mitigation policies for air pollution. By integrating remote sensing and socio-economic
and health data, multi-city air quality studies have the potential to enhance our understanding of air
pollutant exposure and associated health risks (Song et al., 2019; Southerland et al., 2022). Multi-city
studies have revealed that the sources of air pollutants differ across cities worldwide through various
transport pathways (Duncan et al., 2016). Excessive urban expansion has been found to exacerbate air
pollution in local cities in a non-linear manner, while improving air quality in neighboring cities (Zhang et
al., 2022c; Zhou et al., 2018). Additionally, urban form, population densities, and ambient air pressure
were found to be among the several factors that have impacts on air quality. Multi-city air quality studies
still face uncertainties due to issues with remote sensing data from multiple sources, such as scale
mismatches between in-situ measurements and remote sensing observations in generating gridded air
quality data. For instance, Wang et al. (2021) found that using different methods to derive air pollution
exposure data can result in different estimates of premature mortality changes, underscoring the
importance of robust methods for estimating gridded datasets of air pollutants. Creating gridded datasets
of air pollutants with high frequency and accurate spatiotemporal patterns remains a challenge due to

the high heterogeneity of spatiotemporal variations of air pollutants.

3.7.Carbon budgets

Urban areas play a critical role in climate change both as the primary emitters of anthropogenic
greenhouse gasses, as hotspots of vulnerability to the impacts of climate change, and as the stage where
policy and action to mitigate climate change is playing out. More than 1100 cities have committed to halve
carbon emissions by 2030 and reach net zero by 2050 (United Nations, 2023). As such, tracking urban
carbon budgets is important both for monitoring the collective contribution of urban activities to climate

change, but also for local level decision-making aimed at mitigating carbon emissions. Remote sensing on
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urban carbon budgets has contributed to four main areas of research: (1) measuring and mapping
emissions directly, (2) monitoring the progress of mitigation strategies, (3) estimating the impact of land
changes from urbanization on carbon sinks, and (4) measuring the contribution of urban vegetation to
carbon sequestration. This work has relied on a diversity of sensors: multi-spectral daytime imagers
onboard Sentinel, Landsat, and MODIS/VIIRS to monitor change in carbon stocks, nighttime radiometers
like VIIRS-DNB and DMSP-OLS and NO; instruments like TROPOMI to refine the spatial distribution of
emissions, and instruments that measure the vertical column density of CO,directly (SCIAMACHY, TANSO-
FTS, GOSAT/GOSAT2, TanSat, OCO-2, and OCO-3).

The multi-city studies we reviewed on carbon budgets incorporated anywhere from 2 to 653 cities.
Half of the studies used less than 27 cities, and only 4% processed more than 350 cities. The main rationale
for including multiple cities was to be comprehensive — to understand collective urban carbon emissions
in a particular geography (e.g., global studies, national studies, or studies that completely covered a
smaller geographic scale like a province or urban agglomeration). Assessments of Chinese cities
constituted the majority of the studies examined. Most of these studies aimed to be comprehensive in
their scope — either capturing all of the prefecture level cities in China (of which there are currently 278),
or all of the cities within a particular region or urban agglomeration [e.g., the Pearl River Delta (Cui et al.,
2019) or Beijing-Tianjin-Hebei agglomeration (Chen et al., 2022)].

We found few studies that chose a sample of cities intentionally for representation. Selection of
cities is often linked to having available ground-based measurements, satisfying criteria that enables a
satellite algorithm to work, or having sufficient observations (Kort et al., 2012; Zheng et al., 2020). Studies
with representative samples tended to be urban vegetation and carbon sequestration assessments, which
focused on choosing cities in different biomes, with different topographies and climatic conditions. The

second most popular schema for choosing a city sample was based on population, for example, focusing
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on cities with populations over a certain threshold. All of the global studies we reviewed focused on large
well-known global cities or megacities.

The carbon budgets of large cities are important to understand due to their outsized role in
producing global direct emissions. In 2017, 18% of all global emissions came from just 100 cities (Moran
et al., 2018). However, the vast majority of urbanization is occurring in small to medium sized cities of the
developing world (Zimmer et al., 2020)—so these understudied places are projected to have a growing
impact on climate change, while arguably offering the least cost pathway to low-emission, climate resilient
urbanization. Furthermore, secondary cities generally lack the institutional and technical capacity as well
as the financial resources for climate response that are available to larger “global” cities.

