

125:2 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

inject and perform so-called dynamic tag checks at strategic spots in a program. Recently, lan-
guage designers have even been experimenting with ways to combine both approaches to gradual
typing in a single language [Greenman 2022; Greenman et al. 2022]. This variety has a pragmatic
background: sound gradual typing often incurs prohibitive performance costs [Greenman et al.
2019b], thus di�erent design points derive from di�erent ways of resolving the tradeo� between
performance and guarantees. What this design space lacks, though, is a toolbox for analyzing what
checks are necessary for type-based guarantees.
In response, this paper contributes vigilance, a new semantic analytical instrument for gradual

typing. Vigilance captures an intuitive fact; when a language designer tweaks the translation from
types to checks and/or the dynamics of a language, but leaves the static type system as is, parts
of the types of a program may go unchecked, which can invalidate standard type-based reasoning
principles.2 If that is the case, there is an alternative type system that the modi�ed language actually
enforces, which can serve as the basis of type-based optimizations and refactorings. Vigilance rei�es
this adequate design point: a combination of translation and semantics is vigilant for a type system
if the combination enforces all the types ascribed to the values produced during the evaluation
of an expression.

Vigilance sends a pragmatic signal to language designers. When the translation and semantics of
a language are not vigilant for its type system, the designer may want to consider a type systemwith
less precise types, either as an alternative to the original one, or as the basis of semantics-preserving
optimizations and IDE tools. Conversely, when the translation and semantics are vigilant for the
language’s type system, the language designer can use vigilance as a compass to �nd either a
stronger type system, or a translation-and-semantics combination that results in fewer checks. En
route to achieving these goals, vigilance o�ers language designers the instrument to determine
whether the translation and dynamics are (in)adequate for the statics of a language.

Vigilance builds on prior research e�orts to create such an instrument for gradual typing [Green-
man et al. 2023; Greenman and Felleisen 2018; Greenman et al. 2019a; Siek et al. 2015a; Tobin-
Hochstadt and Felleisen 2006; Vitousek et al. 2017; Wadler and Findler 2009] and improves on them.
Speci�cally, vigilance subsumes two desired properties for gradual typing: type soundness and
complete monitoring [Dimoulas et al. 2012; Greenman et al. 2019a]. Vigilance is stronger than both
syntactic type soundness and its semantic counterpart: it asks not only that a program value behaves
according to its type, but also to its run-time typing history. Consequently, vigilance enables devel-
opers to rely on types while they reason about dynamically typed code, which type soundness does
not entail [Greenman et al. 2023, 2019a]. Vigilance is also both more �ne-grained and stronger than
complete monitoring: (i) it can positively or negatively characterize translation-semantics combina-
tions other than the standard one of theNatural approach; and (ii) it entails that the gradually typed
language performs the meaningful checks at the right times. §2 compares vigilance with type sound-
ness and complete monitoring through concrete examples, and thus, demonstrates vigilance’s value
in a realistic setting. As we discuss in detail in §6, compared to other previously proposed desired
properties for gradual typing, vigilance is not intended to replace them but to complement them.
Besides developing vigilance, in this paper we evaluate vigilance:

• Revisiting the literature, we perform a side-by-side analysis of the two most-studied sound
approaches to gradual typing, Natural and Transient. Speci�cally, we focus on the canonical
constituents of Natural and Transient gradual typing from the literature. For the Natural
approach, these are: a simple type system, a Higher-Order (HO) translation that places proxy-
generating casts in the appropriate places in a gradually typed program, and the so-called

2Hereafter, type system refers to a language’s static type system, translation to the translation that turns types to checks,
and semantics to the language’s dynamic semantics.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:3

Natural semantics that uses the proxies to enforce type-like properties at runtime. For the
Transient approach, these are: a simple type system, a First-Order (FO) translation that places
tag-enforcing casts and checks in the appropriate places in a gradually typed program, and the
so-called Transient semantics that performs the corresponding tag enforcement at runtime.
Inspired by prior syntactic analytical work [Greenman et al. 2023; Greenman and Felleisen
2018; Greenman et al. 2019a], in order to make an apples-to-apples comparison between the
two seemingly radically di�erent approaches, we devise a uniform framework that distills the
di�erences between the two approaches to di�erences between their corresponding semantics.
Hence, we show that to compare the two approaches, it su�ces to compare the Natural

and Transient semantics.3. Using our framework, we con�rm prior results about the relative
guarantees that the canonical formulations of the two approaches o�er. That is, we prove that
the combination of the HO translation and the Natural semantics is vigilant for the simple
type system, while the combination of the FO translation and the Transient semantics is not.
• Going beyond prior work, we establish a surprising new fact about Natural and Transient.
Namely, we show that even though the FO-Transient combination is vigilant for a tag type
system, the HO-Natural one is not. Even though, from the perspective of the prior syntactic
analysis [Greenman et al. 2023; Greenman and Felleisen 2018; Greenman et al. 2019a],Natural
gradual typing is stronger than Transient gradual typing, from the semantic perspective
of vigilance this is not the case; each corresponds to a di�erent adequate design point. In
particular, while the prior syntactic analysis seems to support the intuitive view that the
Transient approach to gradual typing “forgets” some necessary checks, vigilance shows that
the semantic reality is subtler than that. To enforce the types of function arguments, the
Natural approach relies on checks that the HO translation places carefully at application sites
that constitute the boundary between less and more precisely-typed expressions. In contrast,
the Transient approach adopts an open-world stance and translated functions partially check
their arguments themselves, which o�ers some protection in every context. Put di�erently,
vigilance reveals an innate non-trivial distinction between the two approaches, which a�ects
the assumptions programmers can make when programming with one or the other.
• Seeking to understand the reasoning power of the Transient approach, we use vigilance to
perform a design exercise. Speci�cally, we construct an alternative translation (Flow) and a
�ow-sensitive type system, which we dub truer, that assigns to programs more precise types
than the tag type system. We prove that the the combination of the Flow translation and
the Transient semantics is vigilant for the truer type system, and hence, we establish that
the tag checks that the Transient semantics perform are su�cient to deduce more type-level
facts about program values than their type tag. Furthermore, to demonstrate the potential
bene�ts revealed by the exercise, we use the truer type system to justify and prove correct
an optimization that elides unnecessary dynamic type checks.

Outline. The remainder of the paper is organized as follows. §2 describes the necessary back-
ground, and the key ideas behind vigilance. §3 presents the formal linguistic framework of the
paper and §4 builds on that to de�ne vigilance formally and prove that theHO-Natural combination
is vigilant for simple typing. §5 develops the tag and truer type systems, shows that FO-Transient
is vigilant for tag typing and truer typing, and proves that truer renders unnecessary some of the
checks that the Transient semantics performs. §6 describes related work not already covered in
§2, and discusses future directions and some concluding thoughts.

3Because of our uniform framework, we can use Natural and Transient to refer to both the two semantics and the overall
approaches, i.e., the type system together with a translation and a semantics. When the distinction matters, we use the
words “approach” and “semantics” to clarify.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:4 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

2 MOTIVATION AND THE MAIN IDEAS BY EXAMPLE

This section informally discusses the two approaches to gradual typing, Natural and Transient,
that are the focus of this paper in a uni�ed framework that makes an apples-to-apples comparison
possible. The discussion, which revolves around a series of examples, also clari�es the shortcom-
ings of prior work on type soundness and complete monitoring, and serves as the substrate for
a high-level introduction of the technical ideas behind vigilance. In subsequent sections, we give
these ideas a formal treatment.

2.1 Natural and Transient Gradual Typing in one Framework

At �rst look, Natural and Transient seem vastly di�erent. Natural relies on proxies that are di�-
cult [Greenman et al. 2019b] (though not impossible [Kuhlenschmidt et al. 2019]) to implement in a
performant manner, while Transient o�ers a lightweight alternative where tag checks are in-lined
at the start of function bodies, and around elimination forms. These di�erences raise the problem
of a fair comparison between the two approaches. As we discuss brie�y in §1, to overcome this
obstacle, we follow Greenman and Felleisen [2018] and construct a linguistic setting that minimizes
their di�erences to just the essentials. First, we decouple the syntax and static type system of the
source language, which we refer to as the Gradually Typed Language (GTL) and which is based
on the gradually typed _-calculus [Siek and Taha 2006], from the meaning of its programs. GTL
programs obtain meaning via type-preserving translations to an intermediate language that comes
with both casts and type assertions, (ICTL).4 Second, we de�ne a uni�ed translation, Uni, from GTL
to ICTL that consolidates the di�erences between theHO and FO translations from the literature. In
particular, Uni injects in the image of a GTL program all the casts that both Natural and Transient

require, and the type assertions that are speci�c to Transient. Third, we construct a parameterized
reduction semantics for ICTL that, for di�erent parameters, matches either the Natural or the
Transient semantics. Speci�cally, depending on the parameters, the casts and type assertions of an
ICTL program either generate proxies, or simply perform tag checking, or act as trivial no-ops. As
a result, this uniform setting allows us to study the di�erences between the Natural and Transient

approaches described in the literature by focusing on the di�erences between the Natural and
Transient variants of the ICTL semantics. In other words, for a given GTL program, only the
evaluation of its ICTL image di�ers between the two approaches; everything else is the same.

let segment = _ img. (. . .)

let segment_png =

_ (img :PNG) → PNG×PNG.

segment img

Fig. 1. Dynamically Typed Argument

for a Typed Parameter

Fig. 1 gives a taste of our GTL as the starting point of
the discussion of the Natural approach. The snippet de�nes
segment_png, which expects as its argument a PNG and then
applies segment, which has no type annotations. Even though
the static checker for the canonical simple gradual type sys-
tem does not have at its disposal the necessary type informa-
tion to derive that segment indeed has type PNG→PNG×PNG,
it accepts the program as well typed. To compensate for the
partial static type checking, the HO translation of segment_PNG injects a cast around segment

from the dynamic type ∗5 to the expected type PNG→ PNG × PNG. Under the Natural semantics,
the role of the cast is to check whether segment behaves as a function from PNGs to pairs of PNGs
whenever it is called. Hence, the Natural cast checks that segment is a function and wraps it in a
proxy that defers the remaining checks until segment_png is called.

4ICTL, our Intermediate Cast-and-Type-assertion Language, plays the role of cast calculi from the literature. Since the term
“cast calculus” is overloaded and di�erent variants have subtly di�erent features, we introduce new nomenclature to avoid
con�ating terminology.
5Code without annotations implicitly has type ∗.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:5

Library Typed Wrapper User Code

let segment = _ img. (. . .)

let crop = _ img. (. . .)

. . .

let crop_png =

_ (img :PNG) → PNG. crop img

let segment_png =

_ (img :PNG) → PNG×PNG.

segment img

let segment_png_small =

_ (img :PNG) → PNG×PNG.

let (0,1) = segment img

(crop_png 0, crop_png 1)

let write_img = _ img, path. (. . .)

. . .

let foreground =

(segment_png my_png) [0]

let foreground_small =

(segment_png_small my_png) [0]

write_img foreground "fg.png"

write_img foreground_small "fgs.png"

. . .

Fig. 2. Using a Typed Wrapper for a Dynamically Typed Image Library

The same GTL program behaves di�erently under the Transient approach. After type checking,
similar to the HO translation, the FO one injects a cast around segment, however this cast is much
weaker. The Transient cast only checks that segment is a function and does not create a proxy. To
counter for the absence of the proxy, the FO translation further re-writes the code and injects type
assertions to ensure that the results of any calls to segment_png are pairs.
While our exposition of the example above alludes to two di�erent translations — one with

higher-order casts that produce proxies (HO), and one with �rst-order casts and type assertions (FO)
— as mentioned above, our framework employs a consolidated translation Uni from GTL to ICTL.
The ICTL image of a GTL program has both casts and type assertions whose behavior depends on
the parameterization of the ICTL reduction rules. As a result any ICTL program can run either in a
Natural or a Transient manner: in the �rst case the casts behave as higher-order proxies and the as-
sertions are no-ops; in the second, casts and assertions perform immediate �rst-order checks. Hence,
the di�erences in theNatural andTransient behavior of the running GTL example boil down exactly
to how the Natural and Transient semantics treat casts and assertions, which enables the apples-to-
apples comparison of the two approaches. Interestingly, for the example in this section, even though
the Transient semantics performs just lightweight tag checks and uses no proxies, it seems to entail
the same type-level facts for the example as the Natural semantics with its costly proxies.

2.2 The Gap Between Statics and Dynamics for Transient

The actual di�erence in the type-level guarantees o�ered by Transient and Natural becomes clear
when dynamically typed code uses a function with type other than *. Greenman et al. [2019a]
demonstrate the issue with a scenario where a library with a typed interface is in fact dynamically
typed and the interface is nothing more than a thin veneer of possibly misleading type annotations.
Such scenarios are particularly important when languages �rst obtain gradual type systems; adding
a type interface on top of a dynamically typed library o�ers to language designers a way to quickly
grow the set of “typed” libraries, and hence, it encourages the further use of the gradual type system.
But, when developers switch to these “typed” libraries in the process of type migrating their code,
they may be surprised. Spe�cally, phrased in terms of our uniform framework, for such a scenario,
the casts and assertions injected through the Uni translation of a GTL program to ICTL may not
result in all the checks that are necessary to validate that the dynamically typed library adheres to
its type interface; it all depends on the speci�c semantics of the ICTL. As a result, optimizations or
refactorings that one might expect to hold if the types were enforced may not be valid.

