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Random mobility models (RMMs) capture the statistical movement characteristics of mobile agents and play an important role
in the evaluation and design of mobile wireless networks. Particularly, RMMs are used to model the movement of Unmanned
Aerial Vehicles (UAV) as the platforms for airborne communication networks. In many RMMs, the movement characteristics are
captured as stochastic processes constructed using two types of independent random variables. The first type describes the movement
characteristics for each maneuver, and the second type describes how often the maneuvers are switched. We develop a generic method
to estimate RMMs that are composed of these two types of random variables. Specifically, we formulate the dynamics of movement
characteristics generated by the two types of random variables as a special Jump Markov System and develop an estimation method
based on the Expectation-Maximization principle. Both off-line and on-line variants of the method are developed. We apply the
estimation method to the Smooth-Turn RMM developed for fixed-wing UAVs. The simulation study validates the performance of
the proposed estimation method. We further conduct a UAV experimental study and apply the estimation methods to real UAV

trajectories.
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1. Introduction

Random mobility models (RMMs) capture the movement
characteristics of mobile agents, and have been widely used
to evaluate the performance of mobile wireless networks [1].
Many RMMs have been developed, ranging from the ba-
sic ones (e.g., Random Direction and Random Walk) to
more sophisticated ones designed for specific vehicle types
(e.g., ground vehicles and airborne vehicles [2]) and vehicle
movement patterns with specific constraints (e.g., [3]). Ad-
ditional examples of RMMs can be found in several survey
papers [1,4]. With the increasing use of UAVs as platforms
for airborne wireless networks [5-7], RMMs are playing a
more important role in modeling UAV’s movements [8,9].
More broadly, autonomous systems are equipped with more
intelligence, and RMMs naturally provide a mathemati-
cal framework to capture the uncertain intentions of au-
tonomous systems [10].

Despite the wide variability, many RMMs capture
the movement characteristics as stochastic processes con-
structed using two types of independent random variables.
Type 1 describes the movement characteristics for each
maneuver. Type 2 describes how often the maneuvers are
switched. For example, paper [2] developed the smooth-
turn mobility (ST) RMM to capture the smooth movement
of fixed-wing unmanned aerial vehicles (UAVs). The ST
RMM is composed of a sequence of switching turning ma-
neuvers, in which the turning radius in each maneuver is
captured as a type 1 random variable, and the duration
of each maneuver is captured as a type 2 random variable.
Similarly, the semi-random circular movement RMM in [11]
describes an airborne vehicle’s hovering movement over a
specific location. In this model, an airborne vehicle ran-
domly chooses a new radius (type 1 random variable) and
a randomly chosen speed to circle the same location after
it completes a circling movement, and therefore the time to
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complete one circling maneuver is also random (described
by a type 2 random variable).

For the RMMs to generate realistic movement charac-
teristics, parameters in the two types of random variables
need to be properly specified using real trajectory data.
Most of the existing estimation methods (see, e.g., [12,13])
were developed only for specific RMMs and lack the flexi-
bility to be applied to other RMMSs. In most of these stud-
ies, the movement characteristics are captured by only one
random variable and hence the parameters for the random
variable can be simply estimated through a direct fitting
of the associated distribution with the observed trajectory
data statistics. However, for the RMMs that we consider,
estimating the parameters in one type by simply fitting the
distribution with the trajectory data would result in inac-
curate estimates because the trajectory is determined by
the two types of random variables jointly.

To the best of our knowledge, only a few studies have
been devoted to estimating parameters in the two types of
random variables using trajectory data. Papers [14,15] de-
veloped a heuristic method to estimate both types of ran-
dom variables in a 2-dimensional (2D) ST RMM. Specif-
ically, the turning radius and switching points are first
estimated from trajectory data by heuristically balancing
among multiple criteria (e.g., degree of correlation and esti-
mation error statistics). Then, the parameters in each type
of random variable are estimated using the corresponding
statistics. Paper [16] adopted a similar approach to estimate
the random variable that determines the travel pause time
of cell phone users. One drawback of this approach is that
parameters are estimated based on one possible (heuristic)
separation of the trajectory into maneuver sessions out of
a large number of possibilities. Large errors can arise when
the noise level in the trajectory data is high.

This study is focused on estimating parameters in the
two types of random variables using trajectory data. A
short conference version of this paper can be found at [17].
In contrast to [14,16] which estimates the parameters in
two types of random variables separately for specific move-
ment characteristics of specific RMMs, the originality of our
work is two-fold. First, we estimate parameters simultane-
ously by considering all possible separations of trajectory
data into maneuver sessions. In other words, our method
avoids the drawback of the methods in [14,16], and provides
more reliable and accurate estimates. Second, our estima-
tion method is general in that it is not restricted to specific
movement characteristics of a specific RMM. In addition,
this study presents both batch (offline) and recursive (on-
line) applications of the estimation method.

We show that the parameter estimation problem falls
into the category of estimating a Jump Markov Linear Sys-
tem (JMLS), which is NP-hard. We adopt the Expectation-
Maximization (EM) algorithm to estimate the parame-
ters. The algorithm is an iterative procedure, which gener-
ates maximum likelihood parameter estimates. It has been
widely used in estimating JMLS (see, for example, [18-21]).
However, the existing work on the estimation of the JMLS
(e.g., [22-25]) focuses on the direct estimation of states,

model coefficients, or transition matrix of the modulating
Markov chain. In our study, the model coefficients and tran-
sition matrix are functions of the parameters that describe
the two types of random variables. We apply the EM algo-
rithm to estimate these parameters.

The rest of the paper is organized as follows. In Sec-
tion 2, we formulate the parameter estimation problem as a
special JMLS estimation problem. In Section 3, we present
the estimation methodology. In Section 4.1, we apply the
estimation methods to the 2-D ST RMM for validation. In
Section 4.2, we collect data from a UAV experimental study
and apply the methods to real UAV trajectories. Section 5
concludes the paper.

2. Problem Formulation

In this section, we formulate the parameter estimation
problem as a special JMLS estimation problem.

As shown in Figure 1, the 2-D ST RMM is charac-
terized by a sequence of turning maneuvers. Each turning
maneuver has a turning radius of M (fixed for a maneuver)

and turning duration of T. The reciprocal of the turn-
ing radius (i.e., ﬁ) is a normal random variable with a
mean p and standard variance o, and duration T is an
exponential random variable with mean A. The turning
center of each maneuver is on the line perpendicular to its
current heading to ensure the smoothness of trajectories.
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Fig. 1. Movement characteristics of a 2-D ST RMM.

The key dynamics of the ST RMM can be simply cap-
tured by the following random process Mj;:

. Mt, if M, switches at t,
Mi= { M;_q, otherwise, (1)

where M, is a random variable with the probabilistic den-

sity function (pdf) f(Mi:ML): L 72>, and the
t t
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probability of switching at each time step ¢ is given by
1-exp(-A"1dt), where 6t is the sampling time interval.