Pan et al., (2021) reviewed the potential of CO; satellite monitoring for climate governance — an
emerging critical need — and note a number of studies with multiple cities. We expect there to be an
escalation in the number of multi-city studies that measure urban emissions by satellite in the near future.
Satellite monitoring of urban CO; has been limited by the current satellites, which were designed to
measure regional biospheric carbon fluxes or global atmospheric CO,, not anthropogenic CO, (Nassar et
al., 2017). Sensors must have high revisit frequency over the same urban area to constrain emissions
estimates, particularly with clouds and urban air pollution, so the low repeat cycle of satellites like OCO-
2 and GOSAT is limiting for urban monitoring. Several future satellite missions are planned that will be
well-suited to monitor carbon dioxide (Pasternak et al., 2017), GHGSat-C2 (Ligori et al., 2019), and OCO-3

(Eldering et al., 2019), among others.

3.8.Green space
Urban green space refers to the vegetated urban land cover of various uses, such as street trees,
parks, community gardens, sporting fields, stream banks, greenways, green roofs, and lawns, which

provide essential ecosystem services to improve the quality of life for city dwellers (Wolch et al., 2014).
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Mapping and analyzing urban green space can be treated either as part of a broader LULC mapping task,
or an independent mission. In either way, multi-city urban green space studies have been largely driven
by the research purposes of understanding the differences and similarities in the spatial patterns of
vegetation fragmentation, growth or phenology, as well as the effects of urbanization on the dynamics of
these patterns (e.g., Zhou et al., 2016; Ruan et al., 2019; Kowea et al., 2021). This is especially true for the
Land Surface Phenology (LSP) research, where the response of plant phenology to the changing climate
and rapid urbanization are highly complex. Studying its patterns over multiple, diverse cities provides a
mechanistic understanding of the drivers of plant phenology in an urban setting (Zhou, 2022).

Studies of urban green space have been traditionally conducted in major cities over developed
regions in the northern hemisphere (such as Europe and North America), where green space was treated
as having higher economic and ecosystem service values compared to that in many developing countries
(Cilliers et al., 2009; Kowe et al., 2021). However, there has been a recent trend of expanding study areas
into cities of China, Southeast Asia, and South America (e.g., Nor et al., 2017; Zhou et al., 2018; Ju et al.,
2022). The main criteria for city selection are relatively consistent across studies, which tend to cover mid-
and large-size cities of high geographic or climate variations, as well as varying demographic and economic
conditions. Climate is a particularly important criterion since it directly affects vegetation growth, species
distribution, and phenology, leading to significant variation across cities.

While urban green space has long been recognized to provide a plethora of ecosystem services to
support the physical and psychological wellbeing of city dwellers since the nineteenth century (Swanwick
et al., 2003; Dickinson and Hobbs, 2017), most studies were based on field observations. Remote sensing
provides a spatially explicit monitoring capacity of urban vegetation over broad areas, which has led to in-
depth knowledge or new angles in understanding the value and role of the green space. Representative

applications include studies of urban heat islands (Nastran et al., 2019), the cooling effect (Aram et al.,
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2019), sustainability (Badiu et al., 2016), risk of death (Bixby et al., 2015), environmental justice (Kabisch
et al., 2016), biodiversity (Sultana et al., 2022), and health of children and seniors (Sikorska et al., 2020).
Urban green space as an attentive subject in remote sensing has a relatively short history starting
in the 2000s. While it becomes increasingly routine to remotely capture the spatial coverage and temporal
dynamics of urban green space, most of the multi-city algorithms were developed at a coarse resolution
(e.g., 30 m). Such a resolution tends to overlook small-scale urban green space, which spreads across the
entire urban region (e.g., street trees). When considered in their totality, a significant amount of urban
vegetation is likely to be ignored in the analysis (Godwin et al., 2015; Shahtahmassebi et al., 2021).
Researchers had to use spectral unmixing to extract urban vegetation fraction. While airborne LiDAR and
very-high resolution sensors offer an effective means to take a fine scale look at urban green space (e.g.,
at individual tree level), most studies were still conducted at the local scale focusing on one single city or
municipality (Kowe et al., 2021). This issue could be addressed by the increased availability of very-high
resolution or hyperspectral imagery, an openly accessible field data network (e.g., tree height, species
types, biomass, and infestation) across cities, and advanced cloud computing power (e.g., Google Earth

Engine, Gorelick et al., 2017).