To make the discussion concrete, �g. 2 conveys the scenario from Greenman et al. [2019a] in our
GTL. In this example, dynamically typed code (right) uses segment_png and segment_png_small

from a seemingly typed library (center) to split a PNG into an uncropped and cropped foreground
and background respectively, and then writes each foreground to a �le. However, the typed library

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:6 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

is just a thin typed wrapper around the dynamically typed implementation (left). In more detail,
the actual dynamically typed implemantation provides two functions: crop, which crops images
to a particular size, and segment which segments an image into a pair of a “foreground” and a
“background” image. The typed library imports these two functions, and re-exports them: crop_png
is a wrapper for crop, and segment_png and segment_png_small are wrappers for segment.
The scenario behaves di�erently under the Natural and Transient ICTL semantics. The Uni

translation introduces casts at uses of segment_png and segment_png_small in the user code, but
importantly, since the user code is dynamically typed, Uni does not inject any type assertions for
the results of the projections in the body of foreground and foreground_small. Hence, the actual
dynamic type checks during the evaluation of the example depend exactly on how the semantics
treats the aforementioned injected casts. In the Natural semantics, the casts result in proxies that
inspect the results of the function calls, ensuring the type from the annotation; in the Transient
approach, the cast devolves to just a simple tag check of whether the result is a pair. As a result,
in contrast to the Natural semantics the Transient semantics does not check whether the �rst
component of the result of (segment_png my_png) is a PNG.

2.3 Type Soundness is Not Enough

At �rst glance, this di�erence between the Natural and the Transient semantics seems like an issue
that type soundness should clarify. Type soundness does distinguish between the two [Greenman
and Felleisen 2018], but falls short of fully characterizing the di�erence. Intuitively, in Transient,
the use context of a function is expected to inspect the results of such a dynamically typed function
via type assertions at call sites to make sure the function behaves as its type describes. Since, for
the �nal result of a program there is no use context, syntactic type soundness for Transient can say
little about programs that produce functions. In contrast, in Natural, the proxy around a function
allows syntactic type soundness to establish that the function’s results adhere to their type.
In formal terms, syntactic type soundness says that if a source program is well typed at type g

then when its ICTL image evaluates to a value with the Natural semantics, the value also has type
g . In contrast, when the ICTL image is run with the Transient semantics, the result value has a type
that matches the tag of g (i.e. its top type constructor), but that is not necessarily exactly equal to g
(tag soundness). Hence, syntactic type soundness seems to reveal that the choice of translation and
ICTL semantics a�ects the predictive power of the GTL’s simple type system.

However, syntactic type soundness stops short of explaining whether either the combination of
the translation and theNatural or Transient ICTL semantics results in all the checks the GTL simple
type system relies on. Syntactic type soundness only connects the type of the source program
with the type of the translated ICTL program’s result. Therefore, all intermediate types that do
not contribute to that goal are immaterial. The running scenario demonstrates this situation. First,
given the dynamically-typed nature of the user code, all occurrences of segment_png on the
rightmost portion of the �g. are considered by the type system to be of type ∗, which is inhabited
by all values, not just functions from PNGs to pairs of PNGs. So type soundness says nothing about
these occurrences of segment_png and segment_png_small directly. Second, one cannot rely on
the compositional nature of the typing rules of the type system and type soundness to deduce
transitively some more precise type-level information for these occurrences than ∗. In fact, the rules
for the simple type system, type soundness, and the details of the Uni translation and the Natural
semantics all together are necessary to reason that (segment_png my_png) needs to behave as
a pair of PNGs, despite appearing in a dynamically typed context. Type soundness alone only
guarantees information according to the ∗ type of the application, so a semantics that “forgets” the
cast injected by the translation around segment_png in the untyped context would still be sound.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:7

This last point shows exactly why the syntactic tag soundness guarantee for Transient is not
su�cient to explain what type-level reasoning power Transient o�ers. As discussed above, in
Transient the avoidance of proxies leads to tag soundness. However, the Forgetful [Greenberg 2015]
and Amnesic [Greenman et al. 2019a] variants of the Natural semantics do create the same proxy
as Natural but then remove them when proxied values are used in dynamically typed contexts to
reduce the running time and memory cost from proxies. In terms of the example, segment_png
obtains the expected proxy, which is then removed when the function is used in foreground.
However, Forgetful and Amnesic are as syntactically type sound as Natural, even though their
net e�ect in terms of checks is the same as that of Transient. From the perspective of syntactic
type soundness, in dynamically typed code, it does not matter whether the type of segment_png is
enforced. That is, we must reason beyond syntactic type soundness to ensure types are meaningful.

Unfortunately, semantic type soundness, the next step up from syntactic type soundness, has a
similar de�ciency. Semantic type soundness asks that a value behaves according to its latest type,
the one the current context expects. Hence, it also ignores intermediate types.

2.4 Complete Monitoring is Not Enough

An attempt to deal with the issue of intermediate unchecked types is complete monitoring for
gradual types [Greenman et al. 2023, 2019a], which adapts the notion of complete monitoring from
work on contract systems [Dimoulas et al. 2012]. The starting point for complete monitoring is a
collection of semantics for an ICTL, i.e., di�erent semantics with the same syntax and the same
simple type system. The goal is to determine which of the semantics enforces the types of ICTL
programs completely. However, complete monitoring establishes a weaker property. Intuitively, an
ICTL semantics is a complete monitor if it “has complete control over every type-induced channel
of communication between two components.” [Greenman et al. 2023].

Formally, complete monitoring relies on a brittle notion of ownership of program expressions and
values by components. In detail, in the complete-monitoring framework, components are encoded
as label annotations on expressions; all expressions that “belong” to the same component have the
label of the component. A system of axioms determines how values may accumulate labels, (and
therefore component-owners), as they ‘�ow” from one component to another during evaluation.
Another set of axioms describes how values lose labels due to checks from type casts. Given this
formal setup, complete monitoring becomes preservation of a single-ownership invariant for all
values during the evaluation of a program: a value can either have a single label, or multiple that
are separated by type casts. Hence, the single-ownership property entails that the ICTL semantics is
“in control of” all �ows of values from one component to another as it imposes checks that regulate
such �ows. In that sense, the Natural semantics is a complete monitor, but Transient is not.
Back to the scenario in Fig. 2, since the Natural semantics is a complete monitor, every �ow

is checked. Assuming that segment and segment_png have labels ;1 and ;2 respectively, as the
�rst �ows into the second, segment_png becomes segment_png = (cast {PNG -> PNG × PNG}

segment;1);2 . When segment_png is applied in a dynamically typed context with label ;3, the call
to segment_png becomes (cast { * } segment_png;2);3 . While the expression has multiple
labels, they are separated by a proxy, and hence, the semantics maintains the single-owner policy.
Furthermore, when segment_png is applied, checks discharge the ownership labels for the result
of the function and allow it to obtain the label of its calling component.

Note though, that the description above is intentionally vague about what checks exactly have to
happen at each point in the evaluation where complete monitoring prescribes a check. This is be-
cause the formal framework of complete monitoring does not specify that much: an ICTL semantics
would still be a completemonitor if all checks were equivalent to a no-op. Hence, a language designer
cannot reason about what types a semantics enforces based solely on complete monitoring.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:8 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

In summary, while complete monitoring o�ers a dimension that type soundness lacks, i.e., that
checks should mediate the interactions of components, it is not a solution to determining whether
a translation and ICTL semantics combination is adequate for the GTL type system. First, it is
coarse-grained; it only gives a negative answer for any other semantics except Natural. Importantly,
it cannot shed light on the guarantees the Transient approach o�ers. Second, it requires de�ning
a brittle syntactic system of annotations, along with an instrumented semantics that needs to be
adapted in an ad hoc manner from one approach to another. Finally, it entails a rather weak relation
between the type system of the ICTL and its semantics.

2.5 Enter Vigilance

Intuitively, a GTL should come with reliable type enforcement, so that types can be used for
reasoning. Returning to the example in Fig. 2, under either the Natural or Transient approach, the
result of segment_png my_png should live up to its return type of pairs of PNGs.

To capture this intuition, this paper develops a new semantic property called vigilance. The goal
of vigilance is to describe how the combination of the translation and ICTL semantics impacts the
enforcement of the types in a GTL program. Vigilance serves to identify when the behavior of
translated GTL programs are not a good match for the expectations implied by the statics of the
GTL, and goes beyond (semantic) type soundness and complete monitoring. By requiring that the
translation and semantics enforce every type obligation a value acquires during the evaluation of
a program, vigilance considers �ow-sensitive and compositional type information that

type soundness ignores. And, instead of only specifying the location of checks as in complete
monitoring, vigilance ensures and allows for exactly enough dynamic enforcement to

enforce the type-based properties of programs. And by varying the type system, and the
combination of translation and semantics, and thereby varying the typing histories for expressions
and their enforcement, vigilance is applicable to more systems than complete monitoring.
When a translation and semantics is not vigilant for a type system, then there are some types

that the type system requires, but the semantics is insu�cient to ensure. In this case, a language
designer can weaken the type system exactly where the translation and semantics is insu�cient.
And when a translation and semantics is vigilant for a type system, then there may be some stronger
type system that the translation and semantics will still enforce. By providing these signals to
language designers, vigilance acts as a compass to guide language design. In §2.7 and §2.8, we
use vigilance as a compass for Transient and demonstrate an alternative design point.

Vigilance: Preliminaries. While the discussion so far centers around the simple type system, our
goal is to pinpoint what combinations of translations and ICTL semantics are (in)adequate for what
GTL type systems. For that, we need to overcome two technical challenges. First, our framework
needs to accommodate di�erent GTL type systems and connect the types of GTL expressions under
each type system with the types of the ICTL values they produce when run. Second, the framework
needs to keep track of the types ICTL values collect when run.

For the �rst challenge, for each type system that we wish to consider, vigilance asks for a type-
preserving translation that maps from well-typed GTL programs to well-typed ICTL programs.
Since the translation is type preserving, we reduce the relationship between the translation, ICTL
semantics and GTL types to the relationship between ICTL semantics and ICTL types.

For the second challenge, vigilance relies on naming values in order to associate with each value
a list of types it must satisfy, so we employ an allocating ICTL operational semantics. Speci�cally,
we allocate every value E that arises during evaluation (including the results of casts and assertions)
to a fresh label ℓ in a value log Σ, and modify elimination forms to act on labels ℓ to eliminate
the value associated with the label Σ(ℓ). On every cast that evaluates to a label, the type from the
cast is also stored. Unlike complete monitoring, the allocating semantics in our framework are

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:9

just a system for naming values and tracking types over a prede�ned semantics, which is mostly
mechanical. Moreover, while one can use the type information associated with every intermediate
value to perform checks (as we do in the semantics de�ned in §3), this is by no means necessary
for vigilance, and one can have a completely distinct enforcement mechanism. In other words, the
collected type information is e�ectively ghost state (originally auxiliary variables [Owicki and Gries
1976]), and the allocating semantics maintains a trivial erasure into the non-allocating one.

Vigilance: Technical De�nition. After equipping our ICTL with an allocating semantics, we de�ne
vigilance using a (step-indexed) unary logical relation that models ICTL types g as sets of ICTL values
E that inhabit them. In contrast to a typical step-indexed logical relation for type soundness [Appel
and McAllester 2001], vigilance comes with an extra index, the typing history Ψ, which can be
thought of as a value-log typing. Speci�cally, the typing history Ψ is a log that collects the types on
each cast or assertion in the program that a particular value has passed through. While semantic
type soundness says that a language is semantically type sound if and only if any well-typed
expression 4 : g “behaves like” g , vigilance asks that 4 also “behaves” according to its typing history.
We say that the semantics of an ICTL are vigilant for a type system if in any well-formed typing
history Ψ (capturing potential casts and assertions from a context), the translation of 4 behaves like
g . The latter means that, if evaluating 4 produces a label ℓ (as well as a potentially larger typing
history Ψ

′, capturing casts and assertions present in 4), then Σ(ℓ) not only behaves like g (in the
conventional sense), but also like all of the types in Ψ

′ (ℓ).
In summary, an ICTL semantics is vigilant for an ICTL type system and GTL translation when

any well-typed GTL expression C at type g translates to an ICTL expression 4 that behaves like g
according to the vigilance logical relation.

Vigilance: a Recipe. The above discussion implies a step-by-step recipe for applying vigilance to
a gradual typing approach:

(1) De�ne a GTL, an ICTL and their type systems.
(2) De�ne a type-preserving translation from the GTL to the ICTL.
(3) De�ne an allocating semantics for the ICTL.
(4) De�ne the vigilance logical relation for the ICTL.
(5) Attempt to prove the fundamental property of the vigilance relation.
(6) If the proof fails, retry after adjusting the GTL and ICTL type systems, the type-preserving

relation, or the checks that the semantics of the ICTL performs. Changes to the type system
may require an adjustment to the vigilance relation so that it re�ects the semantics of types
that correspond to the adjusted type system.