Next, we formulate the above dynamics as a Jump
Markov System (JMS) for which we will provide the esti-
mation method:

JTt:A(Zt, T‘t).’r,t_l + F(Zt, rt)ut + H(Zt, ’I‘t), (2)
Ye=C(2t,7t)xs + D(2e, 7e)wy + G (24, ¢ )ug,

where x; is the system state, y; is the measurement of x,
and

|z, it re=so,
Zt_{Zt, lf T+=S81. (3)

where Z; is a random variable with the pdf f (Zt = %) de-
noted as f(Z; 61) with parameter 6.6, determines the type
1 random variable for the movement characteristics of each
maneuver. 7, € {so, $1} is a discrete Markov chain of two
states with transition matrix P given as follows:

50,50 (E)s Dsg,sq (E
P= ) 2
where
Ps1,s1 ()=P(ri=s1|re.1=51)=g1(02), (5)
Dso,s1 (1)=P(ri=s1|rr.1=50)=go(02), (6)
Psy 50 (1)=P(re=50|re-1=51)=1 — ps, s, (1), (7)
Pso,s0(1)=P(re=50|re-1=50)=1 — Psg.s, (1), (8)

02 is a parameter that determines the type 2 random vari-
able for the maneuver-switching behavior. gy and g, are
functions of 0. 6; and 62 both can be vectors. w; is zero-
mean white Gaussian noise with known variance ¥,, and
we further assume that D(z;,7)X,D(z¢,r¢) > 0, where ’
represents the matrix transpose operator. u; is a known de-
terministic input. The matrices A, H,C, D, F, G are called
model coefficients in this study and are all known functions
of z; and r;. Furthermore, we assume that A(-, s1) is a zero
matrix to guarantee that the movement characteristics be-
fore and after a switch are independent.

The dynamics of the ST RMM in (1) can be described
by the general modeling framework in (2) with the follow-
ing matrix settings:

F(Zt; '):H(Ztv SO):G(Zta '):UtZO,
C(2t,me)=D(21, 10 )=A(2t, s0)=1, H(z1, 51)=2,  (9)
g1 (N)=go(N)=1-exp(-X"4t),
f(Z):N(/,L, U)v 91:(% U)v 92:)\
That is, when there is no switching in the turning maneu-
vers at ¢ (i.e., rs = sg), (2) becomes
Ty = XTy_1,
t t—1 (10)
Yy = Ty + Wy
When there is a switching in the turning maneuvers at ¢
(i.e., 7t = $1), (2) becomes
Ty = zt,

11
Yt = Tt + Wy, (1)
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where z;_1 and z; are the reciprocal of the turning ra-
dius at ¢-1 and ¢, respectively. sg represents maintaining
the current turning maneuver, s; represents switches to a
new turning maneuver. z; is the reciprocal of a new turning
radius.

The focus of this study is to estimate the parame-
ters 6=[f1,0;]" for both type 1 random variables for the
movement characteristics of each maneuver, and the type
2 random variables that describe the maneuver switching
behavior.

Estimating parameters of the system described by (2)-
(6) is related to estimating a JMLS. In the literature, a
significant amount of work has been focused on estimating
the latter. The most used JMLS is of the following form:

It:A(Ft)CCt_l + B(Tt)’Ut —+ F(?t)ut,

Yy =C(T)xe + D(Tr)wy + G(Tr)uy, (12)

where v; is a zero-mean white Gaussian noise, 7; €
{1,2,...U} is the state of a discrete Markov chain with
the transition matrix P-. One important difference between
the two systems is as follows. The model coefficients and
transition matrix (both of which are usually called model
parameters in the literature) in (12) are functions of 7
and their values are typically in finite sets. In contrast, the
model coefficients and transition matrix in (2) are func-
tions of both r; and z;, which correspond to the two types
of random variables. Another difference is that we intro-
duce a new term H(z¢,7¢) in (2) to create a switch of the
movement characteristic that is independent of previous
ones (i.e., T1.4.1).

Estimating a JMLS can be NP-hard as the number of
possible realizations of 7; grows exponentially with the size
of states. While most of the existing estimation studies fo-
cus on estimating the states (i.e., 2+, T+), model coefficients
(i.e., matrices A(Ft), B(Ft), C(Tt), D(?t), F(Ft), G(Ft)) and
transition matrix (i.e., Pr,), this study focuses on estimat-
ing the parameter 8, which determines the states, model
coefficients, and transition matrix in (2).

3. Estimation methodology

In this section, we present the methodology to generate a
maximum likelihood estimate of the parameter 6.

Let Y=[Y' Y2 ... Y"] be the set of N mutually inde-
pendent measurement experiments. For each s € {1,..., N},
Ye=[ys,yi--- vz, y1.]" is composed of Ls + 1 measure-
ments of y;, where t=0, ..., Ly. R=[R', R?,..., RN] is the
set of actual Markov chain states corresponding to Y,
where R*=[rg,r{...,r} |". In this study, we assume that
ro=si, s=1,.

The maximum likelihood estimate of 4 is given by

arg, max P(Y|0). (13)
Directly calculating P(Y'|d) is challenging as the com-

putations of high-dimensional integrals are not always
tractable analytically. In the following, we apply the EM
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to estimate . The main idea of the EM is to treat Y as
incomplete data and introduce a latent variable R (i.e.,
the Markov chain states) for which the joint likelihood
P(Y,R|f) is available and easier to evaluate. The EM
solves for 6 that maximizes the expected log-likelihood of
the complete data. Different from the method in [14,16],
the EM method estimates the parameter # by considering
all the possible realizations of R for Y (via the expected
value). In addition, the prior distribution of parameter 6
can also be considered by the EM method.

EM formulation: By introducing the latent variable R
representing the Markov chain states, we solve the follow-
ing estimation problem for 6.

arggmax »  P(Y, R|6). (14)
R

Overview of the EM algorithm:

The EM algorithm involves an iterative procedure that
alternates between computing the expected log-likelihood
and maximizing this computed expected log-likelihood.
More specifically, the algorithm estimates 6 using two it-
erative steps: E-step and M-step. It first calculates the
expected value of the log-likelihood of the latent variables
for a given parameter estimate (E-step) and then updates
the parameter estimate by maximizing the expected value
from E-step (M-step). The process is repeated until the
convergence is reached. The EM algorithm is summarized
as follows:

E-Step: By taking the log of the summation of the
likelihood function in (14) and applying Jensen’s inequal-
ity, the EM objective function ¢(6,6') can be derived as:

¢(€79l):ER\7,91(10gP(?’Rw))a (15)

where ! is the parameter estimated from previous step [.
The right-hand side of (15) represents taking the expected
value of the log-likelihood function with respect to the

conditional distribution of R given Y under the current
estimate of the parameter #'.

M-Step: The computed expected log-likelihood is
then maximized to update 0:

61 = arg, max(4(4. 6"))

(16)
s.1. QL S 0 S 9U7

where 67, and 6y denote the lower bound and upper
bound of # respectively. They can be obtained from prior
information on 6.

Given that EM addresses an optimization problem, the
selection of initial values for the parameters can adhere to
established practices for initializing values in optimization
problems. For instance, one common approach involves as-
signing random values to the variables within a specified
range. Alternatively, domain-specific knowledge or heuris-
tics may be employed to inform the selection of initial val-
ues.

3.1. E-step:computing the expected
log-likelihood

In the E-step, we calculate the function ¢(6, 6').