4. Multi-city studies in the special issue

This special issue aims to review and synthesize the latest cutting-edge advances in remote
sensing multi-city studies. The guest editors received a total of 56 abstract submissions (for pre-approval)
and 44 full manuscript submissions. Following a rigorous peer-review process, 19 papers were accepted
andincluded in the special issue. These accepted papers are broadly focused on urban LCLU and its change
(8 papers), followed by studies of urban vertical structure (4), SUHI (3), hazards (1), green space (1),
surface albedo as a joint effect of urban LCLU, green space, and climate (1), and a review of multi-city

remote sensing (this paper). Table 1 provides more details about these special issue papers (excluding the
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review paper), including the author, specific research topic, novel contribution, and the cities studied.

Overall, these studies remain focused on major cities (or city clusters or metropolitan areas) in China, the

U.S., and Europe, which follows the existing trend discovered in our review. Most of the studies did not

explicitly explain the rationale behind choosing multiple cities, although some of them did point out key

factors, such as model generalization for effective knowledge transfer (Daams et al., 2023), and the

comparison of peer cities to inform urban sustainable development (Chakraborty & Stokes, 2023). The

criteria for city selection were designed to meet specific research goals, which is consistent with our

review findings. We also found a common strategy to boost city representation by incorporating urban

regions of diverse geographic regions, sizes, and/or climatic zones. These studies provide a representative

sampling of the characteristics of the multi-city studies described as part of the review.

Table 1.

List of the special issue papers, describing author, research topic, novelty, and cities studied.

Stokes (2023)

detection

baseline behavior.

Capable of detecting both
positive/negative and gradual/abrupt
changes.

Author Research Topic Novel Contribution Cities Studied
Reduced needs for manual labeling.
Enhanced model performance via
Buildi inty- S
Cao & Huang uilding uncerta!nty awa're pseudo label 27 maijor cities in
change generation, a noise-robust network, and .
(2023) . ) o . China
detection reducing data distribution differences
between time-series images at multiple
levels.
Developed a data-driven approach using
neural networks to learn city-specific NTL
Chakraborty & | Urban change time-series models of the expected 11 cities across

North America,
Asia, and Africa

Synergized Photogrammetry and Deep
learning methods (BHEPD).

Chen P. et al. Building height ] L 8 major cities in
. . Enhanced accuracy of heights estimation, .
(2023) estimation . . . . . China
particularly for high-rise, high-density, and
multi-scale buildings.
Human . . :
Chen T.K. et al. Demonstrated, for the first time, the Multiple northern
settlement . . .
(2023) detection potential of deep learning to detect states of India,
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human settlements in mountains at the
sub-pixel level.

and the nations of
Nepal and Bhutan

Metropolitan

Introduced a consistent measure of
metropolitan boundaries.

687 European

Daams et al. Highlighted the typically unobserved role .
boundary L ) metropolitan
(2023) . that study area definition and selection
mapping g . ) areas
may play in affecting outcomes in remote
sensing studies in urban settings.
Quantified trends in urban microwave
backscatter across large cities and three
Global trends & 477 large cities
. decades. .
Frolking et al. of urban . . across China,
. Analyzed the relationship of urban
(2022) building . - Europe, and the
microwave backscatter to building
volumes u.s.

volume, and to city-scale economic
activity.

Sub-pixel urban

Combined the learning ability of the data-
driven idea with the spatial correlation

Major cities in

He et al. (2023) | land cover modeling process. .
. . China
mapping Developed a learnable correlation based

sub-pixel mapping network (LECOS).

Built a new set of multimodal remote

sensing benchmark datasets (including Two cross-city
Hong et al Cross-city hyperspectral, multispectral, SAR). scenes in
(202g3) ' semantic Developed a high-resolution domain Germany and in

segmentation

adaptation network (HighDAN) to
promote the Al model’s generalization
ability.

China,
respectively

Hu et al. (2023)

Assessments of
human
exposure to
extreme heat

Generated hourly human heat exposure
maps at 1-m spatial resolution during heat
waves and non-heat wave days.
Investigated spatiotemporal patterns and
the impacts of urbanization intensity and
urban morphology on heat exposure.

Three cities in the
u.S.