Constructing the vigilance relation is the most involved step of the recipe. However, the vigilance
relation extends a standard type soundness relation, and the required extensions for the typing
history for a new linguistic setting only asks for similar “semantic thinking” as that needed for
de�ning the soundness relation itself. We provide a high-level discussion of typing histories
through an example in the remainder of this section, and the full formal details for how they can be
incorporated in a soundness logical relation is in §4. The remainder of the section, and §5 formally,
also demonstrate two di�erent ways the pieces of our framework can be adjusted when a �rst
attempt to prove the fundamental property for the vigilance relation fails.
As a �nal remark herein, a contributing factor to the complexity of the formal development in

this paper is not due to vigilance itself. Instead, the complexity comes from the fact that we use
vigilance as a tool for comparing Natural and Transient. In particular, as we discuss in §2.1, in order
to make a meaningful, apples-to-apples, comparison we have to carefully craft our GTL and ICTL
so that they can support both Natural and Transient while eliminating their super�cial di�erences.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:10 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

If a comparison is not the goal, one can avoid the design of a uni�ed framework and simply focus
on the steps of the vigilance recipe.

2.6 Vigilance: By Example

A concrete discussion about vigilance requires an illustration of the contents of the typing history
of a value. To that end, we analyze the evaluation of the example in Fig. 3. The example condenses
the scenario in Fig. 2 as a single-component program in our GTL. In particular, just as in the
scenario, the crop_png function is a typed wrapper around the dynamically typed crop function,
which the user code applies to the image my_png. The resulting cropped image is written to �le
"my.png". Di�erent from previous examples and for presentation purposes only, the example
comes with partial label annotations. Speci�cally, we write (4); to denote an expression 4 annotated

let crop = _ img. (. . .)

let crop_png = _ (img :PNG) → PNG. (crop img);1
write_img (crop_png (my_png)l0);2 "my.png"

Fig. 3. Example to Illustrate Labels and Typing History

with a label ; that uniquely identi�es the value
4 evaluates to. In other words, the labels are
a presentation device that acts as a layer of
indirection so that we can refer to program
values and relate them with types.

Analyzing the evaluation of the example from the perspective of typing history justi�es why
writing the cropped version of my_png to the �le as an image is a reasonable choice. In particular,
consider the typing histories of my_png before, during and after the call to crop_png, which
correspond to labels ;0, ;1 and ;2 respectively. The image originates in dynamically typed code and
has label ;0. That label is associated with just the type obligation ∗ in the typing history of the value.
When the value �ows through crop_png, its new label ;1 accumulates the obligation PNG on top of
the obligation ∗ it inherits from ;0. Finally, after cropping, the image returns to dynamically typed
code with label ;2, which is associated with the latest obligation ∗ in addition to obligation PNG and
∗ from ;1. As a result, if the statics and dynamics of the language enforce the typing history for
;2, the image meets the obligation PNG, and therefore can be safely written to the �le as an image
without any format checks.

It is worth noting that the above discussion does not depend on how the semantics of the ICTL
performs checks, but only on whether the typing history of ;2 is enforced. Consequently, any
combination of statics, translation and dynamics that enforces the typing history enables the
described typed-based reasoning. Vigilance generalizes this point: when a translation-semantics
combination is vigilant for a type system, every value produced during the evaluation of a program
satis�es its typing history, and hence code that uses a value can safely assume that much. For
example, the example in Fig. 2 shows how the simple type system, the Uni translation and the
Natural semantics work together to enforce the typing history of all values; the calls to segment_png
behave not only according to type ∗, but also, according to type PNG→PNG × PNG. In contrast, the
same is not true for the simple type system, the Uni translation and the Transient semantics.

2.7 Vigilance: An Examination of Transient

Since the combination of the Uni translation and the Transient semantics is not vigilant for the
standard simple type system, we investigate: for what type system is the combination of Uni and

Transient vigilant? An initial answer, which con�rms prior work on Transient and tag soundness,
is that one such type system ascribes type tags (top-level type constructors) to expressions rather
than types. Hence, this tag type system accepts programs that have imprecise types, which shows
the di�erence between what the simple type system promises and what the Uni translation and
Transient semantics seems to achieve.

However, the Transient approach has deeper type-level reasoning than tag soundness suggests.
The typing history, which is central to vigilance, makes this additional power plain. Consider again

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:11

the scenario in Fig. 2. As described before, the scenario uses a dynamically typed image library
that provides two functions: crop, which crops images to a particular size, and segment which
segments an image into a pair of a “foreground” and a “background” image. The typed image
library provides three typed wrappers of these functions as segment_png, segment_png_small
and crop_png. However, in the case of segment_png_small, the typed wrapper does a bit more
than just acting as a veneer of types; it uses crop_png to reduce the sizes of the pair of images
that segment produces. Since the Uni translation and Transient semantics result in tag checks for
pair projections, the Transient approach should guarantee the return type of segment_png_small,
not just ∗×∗. This conclusion is a direct consequence of the fact that the combination of Uni and
Transient is vigilant for the tag type system; vigilance entails that Transient checks that the results
of the calls to crop_png in the body of segment_png_small are PNGs. Hence, one can deduce the
result of segment_png_small has indeed type PNG×PNG. In conclusion, there should be a translation,
such that its combinations with Transient should be vigilant for a stronger type system than the
tag one, namely one which recognizes segment_png_small has return type PNG×PNG.

2.8 Vigilance: Towards Truer Transient Types

Building on the above insight, as a design exercise, we use vigilance as a guide towards a revised
type system and type-preserving translation. The new truer type system makes limited use of union
and intersection types in order to re�ect in the types of expressions the outcomes of Transient
casts and assertions injected by the new Flow translation.
Importantly, the truer type system showcases how vigilance can bene�t language designers.

They can start from an adequate design point, such as the variant of the Transient approach with a
tag type system, and, with vigilance as a guide, �nd others. If a new adequate design point involves
a more precise type system, such as the truer one, the designer may use it as part of IDE and
refactoring tools, or for optimizing the dynamics of the language. For instance, a consequence of
truer is that some of the checks that are necessary so that the translation and Transient semantics
is vigilant for the tag type system can be elided in a provably correct manner when pairing the
Flow translation and Transient semantics with the truer type system. For example, the truer type
system can stitch together type information from the type assertions on the results of the calls
to png_crop in the body of segment_png_small to deduce statically that segment_png_small
indeed has a type that precisely matches its type annotation (rather than that it simply returns a pair
that should be checked further at run time). Moreover, this precise truer type makes unnecessary
a type assertion on the outcome of the left-pair projection that gets bound to foreground; it is
statically known that it is a PNG. To formally establish the above, in §5.4 we use the truer type
system to eliminate unnecessary transient checks in a semantics- and vigilance-preserving manner.

2.9 Technical Contributions

The main technical contribution of this paper is vigilance as an analytical tool for gradual typing.

Simple Tag
Uni-Natural Ø (Thm. 4.1) × (Thm. 5.6)

Uni-Transient × (Thm. 4.3) Ø (Thm. 5.4)

The table on the right summarizes results from
our comparative analysis of the well studied
Natural and Transient approaches. When the
cell contains a Ø, that combination of transla-
tion and semantics is vigilant for that type system; otherwise it is not. While §1 presents our results
in terms of the HO-Natural and FO-Transient combinations, as we discuss throughout §2, Uni
consolidates HO and FO. In particular, when an expression is translated according to Uni, the HO
can be recovered by erasing the type assertions that are speci�c to the Transient approach, which
is exactly what the Natural ICTL semantics achieves by treating them as no-ops. Hence, the Uni-
Natural and Uni-Transient correspond to the standard presentation of the Natural and Transient

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:12 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

C F G | = | 8 | True | False | _(G :g) → g ′ . C | ⟨C, C⟩ | if C then C else C
| binop C C | C C | fst C | snd C

g F Nat | Int | Bool | g×g | g→g | ∗

4 F G | = | 8 | True | False | _(G :g) . 4 | ⟨4, 4⟩ | if 4 then 4 else 4
| binop 4 4 | app{g} 4 4 | fst{g} 4 | snd{g} 4 | cast {g ⇐ g} 4

binop F sum | quotient
= ∈ N , 8 ∈ Z

Fig. 4. Syntax of _GTL (top) and _ICTL (bo�om)

approaches respectively in the literature. Importantly, and distinctly from the literature, the four
results establish that tag typing is not strictly semantically weaker than the simple type system;
tag typing allows a function to be applied in more contexts, which is well behaved when under the
Uni and Transient combination, but not under the Uni-Natural combination. Transient’s checks
protect the function from these contexts while Natural’s do not. Hence, vigilance characterizes the
Transient approach positively in a way that distinguishes it from the Natural approach.

Besides comparing existing points in the design space of gradual typing, the paper also shows
how vigilance can guide the search for new points. In this spirit, the �nal result of the paper, which
is not shown in the table, takes the positive characterization of the Transient approach one step
further. It demonstrates that the Flow-Transient combination is vigilant for the truer type system
(Thm. 5.10), which enables the elision of unnecessary dynamic checks (Thm. 5.12).

3 FROM A GTL TO AN ICTL WITH TWO SEMANTICS

The top portion of Fig. 4 presents the syntax of _GTL, our GTL, which as described in §2 follows
the approach of Greenman and Felleisen [2018] and the gradually-typed _-calculus [Siek and
Taha 2006]. Most of the features of _GTL are the same as the corresponding features of a simply-
typed _-calculus extended with constants, pairs and their relevant elimination forms. The one
unconventional syntactic form is that for anonymous functions. In particular, anonymous functions
come with type annotations that describe both the type of their arguments and the type of their
result. The type annotations g range over simple types with the addition of ∗, the dynamic type,
which, as usual in the gradual typing setting, indicates imprecise or missing type information. For
example, the expression _(G : ∗→ ∗) → ∗. C represents an anonymous function that consumes
functions and may return anything.
Since _GTL expressions C do not evaluate directly but are translated to an ICTL, before delving

into the type checking and evaluation of _GTL expressions, we discuss brie�y the syntax of _ICTL,
our ICTL. The bottom portion of Fig. 4 shows the syntax of _ICTL expressions 4 . Its features
correspond to those of _GTL with a few important di�erences. First, functions _(G :g). 4 come with
type annotations for their arguments but not their results. Second, pair projections and function
applications also have type annotations. Third, _ICTL has a new syntactic form compared to _GTL:
cast expressions. Speci�cally, cast {g1 ⇐ g2} 4 represents a cast from type g2 to g1 for the result of
expression 4 . In other words, while in _GTL all type annotations are on functions, in _ICTL, they
are spread over applications, pair projections, function parameters, and casts. This is because the
�rst three are the syntactic loci in a program that correspond to “boundaries” between pieces
of code that can have types with di�erent precision according to the type system of the GTL.
Hence, the translation injects type assertions and casts exactly at these spots. The type annotations
correspond to the type assertions that the Transient approach relies on to make up for the weak
checks performed by Transient casts (the notation and separation of assertions from casts comes
from Greenman and Felleisen [2018]). After all, as we discuss in §2, _ICTL aims to accommodate
both Natural and Transient in a uniform linguistic setting.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:13

Γ ⊢Uni C : g 4 (Uni�ed Translation, selected rules)

Γ, (G :g) ⊢Uni C : g
′′ 4

Γ ⊢Uni _(G :g) → g ′ . C : g→g ′

 _(G :g) . ([g ′ ↙ g ′′]4)

Γ ⊢Uni C1 : g→g ′ 41
Γ ⊢Uni C2 : g

′′ 42

Γ ⊢Uni C1 C2 : g
′

 app{g ′} 41 ([g ↙ g ′′]42)

[g ↙ g ′]4 =




4 if g ′ ¶: g

cast {g ⇐ g ′} 4

if g ′ ̸¶: g

and g ∼ g ′

Γ ⊢Uni C1 : ∗ 41 Γ ⊢Uni C2 : g
′ 42

Γ ⊢Uni C1 C2 : ∗ app{∗} (cast {∗→∗ ⇐ ∗} 41) ([∗ ↙ g ′]42)

Γ ⊢Uni C1 : Bool 41 Γ ⊢Uni C1 : g1 41 Γ ⊢Uni C2 : g2 42

Γ ⊢Uni if C1 then C1 else C2 : g1 ⊔̃ g2 if 41 then ([g1 ⊔̃ g2 ↙ g1]41) else ([g1 ⊔̃ g2 ↙ g2]42)

g ∼ g ′ (Compatibility)

g ∼ ∗ Nat ∼ Int

g0 ∼ g2 g1 ∼ g3

g0×g1 ∼ g2×g3

g0 ∼ g2 g1 ∼ g3

g0→g1 ∼ g2→g3 g ∼ g

g ∼ g ′

g ′ ∼ g

g ¶: g ′ (Subtyping)

Nat ¶: Int

g0 ¶: g2 g1 ¶: g3

g0×g1 ¶: g2×g3

g2 ¶: g0 g1 ¶: g3

g0→g1 ¶: g2→g3 g0 ¶: g0

Fig. 5. The Unified Uni Translation From _GTL to _ICTL

Fig. 5 presents the Uni translation of _GTL expressions C to _ICTL expressions 4 with a single
judgment Γ ⊢Uni C : g 4 . A _GTL function translates at its type annotation g→ g ′ if its body
translates at some type g ′′. To bridge the potential gap between g ′′ and g ′, the translation of the
function produces a _ICTL function whose body is wrapped in a cast from g ′′ to g ′, if needed.
Speci�cally, metafunction [g ↙ g ′]4 inserts a cast around 4 when g is compatible with g ′ (written
g ∼ g ′) but not a subtype of g ′. The metafunction [g ↙ g ′]4 is designed so that subtyping allows
implicit (no cast) type conversion, while compatibility allows explicit (casted) type conversion.
Subtyping is de�ned in the canonical way: Nat is a subtype of Int, functions are contravariant,
and pairs are covariant. Compatibility is the re�exive and symmetric relation that rules out non-
convertible type casts, or type casts that will always error. Unlike standard de�nitions, compatibility
includesNat ∼ Int to allow programmers to freely convert between Naturals and Integers, and have
the translation insert appropriate checks. Our compatibility is a symmetric version of consistent
subtyping [Bañados Schwerter et al. 2021]6.