¢(67 el)ZER|7,91 (log(P(?> R|9)))
=X,%;p; log P(Y*, R;|6), (17)

where pf=P(R;|Y*,0'), R} is the ith possible realization of
the discrete Markov chain {r;}2,, and (R$); represents the
value of the Markov chain at ¢ in R]. Applying the Bayes’
rule, (17) can be rewritten as

S5} log(P(Y*, R}[6))=5.5:p} log(P(Y*| R}, 6))
+ X Xipj log(P(R?0)).  (18)
For the first term in (18), enumerating all the possible state
transition cases, we have
N ¥ip; log(P(Y [ R}, 0))
=3, 512 i} 1g(P(y; Y61, B, 0))
:Esthéo[E(i,rf:sl)pf log(P(y;|ri=s1,6))
+ Zf{ioz(i’rf—(nﬂ):t
X 10g(P (Y7 1Y6:0-15 - (nt1):=Sn+2,0))]
=Xt [log(P(y; |r{=51,0))(Z(i,rg=s1)P7)
+ 2020108 (P (Y7 1901 75 (1) =Sn+2, 0))
X (B0t iy =Sns2)Pi)]
=, o[log(P(y; |ri=51,0)) P(r;=s1]Y",6")
+ 2010 108 (P (Y 1901 75 (1) =Sn+2, 0))

S
=Sn+t2)Pi

x P(Tf—(n+1):t:Sn+2|YSa Hl)}v (19)
where
Tf—(n+1):t:[rt—(n+l)a Tt-ny .- - 7Tt]l><(n+2)7
Sn+2:[51; S0y -+ 50]1x(n+2)-

The second row of (19) is based on Bayes’ rule. For the
third row, if the current state r; = s, the current observa-
tion only depends on r;. However, when the state r; = s,
all the possible state transition cases in past time should
be taken into consideration.

The second term in (18) can be expressed as

¥, Xip; log(P(R:10))
=% %p; log[P(r§=s1|0)I1}2, P(ri|rs 1, 0)]
=572, %ip; log(P(r|ri.y, 0))

+3,5:p; log(P(r§=s110)). (20)

The second term in (20) is zero as the initial r§=s; is in-
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dependent of . Then, we have

Ys3ipi log(P(R;10))

=252, (S, log(P(r5|ry 4, 0))
X (Z’L.pz"sl{(Rf)t-lit:T‘ts—lzt})}

=552, 5 | log(P(rj|riy.0))

Xp(rf—1:t|ys7‘91)= (21)
where
_JLif (Rf)t-lit:TtS—l:tv
L@ ne=ri = { 0, otherwise. (22)
3.1.1.  Offline coefficient calculation in E-step
The probabilities P(r;|Y*, 6') and P(r? b (1)t = =S,12|Y*, 6"

in (19) and P(r5,,75|Y*,6') in (21) can be calculated using
the backward-forward algorithm. All the following proba-
bilities in this section are conditioned on #!. For notation
simplicity, we drop the notation for the conditional prob-
ability on 6 as long as it does not cause confusion. To
facilitate the backward-forward operation, we define

(23)
(24)

af(rf):P(yg:tvrf)a
bf(rts):P(yif+l:Ls|y(s):taTf)'

We first calculate af(rf) and bi (r§) before we calculate the
probabilities in (19) and (21).

Recursive calculation of aj:
ai,t > 1 can be expressed using the following recursive
relationship based on the Bayes’ rule:

a; =Py [Y0.0-1, 75 ) P (Yo.4.15 7% )
:P(was|y(§:t—17rt)[zrt 1P(Tf|y3:t-1arf-l)P(?JS;t-lﬂ"f-l))]
=P Y01, 77 [y, P(r{riq)aiq]- (25)

Based on (5) and (6) and the fact that the state of the
Markov chain at ¢t does not depend on previous mea-
surements, in (25), we have P(ri|yg., 1, 7i)=P(r|ri,).
P(ri|rs ) in (25) is given by (5) and (6).

To calculate P(yi|y§..1,75) in (25), we consider the
following two cases based on the value of r;:
Case 1: ri=s;. Since a new 2; will be generated by (3) in-
dependently from previous states and parameters at time
t, it is straightforward that

P(yi1Yo.4.1, 7 =51)=P(y; [ri=51). (26)

The probability can be calculated using the following gen-
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eral result with n=-1.
Wts-(n+1):t(ell)zp(yts.(nﬂ):t|Tf-(n+1):t:Sn+2)
:/P(yf-(n+1);t|5t-(n+1)aTf-(n+1);t25n+2)
X [ (Bi(nt1); 00 A2 (ns1)
:/H;:t—(n-l-l)P(yﬂét-(n-l‘l)?Tf—(n-&—l):t:S"'i‘Q)
X f(ét—(n—&-l); Gll)dét_(n+1),
where
y§|(2t—(n+1)u rf—(n-{-l):t:‘s"'i‘?)
~ N (45, D(Z-ns1): )0 D (iny1y> 7)), (28)
and
1;=G (24 (n+1) 50)u; +C (¢ (ng1), 50)
[EJ (tn Al(zt (n+1)s SO)F(»% t-(n+1), So)uﬁ-z
+ AT (2 0y, 50) H (Be(na1)s $1)
+F(Z(nt1), 1)U (41 ]]- (29)

Here W7 (n+1):t

measurements from time ¢t — (n + 1) to ¢ under the condi-
tion that the closest state of s; to time ¢t occurs at time
t — (n + 1). This completes the calculations for Case 1.

Case 2: r/=sp. In this case, all the possible state switch
cases in the past time should be included when calculating

Py Y841, 78 =50)-

,(0%) calculates the conditional probability of

P 196:41, 77 =50)
=%, 1OP(yt7rt (n+1):t- 1=Sn+1[Y0:4-15 T =50)
== —oP Wi Y01, 7L (n+1):t- 1=Sn41, T =50)
X P(ry (ns1)-1=5n+1[Y0:-1, ¢ =50)]- (30)

To calculate P(y7|ys...1in(30),r
we have

T (1)t = =Sn41,77=50),
P(yf|y8:t—l5 Tf‘(n+1):t—l:Sn+l7T§:SQ)
:P(yts|y5:t—17 Tf—(n+l):t:Sn+2)

:P(yts|yts—(n+l):t—l ) rf_(n+1);t:Sn+2)

_ P(yf (n+1): tlrf (n+1):t— Sn+2)
P(y;. (n41):t- s (n+41):t =Snt2)
P(y;. (n+1): Mipd (n+1):t =Snt2)

= ) (31)
P(yt—(n-i-l):t—l|rt—(n+1):t—l_S"+1)

The closest state of s; occurs at time t—(n + 1), which
means Ty (n41) = S1- yg;t_(n”) can be discarded since
y; is independent of previous measurements before time
t — (n+1). Therefore, the third equation in (31) holds. The

probabilities in (31) can be calculated using (27).
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For P(Tf_(n+1);t_1: n+1|y8:t—larf:‘90) in (30)7 we have

P(rf—(n+l):t—1:‘sn+l |y8:t—17 Tf:SO)

_ P(yg:t—l |Tf_(n+1):t:Sn+2)
P (Y0117 =50)

X P(r{ (nt1)w1=Sn+1]r$=50). (32)
where
P(Yo1lri=50)=2020 P(Y5.e. e (n+1):t =Sn+42)
XP(ri(ns1):6-1=Sn+1|1=50). (33)