Developed an auto-refinement method
for correcting the terrain elevation

Three cities in the

. Terrain . u.S., the
Li B. et al. I . product of ICESat-2 in urban areas.
elevation . . . Netherlands, and
(2023) . Mixed terrain elevation data from the
correction . New Zealand,
strong- and weak-beam observations to .
e respectively
ensure broad applicability.
Used satellite-derived enhanced
vegetation index to examine the
LiL etal. Drivers of ‘ greenness trends in China for 2000-2019. 1560 cities across
urban greening Developed a conceptual framework to .
(2023) : ) ) o China
or browning differentiate between the contributions of

biogeochemical and land-cover change
drivers to the greenness trends.

30




630

631

Liu et al. (2023)

Sensitivity of
SUHI intensity
estimates to
non-urban
reference

Provided the first test on the sensitivity of
SUHI intensity trend estimate to seven
methods of non-urban reference
delineation.

The selection of different non-urban
references significantly altered SUHI
intensity.

281 Chinese cities

Developed a bidirectional gated recurrent
unit (BiGRU) model to correct random and
seasonal atmospheric delays in INSAR

Three city clusters

Ma P. et al. Deformation . . . .
L time series. in China and
(2024) estimation . .
Mapped the first overall subsidence Myanmar
velocity of the Irrawaddy Delta city cluster
and deformation in Myanmar.
Developed a generalizable approach to
map large-scale distributions of building 41 cities in the
Ma X. et al. Fine-scale heights. Chinese Yangtze
(2023) building height Extrapolated GEDI-derived samples River Delta (YRD)
discretely to the continuous building region
height map at the 150-m grid size.
Generated a 30-m-resolution annual
surface albedo dataset for global cities
Wu et al. Surface albedo from 1986 to 2020. 3037 maijor cities
(2024) Revealed an overall decreasing trend of worldwide
albedo with its variance well explained by
urban greening.
Identified the direction and shape of SUHI
Patterns and seasonal hysteresis across Chinese cities.
Yang & Zhao drivers of SUHI Urban-rural differences in Major Chinese
(2023) seasonal evapotranspiration and surface albedo urban clusters
hysteresis were recognized as the primary
contributors.
Developed a fully automatic algorithm for
Automatic detecting urban sprawl without manually
Zhang et al. detection of collecting training samples. 75 coastal cities in
(2023) inland/seaward Uncovered a neglected but dramatic China
urban sprawl seaward urban sprawl process in Chinese
coastal cities.
Global urban Constructed a very high resolution urban gggﬁ;?ﬂi of
. . land-use dataset.
Zhong et al. high-resolution Developed an automatic multi-city states of the
(2023) land-use . . United Nations
mapping mapping and analysis (GAMMA) and 34 provincial

framework.

cities in China

5. Opportunities and future directions
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5.1. New sensor systems for data acquisition

Urban features, such as buildings, roads, and trees, exhibit significant heterogeneity in terms of
their sizes, shapes, and spatial patterns. This diversity is particularly evident in areas encompassing
multiple cities, where, in addition to within-urban heterogeneity, urban planning and design are
influenced by various factors such as climate, population, land cover, economic development, cultural
heritage, governance, technology, and community needs. Over the past four decades, spatial resolution
has remained a crucial parameter in urban remote sensing, enabling the detection and differentiation of
urban features (Welch, 1982; Weng, 2012). With the rapid advancements in satellite sensor technologies,
it is anticipated that sub-meter resolution satellite data will become the standard input for urban studies,
allowing for the capture of fine-grained spatial variations in urban features across diverse cities. For
instance, the upcoming Albedo satellite constellation is poised to provide high-resolution imagery from
space at a remarkable resolution of 10 cm (Albedo Space Corporation, 2023).

When using proprietary remote sensing data, single city studies are inherently more affordable
than multi-city studies. However, the growing influx of remote sensing companies entering the market is
anticipated to enhance the cost-effectiveness of studying multiple cities, despite the present higher costs.
By utilizing satellite constellations and harmonizing data from multiple sensor systems, it will be possible
to observe cities more frequently, enabling the timely monitoring of large-scale urban development and
facilitating rapid responses to support disaster recovery efforts.

In the past decade, artificial intelligence (Al) has brought fundamental changes in the field of
remote sensing data processing. However, there has been a limited focus on the development of
intelligent systems for data acquisition. Currently, UAS or drones are predominantly operated by human
pilots who rely on experience in flight path design, knowledge of local urban environments to ensure
successful data acquisition, and use one drone at a time. Consequently, drone surveys are often confined

to small areas within a single city. The integration of Al holds great potential in addressing this limitation.
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By leveraging existing urban environmental information, Al can facilitate automated communication
among multiple drone sensors and enable the online design of optimal flight paths during data acquisition
campaigns (see Fig. 4). This would enable broader coverage across multiple cities and enhance the

efficiency and effectiveness of drone-based surveys.