Conditionals translate in a recursive manner. The type of the conditional is the consistent subtype
join ⊔̃ of the types of its two branches. The consistent subtype join de�nition is standard [Bañados
Schwerter et al. 2021], and gives the least upper bound of the types with respect to subtyping, as
well as more precise types in place of ∗. To bridge the potential gap between the type of the branch
and the consistent join, the translation may wrap each branch in a cast with the same metafunction
as above. Translated applications obtain type assertions for the return type of the applied function,
along with (possible) casts around the argument expression that make sure the domain of the
applied function jives with the type of the provided argument.

6If we used compatible subtyping here, a conversion from Int to Nat would require calling a function with return type
∗. By splitting consistent subtyping into a compatibility relation and a subtyping relation, the type system accepts more
programs and simpli�es the translation — the de�nition of [g ↙ g ′]4 becomes straightforward.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:14 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

Γ ⊢sim 4 : g (selected rules)

Γ0 ⊢sim 40 : g0→g1 Γ0 ⊢sim 41 : g0

Γ0 ⊢sim app{g1} 40 41 : g1

Γ0 ⊢sim 40 : g0

Γ0 ⊢sim cast {g1 ⇐ g0} 40 : g1

Γ0 ⊢sim 40 : g0 g0 ¶: g1

Γ0 ⊢sim 40 : g1

Fig. 6. Simple Typing for _ICTL

Fig. 6 gives rules for the typing judgment for _ICTL: Γ ⊢sim 4 : g — the sim annotation indicates the
standard simply typed ICTL type system, to distinguish it from the tag and tru systems we present
later. In general, the type system of _ICTL is straightforward and closely follows the translation of
_GTL. The translation has a key property: it maps well-typed _GTL expressions to well-typed _ICTL

expressions with the same type.

Theorem 3.1 (Uni is Type-Preserving). If Γ ⊢Uni C : g 4 then Γ ⊢sim 4 : g .

ICTL Type Guarantees Lift to the GTL. As discussed in §2, a type-preserving translation,
such as Uni, allows us to focus on the semantics of _ICTL to analyze enforcement of the types of a
well typed _GTL expression C . Since the semantics of an _GTL expression C of type g is de�ned by
translation into a _ICTL expression 4 also of type g , the typing history of values produced by the
evaluation of C is enforced only if the the typing history of values produced by the evaluation of
4 is enforced. Therefore, the question of whether a translation-semantics combination for _ICTL

is vigilant for its static type system reduces to whether the semantics of _GTL enforce the typing
histories of the values produced during the evaluation of well-typed _ICTL expressions.
Note: The complete formal development of _GTL and _ICTL along with all the de�nitions, theorems
and proofs are in the supplemental material.

3.1 A Natural and a Transient Semantics for _ICTL

The de�nition of vigilance, which is the centerpiece of this paper, requires an apparatus for
determining the types associated with the value of each (sub)expression in a program — intuitively,
all the types in casts applied to that value — so that vigilance can decide if the semantics of the
ICTL indeed enforces these types. Such an apparatus needs to be dynamic in order to be precise
in a higher-order gradually typed setting, such as _ICTL. Consider, for instance, the expression
41 = if 41 then cast {∗ ⇐ g} cast {g ⇐ ∗} 40 else 40. If the result of 40 is a value E0, then depending
on the result of 41 , E0 is associated with di�erent types: if 41 evaluates to True, then E0 is associated
with g , and otherwise it is not.

To record these types, we devise a log-based reduction semantics for _ICTL. This semantics creates
fresh labels ℓ for each intermediate value during the evaluation of a program to distinguish between
di�erent values that are structurally the same, and then uses the labels to track the (two) types
from any casts that a label encounters during the evaluation of a program. Formally, the dynamic
semantics maintains a value log Σ, which is a map from labels ℓ to values E and potential types
>?C8>=(g × g). The type information is optional because a value may never go through a cast.

The de�nition of the log-based reduction semantics requires an extension of the syntax of _ICTL

with values, labels, unannotated applications, errors and, most importantly, expressions that corre-
spond to the run-time representations of type casts and assertions. Essentially, these act as hooks
that allow us to de�ne either a Natural or a Transient semantics for _ICTL while leaving the rest of
the formalism unchanged. The top left of Fig. 7 depicts these extensions. The monitor expression
mon {g ⇐ g} 4 regulates the evaluation of cast expressions; it is an intermediate expression that sepa-
rates the tag checks performed by a cast from the creation of a proxy. An assert expression, assertg 4 ,
rei�es type annotations on applications and function parameters as type assertions. Unannotated
applications correspond to applications whose annotation has been rei�ed as a type assertion.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:15

E F ℓ | = | 8 | True | False | ⟨ℓ, ℓ⟩ | _(G :g) . 4
4 F . . . | ℓ | 4 4 | mon {g ⇐ g} 4 | assertg 4 | Err
Σ : L→ V × option(T × T)

pointsto(Σ, ℓ)

pointsto(Σ, ℓ) =

{
fst(Σ(ℓ)) if fst(Σ(ℓ)) ≠ ℓ′

pointsto(Σ, ℓ′) if fst(Σ(ℓ)) = ℓ′

Σ, 4 ↩→
!
Σ, 4 (selected rules)

Σ, E

↩→
!
Σ[ℓ ↦→ (E, none)], ℓ

where ℓ ∉ dom(Σ)

Σ, app{g0} ℓ0 ℓ1
↩→

!
Σ, assertg0 (ℓ0 ℓ1)

Σ, ℓ0 ℓ1
↩→

!
Σ, 40 [G0← ℓ1]

if Σ(ℓ0) = (_(G0 :g1). 40, _)
and pointsto(Σ, ℓ1) ∝

!
0BB4AC g1

Σ, ℓ0 ℓ1
↩→

!
mon {cod(g1) ⇐ cod(g2)}
(ℓ2 mon {dom(g2)

⇐dom(g1)} ℓ1)
if Σ(ℓ0) = (ℓ2, some(g1, g2))

Σ, assertg0 ℓ0
↩→

!
Σ, ℓ0

if pointsto(Σ, ℓ0) ∝!0BB4AC g0

Σ, assertg0 ℓ0
↩→

!
Σ,TypeErr(g0, ℓ0)

if ¬pointsto(Σ, ℓ0) ∝!0BB4AC g0

Σ, cast {g1 ⇐ g2} ℓ0
↩→

!
Σ,mon {g1 ⇐ g2} ℓ0

if pointsto(Σ, ℓ0) ∝!20BC g1
and pointsto(Σ, ℓ0) ∝

!
20BC g2

Σ, ℓ0 ℓ1
↩→

!
Σ,Wrong

if Σ(ℓ0) = (E, _)
and E ∉ _(G :g). 4 ∪ ℓ
or Σ(ℓ0) = (ℓ′0, none)

∝: E× −→ B

= ∝ Nat = True

8 ∝ Int = True

1 ∝ Bool = True

⟨E1, E2⟩ ∝ ∗×∗ = True

(_(G :g). 4) ∝ ∗→∗ = True

(mon {g ⇐ g′} E) ∝ ∗→∗ = True

E ∝ ∗ = True

E ∝ = False

otherwise

∝!2 : E× −→ B

c E ∝Naturalc g E ∝Transientc g

cast E ∝ ⌊g⌋ E ∝ ⌊g⌋
mon E ∝ ⌊g⌋ True

assert True E ∝ ⌊g⌋

Fig. 7. Evaluation Syntax and Reduction Semantics for _ICTL

There are two kinds of errors in the evaluation language of _ICTL: Err• are expected errors and
include failures due to failed type casts and assertions, and Err◦ are unexpected errors that indicate
a failure of type soundness such as a call to a value that is not a function. Err ranges over these.
The two semantics of _ICTL are de�ned with the reduction relation −→∗

!
that is the transitive,

compatible closure (over evaluation contexts) of the notions of reductions ↩→
!
, where ! is either

Natural or Transient. The only di�erence between the two notions of reduction is in their compati-

bility metafunction ∝!c , where the parameter 2 represents the kind of check being performed by the
semantics. The metafunction consumes a value and a type, and either immediately returns True or
invokes E ∝ ⌊g⌋ that checks whether E matches the tag ⌊g⌋ of the given type g . Put di�erently, E ∝!c g
either performs a tag check or is a no-op — which of the two depends on its 2 and ! parameters,
that is, the _ICTL construct that triggers a possible tag check and the particular semantics of _ICTL.
Speci�cally, in both semantics, a cast expression performs a tag check. However, assert expressions
perform tag checks only in Transient since in Natural all dynamic type checking takes place via
proxies. Conversely, monitor expressions perform tag checks only in Natural since Transient does
not rely on proxies for dynamic type checking.
The bottom part of Fig. 7 presents a few selected rules of ↩→

!
. When an expression reduces a

value, ↩→
!
replaces it with a fresh label ℓ and updates Σ accordingly. An annotated application

becomes an unannotated one but wrapped in an assert expression that rei�es the annotation as a
type assertion. Unannotated applications delegate to the compatibility metafunction a potential
check of the argument against the type of the parameter. When the compatibility metafunction
returns True the evaluation proceeds with a beta-reduction; otherwise it raises a dynamic type error
TypeErr. Since all values are stored in the value log and these rules need to inspect values, they
employ metafunction pointsto(·, ·). Given a value log Σ and a label ℓ , the metafunction traverses Σ
starting from ℓ through labels that point to other labels until it reaches a non-label value. The case

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:16 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

VL

sim⟦�⟧ ¬ {(:, Ψ , Σ, ℓ) | pointsto(Σ, ℓ) ∈ �}

VL

sim⟦g1 × g2⟧ ¬ {(:, Ψ , Σ, ℓ) | Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _) ∧ (:, Ψ , Σ, ℓ1) ∈ V
L

sim⟦g1⟧∧

(:, Ψ , Σ, ℓ2) ∈ V
L

sim⟦g2⟧}

VL

sim⟦g1 → g2⟧ ¬ {(:, Ψ , Σ, ℓ) | ∀ (9,Ψ′) ⊒ (:,Ψ), Σ
′ ⊇ Σ, ℓE, g0 :¾ g2 .

Σ
′
: (9,Ψ′) ∧ (9, Ψ′ , Σ′, ℓE) ∈ V

L

sim⟦g1⟧. ⇒ (9, Ψ
′ , Σ′, app{g> } ℓ ℓE) ∈ E

L

sim⟦g0⟧}

VL

sim⟦∗⟧ ¬ {(:, Ψ , Σ, ℓ) | (: − 1, Ψ , Σ, ℓ) ∈ VL

sim⟦�⟧ ∪V
L

sim⟦∗ × ∗⟧ ∪V
L

sim⟦∗ → ∗⟧}

ELsim⟦g⟧ ¬ {(:, Ψ , Σ, 4) | ∀9 ≤ :. ∀Σ′ ⊇ Σ, 4′ . (Σ, 4) −→
9

!
(Σ′, 4′) ∧ irred(4′) ⇒ (4′ = Err•∨

(∃(: − 9,Ψ′) ⊒ (:,Ψ). Σ′ : (: − 9,Ψ′)∧ (: − 9, Ψ′ , Σ′, 4′) ∈ VL

sim⟦g⟧))}

Fig. 8. Vigilance for Simple Typing: Value and Expression Relations

where an application does not involve a function is one of the cases that the type system of _ICTL

should prevent. Hence, the reduction rule raises Wrong to distinguish this unexpected error.
Assert and cast expressions also delegate any tag checks they perform to the compatibility

metafunction. If answer of the latter is positive, an assert expression simpli�es to its label-body,
while a cast expression wraps its value-body into a monitor with the same type annotations.

Monitor expressions essentially implement proxies, if the semantics of _ICTL relies on them.
Speci�cally, a monitor expression performs any checks a proxy would perform using the compati-
bility metafunction, and produces a fresh label ℓ to record in the value log and associates ℓ with
two additional types. Upon an application of a label, ↩→

!
retrieves the types associated with it,

and creates a monitor expression to enforce them. Hence, if the compatibility metafunction does
perform tag checks for monitor expressions, monitors implement the two steps of checking types
with proxies: checking �rst-order properties of the monitored value, and creating further proxies
upon the use of a higher-order value. If the compatibility metafunction does not perform tag checks
then all these reduction rules are essentially void of computational signi�cance; they are just a
convenient way for keeping the semantics syntactically uniform across Natural and Transient.
An example sequence of reductions as well as a bisimulation theorem that includes the value

equivalence relation is given in the supplemental material.

4 VIGILANCE, FORMALLY

In this section, we de�ne vigilance for simple typing. It requires that every value produced during
the evaluation of an ICTL expression must satisfy both the type ascribed to it by the simple type
system and all the types from casts that were evaluated to produce this value. We refer to the
latter list of types as the run-time typing history for the value. The �rst of these two conditions is
essentially (semantic) type soundness which can be captured using a unary logical relation indexed
by types and inhabited by values that satisfy the type. For the second condition, we must extend
the logical relation to maintain a type history Ψ that keeps track of the run-time typing history ℎ
for each value E in the log Σ, and then require that each E satisfy all the types in its history ℎ.
We start with the standard semantic-type-soundness part of our step-indexed logical relation.