Now we calculate the probability P(y§., |rf_(n+1):
As r} is independent of y§.,.;, we have

t:Sn+2)'

P(y(s):t—l |T§-(n+1):t:Sn+2)
:P(yg:t—l |Tf-(n+1):t_1:Sn+1),
=P(Yout-(n+2) T2 (nr1)=51)

XP(Y (1)1 T8 (n41):0-1=Sn+1)- (34)

For the first term in (34), we have

P(y(s):t-(n+2)|7”f-(n+1):51)
=50 o Pt T2y T (ngy =51)
XP(ri (ny2) e (ng1)=51)

=20 o Pt 2) T8 (i1 2)) P (g2 [T (1) =51)

P(was—(n+1):SI|TtS—(n+2))
P(rf_(n+1)=sl)

P(Tf—(n+1):‘91|rf—(n+2))
P(Tts-(n-;-l)zsl) -

:ETf_(n+2) P(yg:t—(n—Q—Q)? Tf—(n+2))

:Z"f,(n+2) af—(n-ﬁ-Z) (35)

Therefore, (32) becomes

P(Tf_(n+1);t_1:Sn+l |y(s):t—la Tf:SO)

= E s aS P(Tts_(n+1)251|7"ts_(n+2))
Mo TEOED T P(rg =)

XP(YL (nt 1)1 T8 (1) 01 =n+1)
P(r{ (n41):-1=5n+1]ri=50)
P(y§.e1lri=s0)

(36)

P(yf_(nﬂ):t_l|rf_(n+l):t_1= n+1) in (36) can be calculated
using (27). The probability P(rf_(n +1):sl) can be calcu-
lated using the following recursive relationship.

i) P(ria),  (37)
where P(rf|ri,) is given by (5) and (6). P(r§=s1)=1

and P(r§=so)=0 as we assume rj=s;. The probability
P(r} (n41):.1=Sn+1|ri=s0) can be calculated based on the

P(r{) =X P(r7,ri) =%, P(

Bayes’ rule and Markov properties as follows:

P(Tf—(n—i—l):t—l)
P(rf)

s|.s t n+1
—P(Tt|7°t-1) ( ) (HP (rialri) ) (38)

This completes the calculations for Case 2.
If t=0, we have ri=s; and

P(ry. (n+1):t alre)= (7’1:S|Tf-(n+1):t-1)

P(yslro=s1), (39)

which can be calculated by (27). This completes the calcu-
lation of aj.

ay=P(yg, ro=s51)=

Calculation of b;:
We assign 1 to b} . When ¢ < Ls-1, b7 in (24) can be
calculated as follows:

bf_Et 10P(yt+l Lo Tt-(n+1):t- 1—Sn+1|yo t) Tt)
=31 —oP (Y10, Y0 L (n+1):t- 1=5n+1,7%)
x P(ry. (n—&-l):t-l_SnJrl'yO:t?Tt)
=% lob P(rts-(n+1):t-1:Sn+l|y(s):t=rts)a (40)

where b (P8 ) =P 1o Yoo 7 (g 1) 61 =Sn415 ) -
In the following, we describe the calculation of
P(Tf_(n+1);t_1: n+1|y(s):t7rrf) and bf,n(rf)
P(rf_(n+1):t_1:5n+1|y§:t,rf) can be calculated as fol-
lows,

P(Tf_(n+1);t_1:Sn+l |y8:t7 Tf)
P(rf—(n+l):t—1:Sn+1|Tf)

= P S. g . :STL I : :
P(y8t|rf) (yO.t|rt—(n+1).t—l +1 rt)

(41)
Similar to the calculation of (32), the probabil-
ity P(r T 1)1 = nt1|Ys.4,7:) can  be calculated

based on the two probabilities P(r; b (et 1)t1= nt1|7s)
and P(yo:t|7"t_ (n+1):it-1— nt1,7%). P(r S_(n+1);t_1— nt1]7%)
can be calculated wusing (38). Now we calculate
Pgalrs ns1):e.1=5n+1,7¢). We consider two cases. If
+.1=5n+1,77) can be
calculated using (27) by setting n=t-1. If r{=s;1, we have

ri=so, the probability P(y5.|r} 1)

P(ys:tlrts—(n-l-l):t—lzsn'i‘l7Tf)
:P(yg:t—l|yf7r;‘.s—(n+l):t—1:Sn+17Tf:51)
XP(YL e g1y =Sn+1, 18 =51)
:P(yS:t—l|rts—(n+1):t—1:STb+1)P(yﬂrf:‘sl) (42)
P(yg:t_1|7“f_(n+l):t_1= nt+1) can be calculated by (34) and

P(y;|ri=s1) can be calculated using (27).
b ,,(r{) can be expressed as:

bt () =2rs, P(Yls1nes 71 1Y0:00 T (ng 1)1 =S, TH0A3)



April 30, 2024 21:51 output

If t < L2, (43) can be calculated using the following re-
cursion:

bE (7))
:2T5+1P(yf+2ilzs |y5:t+1’ Tf—(n+l):t—1:Sn+17 rfzt-i—l)
X P(Tf+1|7"f)P(ytS+1|yS:taTtS-(n+1):t-1:Sn+17Tf:t+1)
s Pyialyi, ri=s1,ri)
B xbiyq oP(riyq|ri),if ri=si.
ETf+1P(yf+l|y8:t7Tts_(n+1);t: n+2v7’f+1)
%bi 1 1 P(ripq|ri), if ri=so.

If 7, =s1, then
S S ,.S__ s s s s _ s
P(yialyi, ri=s1,7741) and P(yt+l|y0:t7Tt—(n+1):t_5n+27rt-i—l)

can be calculated using (27). If r{, ;=s0, both probabili-
ties can be calculated using (31). If t=L,-1, (43) can be
expressed as:

bf,n (Tf):ETerl P(yf+l |y8:t7 Tf—(n+l):t—1:‘9n+1a Tf:t+l)
X P(rig|ry)
ETf+1P(y§+l|yifaTif:SlthS—Q—l) (45)
XP(ri q|ry),if ri=s;.
Ererl P(yf+1 |y8:t7 Tf_(n+1):t:Sn+2; T;‘,S+1)
XP(ri q|ry),if ri=so.

The probabilities in (45) can be calculated in the same way
as those in (44). This completes the calculation of b;.

Calculation of P(r{|Y®) in (19):

P(yf+1:Ls|y5:t7TtS)P(yS:t’Tf) :af(rf)bf(rf)/
P(Y?) P(y*) °

P(ri|Y?)= 46)

where
P(Y?*)=%sai(r})bi (r7).

Similar to the calculation of (32), the probability P(rf|Y?)
is calculated using ay, b;.