Fig. 4. Leveraging artificial intelligence and existing urban environmental information (e.g., a heat map
indicating priority regions) to facilitate automated communication among drones and enable the online

design of optimal flight paths during data acquisition campaigns.

5.2. Open remote sensing

Multi-city remote sensing studies have a close connection to open remote sensing. The availability
of open remote sensing data, e.g., from MODIS, Landsat and Sentinel are key to the ability to undertake
multi-city studies and have greatly contributed to our understanding of urban environments. Landsat in
particular has provided an important advance allowing multi-city analysis at resolutions appropriate to

assess urban areas over regional to global scales, now being complemented by Sentinel (Wulder et al.
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2022). On a larger scale, openness is a key requirement of Big Earth Data science value-chain framework
(Guo et al. 2020).

Beyond the provision of open remote sensing data, the establishment of open processing chains
using open algorithms or open (or semi-open) data processing platforms are important to multi-city
studies. The Global Human Settlement project supported by the European Commission is an example of
a multi-city relevant open project that provides global scale spatial information related to cities based on
open remote sensing. Another is the World Urban Database and Access Portal Tools (WUDAPT) project.
Using an open framework, WUDAPT implements a method to implement the Local Climate Zone (LCZ)
scheme defined by Stewart and Oke (2012) that classifies land areas using a number of attributes expected
to influence the air temperature of the zone. WUDAPT provides an online open access LCZ generator
(Demuzere et al., 2021) that uses open source earth observation data along with Google Earth Engine’s
random forest classifier to undertake the LCZ classification. This provides a basis for standardizing the
assessment of cities at the global scale (Demuzere et al., 2022). The increasingly finer spatial resolution of
urban applications, such as numerical modeling of urban climates, is now driving demand for higher spatial
resolution open remote sensing data. Inputs to these models from open remote sensing, from projects
such as WUDAPT, extend our ability to better understand multi-city physical processes beyond the
snapshots provided by remote sensing and to developing forecasting abilities at the urban scale (e.g.
Masson et al., 2020).

The sparse availability of high resolution open remote sensing and complementary/ancillary data
is a critical limitation to expanding single city analyses on urban morphology and urban systems across
multiple cities. For example, detailed characterization of urban morphology is provided by LiDAR, but
these datasets are more variable in their openness (Heldens et al., 2019). Middel et al. (2022) identified
data ownership issues as a concern. Data generated by citizens, an important addition to open remote

sensing datasets that enables further analysis (Zhu et al., 2019), are often owned by private companies,
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and access to 3D urban morphology models for some applications can be restricted. Gomes et al. (2020),
in their overview of platforms for EO data management and analysis, noted variability in the ‘openness’
of these platforms. Google Earth Engine for example provides an easy to use and mature system for users,
but is a closed platform that cannot ensure reproducibility of analysis. Such platforms are necessitated by
the large amounts of remote sensing data (Sudmanns et al., 2019). Sudmanns et al. (2022) argued for
open source EO data cubes as a scalable and versatile technical solution to provide an analytical platform
for big EO data and Wellmann et al. (2020) advocated for urban scale, and possibly nationally centralized,
data cubes to build around the typical urban-scale geographic information system information that most
cities have to more broadly integrate remote sensing data at different scales for the city. The combination
of open (non-remotely sensed) data poses its own challenges (Zhu et al., 2019) that include the various —
and different — scales at which open urban and open remote sensing data are collected, the potential for
data sparsity to occur given the uneven collection of open urban data and biases in the open urban
datasets. Ultimately, the provision of open data and processing chains will contribute to increased
applications, diversification and expanded knowledge of urban systems, based on the benefits of past
open data policies (Wagemann et al., 2020). Data intensive science — the ‘fourth paradigm of research’ —
imagines knowledge discovery based on data-intensive science (Goodey et al., 2022). Remote sensing
based on open data and employing tools of Al are now beginning to emerge (e.g., Corbane et al., 2021)

that will directly contribute to the needs of multi-city studies.