Fig. 8 presents the value and expression relations. Ignoring, for the moment, the highlighted terms
in the �gure, the value relationVL

sim
⟦g⟧ speci�es when a value stored at label ℓ in Σ satis�es the

type g for : steps — or, in more technical terms, when a Σ, ℓ pair belongs to g . But each value
relation is also indexed by a type history Ψ that, intuitively, records the run-time typing histories
for all values in Σ, as we explain in detail later.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:17

⊢ Ψ ¬ ∀ℓ .Ψ(ℓ) = g, g ′, ℎ ⇒ g ′ :¾ head(ℎ)

⊢ Σ ¬ ∀ℓ ∈ dom(Σ). (Σ(ℓ) = (E, none) ∧ E ∉ L)

∨ (Σ(ℓ) = (ℓ′, some(g ′, g)) ∧ ∃E . E = pointsto(Σ, ℓ) ∧ ¬(E ∝ ∗×∗) ∧ E ∝ g ′ ∧ E ∝ g)

Ψ ⊢ℓ (E, none) ¬ ∃g .Ψ(ℓ) = [g]

Ψ ⊢ℓ (ℓ′, some(g, g ′)) ¬ Ψ(ℓ) = [g, g ′,Ψ(ℓ′)]

Ψ ⊢ Σ ¬ ⊢ Σ ∧ dom(Σ) = dom(Ψ) ∧ ∀ℓ ∈ dom(Ψ).Ψ ⊢ℓ Σ(ℓ)

Σ : (:,Ψ) ¬ ⊢ Ψ ∧ Ψ ⊢ Σ ∧ ∀ℓ ∈ dom(Σ). (9,Ψ, Σ, ℓ) ∈ VHL

sim⟦Ψ(ℓ)⟧

ℎ F g | g, g, ℎ

Ψ : ℓ → ℎ

Fig. 9. Vigilance for Simple Typing: Value-Log Type Satisfaction

For base types, ℓ belongs to the relationVL

sim
⟦�⟧ if pointsto(Σ, ℓ) is a value of the expected form.

Since pairs are evaluated eagerly, they are never wrapped by extra types in the store, so the relation
for pairs,V!

sim
⟦g1×g2⟧ contains only labels that map to label pairs, and as usual, the components of

the pair must belong to g1 and g2, respectively.
For function types, a function usually belongs toV!

sim
⟦g1 → g2⟧ if, when applied in some future

world — when there are fewer steps left and the value log and type history potentially contain
more labels — to a value that behaves like g1, it produces a result that behaves like g2. Our de�nition
is slightly di�erent: since we support subsumption and since applications in our language are
annotated with type assertions, we consider applications in which the assertion g0 is any supertype
of the result type g2, and require that the result behave like g0.7

For the dynamic type,V!
sim
⟦∗⟧ is an untagged union over base typesV!

sim
⟦�⟧, pairs of dynamic

typesV!
sim
⟦∗ × ∗⟧, and functions between dynamic typesV!

sim
⟦∗ → ∗⟧. Since these types are not

structurally smaller than ∗, step-indexing becomes crucial. For well-foundedness, an expression
that behaves like ∗ for : steps is only required to behave like one of the types in the union for : − 1.
To extend this characterization to expressions, we de�ne the expression relation EL

sim
⟦g⟧. An

expression 4 behaves like type g if it does not terminate within the step-index budget, if it runs to
an expected error, or if it produces a value that belongs toVL

sim
⟦g⟧.

The logical relation de�ned thus far is mostly standard. We now consider how to ensure that
every value also satis�es all the types from casts that were evaluated to produce that value. Note
that all values that �ow through casts are entered into the value log Σ. Thus Σ is analogous to a
dynamically allocated (immutable) store and we can take inspiration from models of dynamically
allocated (immutable) references[Ahmed 2004; Reddy and Yang 2003] to (1) keep track of the
run-time typing histories of values in a type history Ψ, just as models of references keep track of
the types of references in a store typing, and (2) ensure that values in Σ satisfy the run-time typing
histories in Ψ, just as models of references ensure that the store (satis�es the store typing.
Thus, as the highlighted parts in Fig. 8 show, we set up a Kripke logical relation[Ahmed 2004;

Pitts and Stark 1998] indexed by worlds comprised of a step-index : and a type history Ψ, which is
a mapping from labels ℓ to run-time typing histories ℎ that are essentially lists of types. We de�ne
a world accessibility relation (9,Ψ′) ⊒ (:,Ψ), which says that (9,Ψ′) is a future world accessible
from (:,Ψ′) if 9 ≤ : (we may have potentially fewer steps available in the future) and the future
type history Ψ

′ may have more entries than Ψ. Whenever we consider future logs Σ′, we require
that there is a future world (9,Ψ′) ⊒ (:,Ψ) such that the value log satis�es the typing history
Σ
′
: (9,Ψ′). Where our relation di�ers from the standard treatment of state is in the constraints

placed on Σ by Ψ via the value-log type-satisfaction relation Σ : (:,Ψ), de�ned in Fig. 9.

7The logical relation is well founded despite the use of g0 here; it is de�ned by induction on the step index and (nested)
induction on the structure of types, and in every instance of a use of subtyping, the step index is guaranteed to decrease.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:18 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

In more detail, as Fig. 9 shows, our typing history Ψ associates with each label in the value
log a run-time typing history ℎ, where ℎ is either a single type, indicating that the value was
produced at that type, or ℎ is two types g, g ′ appended onto another typing history ℎ′, indicating
type obligations added by a cast expression that casts from g ′ to g . The head of a typing history
ℎ is the top-most type g when ℎ is g , or g when ℎ is g, g ′, ℎ′. We say that a value log Σ satis�es a
world, written Σ : (:,Ψ), when three things are true:

1. The type history must be syntactically well-formed: ⊢ Ψ. The well-formedness constraint ⊢ Ψ
ensures that each run-time typing history ℎ is well formed. Because casts in our model may be
coercive, they can only be expected to function appropriately when the value passed to the cast is
of the appropriate (semantic) type. Since casts add types g, g ′ to the run-time typing history ℎ of a
value, this gives rise to a syntactic constraint that the “from” type g ′ of such an entry matches (up
to subsumption) the type that the casted value previously held in the history, namely head(ℎ).

2. The value log must be well-formed given the type history: Ψ ⊢ Σ. This requires certain syntactic
constraints ⊢ Σ that are independent of Ψ, and that for each location ℓ , Σ should provide some
value-log entry that is itself consistent with Ψ. The former constraint ⊢ Σ corresponds to the basic
syntactic invariants preserved by the operational semantics: casted values are always compatible
(due to the E ∝cast

!
g checks performed by the cast evaluation rules) and are never pairs because our

pairs are evaluated eagerly. For the latter, when the entry Ψ(ℓ) does not record a cast, Ψ ⊢ℓ (E, none)
speci�es that the entry Ψ(ℓ) must be just g , ie it does not include any type obligations added by a
cast. If the entry Ψ(;) does record a cast, then Ψ ⊢ℓ (E, someg, g ′) speci�ed that the recorded types
g, g ′ must match those in Ψ(ℓ), and the casted location ℓ ′ must itself be well formed with respect to
the remaining entries in the run-time typing history Ψ(ℓ ′).

3. The values in the log must satisfy their run-time typing history. The core semantic condition
of value-log type satisfaction is that Σ(ℓ) must behave like each type g in its run-time typing
history Ψ(ℓ). But we cannot simply ask that Σ(ℓ) ∈ VL

sim
⟦g⟧ for each g ∈ Ψ(ℓ). Since casts in our

model may be coercive, they can only be expected to function appropriately when the value passed
to the cast is of the appropriate (semantic) type. Because VL

sim
⟦g1 → g2⟧ quanti�es over values

E ∈ VL⟦g1⟧, if we were to take the above approach, a function cast from g1→g2 to g ′ would need
to behave well when applied to an argument E ∈ VL

sim
⟦g1⟧. Since a cast on a function must ensure

that the function’s actual argument E belongs to the type expected by the original function, it must
semantically perform a cast equivalent to cast {g1 ⇐ dom(g ′)} E8 to be well formed, which one
would not expect to be true in general.

To properly incorporate this constraint, we de�ne typing-history relations that specify when a
value or expression behaves like multiple types at once9. These relations,VHL

sim⟦g⟧ and EH
L

sim⟦g⟧
are given in the top of Fig. 10. For a nonempty list of types g , the relation is de�ned inductively over
the �rst type in the list, following a similar structure toVL

sim
⟦g⟧. When g is a base type� , the value

typing-history relationVHL

sim⟦�, g⟧ contains any ℓ such that pointsto(Σ, ℓ) is inVL

sim
⟦g⟧ for each

g ∈ [�, g]. As in the value relation, since casts on pairs are evaluated eagerly,VH!
sim⟦g1×g2, g⟧

contains only pairs ⟨ℓ1, ℓ2⟩ whose components inductively satisfy all the appropriate types.
As discussed above,VH!

sim⟦g1 → g2, g⟧ requires a function to behave well only when it is given
an argument E ∈ VL

sim
⟦g1⟧. As in theV relation, it must also behave well when the application is

annotated with any g0 :¾ g2. Behaving “well” means that an application, evaluated with a future

8In our reduction semantics, this constraint is ensured by an expression of the form mon {g1 ⇐ dom(g ′) } E for the sake of
Transient, which does not perform the expected checks here; see §5.
9An arbitrary list of types used as this index is more general than the grammar of ℎ, but we will freely interconvert them,
since the syntax of ℎ is a subset of that of g .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:19

VHL

sim⟦�, g2, . . . g=⟧ ¬ {(:,Ψ, Σ, ℓ) | ∀g ∈ [�, g2, . . . g=] . (:,Ψ, Σ, ℓ) ∈ V
L

sim⟦g⟧}

VHL

sim⟦g
′
1
× g ′′

1
, g2, . . . g=⟧ ¬ {(:,Ψ, Σ, ℓ) | Σ(ℓ) = (⟨ℓ1, ℓ2⟩, _)

∧ (:,Ψ, Σ, ℓ1) ∈ VH
L

sim⟦g
′
1
, fst(g2), . . . fst(g=)⟧

∧ (:,Ψ, Σ, ℓ2) ∈ VH
L

sim⟦g
′′
1
, snd(g2), . . . snd(g=)⟧}

VHL

sim⟦g
′
1
→ g ′′

1
, g2, . . . g=⟧ ¬ {(:,Ψ, Σ, ℓ) | ∀(9,Ψ

′) ⊒ (:,Ψ), Σ′ ⊇ Σ, ℓE, g0 :¾ g2 .

(9,Ψ′, Σ′, ℓE) ∈ V
L

sim⟦g
′
1
⟧ ∧ Σ

′
: (9,Ψ′)

⇒ (9,Ψ′, Σ′, app{g0} ℓ ℓE) ∈ EH
L

sim⟦[g0, cod(g2), . . . cod(g=)]⟧}

VHL

sim⟦∗, g2, . . . g=⟧ ¬ {(:,Ψ, Σ, ℓ) | (: − 1,Ψ, Σ, ℓ) ∈ VH
L

sim⟦�, g2, . . . g=⟧ ∪

VHL

sim⟦∗ × ∗, g2, . . . , g=⟧ ∪VH
L

sim⟦∗ → ∗, g2, . . . , g=⟧}

EHL

sim⟦g⟧ ¬ {(:,Ψ, Σ, 4) | ∀9 ≤ :. ∀Σ
′ ⊇ Σ, 4′ . (Σ, 4) −→

9

!
(Σ′, 4′) ∧ irred(4′)

⇒ (4′ = Err• ∨ (∃(: − 9,Ψ′) ⊒ (:,Ψ) . Σ′ : (: − 9,Ψ′) ∧ (: − 9,Ψ′, Σ′, 4′) ∈ VHL

sim⟦g⟧))}

GLsim⟦Γ⟧ ¬ {(:,Ψ, Σ, W) | dom(Γ) = dom(W) ∧ ∀G .(:,Ψ, Σ, W (G)) ∈ VL

sim⟦Γ(G)⟧}

⟦Γ ⊢sim 4 : g⟧L ¬ ∀(:,Ψ, Σ, W) ∈ GLsim⟦Γ⟧. Σ : (:,Ψ) ⇒ (:,Ψ, Σ, W (4)) ∈ ELsim⟦g⟧

Fig. 10. Vigilance for Simple Typing: Typing History and Top-Level Relations

store Σ′ : (9,Ψ′) ⊒ (:,Ψ) should behave like all the types g0, cod(g). Since this is an expression, we
de�ne the EHL

sim⟦g⟧ relation to characterize expressions as behaving like several types at once;
since this only matters when the expression reduces to a value, it is precisely the same as the E
relation, except that it is indexed by g rather than g , and it requires the eventual value to be in
VH!

sim⟦g⟧ rather thanV
!
sim
⟦g⟧. Finally, as in the value relation,VH!

sim⟦∗, g⟧ is an untagged union

over base types VH!
sim⟦�, g⟧, pairs of dynamic types VH!

sim⟦∗ × ∗, g⟧, and functions between
dynamic typesVH!

sim⟦∗ → ∗, g⟧, at step index : − 1.
In typical fashion, we generalize to open expressions at the bottom of Fig. 10. In detail, ⟦Γ ⊢sim

4 : g⟧L says that an expression 4 that type checks in context Γ behaves like g under L when, given
a substitution W that behaves like Γ, W (4) behaves like g . Moreover, a substitution W , mapping free
variables G to labels ℓ in Σ, behaves like Γ when for each G : g in Γ, W (G) behaves like Γ(G).
Note. Abstracting the construction of the vigilance relation for simple typing and returning to
the recipe from §2.5, the starting point for constructing a vigilance relation is a standard type
soundness model. That basic model should be extended with a world structure that captures typing
histories, such as Ψ. In many cases, we conjecture it is possible to cartesian product the additional
world structure onto the world structure used for soundness. The next step is the incorporation of
the additional world structure into theV and E relations. The resulting relations,VH and EH ,
should be liftings ofV and E but their de�nitions require some “semantic thinking” for managing
the extended world (just as the de�nitions ofV and E do). Finally, store satisfaction, Σ : (:,Ψ),
should be strengthened with extra conditions as listed above, re�ecting the extension of the world
structure. Importantly, store satisfaction should entail that the semantics enforce typing histories.