Calculation of P(r{;,r;|Y®) in (21):
P(riqy,ri[Y?)
:P(wasvrfvwas+1:Ls|y5:t—l’Tf—l)P(yS:t—l’Tf—l)
P(Y?®)
P(?Jf+1:Ls|y5:tan-1arf)P(yf|95:t-1an-17rf)
P(Y?)
X P(ri|riy)ag ;- (47)

Similar to  the calculation of probability in
(46), we only need to calculate the probabilities

S S S S S S S S S S
Py p Y00 i 70)s PWE Y010 miias i), P(rlriy)  and
agq-

To calculate P(y;, ., |Y5.4,7¢1,7i), we consider the
following two cases:

Case 1: r} =5y,

P(yf+1:Ls|y(s):taTf-1:5177'f):bf,o- (48)

Estimation of Random Mobility Models 7

Case 2: 1} =5y,
Pi 1.0, Y00, TE1=50,77)
:Etz_ilp(ytsﬁ-l:Ls’Tf—(n+1):t—2:‘5’n|y5:tvTf—1:507rf)
=Xt Py, Yo T4 1)et-1=5n+1,77)
XP(ry (ns1):6-2=nY0:ts T-1=50,77)
:E;—llbf,np(rts_(mrl);t_QZSn|y(8):t7rf-lzsou i), (49)
where
P(Tf—(n-l—l):t—Z:Snlyg:t?Tf—lzsoarf)
_P(yg:t|rf—(n+l):t-1:Sn+laTf)
© Poulrii=so. )
XP(TtS-(n+1):t-2:Sn|Tf-1:50)- (50)
Similar to the calculation of (32), the probabil-
ity P(ri1)eo=5nl¥54:ria=50,7{) 18 calculated
from the probabilities P(rf_(n+1):t_2=,5’n|Tf_1=$0) and

P(yg:t|Tf_(n+1);t_1: n+1vrf)' P(Tf_(n+1);t_2:Sn|Tf—1:50) is
calculated using (38). Based on the value of r§, we have

P(yg:t|rf—(n+l):t—1:‘s’n+17 Tf)

P(yg:t—l|rf_(n+1);t_%:Sn+l)
= X P(y;|ri=s1),1f ri=s1. (51)
P(y(s):t|rf_(n+1);t: n+2)a1f TfZSO-
If ri=si,
P(y(s):t|r;‘.s—(n+l):t—1:sn+17 rf)
=Py |ri=s1) LYol ni1):1=5n+1),  (52)
where P(yf|ri=s;) is calculated wusing (26), and
P61 |7y (n1)41=5n+1) is calculated using (34). If
rf =50, the probability is calculated using (34). This com-
pletes the calculation of P(y;, .1 Y54, 751, 7¢)-

For the probability P(y;|ys..i,75q,7f) in (47), it
can be calculated using (26) if rf=s;. The probability
can be calculated using (31) if r§,=s; and rj=so. When
ry =50 and r;=sg, we have

P 1Y5:4-15 T1-1=50, T =50)
:Zz_ilP(Tyfs-(n+1):t—2:sn|y8:t—17Tf—lzsfbrtszso)
XP(yflyS:t—Drts—(n-l-l):t:STb'i‘?)? (53)
where
P(Tf.(n+1);t-2:Sn|y5:t-1a r{.1=50,T{=50)
7P(y8:t—1|rts—(n+1):t:STb+2)
P(Ygualria=so,ri=50)

XP(ry (n+1):4-2=5nlrt-1=50)- (54)

Similar to the calculation of (32), the probability
P(ry (i 1)4-2=5n|Y0:-1,TE1=50,7¢=50) ~can  be  com-

puted from the probabilities P(ygzt_l|rf_(n+1):t:Sn+2)
and P(r} (n11):.2=5n(ri.1=50). The  probability
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P Y6415 T4 (n1):e=5n+2) in (53) and (54) can be cal-
culated using (31). P(rf_(n+1):t_2:Sn|rf_1:so) can be cal-
culated with (38).

Calculation of P(rf_(n_i_l):t: nt2|Y?) in (19):

P(TtS:SO|YS):Ef{lop(ri(nﬂ):t:'gn—!—?|YS)

P(ri (ni1)a=Sn+2,Y")

=yt
n=0 P(ys)

(55)

That is,

P(ry (ns1):e=5n+2,Y")
P(ri=solY?)
Similar to the calculation of the probability in (32), the
probability P(r{ )., =Sn+2|Y?) is calculated as

P(Tf—(n—l—l):t:‘gn-i-% YS)
P(ri=solY*) ~
where P(ri=so|Y®) is given by (46), and
P(ri (ny1)a=5Sn+2,Y")
:P(rf—(n-l-l):tzsn-i-?v yS:t—(n+2)7 yts—(n-i—l):tv Yir1:L,)
=P(y{11.L,
X P(r (1)t =St (nt1)its Yout-(nt2) 2 Yi(nt1):t)
:b;n(so)P(yg:t—(n+2)|Tf—(n+1):‘91)P(Tf—(n—i—l):t:Sn"’Q)
X P(Y (ns 1)t e (n1)e=5n+2)- (58)
Py nalrin1=s1) is  calculated  using  (35).
(Y1278 (ng1):e=Sn+2) is  calculated using  (27).
P(rf (n41)4=5n+2) can be calculated with (37).

The probability P(rj|r;,6) in (21) can be expressed
as a function of 6 using (5) and (6). The probabilities
P(yf|’l”f:$1,9) a’nd P(yf|y(s):t—larf_(n+1);t: n+2>9) in (19)
can be expressed as a function of 8 using (27). The closed-
form functions for the two probabilities based on the inte-

gration of f(z;6;) are needed for the M-step.
In summary, we have

¢(0,60')=3; 1 [log(W;,(61)) P(r{=s1]Y*)
w? (0
+3EL, log(—f("“)'t( !
t—(n-l—l):t—l(el)
+ESEtL:5125i,Sj [log(pml:sl-,m:sj- (1)
x P(ri =si,ri=s;|Y")]. (59)

P(Y*)=34L, (56)

(57)

rf—(n+1):t:Sn+27 Yo:t)

3.1.2.  Recursive coefficient calculation in E-Step

The coefficient calculation in section 3.1.1 is not computa-
tionally efficient to be applied recursively as it requires a
backward operation (i.e., for (24)) on the entire observa-
tions each time a new observation is available. On-line EM

VP (e (n41):e=Sn+2]Y )]

algorithm also has been developed and used in recursive
parameter identification (see, for example, [24-27]). An im-
portant step in applying the estimation method recursively
is to recursively update the coefficients in (59). In this sec-
tion, we provide an algorithm that recursively updates the
coefficients using the particle filter introduced in [28].

For simplicity, we assume that there is only one set of
observation Y (i.e., s=1). The observation set at time t=N
is given as Yn={vo, y1,.-.,yn}. (59) can be simplified as

#(0,0")=;[log(Wi.¢(01))P(ri=51]Y)
Wi (nt1):¢(01)
Wi (n+1):6-1(01)

6,5, 511 [108(Pry =5, re=s, (1))
X P(ri1=si,ri=5;|Y)]. (60)

"‘Ef{io log( )P(Tt-(n+1):t25n+2|y)]

Wt—(n+l):t (61) )
Wi tng1)-1(01) 7
log(pr,., . (t)) can be decomposed into two parts. One is in-
dependent of ¢ and the other one is a function of ¢. Without
loss of generality, we assume the following relationship:

We further assume that log(W3.¢(01)), log(

log(Wee(61))=F (61)F (1),
Wt—(n-{-l):t(el) o 7 n
log(Wt-(n+1):t—1 (61))_H(nv 91)H(_t, )7

10g(Pry.y=s:,m=s; ()= (81, 85, 02)J (£, re1=5i, 11 =5;).