5.3.Smart data processing and analytical systems

The efficient collection, management, storage, and analysis of remote sensing data have become
increasingly vital for the development of intelligent decision systems, offering unprecedented
opportunities in the field of urban studies (Liu et al., 2016). Many studies on urban remote sensing, e.g.,

(Hu & Xu, 2018; Liu et al., 2017; Pham et al., 2011; Sobrino et al., 2013), have predominantly concentrated
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on individual cities or local regions, primarily attributing to the difficulties associated with compiling and
processing vast amounts of data. Nevertheless, the dynamics of a town or city are influenced by its
capacity to engage and interact with other towns and cities, depending on the town or city's position
within the broader settlement system, encompassing factors such as hierarchical level, specialization, and
accessibility. The utilization of Al in automating the processing and analysis of remote sensing data offers
significant opportunities for multi-city analyses (Zhou et al., 2020), for example, enabling capabilities in
mapping urban extent or population growth at large spatiotemporal scales across cities (Gao & O’Neill,
2020; Li et al.,, 2018; Wang et al., 2022a), and facilitating the exploration of intra and inter urban
environmental issues, e.g., urban heat island, greenhouse gas emissions, and air pollution (Chakraborty
et al., 2019; Xu et al., 2019).

The successful application of advanced technologies such as Al and ML algorithms has contributed
to the increasing importance of remote sensing in addressing the challenges posed by rapid urbanization
and growing populations (Youssef et al., 2020). However, the integration of Al/ML and geospatial data
into urban studies faces challenges associated with data collection and algorithmic complexity in
comparison to single-city studies. The effectiveness of these applications is highly dependent on the size
and quality of the data used, as well as the careful selection of appropriate models. Although remote
sensing data offers large spatial coverage and high availability, it may not always possess the required
level of accuracy for specific uses (Tekouabou et al., 2022). Therefore, it is crucial to prioritize the use of
high-quality remote sensing data to achieve optimal performance. Alternatively, integrating remote
sensing data with other sources, such as open city and mobile device data, can enhance the accuracy and
overall quality of existing datasets in multi-city studies. In addition to data quality, the future of Al/ML
applications in multi-city studies will depend on the expansion and diversification of available models, as

well as their scalability to handle the increasing volume of urban data being collected.
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The rapid progress in data collection and storage capabilities, along with advancements in
machine computational power, have paved the way for the development of new algorithms capable of
processing large remote sensing data for diverse urban applications including multi-city studies (Liu et al.,
2017; Wang & Biljecki, 2022). It is worth noting that these algorithms can be more complex compared to
those developed for a single city, and their complexity can be magnified by the substantial volumes of
urban data being collected at present. As a result, the implementation and deployment of Al/ML for real-
time applications, such as multi-city energy use monitoring, poses challenges due to the significant
computational capabilities required (Jordan & Mitchell, 2015). To address such challenges, one potential
solution is to integrate Al methods into hosted computing platforms, such as Google Earth Engine, a cloud
computing platform specifically designed for storing and processing petabyte scale datasets (Yang et al.,

2022).

5.4. Integration with knowledge from other professional domains to create a new urban
science/quidance for choosing city samples

In recent years, both the National Academy of Sciences (National Academies Press, 2016) and the
U.S. National Science Foundation (Advisory Committee for Environmental Research and Education, 2018)
have called for a new use-inspired discipline, called urban sustainability science (USS), to develop the
knowledge needed to guide urban development towards more sustainable pathways. USS inherently
involves convergence research (Acuto et al., 2018; Advisory Committee for Environmental Research and
Education, 2018; Lobo et al., 2019) — integrating urban disciplines and working across scales to identify
interactions, thresholds, trade-offs, and feedbacks between urban socio-economic systems and
environment.

Multi-city remote sensing studies are core to the vision of USS. In particular, multi-city studies are

needed to (i) create a new theory that transcends single urban areas (Lobo et al., 2019), (ii) examine urban
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areas collectively as social, economic, infrastructural, and spatial complex systems that comply with
scaling laws across local, city, regional, and national spatial scales (Bettencourt et al., 2013), and engage
institutional policy that is shaping urbanization processes at multiple scales to limit unintended
consequences (Seto et al., 2017; Acuto et al., 2018), (iii) identify groups of “peer cities” that may benefit
from similar sustainability strategies to scale up action effectively (Advisory Committee for Environmental
Research and Education, 2018), and (iv) enable the examination of planetary impacts of urbanization in
aggregate, e.g., species extinction, emissions production, agricultural land loss (Seto et al., 2017).
Therefore, USS is both a motivation for more multi-city remote sensing studies and an opportunity for
these studies to be actionable and to point the way to sustainable urban futures.