With our vigilance logical relation in place, we formally establish that the combination of Uni
and Natural semantics are vigilant for simple typing i� all well typed GTL expressions C translate
to ICTL expressions 4 in the vigilance relation.

Theorem 4.1 (Uni-Natural Is Vigilant for Simple Typing). If Γ ⊢Uni C : g 4 then

⟦Γ ⊢sim 4 : g⟧
Natural.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:20 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

 F Nat | Int | Bool | ∗×∗ | ∗→∗ | ∗
Γ F · | Γ, (G :)
4 F G | = | 8 | True | False | _(G :g). 4 | ⟨4, 4⟩ | app{g} 4 4
| fst{g} 4 | snd{g} 4 | binop 4 4
| if 4 then 4 else 4 | cast {g ⇐ g} 4

Γ ⊢tag 4 : (selected rules)

T-App
Γ0 ⊢tag 40 : ∗→∗
Γ0 ⊢tag 41 :

Γ0 ⊢tag app{g} 40 41 : ⌊g⌋

Fig. 11. Tag Typing for _ICTL

The theorem is a direct consequence of whether the Natural semantics satis�es the fundamental
property of the vigilance relation for simple typing. As described in §3, given a type-preserving
translation, such as Uni, the question of whether the combination of the translation and a semantics
is vigilant for a type system reduces to whether the semantics enforces the typing histories. The
fundamental property entails exactly that. First, values satisfy the types ascribed to them by the
simple type system; well-typed terms ⊢sim 4 : g are in EL

sim
⟦g⟧, which says that if 4 runs to a value,

then the value must behave like g . Second, the fundamental property entails that values satisfy the
types of all casts that were evaluated to produce them; if 4 runs to a value with value log Σ

′, then
there is a future world (: − 9,Ψ′) ⊒ (:,Ψ) such that Σ′ : (: − 9,Ψ′).

Theorem 4.2 (Natural Satisfies the Fundamental Property for Simple Typing). If Γ ⊢sim 4 : g
then ⟦Γ ⊢sim 4 : g⟧

Natural.

As for the combination of Uni and Transient, we can show that they are not vigilant for simple
typing with the counter-example from §2.

Theorem 4.3 (Uni-Transient Is Not Vigilant for Simple Typing). There are Γ, C , , 4 such that

Γ ⊢Uni C : g 4 and ¬⟦Γ ⊢sim 4 : g⟧
Transient.

5 TRANSIENT IS MORE THAN TAG CHECKING

Transient does not use proxies and, as a result, it does not enforce all the types from casts it
encounters during the evaluation of an ICTL program. For instance, consider ? = ⟨−1,−1⟩, 5 =

_(G : Int× Int) → (Nat × Nat) . G , and C = 5 ? . In words, consider a function that takes a pair of Ints
and returns it as a pair of Nats, and apply the function to the pair ⟨−1,−1⟩. Under Uni, C becomes:

4 = app{Nat × Nat} (_(G : Int × Int). cast {Nat × Nat⇐ Int × Int} G) ⟨−1,−1⟩

Interestingly, sinceTransient only checks the top-level constructor of types on casts, 4 ↩→
T
⟨−1,−1⟩.

However, the �nal result of 4 is also the result of 5 which is supposed to be a Nat × Nat according
to 5 ’s casts. Hence, Transient is not vigilant for simple typing:

Theorem 5.1 (Uni-Transient Is Not Vigilant for Simple Typing). There are Γ, C , 4 , g such that

Γ ⊢Uni C : g 4 and ¬⟦Γ ⊢sim 4 : g⟧
Transient.

However, as previous work hints [Greenman and Felleisen 2018; Greenman et al. 2019a; Vitousek
et al. 2017],Transient should enforce the tag typing history of values produced during the evaluation
of an ICTL expression. Following the recipe from §2.5, we formalize this relation between Transient

and the enforcement of tags as a vigilance property by: (i) adjusting the type system of _GTL and
_ICTL to tag typing; (ii) reusingUni to map _GTL expressions to _ICTL expressions with the same tags
— since Uni preserves simple typing, it also preserves tag typing; and (iii) modifying the vigilance
logical relation from §4 to capture the semantics of ICTL tags rather than ICTL types.
Fig. 11 sketches how we adjust the simple type system of _ICTL to tag typing . The tag typing

rules, which relate an expression 4 with its top-level constructor , are entirely unsurprising. The
most interesting one is that for applications allows arguments at any type, since the type of a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:21

VL
tag⟦∗ → ∗⟧ ¬ {(:,Ψ, Σ, ℓ) | ∀(9,Ψ

′) ⊒ (:,Ψ), Σ′ ⊇ Σ, ℓE, g0 .

Σ
′
: (9,Ψ′) ∧ (9,Ψ′, Σ′, ℓE) ∈ V

L
tag⟦∗⟧. ⇒ (9,Ψ

′, Σ′, app{g0} ℓ ℓE) ∈ E
L
tag⟦⌊g0⌋⟧}

Fig. 12. Function Case of the Value Vigilance Relation for Tag Typing

function is simply the procedure tag that does not contain any information about the function’s
domain. As expected, every expression that simply type checks also tag type checks:

Theorem 5.2 (Simple Typing Implies Tag Typing). If Γ ⊢sim 4 : g , then ⌊Γ⌋ ⊢tag 4 : ⌊g⌋.

where ⌊·⌋ returns the tag of a given type g , and which we lift in a straightforward fashion to
type environments Γ. Finally, the Uni translations is tag-preserving, meaning it translates a _GTL

expression C with type g to a _ICTL expression 4 with type ⌊g⌋:

Theorem 5.3 (Uni is Tag-Preserving). If Γ ⊢Uni C : g 4 then ⌊Γ⌋ ⊢tag 4 : ⌊g⌋.

A vigilance relation for tag typing requires modifying the vigilance relation for simple typing
from §4 to obtain a relational interpretation of tag types. The modi�cation is rather straightforward
and re�ects the di�erences between the simple and tag type systems for _ICTL. The full details are in
the supplemental material; here we highlight a few key points. In general, the value and expression
relations for tag typing, i.e.,V!

tag,VH
!
tag, E

!
tag, EH

!
tag, are identical to the corresponding relations

for simple typing except that types are restricted to tags. For example, the cases for Nat, Int, Bool,
∗ × ∗, and ∗ in V!

tag and VH!
tag follow the exact template of the corresponding cases in V!

sim

and VH!
sim modulo the use of ⌊·⌋ as needed to turn types into tags. However, the cases for the

procedure tag require additional care. Fig. 12 shows the cases of V!
tag for ∗ → ∗. In addition to

the restriction of types to tags, the type assertion for the application is about an arbitrary type g0,
not a supertype of the codomain of the function as in V!

sim
. Additionally, the relation does not

require that the application behaves according to the codomain ∗, but instead the tag ⌊g0⌋ of the
annotation. These extra modi�cations re�ect that the relation aims to capture the meaning of tags
not types. TheVH!

tag⟦∗ → ∗, . . . =⟧ case is analogous.
With tag typing and the vigilance relation in hand, we can show that the combination of the Uni

translation and Transient is indeed vigilant for tag typing:

Theorem 5.4 (Uni-Transient Is Vigilant for Tag Typing).

If Γ ⊢Uni C : g 4 then ⟦Γ ⊢tag 4 : ⌊g⌋⟧
Transient.

As for theorem 4.1, theorem 5.4 derives from tag-preservion for Uni and the fundamental property
of the vigilance relation for tag typing.

Theorem 5.5 (Transient Satisfies the Fundamental Property of the Vigilance Relation

for Tag Typing). If Γ ⊢tag 4 : then ⟦Γ ⊢tag 4 : ⟧
Transient.

Despite Theorem 5.2, tag types are not semantically “weaker” than simple types: a function with
type ∗→∗ can be used safely in more contexts than a function with type g→∗. Because of this
di�erence tag typing is unsound for Natural. For instance, the GTL expression _(G :∗×∗) → ∗. fstG
translates under Uni to 4 = _(G :∗ × ∗) . fst{∗} G which has tag ∗→∗. The interpretation of ∗→∗
in the vigilance relation for tag typing requires that 4 applied to any 4′ in the interpretation of ∗
is well behaved. When 4 is applied to any 4′ that is not a pair, under Natural this application will
throw a soundness errorWrong. In contrast, the same expression produces a type error TypeErr
in Transient since Transient uses a type assertion to check the tag of function arguments. At core,
Natural relies on stronger type invariants to ensure safety, while Transient uses dynamic checks to
ensure safety in more contexts. Consequently, Natural is not vigilant for tag typing:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:22 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

Γ ⊢tru 4 : g (selected rules)

Γ, (G :) ⊢tru 4 : g

Γ ⊢tru _(G :). 4 : ∗→g

Γ ⊢tru 41 : ∗→g1
Γ ⊢tru 42 : g2

Γ ⊢tru app{ } 41 42 : ⊓ g1

Γ ⊢tru 41 : ⊥
Γ ⊢tru 42 : g2

Γ ⊢tru app{ } 41 42 : ⊥

Γ ⊢tru 41 : Bool

Γ ⊢tru 41 : g1
Γ ⊢tru 42 : g2

Γ ⊢tru if 41 then 41 else 42 : g1 ⊔ g2

Γ ⊢tru 4 : g

Γ ⊢tru cast { 2 ⇐ 1} 40 : 2 ⊓ 1 ⊓ g

g F Nat | Int | Bool | g×g | ∗→g | ∗ | ⊥

⊥

Nat

Int
Bool

g1×g2

g ′
1
×g ′

2

∗→g1

∗→g ′
1

∗

Fig. 13. Truer Typing for _ICTL

Theorem 5.6 (Uni-Natural Is Not Vigilant for Tag Typing). There are Γ, C , , 4 such that

Γ ⊢Uni C : g 4 and ¬⟦⌊Γ⌋ ⊢tag 4 : ⌊g⌋⟧
Natural.

5.1 A Truer Type System for _ICTL

While each individual Transient cast checks only a tag, because the Uni-Transient combination
is vigilant for tag typing extra information about a value is available. For example, consider the
function 5 = _(G :∗×∗) . G . Under the tag type system, 5 type checks at ∗→∗. From this type, we can
deduce only that 5 is well-behaved when given any argument, and that it makes no promises about
its result. However, vigilance for tag typing implies that Transient also checks that the argument
of 5 is a pair. Consequently, we should be able to conclude that the return type of 5 is really ∗×∗.
As this example hints, there should an alternative type system that the Transient approach can
actually enforce. That is, we can capture more precise static information than tags with no change

to the dynamics. As an exercise, we make this extra static information manifest in a truer type
system for _ICTL. In the remainder of this section, we describe this type system, use vigilance to
examine it, and demonstrate how it enables the elision of some tag checks that Transient performs.
Fig. 13 presents the truer type system. A key distinction with the , its rules assume a restricted

_ICTL syntax where type ascriptions are tag . Similarly, type environments Γ map variables to tags.
However, truer typing deduces more precise types g than tags. These di�er from simple types in
two major ways. First, the domain of function types is always ∗. After all, in the Transient approach,
the type assertions injected in the body of a function – including the tag check of its argument —
guarantee that the function can handle any argument. Second, truer typing can deduce that some
expressions raise a run-time type error due to incompatible tag checks, and hence, truer types
include ⊥. This inclusion of ⊥ allows us to de�ne a full subtyping lattice ≤ on truer transient types,
as shown in the upper right portion of Fig. 13. Like other systems with subsumption rules for
subtyping, the truer type system includes a subsumption rule, but for the subtyping lattice ≤.

The typing rule for anonymous functions type checks the body of a function under the assumption
that the function’s argument has the ascribed tag. But, as discussed above, the domain of the function
is ∗ because applications implicitly check the argument of a lambda against this tag annotation.
Dually, the rule for applications admits function arguments that typecheck at any tag.