Note that
E(ly =5, [YN)=P(ri=51]Yn), (61)
E(]"Tt—(n+1):t:sn+2 |YN):P(rt—(n+l):t:Sn+2 |YN)= (62)
Bl =s; r,=s;|[YN)=P(re1=si,1=5;|YN). (63)
where

1, if =,
Lri=s1= { 0, otherwise. (64)

Ly gy =Snio and 1., =g, r,=s; are analogous to 1,,—,.
Then, (60) could be written as

¢(6,6") (65)
=[F () F) B(Lr=sy [YN)))]
IS0 H (1, 00) 20, H (8 1) E(Lry(4)=800 | YN)]
+3s,.s; [/ (84, 55, %)(Ziilj(t, T-1=5;, I'1=5;)
X E(er:Si,m:sJ- |YN)))]
=F(0,) B[S (F(t)1r,=s [YN)]
+S0(H (n, 60) B[S, H (1) e =542 YN])
+3s,,s, (J (84, 55, 02)

X E[Ez]&\ilj(b Tt-1=384, Tt:sj)lnflzsl-,n:s]- |YN])'
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Let
Sn=EN (F(t) 1y, |V )], (66)
SNa=E[SL, 1 H(t,n) Lri iy e=Susa YN, 7=0, ..., N-1.
(67)
§N=E[Ez]s\]:17(t, T't-1=54, thsj)ln-lzszwrtzsj Y] (68)

A recursive update of coefficients in (59) is essentially the

same as a recursive update of Sy, S N.n, and S ~. In the fol-
lowing, we apply a particle filter to recursively update Sy .
The other two statistics could be recursively updated in a
similar way and for conciseness they are not shown in this
paper.

Let

TN»” (TNv ‘TN):E[ZiV:n-HH(t’ n) 1Tt—(n+l):t:sn+2 |TN’ TN, YN]'

Note that

Sxm=E[TynlYn]= / T P(rxs 2]V )

:/TN,nP(TO:N;IO:N|YN)dr0;Ndzo;N- (69)

Further, T, (rn, zn) and Tn-1,n(rN-1, Zn-1) have the fol-
lowing recursive relationship:

TN,n(TN;IN):/TN,n(TNny;TN—lva—l)

X P(ry.1,znalrn, zn, Yn)dryadeya
:/TN,n(TN;xNarN—laxN—l)

X P(ro:N-1, Zo:N-1|TN» TN YN ) ro, no1 Do s
:/TN,n(rN;xNarN—laxN—l)

P(yn,TN, ZN|T0:N-1, To:N-1, YN-1)
P(yn,rn,zn|YN-1)
X P(ro:N-1,Z0:N-1|YN-1) X drg 1 Aagn s s (70)

where
TNn(rN, TN, TN-1, TN-1)

:E[Zi\;_fll-i-lﬁ(tﬂ n) 1Tt-(n+1):t:Sn+2 |TN7 IN,TN-1,TN-1, YN]

FE[H (N, )1y (1) n=8n12|TNs TN, TN-1, TN-1, YN
=B G H(tn) ey )=S0 sa N1, TN-1, YN-1]

—i—F(N,n)P(TN_(nH):N: 2| TN TN N1, TN, YN )
=H(N,n)P(rn-(n+1):N=Sn42|TN, TN, "N-1, ZN-1, YN)

+TNan(rNa,TN-1), (71)

with Tn_1,n(rN-1, 2N-1)=0, for n=N-1.

Using (69-71), Sy, can be updated recursively. How-
ever, the integration in the equations is generally not easy
to evaluate. In this case, a particle filter can be used to
approximate the integration.

Approximation of the integrations in (69-70) with
a particle filer:

Estimation of Random Mobility Models 9

Assuming that there are M particles, at t=N-1 they
are given as {rj y_1, 4. y.1, wi 1 1. wl_; is the weight as-
sociated with particle ¢ and is defined as follows:

w]i\f :P(T%LJ:N—I’ x_é:N—l |YN-1) i (72)
T (roN-1 Ton-a | Ye) M

where 7 is the importance density function and
T(r n1, To. g |YNa) = ﬁ In this study, 7 is assumed
to have the following form:

m(ro:n, o:N|Yn)
=n(rn, TN |T0:N-1, Zo:N-1, YN )T (T0:N-1, To:n-1|Yn-1). (73)

We define that

7(rn, N |ro:N-1, Zo:N-1, YN)
=P(rn, ZN|T0:N-1, To:N-1, YN-1)- (74)

- When yy is available at t=N, for particle 4, sample
{ri;, 25 M according to 7(rn, TN [T N1, T N1, YN ). Us-
ing (72 -74), the weight associated with each particle is
given as:

P(Té:N7 xé:N|YN) 1

i

N=

W(Té;Naxé:NWN) M
7P(yNaT§V7I§V|T6:N-1716:N-laYN—l)
P(Tﬁl\/?xévlr(i):N-lvx%):N-lvYN—l)
P(Té:N-lyx(iJ:N-llyN—l)
P(yn[YNn-1)7(ro.n-1, T n-1 | YN-1) M

o< P(ynlriy, oy )W (75)

Therefore, wh; can be updated as follows:

Wﬁv:%v (76)

iPNWN-
where pgva(yN|rf\,,x§V) and can be calculated by using
(28) and (29). Then, Sy, can be approximated as follows:
SN~ SM T o (1, 2l Wiy (77)

Let CIiN:P(yN,T‘]iv,IMTé:N_l,l”é:N_l,YN-l), by (70), we
have
T (T, 2y) = S5 T (P 2, g )
O[;N P(Té:N—l’x%:N—l|YN-1) 1

X T i j j _]
P(yN’ TN xN|YN'1) W(Tg);N_lv xé:N—l|YN-1) M

J J
a; NWh_1

!

:EM, T RO Tj l‘j - -
=1 TN (s s T N'l)P(yN,TﬁvJMYN-l)

(78)
Note that
O‘?,NO( (varNaxN|TO,N_1axo_N_1v Nl)wgv_l- (79)

P(yn, 7, Tl Yn-1)
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Therefore,
TN,H (T§V ) xﬁv)

M i i 7 J “zNng-l
~ Y [TN,n(TNaxNaTN-pr-l)—E 7 ] ] (80)
10 NWN-1

By (71), we have
Tnn(ry, o

F(N )P(TN-(n+1):N: n+2|T§v,I§v,T5§_1,I§V_1,YN),
(81)

T, 7"N 17$N )= TN—l,n(T?v-lvgiJ)

where
P(ry-(n1):N= n+2|rﬁv,xﬁv,r§§_17xﬁv_l,YN)
Z/P(TN-(nH):N: 42, T0:N-2, To:N-2| Ty s Ty
Tg\/-l’ x;\/-lv YN)dTO:N&dTo:N-z' (82)

Note that we have

P(ry. (n+1):N =Pn+2,T0:N- 2,50:1\/-2|7”§Va $3le7’5\7-1, xg\/-lv Yn)