To build up an USS, multi-city remote sensing studies must rely on intentional sampling schema,
that allow a study to make inferences about larger groups of urban areas, and to get insight about the
fundamental character of urban processes. The generalizability and representativeness of the results of a
study are directly dependent on the sample (size and distribution) of urban areas selected for data
collection. Though stratified, systematic, cluster, and random samples are often used in the validation of
remote sensing (Congalton and Green, 2019), they are less often explicitly used at the onset of a study, in
the selection of where to gather observations. One of remote sensing’s key advantages over ground-based
surveys of urban change is the ability to collect data, repetitively, and with large area coverage (Forster,
1985). As such, urban remote sensing is not limited to the largest and wealthiest megacities, where ground
data is already extensive, but instead can help build a science that captures the processes changing
secondary cities and those in the Global South as well. Despite the potential, convenience sampling — a
non-probability sampling technique where researchers choose their urban sample based on the
accessibility of data or funding or because of a priori familiarity — remains a common practice in urban

remote sensing studies, and limits the growth of USS.
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6. Conclusion

Remote sensing of urban environments is undergoing an important transition from a focus on
single cities to studies that encompass multiple cities. Our project undertook a comprehensive analysis of
eight key areas, namely LULC and its changes, urban vertical structure, urban heat islands, hazards, energy
use and emissions, air quality, carbon budgets, and green spaces (Figure 5). The primary objective of our
project was to gain insights into the underlying rationale behind conducting multi-city studies, the criteria
employed for city selection, the societal applications thereof, and the potential future prospects for

expanding the scope of multi-city remote sensing assessments.

Land use and | Urban
land cover vertical

change structure

Urban heat
islands

“Multi-city

studies
: : Energy use
and emission

Carbon
budgets

Fig. 5. Understanding urban environmental/physical processes as a rationale that is often part of the chain

of working towards the greater societal impacts on the outer ring of the diagram in multi-city studies.
The rationale behind conducting multi-city studies was found to be relevant to three key factors.

First, it pertains to the generalizability or representativity of the proposed study, ensuring its applicability

across diverse urban environments. Second, it addresses the need to assess patterns and underlying
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mechanisms of urban system functioning across multiple cities. Third, it takes into consideration the
constraints posed by data availability, quality, and comparability of field observations when focusing
solely on a single city. Our review detects a notable bias towards assessments of large cities, with
particular geographical emphasis on cities located in China, Europe, and North America. The selection of
cities was contingent upon specific research goals, such as regional or global significance, rapid urban
expansion, physiographic settings, city politics, socioeconomics, culture, biomes, topography, and climatic
conditions. However, it is worth noting that multi-city studies were often implicit rather than explicit. For
instance, assessments related to hazards were driven by the scale of the hazard itself, incorporating
multiple cities as a result, rather than intentionally selecting multiple cities for study. The terms "diversity"
and "representativity" frequently appeared in the study area section of multi-city studies. Nevertheless,
specific criteria defining diversity, representativity, or the required number of cities to ensure sufficiency
have yet to be established.

Despite the existing challenges, the understanding of urban environmental/physical processes
gained from multi-city studies has proven to be immensely beneficial to society. This knowledge informs
various aspects, including economic growth, urban inequity, climate governance, risk reduction, urban
planning, population dynamics, human health, and emergency response, ultimately contributing to
sustainable development and management (Figure 5). In particular, the reviewed eight key fields of multi-
city remote sensing are not mutually exclusive. When collectively considered (e.g., integrating LCLU
change, urban vertical structure, and urban hazards), they can illuminate new opportunities in evidence-
based urban research and practices by capturing accurate, multifaceted, and interactive urban
characteristics or functions. Furthermore, several opportunities have arisen for multi-city studies. These
include the availability of new sensor systems that facilitate efficient acquisition of high-quality data, the
utilization of open remote sensing, encompassing open data and processing chains, to expand the range

of applications, the diversification and enhancement of knowledge pertaining to urban systems, and the
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development of smart data processing and analytical systems capable of handling extensive remote
sensing data from diverse urban regions. It is important to note that multi-city remote sensing studies are
core to the vision of a new urban science — urban sustainability science (USS). To build up an USS, multi-
city remote sensing must develop an intentional city sampling schema through the integration of

knowledge from other professional domains.
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