Because applications perform a tag check on the result of the application, rather than typing the
entire expression at the codomain of the function g1, the truer type system seeks to take advantage
of the fact that the result of the application satis�es both g1 and . For that, the typing rule calculates
the result type as the greatest lower bound ⊓ g1. If g1 is ⊥, a special application rule propagates
it to the result type of the application. Similar to the non-⊥ application rule, the rule for cast

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:23

Γ ⊢Flow C ⇒ g 4 (selected rules)

Γ, (G :) ⊢Flow C ⇐
+ g 4 : g ′

Γ ⊢Flow _(G :) → g . C ⇒ ∗→g

 _(G :). 4 : ∗→g ′

Γ ⊢Flow C ⇐ g 4 : g ′

Γ ⊢Flow C ⇐
+ g 4 : g ′

¬(∃4, g ′ . Γ ⊢Flow C ⇐ g 4 : g ′)
Γ ⊢Flow C ⇐

⇒ g 4 : g ′

Γ ⊢Flow C ⇐
+ g 4 : g ′

Γ ⊢Flow C ⇐
+ (g \ ⌊g⌋)×∗

 4 : g1×g2

Γ ⊢Flow fst C ⇐ g

 fst{⌊g⌋} 4 : g1 ⊓ ⌊g⌋

Γ ⊢Flow C ⇒ g ′ 4 : g ′′

g ′ ≤ g

Γ ⊢Flow C ⇐
⇒ g 4 : g ′′

Γ ⊢Flow C ⇒ g ′ 4 : g ′′

g ′ �

Γ ⊢Flow C ⇐
⇒

cast { ⇐ ⌊g ′⌋} 4 : ⊓ ⌊g ′⌋ ⊓ g ′′

Fig. 14. Flow Sensitive Translation from _GTL to _ICTL

expressions re�nes the type of its result type with the tag check from the cast. Finally, conditionals
typecheck at the least upper bound, g1 ⊔ g2, of both branches.

Because of its �ow-sensitive nature, the truer type system accepts just as many programs as the
tag type system, but calculates more precise types for them:

Theorem 5.7 (Tag Typing Implies Truer Typing). Suppose that Γ ⊢tag 4 : . Then there exists

some g ≤ such that Γ ⊢tru 4 : g .

Similarly, since simple typing implies tag typing, it also implies truer typing:

Corollary 5.8 (Simple Typing Implies Truer Transient Typing). If Γ ⊢sim 4 : g , then ⌊Γ⌋ ⊢tru
⌊4⌋ : g ′ where g ′ ≤ ⌊g⌋.

5.2 Translating _GTL to _ICTL for Truer

Using vigilance for examining truer typing is not as straightforward as for tag typing. Speci�cally,
in the case of tag typing, we can use the Uni translation as is. However, in order to get more precise
types while maintaining an algorithmic presentation of _GTL with truer typing, we need a new
translation. In response, we design a bidirectional type system and translation from _GTL to _ICTL,
which allows us to capitalize on truer typing’s ability to take advantage of the tag checks from
casts to re�ne the types of expressions.
Fig. 14 presents a few salient rules of the judgments that de�ne the type checker for _GTL

expressions and their �ow sensitive translation to _ICTL. Unlike the Uni translation, Flow produces
a type g ′ for the translated term 4 . The translation is de�ned so that g ′ ≤ g in the subtyping lattice,
which implies that the evaluation of 4 with the Transient semantics must at least enforce the types
of C (by the subsumption rule), but may also enforce a “stronger” type g ′. Both g and g ′ are a safe
basis for reasoning about the behavior of a well-typed expression (an example is given in §5.4).

The “infers” judgment of the bidirectional translation (Γ ⊢Flow C ⇒ g 4′ : g ′) is similar to that
of the Uni translation from §3; given a type environment and a _GTL expression, it type checks C
at type g , translates it to the _ICTL expression 4 , and calculates the _ICTL type g ′. However, when
C contains a type annotation—such as in the return type annotation of a function—rather than
inserting a cast expression that is supposed to enforce the annotation, the judgment appeals to the
“checks” judgment Γ ⊢Flow C ⇐+ g 4 : g ′ that attempts to construct a translated function body 4′

that has type g , and calculate its type g ′. After all, the truer type system is supposed to re�ect the
types that Transient enforces, and Transient only uses casts that perform tag checks.
The “checks” judgment itself employs two other judgments. Γ ⊢Flow C ⇐ g 4 : g ′ inserts an

appropriate type ascription to an application or a pair projection, and delegates back to the “checks”
judgment to construct a term that has the portion of g that the ascription does not cover (see Fig. 17,

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:24 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

VL
tru⟦∗ → g⟧ ¬ {(:,Ψ, Σ, ℓ) | ∀(9,Ψ′) ⊒ (:,Ψ), Σ′ ⊇ Σ, ℓE, g0 .

Σ
′
: (9,Ψ′) ∧ (9,Ψ′, Σ′, ℓE) ∈ V

L
tru⟦∗⟧. ⇒ (9,Ψ

′, Σ′, app{g0} ℓ ℓE) ∈ E
L
tru⟦g ⊓ ⌊g0⌋⟧}

Fig. 15. Function Case of the Value Vigilance Relation for Truer Typing

bottom right, for the de�nition of · \ ·). Γ ⊢Flow C ⇐⇒ g 4 : g ′ applies to any expression where
the previous judgment does not. It uses the “infers” judgment recursively to infer a type g ′ for C
that is either a subtype of g , or a type whose tag it can cast to g (if g is a tag).
As an example of this translation, consider the _GTL expression

C = _(G :∗ × ∗) → Nat × Nat. ⟨fstG, sndG⟩

The “infers” judgments translates the body of the function , but doesn’t simply try to insert a single
cast to enforce Nat×Nat, like the HO translation judgment from §3 would. Instead, it delegates to
the “checks” judgment which attempts to �nd a way to insert type assertions into the body of the
function in order to construct a body that has the desired result type. Hence, with the help of the
⇐ judgment, it asserts that the pair projections in the body of the function are naturals, per the
tag of the required type, leading to the following translated _ICTL expression:

4 = _G : ∗ × ∗. ⟨fst{Nat} G, snd{Nat} G⟩

Importantly, just like the Uni translation, the Flow translation is type-preserving:

Theorem 5.9 (Flow Preserves Truer Types). If Γ ⊢Flow C ⇒ g 4 : g ′ then Γ ⊢tru 4 : g .

5.3 Flow and Transient are Vigilant for Truer Typing

The speci�cs of the truer type system require a few modi�cations to the vigilance logical relation
from §4. Most of them are analogous to those for tag typing described above — the supplemental
material includes all the details. The key di�erence betweenV!

tru andVH
!
tru andV

!
tag andVH

!
tag

is that the �rst are not restricted to tags but to truer types. To make the discussion concrete, Fig. 15
shows the case ofV!

tru for truer function types,V!
tru⟦∗ → g⟧. Similar to the corresponding case

for tag typing in Fig. 12, there is no restriction on the annotation of the application. However, the
result of the application is required to behave according not just to ⌊g0⌋, but to g ⊓ ⌊g0⌋, re�ecting
the truer typing for applications in Fig. 13. Finally,V!

tru comes with an extra case for ⊥ given its
important role in the truer type system.

It is worth noting that the vigilance relation for truer typing is stronger than the corresponding
logical relation for type soundness. While the truer type system aims to re�ect statically as much
information as possible from the tag checks performed during the evaluation of a _ICTL expression,
the static approximation in the conditional rule shows, as all type systems, it fails to do so accurately.
As a result, if truer typing deduces that the result of a conditional has type ∗, then a semantics can
ignore some of the checks the branches of the conditional are supposed to perform and still truer
typing would be sound. However, vigilance requires that the semantics performs all the checks
from the evaluated branch nevertheless.
With the Flow translation and the vigilance relation for true typing in hand, we can show that

the combination of Flow and Transient is vigilant for truer typing:

Theorem 5.10 (Flow-Transient Is Vigilant for Truer Typing). If Γ ⊢Flow C ⇒ g 4 then

⟦Γ ⊢tru 4 : g⟧
Transient.

The theorem follows from Flow being type preserving and the fundamental property for the
vigilance relation for truer typing:

Theorem 5.11 (Transient Satisfies the Fundamental Property of the Vigilance Relation

for Truer Typing). If Γ ⊢tru 4 : g then ⟦Γ ⊢tru 4 : g⟧
Transient.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:25

Γ ⊢opt 4 : g 4 (selected rules)

Γ0 ⊢opt 40 : ∗→g1 4′
0

Γ0 ⊢opt 41 : g
′
0
 4′

1

Γ0 ⊢opt app{ 1} 40 41 : 1 ⊓ g1 app{ 1 \ g1} 4
′
0
4′
1

Γ0 ⊢opt 40 : ⊥ 4′
0

Γ0 ⊢opt 41 : g
′
0
 4′

1

Γ0 ⊢opt app{ 1} 40 41 : ⊥ app{ 1 \ ⊥} 4
′
0
4′
1

Γ0 ⊢opt 40 : g0 4′
0

Γ0 ⊢opt cast { 1 ⇐ 0} 40 : 1 ⊓ 0 ⊓ g0 cast { 1 \ (0 ⊓ g0) ⇐ 0 \ g0} 4
′
0

 \g =

{
∗ if g ≤

 otherwise

Fig. 17. Truer Typing: Check-elision optimization for _ICTL

5.4 When are Transient Checks Truly Needed?

Since in Transient all elimination forms perform tag checks, even those in code with precise types,
some of these checks are redundant. Vitousek et al. [2019] use a sophisticated whole-program
constraint system to infer when Transient’s tag checks may be elided due to static information that
the type system computes. The static information the truer type system provides may very naturally
be used to implement and prove correct a similar elision pass for Transient tag checks. Indeed,
given truer, local type-based reasoning is su�cient for the elision of the same checks as Vitousek
et al. [2019] except those on function arguments, which require a whole-program analysis.
For example, consider the variant of the example from §1 in Fig. 16. Here, the snippet de�nes

let segment_png_small =

_ (img :PNG) → PNG × PNG.

let (0,1) = segment img

png_crop 0, png_crop 1

let segment_png =

_ (img :PNG) → ∗ × ∗. segment img

let png1 : PNG = fst (segment_png (...))

let png2 : PNG = fst (segment_png_small (...))

Fig. 16. Two Type Adapters for an Image Library

two di�erent type adapters for the function
segment, with di�erent truer types. Since
calls to png_crop ensure a tag on each re-
sult, segment_png_small will produce PNGs,
while segment_png will not. At each projec-
tion in segment_png and segment_png_small,
Transient checks that the result is a PNG. This
tag check is however only necessary in the
case of segment_png, where it is not statically
known that (due to other checks) a PNG would
be produced. Precisely this di�erence between segment_png and segment_png_small, which
allows eliding a check in one case but not the other, is re�ected in their truer types!
In terms of the rules of the truer type system from Fig. 13, all rules that involve an expression

that performs a check of a tag strengthen the type of the expression to ⊓g . Hence, the tag check
improves what can be statically known about the behavior of the expression in hand — rather than
only knowing that it behaves according to g , we also know that it behaves according to . As a
result, such a tag check is useful only when the strengthened type (⊓g ≠ g) is more precise than g
— that is, when it is not already known that the value in question would behave like a (g �).

Fig. 17 provides an overview of an elision pass for redundant tag checks. The judgment Γ ⊢opt 4 :
g 4 consumes a typing environment and a _ICTL expression 4 , type checks 4 at g the same way as
the truer type system for _ICTL, and uses the deduced types to translate 4 to an equivalent expression
4′ without some redundant tag checks. In essence, the translation replaces a type ascription g with
 \ g where is a tag that the translated expression checks. In general, \ g denotes the tag check
that is necessary to enforce given that g is already known — in the typing lattice, this is ∗ if
g ¶: , and otherwise. The elision pass preserves contextual equivalence:

Theorem 5.12 (Check-elision soundness). If Γ ⊢opt 4 : g 4′, then Γ ⊢tru 4 ≈
ctx 4′ : g .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:26 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

6 RELATED WORK AND CONCLUSION

Other Systems. We conjecture that vigilance applies to gradually typed languages with features
other than the ones herein with the help of standard logical relations techniques. For instance,
logical relations for higher-order mutable state [Ahmed 2004] are thoroughly explored in the
literature, and can be the foundation for applying vigilance to gradually typed languages with
references. More generally, vigilance determines whether a typing history is enforced, not by
prescribing how checks happen, but rather by requiring that the checks that do happen entail the
semantics of the term’s type. As a result, given a logical relation that describes the semantics of the
types of a language, vigilance can be applied regardless of the mechanism of dynamic enforcement.
A number of gradual typing approaches aim to improve the performance of Natural gradual

typing by eliminating unnecessary proxies. Space-e�cient gradual typing [Herman et al. 2010]
employs a coercion-based evaluation language, which plays the role of our ICTL, where coercions
summarize stacks of type casts around a value. Threesomes [Siek and Wadler 2010] use a cast-
based evaluation language where a cast contains a triplet of types instead of a pair. Such casts can
be combined to reduce the number of dynamic checks. Collapsible contracts [Feltey et al. 2018]
target speci�c pathologies for the performance of Typed Racket by carefully merging the contracts
generated from types at the boundary between untyped and typed code. Space-e�cient manifest
contracts [Greenberg 2015] come with a collection of strategies that restrict the accumulation of
proxies around a value by removing them — some strategies preserve the meaning of programs,
while others do not. Monotonic references [Siek et al. 2015b] builds on space-e�cient gradual typing
and threesomes to reduce the runtime performance of gradually typed heaps. In all these cases, we
conjecture vigilance o�ers a way to examine the guarantees when these cost-saving approaches
are applied to Natural gradual typing. In particular, vigilance can validate the enforcement of the
casts resulting from each strategy is su�cient to enforce the same typing histories.
Applying vigilance to approaches that come with advanced typing features may require some

expertise and care. For instance, for a gradually typed language with polymorphism, the core
structure of the logical relation for vigilance can follow from well understood semantic models of
polymorphism [Ahmed 2006]. However, due to the intricate interaction between type dynamic and
polymorphism [Ahmed et al. 2017; Igarashi et al. 2017; Toro et al. 2019], the parts of the logical
relation of vigilance that are related to typing histories will require redesign and extensions. We
leave demonstrating vigilance for systems such as gradual polymorphism as future work.