PPPPPPP
2 BP: Sl 7P(TONQ,CCON2|Yz\12) (83)

where

Plzp(yN|$§v=$gv_1aT§Va7“5\;_1770:1\/-2,50:1\/-2,
N-(n+1):N=Sn+2, YN-1),
PZ:P($§V|$5\/_1aT?v,rfv_lfo:zv-z,fo:zv-m
TN-(n+1):N=Sn+2, YN-1),
P3=P(7”§v|$§\/_1a7“5\;_177‘0:1\/-2,fo:N-zarN_(nH);N: n+2
Yno1),
P4:P(yN-1|xgv_1aTgv_luFO:N—%TO:N—QurN-(n—J—l):N: n+2;

Yn.2),

P5:P($N 1|7°N-1v7"0N 2, T0:N-2, T N-(n+1):N=Sn+2, YN-2),
Ps=P(r)y. 1|7"0 N-2, TO:N-25 TN-(n+1):N=5n+2, YN-2),
Pr=P(rn_(n+1):N=5n+2[T0:N-2, To:N-2, YN-2),

Py=P(

P(yn-1: NaxN7TN7xN 1’TN-1|YN 2)-

(82) becomes

P(TN—(n—&-l):N: n+2|r§Vax§V7Tg;]_1ux3;/_1uYN)
:/ P, P, P3Py P5; Ps P; P(To.n-2,To:n-2|Yn-2)

Py 7(To:N-2, To:N-2| YN-2)
X ﬂ-(TO :N-2; Z0:N- 2|YN Q)d?O:N—ZdIO:N—Q
v PrPoPs Py Ps Ps Py
~ 2l P8 wé\]-27 (84)

where P; and P, can be calculated using (27) and (31), P
and P; can be calculated using the relationship and prob-
ability density function specified in (3), and Ps, Ps and P

can be calculated using (5) and (6). We also have

27];]—1-113(7‘N—(71+1):N

= n+2|rfv,xév,r?v_l,a:gv_l,YN)zl.
(85)

P; is independent of index n in (85) and the particles
{rt n2s @5 oy why o}, . Therefore, we have

P(ry-(ny1):n= 2T TN T T YV)
o Py Py P3Py PsPs Pyl . (86)

The recursive update of Sy 5, is summarized as follows:

At t=N, we have {rd v 1,2 n.1, w1, 0N from
the previous M -step (i.e., at t=N-1) and yx.

Step 1: Calculate TNn(rN,xN) for ,i=1,...,M.

1. for a glven_z7 calculate Ty p, (r}'\,,xé\,, rf\,_px;v_l) us-
ing (81-86) and o y for j=1,..., M.

2. calculate Ty (1%, 7%) using Eq (80).

Step 2: for particle ¢, sample {ri, x4 1L, according to
(TN,xN|T0 N-12 Zo. N~ 1,YN) to obtain {rf y, .y} Update

wly using (76).

Step 3: Calculate Sy, n=,0, ..., N-1, using (77).

Sy and §N can be recursively updated in a similar
way. After calculating the three statistics, a resampling can
be performed to avoid degeneracy if necessary. Then, M-
step is performed to obtain 6% .

3.2. M-step: maximizing this computed
expected log-likelihood

In this step, the estimate of 8 is updated by solving the
optimization model in (16), where ¢(6, 6') is given in (59).

If a solution for the optimization problem can be ex-
pressed in a closed-form (e.g., by using the first order op-
timality conditions), the update of #' can be easily ob-
tained. If a closed-form solution cannot be obtained, nu-
merical methods for nonlinear optimization problems (e.g.,
generalized reduced gradient method, sequential quadratic
method, and interior point method) can be used to find an
optimal solution. For example, a natural gradient iterative
method is utilized in [21,29] to solve the optimization prob-
lem in M-step with linear constraints for the estimates of
transition matrix. Since the objective function of the op-
timization model is not necessarily convex, local optimal
solutions may exist. Multiple initial solutions and different
solution algorithms can be applied to avoid local optimal
solutions [19].

4. Validation and Application

In this section, we provide 1) a validation of the estimation
method using an airborne random mobility model (in sec-
tion 4.1), and 2) an application of the estimation method
for the trajectories of real fixed-wing unmanned aircraft in
a field test (in section 4.2).
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4.1. Validation using the ST RMM

We validate the estimation method using the ST RMM in-
troduced in section 2. For given parameters (u, o, and A),
we first create trajectories according to the ST RMM. We
then apply the estimation methods to the trajectories to
estimate these parameters and compare the parameter es-
timates with the given ones. The observation (Y') here is
the reciprocal of the turning radius calculated from the tra-
jectories with measurement error following N(0, 0,,). With
the above assumptions and matrix settings in (9), (27) be-
comes:

Wts—(n+l):t(ei):[(2ﬂ.)

1 S
X eXP{ﬁ[Ef:t-(nﬂ)(yl -p)?

0.2

024 (n+2)02

77(";2) [Ui(n+2)+(n+2)0203(n+1)]%]

(Sl () W)} (87)
We assume that
1=0.001,0=0.5 x 1073, \=5. (88)

For validation, we generated 100 trajectories by simulating
the 2-D ST RMM with the parameters given in (88).
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Positive radius denotes right turn. A negative radius denotes left turn.

Fig. 2. Trajectory simulated by the 2-D ST RMM with param-
eters given in (88)

Each trajectory contains between 1,000 to 2,000 data
points (randomly chosen). Figure 2 shows an example of
the simulated trajectory and the reciprocal of the turning
radius at each time point.

We assume that the prior distributions of the three pa-
rameters are independent and follow uniform distributions.
The initial values for the parameters are: u=0,0=0.5 X
1072, 1=20. The constraints ¢ > 0,A > 0 are imposed
in (16). The optimization problem in M-step is solved
using the Matlab optimization toolbox with an interior-
point algorithm. The estimation process is terminated if
the changes in the parameter estimates are less than 0.5%
for all the parameters.
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For o,,, we consider five measurement error levels in
the observations: error level (EL) 1: 7,=0.1 x 1073, EL 2:
05,=0.2x1073, EL 3: 0,=0.3x 1073, EL 4: ,,=0.4 x 1073,
and EL 5: 0,=0.5 x 1073.

4.1.1.  Off-line estimation
Table 1. Parameter Estimates Different Measurement
Errors
Actual Parameters ©=0.001 0=0.0005 A=5
Estimated (EL 1) 0.001009  0.000493  5.098846
Estimated (EL 2) 0.000987  0.000505  4.921386
Estimated (EL 3) 0.001015 0.000511  4.904359
Estimated (EL 4) 0.001008  0.000484  4.769724
Estimated (EL 5) 0.001014  0.000499  5.139847
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Fig. 3. Convergence of the estimation process with different

error levels

The convergence of the estimation process is shown in
Figure 3. The estimation processes converge with all mea-
surement error levels. In addition, the convergence is faster
if a smaller measurement error is involved in the dynamics.
The parameter estimates are shown in Table 1. For all mea-
surement errors, the estimates are close to the actual ones.
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Fig. 4. Average P(r{ = s1|Y®) with different measurement

error levels

A slightly increasing trend can be observed in the es-
timation error for A while a similar trend does not exist
for the other parameter estimates. We further evaluate the
probabilities of detecting the event r;=s; with different
measurement errors. To do so, we calculate P(rj=s1|Y"*)
using the actual parameters with different measurement er-
rors. The results are shown in Figure 4. As measurement
error increases the probability of detecting r;=s; decreases.
Since in the ST model the Markov chain r; (i.e., switches) is
mainly driven by parameter A, misidentification of switches
tends to have more impact on the estimation of A than the
other parameters.
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Fig. 5. Comparison of estimation results

We further compare the off-line estimation method
with the method presented in [14]. We apply the two meth-
ods to one of the 100 trajectories and compare the estima-
tion results with different error levels. For our method, we
use the same settings as those used in the validation. To
maintain consistency, the method in [14] is applied to the
reciprocal of the turning radius. The comparison is shown
in Figure 5. Both methods can generate parameter esti-
mates close to the actual one when o, is small. However,
as g,, increases, our method generates parameter estimates
closer to the actual ones.

4.1.2.

Recursive estimation

For the validation of recursive estimation, we gener-
ate a flight trajectory of 30,000 points by simulating
the 2-D ST mobility model with the parameters given
in (88). The initial values and constraints of the pa-
rameters are the same as those in the off-line estima-
tion setup. In the particle filter, we used 1,000 parti-
cles and implemented a resampling every 5 time steps.
The recursive estimation is also applied with the five
measurement error levels used in the off-line estimation.
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Fig. 6. Difference between actual parameters and estimated
ones at every 500 recursive steps

The differences between the estimated parameters and
the parameters given in (88) at every 500 recursive steps
are shown in Figure 6. It can be observed the estimated
values of p and o converge to those in (88) relatively fast
with all measurement error levels. The convergence of the
estimated values of \ is slower for larger measurement er-
rors.
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Table 2. Parameter  Estimates  with  Different
Measurement Errors by Recursive Estimation
Actual Parameters u = 0.001 o = 0.0005 A=5H
Estimated (EL 1) 0.000994 0.000525 4.967397
Estimated (EL 2) 0.000983 0.000514 5.1990
Estimated (EL 3) 0.000993 0.000519 5.765693
Estimated (EL 4) 0.000993 0.000524 6.344167
Estimated (EL 5) 0.000998 0.000534 6.950382

Table 2 presents the final parameter estimates. The
parameter estimates with error levels 1 and 2 are close to
those in (88). However, the parameter estimates with er-
ror levels 3-5 are still converging and significantly different
from those in (88). This is consistent with the observations
in the off-line application. Particularly, Figure 3 (c) also
shows a slower convergence for the estimated value of A for
larger measurement errors.

4.2. Application using the Trajectories of
Unmanned Fized-wing Aircraft

An example of the flight trajector
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Fig. 7. Trajectory (part a) and reciprocal of turning radius
(part b) of the fixed-wing aircraft with respect to time
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Fig. 8. UAV Attitude Acquisition System

We develop a UAV attitude acquisition system (Fig-
ure 8) and work with pilots from the Greater Southwest
Aero Modelers flight club to conduct test flights using their
unmanned aircraft and record the flight trajectories. This
UAYV attitude acquisition system consists of an IMU, GPS,
barometer, and a microSD card, and is able to measure
UAV angular velocity, acceleration, orientation, magnetic
field, position, and altitude.

In this paper, we select nine flight trajectories flown by
fixed-wing aircraft and each of the flights lasts about five
minutes. It is necessary to point out that there were other
aircraft flying within the same airspace when some of these
flights were flown. The flight trajectories of the flights con-
sist of position reports every 0.5 seconds. Figure 7 (a) shows
one of the flight trajectories used in this study. An interview
with the pilots indicates that they intended to keep their
aircraft flying around the landing facility (i.e., within rela-
tively small airspace) and avoid colliding with other aircraft
based on their visual judgments. By observing their flight
trajectories, we conclude that they did so by using turning
maneuvers. Therefore, mobility patterns in the flight tra-
jectories can be modeled by the ST model. We apply the
estimation method to estimate the parameters u, o, and .
The turning radius at time ¢ on the trajectory is estimated
as

Rt:_7
w
where w is the angular velocity and v is the speed at t,
which are estimated by using the information collected by
on-board avionics. Figure 7 (b) shows the reciprocal of the
turning radius at each time point. Several small turning
radii can be observed, which indicates that the pilot made
several sudden and sharp turns. This is consistent with the
fact that the pilot was keeping the fixed-wing aircraft fly-
ing within a relatively small area and avoiding collision with
other aircraft using visual judgments.

4.2.1.  Off-line estimation results

The initial values for the parameters are as follows:
1#=0.5,0=0.1, \=5.
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The constraints A > 0,7 > 0 are imposed in (16). We tenta-
tively assume that the measurement error for the reciprocal
of the turning radius is o, = 0.05. The estimation is ter-
minated if the changes in the parameter estimate are less
than 0.5% for all the parameters. The iterative process is
terminated after five iterations. The parameter estimates
are

p= — 0.299, 7=0.655, \=20.877.

1 is negative, which indicates that the pilots tend to make
left turns. Considering the pilots’ position and the take-
off direction which are similar for all nine test flights (as
shown in Figure 7), pilots tend to make left turns to keep
the aircraft in the vicinity. The estimated A shows that
the average time that the pilots maintain the same turning
radius is about 10 seconds.

4.2.2. Recursive estimation results

As the nine flight trajectories are from separate flights,
we apply the recursive estimation to each flight trajec-
tory according to the time order by which the trajecto-
ries are created. The parameter estimates from one trajec-
tory are used as the initial values for the parameter es-
timates of the next trajectory. The initial values for the
first trajectory are the same as those in the off-line case.
We use the same measurement error as the one used in
the off-line case. The number of particles in the parti-
cle filter is 1,000 and a resampling is performed at ev-
ery time step. For each trajectory, the recursive estima-
ti(o)__p starts when the 100th obselgvation becomes available.

Where the estimation
is applied to a new trajectory

0
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Fig. 9. Parameter estimates at each step

Figure 9 shows the parameter estimates at each step.
Significant changes in the parameter estimates can be ob-
served when the recursive estimation is applied to a new
trajectory. This can be due to the fact that 1) these flights
were flown by different pilots, and 2) pilots may control

their aircraft differently when there were other aircraft
within the same airspace. The parameter estimates after
applying the method to all the trajectories are:

p= — 0.208, 7=0.658, A\=24.546.

They are relatively close to those estimated by the off-line
estimation.

5. Summary and Conclusion

RMNMs play an important role in the evaluation of mobile
wireless networks in that they capture the movement char-
acteristics of mobile agents. Particularly, with the use of
UAVs as platforms for airborne communication networks,
RRMs have been adopted to simulate the movement of
UAVs. This study focused on the RMMs that can be formu-
lated as random switching systems of two types of random
variables. Formulating them into the special JMS, we de-
veloped a generic method based on EM to estimate the pa-
rameters in the random variables. Compared with existing
estimation methods, the EM-based estimation method has
the following advantages. First, the parameters in the two
types of random variables are estimated simultaneously by
considering all possible separations of trajectory data into
maneuver sessions. Second, our estimation method is gen-
eral in that it is not restricted to specific movement char-
acteristics of a specific RMM. We verified the estimation
method using simulation and showed that it outperformed
an existing method. We also applied the estimation meth-
ods to real UAV trajectories to identify the parameters in
the ST RMM.
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