Other Properties. Type soundness, the mainstay of statically typed languages, has seen numer-
ous interpretations in the gradually typed world. §2 discusses two di�erent type soundness theorems
and their shortcomings: the standard type soundness and tag soundness, but more interpretations
exist in the literature. Chaudhuri et al. [2017] prove type soundness but only for fully annotated
GTL programs. Muehlboeck and Tate [2017] prove a type soundness theorem for a restrictive
nominal gradual type system rather than a typical structural gradual type system. Tobin-Hochstadt
and Felleisen [2006]’s type soundness concerns a migratory setting where the components of a GTL
program have either all or none of their annotations. Vitousek et al. [2017] establish an “open-world”
type soundness theorem for a GTL with Transient semantics that guarantees a well-typed program
produces either a tag-typed result or certain run-time errors. These properties are all variants of
syntactic type soundness. Vigilance is a semantic property that goes beyond type soundness.
Siek et al. [2015a] propose the gradual guarantees as a standard for gradually typed languages.

Even though the gradual guarantees are useful guidelines for language designers, they are orthog-
onal to the question of whether the translation-and-semantics combination is a good match for
a gradual type system. The static gradual guarantee concerns only the static type system. The
dynamic one can be true for a translation and semantics combination that enforces no types at

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:27

all. From the languages we examine in this paper, the one with the truer type system violates the
static gradual guarantee. The example in Fig. 18 demonstrates why. The return type annotation
for function foo allows the truer type system to accept that the components of foo’s argument
are natural numbers; it expects that the translation will insert and the semantics will perform the
corresponding tag checks. As a result, given that function bar simply returns the result of applying
foo to its argument, the example type checks. However, if we were to change the return annotation
of foo to ∗, the truer type system would not be able to decide that the result of foo is a pair of
naturals, and the example would not type check. Fundamentally, truer typing is �ow sensitive
and relies on the propagation of “type facts” derived from type annotations through the control
�ow of a program. Hence, changing the type annotations may a�ect the outcome of type checking
drastically. That said, truer typing is an exercise that demonstrates the power of vigilance — we
leave concerns about the gradual guarantees to future work.

let foo = _ (G :∗×∗) → Nat×Nat. ⟨fstG, sndG ⟩

let bar = _ (G :∗×∗) → Nat×Nat. foo G

Fig. 18. Truer: Counterex. to static gradual guarantee

Gradual Type Theory [New et al. 2019, 2021]
axiomatizes the dynamic gradual guarantee and
a set of contextual equivalence properties as
the essence of a well-designed gradually typed
language. They show that only a GTL with a simple type system and Natural semantics lives up to
this standard, while vigilance shows that even outside this combination, language designers can
still rely on type annotations to make decisions about their type system, enforcement, and tooling.
Jacobs et al. [2021] propose an alternative to the gradual guarantees that requires that the

embedding of a fully statically typed subset of the GTL into the GTL be fully abstract. We leave it
to future work to investigate if vigilance has any connection to properties of this embedding.

Abstracting Gradual Typing (AGT) [Garcia et al. 2016] does not propose a new property but is a
method for obtaining a well-designed gradually typed language from a typed one.
There is a signi�cant body of work on equipping gradual type systems with blame in a correct

manner [Ahmed et al. 2011; Greenman et al. 2023, 2019a; Vitousek et al. 2017; Wadler and Findler
2009]. Vigilance currently says nothing about blame. Vigilance is concerned with a semantics of
types, both static in the form of the typing system and dynamic in the form of boundary annotations.
Blame is instead concerned with the mechanisms for providing error messages that developers can
use in debugging [Lazarek et al. 2021, 2023]. We conjecture that with additional instrumentation in
our logical relation that requires errors at locations informed by typing histories instead of generic
errors, we can incorporate properties about blame, but leave that as future work.

Conclusion. Vigilance is a semantic property that describes a gradual type system as three
components that work together to validate and recover incomplete type information. When the
statics relies on the translation and the dynamics, but the latter two do not deliver, the meaning of
types becomes misleading, making type-based reasoning principles faulty. When the translation
and the dynamics o�er more than what the statics can capture, there is a missed opportunity to
increase the strength of the statics, or decrease the amount of dynamic type checks. Vigilance is
a compass for exploring the design space, �nding adequate design points, and hence, identifying
opportunities to incorporate strong reasoning principles into the design of gradual type systems.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation (NSF awards
CCF-1910522 and CCF-2237984) and the Defense Advanced Research Projects Agency (DARPA)
under Contract No. N66001-21-C-4023. Any opinions, �ndings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily re�ect the views of the
funding agencies.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

125:28 Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed

REFERENCES

Amal Ahmed. 2006. Step-indexed syntactic logical relations for recursive and quanti�ed types. In European Symposium on

Programming. Springer, 69–83. https://doi.org/10.1007/11693024_6
Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. 2011. Blame for All. In Proceedings of the 38th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’11). Association
for Computing Machinery, New York, NY, USA, 201–214. https://doi.org/10.1145/1926385.1926409

Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for free for free: parametricity, with and
without types. Proc. ACM Program. Lang. 1, ICFP, Article 39 (aug 2017), 28 pages. https://doi.org/10.1145/3110283

Amal Jamil Ahmed. 2004. Semantics of Types for Mutable State. Ph. D. Dissertation. USA. https://dl.acm.org/doi/10.5555/
1037736

Andrew W. Appel and David McAllester. 2001. An Indexed Model of Recursive Types for Foundational Proof-Carrying
Code. ACM Trans. Program. Lang. Syst. 23, 5 (sep 2001), 657–683. https://doi.org/10.1145/504709.504712

Felipe Bañados Schwerter, Alison M. Clark, Khurram A. Jafery, and Ronald Garcia. 2021. Abstracting Gradual Typing
Moving Forward: Precise and Space-E�cient. Proc. ACM Program. Lang. 5, POPL, Article 61 (jan 2021), 28 pages.
https://doi.org/10.1145/3434342

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levy. 2017. Fast and Precise Type Checking
for JavaScript. Proc. ACM Program. Lang. 1, OOPSLA (2017), 56:1–56:30. https://doi.org/10.1145/3133872

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Monitors for Behavioral Contracts. In
European Symposium on Programming. https://doi.org/10.1007/978-3-642-28869-2_11

Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible
Contracts: Fixing a Pathology of Gradual Typing. 2, OOPSLA (2018), 133:1–133:27. https://doi.org/10.1145/3276503

Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual Typing. In ACM SIGPLAN Symposium on

Principles of Programming Languages. 429–442. https://doi.org/10.1145/2837614.2837670
Michael Greenberg. 2015. Space-E�cient Manifest Contracts. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. 181–194. https://doi.org/10.1145/2676726.2676967
Ben Greenman. 2022. Deep and shallow types for gradual languages. In PLDI. 580–593. https://doi.org/10.1145/3519939.

3523430
Ben Greenman, Christos Dimoulas, and Matthias Felleisen. 2023. Typed–Untyped Interactions: A Comparative Analysis.

ACM Trans. Program. Lang. Syst. 45, 1, Article 4 (mar 2023), 54 pages. https://doi.org/10.1145/3579833
Ben Greenman and Matthias Felleisen. 2018. A Spectrum of Type Soundness and Performance. 2, ICFP (2018), 71:1–71:32.

https://doi.org/10.1145/3235045
Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019a. Complete Monitors for Gradual Types. PACMPL 3,

OOPSLA (2019), 122:1–122:29. https://doi.org/10.1145/3360548
Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias Felleisen. 2022. A Transient Semantics for Typed Racket.

Art Sci. Eng. Program. 6, 2 (2022), 9. https://doi.org/10.22152/programming-journal.org/2022/6/9
Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. 2019b.

How to Evaluate the Performance of Gradual Typing Systems. 29, e4 (2019). https://doi.org/10.1017/S0956796818000217
David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-e�cient gradual typing. Higher Order Symbol. Comput. 23,

2 (jun 2010), 167–189. https://doi.org/10.1007/s10990-011-9066-z
Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017. On Polymorphic Gradual Typing. Proc. ACM Program. Lang. 1,

ICFP (2017), 40:1–40:29. https://doi.org/10.1145/3110284
Koen Jacobs, Amin Timany, and Dominique Devriese. 2021. Fully Abstract from Static to Gradual. Proc. ACM Program.

Lang. 5, POPL, Article 7 (jan 2021), 30 pages. https://doi.org/10.1145/3434288
Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. Toward E�cient Gradual Typing for Struc-

tural Types via Coercions. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 517–532.
https://doi.org/10.1145/3314221.3314627

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2021. How to Evaluate Blame for Gradual Types.
5, ICFP (2021), 68:1–68:29. https://doi.org/10.1145/3473573

Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2023. How to Evaluate Blame for Gradual Types,
Part 2. 7, ICFP (2023), 159–186. https://doi.org/10.1145/3607836

Jacob Matthews and Robert Bruce Findler. 2009. Operational Semantics for Multi-Language Programs. ACM Trans. Program.

Lang. Syst. 31, 3, Article 12 (apr 2009), 44 pages. https://doi.org/10.1145/1498926.1498930
Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. Proc. ACM Program. Lang. 1,

OOPSLA (2017), 56:1–56:30. https://doi.org/10.1145/3133880
Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory. 3, POPL (2019), 15:1 — 15:31. https:

//doi.org/10.1145/3290328

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

Gradually Typed Languages Should Be Vigilant! 125:29

Max S. New, Daniel R. Licata, and Amal Ahmed. 2021. Gradual type theory. Journal of Functional Programming 31 (2021),
e21. https://doi.org/10.1017/S0956796821000125

Susan Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun. ACM

19, 5 (may 1976), 279–285. https://doi.org/10.1145/360051.360224
Andrew Pitts and Ian Stark. 1998. Operational Reasoning for Functions with Local State. In Higher Order Operational

Techniques in Semantics, Andrew Gordon and Andrew Pitts (Eds.). Publications of the Newton Institute, Cambridge
University Press, 227–273. http://www.inf.ed.ac.uk/~stark/oper�.html

Uday S. Reddy and Hongseok Yang. 2003. Correctness of Data Representations Involving Heap Data Structures. In
Programming Languages and Systems, Pierpaolo Degano (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 223–237.
https://dl.acm.org/doi/10.5555/1765712.1765730

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In Proceedings of the 2006 Workshop on

Scheme and Functional Programming Workshop. 81–92. http://scheme2006.cs.uchicago.edu/13-siek.pdf
Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015a. Re�ned Criteria for Gradual Typing. In

1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 32), Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett (Eds.). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 274–293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

Jeremy G Siek, Michael M Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015b. Monotonic references
for e�cient gradual typing. In Programming Languages and Systems: 24th European Symposium on Programming, ESOP

2015, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK, April

11-18, 2015, Proceedings 24. Springer, 432–456. https://doi.org/10.1007/978-3-662-46669-8_18
Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and without blame. In Proceedings of the 37th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid, Spain) (POPL ’10). Association for
Computing Machinery, New York, NY, USA, 365–376. https://doi.org/10.1145/1706299.1706342

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: from Scripts to Programs. In Dynamic

Languages Symposium. 964–974. https://doi.org/10.1145/1176617.1176755
Matías Toro, Elizabeth Labrada, and Éric Tanter. 2019. Gradual Parametricty, Revisited. Proc. ACM Program. Lang. 3, POPL

(2019), 17:1–17:30. https://doi.org/10.1145/3290330
Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019. Optimizing and Evaluating Transient Gradual Typing.

In Proceedings of the 15th ACM SIGPLAN International Symposium on Dynamic Languages (Athens, Greece) (DLS 2019).
Association for Computing Machinery, New York, NY, USA, 28–41. https://doi.org/10.1145/3359619.3359742

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness and
Collaborative Blame for Gradual Type Systems. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of

Programming Languages (Paris, France) (POPL ’17). Association for Computing Machinery, New York, NY, USA, 762–774.
https://doi.org/10.1145/3009837.3009849

Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Proceedings of the 18th European

Symposium on Programming Languages and Systems: Held as Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2009 (York, UK) (ESOP ’09). Springer-Verlag, Berlin, Heidelberg, 1–16. https://doi.org/10.1007/978-3-
642-00590-9_1

Received 20-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 125. Publication date: April 2024.

	Abstract
	1 VIGILANCE, A NEW ANALYTICAL INSTRUMENT FOR GRADUAL TYPING
	2 MOTIVATION AND THE MAIN IDEAS BY EXAMPLE
	2.1 Natural and Transient Gradual Typing in one Framework
	2.2 The Gap Between Statics and Dynamics for Transient
	2.3 Type Soundness is Not Enough
	2.4 Complete Monitoring is Not Enough
	2.5 Enter Vigilance
	2.6 Vigilance: By Example
	2.7 Vigilance: An Examination of Transient
	2.8 Vigilance: Towards Truer Transient Types
	2.9 Technical Contributions

	3 FROM A GTL TO AN ICTL WITH TWO SEMANTICS
	3.1 A Natural and a Transient Semantics for ICTL

	4 VIGILANCE, FORMALLY
	5 TRANSIENT IS MORE THAN TAG CHECKING
	5.1 A Truer Type System for ICTL
	5.2 Translating GTL to ICTL for Truer
	5.3 Flow and Transient are Vigilant for Truer Typing
	5.4 When are Transient Checks Truly Needed?

	6 RELATED WORK AND CONCLUSION
	References

