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ARTICLE INFO ABSTRACT

Keywords: Porous meta-materials with both regular and random microstructure are of intense research interest today due
Impact to their interesting dynamical properties, including but not limited to, their acoustic band structure, shock
Shock wave absorption properties, and fracture toughness. Some of these materials can exist in a rarefied or densified state
Fan

depending on the state of stress, and recover their original configuration after a cycle of loading and unloading.
Often, they exhibit a hysteretic stress—strain response under quasistatic uniaxial compression. As such, many
aspects of their mechanical behavior can be captured using a continuum theory of phase transitions. In this
work, the dynamical behavior of such materials is explored. It is shown that the impact problem for these
materials can result in propagating shocks, phase boundaries, and fans. The impact problems admit multiple
solutions for the same set of initial and boundary conditions leading to non-uniqueness. This non-uniqueness
can be remedied using a nucleation criterion and kinetic laws, as is known from the continuum theory of
phase transitions. The fan solutions which arise in decompressive impact problems have not received much
attention in the literature and may be regarded as a novel contribution of this work. The analysis presented
here may have applications in the dynamic behavior of a broad class of porous materials including architected
truss-like metastructures and random fiber networks.

Phase transition
Architected materials

1. Introduction bending/buckling, plasticity, pore compaction, re-configuration of the
structure, and (3) a densified region in which there is self-contact and

Porous meta-materials have emerged as a promising class of ma- the collapsed material densifies with stress rising rapidly. In this work,
terials due to their lightweight, mechanical, thermal, acoustic, and the focus is on materials which do not undergo plastic deformation.
shock absorption properties, amongst others. Cellular (Gibson and As such, the cyclic stress-strain response (in loading and unloading)
Ashby, 1997) and fibrous materials (Picu and Ganghoffer, 2019) en- is repeatable with hysteresis. In other words, the material exhibits
compass the overwhelming majority of porous materials. Their (mi- the three regions in the stress-strain curve mentioned above, but it
cro)structure can vary significantly — from architected materials with comes back to its original configuration when unloaded. Some carbon-

regular topology, like a honeycomb-type structure (Qi et al., 2021)
or TPMS lattices (Al-Ketan and Abu Al-Rub, 2019), to materials with
more stochastic or random topology, like foams (Raj, 2011) or carbon
nanotube forests (Cao et al., 2005). The characteristic length of the
microstructure varies remarkably too, from micrometers, e.g., nanoar-
chitected carbon materials (Portela et al., 2021) and carbon nanotube
forests (Kuzumaki and Mitsuda, 2006), to centimeters, e.g., lattice
structures (Schaedler et al., 2011; Ozdemir et al., 2016; Mueller et al.,
2019).

The typical equilibrium response of these porous meta-materials
under uniaxial compression has three regions in the stress-strain curve:

nanotube forest materials have this property (Liang et al., 2017b; Park
et al., 2020), as do random networks of some biological fibers (Purohit
etal., 2011; Kim et al., 2015; Liang et al., 2017a; Garyfallogiannis et al.,
2023). These materials have been treated as being capable of phase
transitions — from a rarefied phase with straight fibers to a densified
phase with buckled fibers — and it has been shown that most aspects
of their compression response can be captured using such a model.
In particular, this methodology has been applied successfully in the
description of static compression of carbon nanotube forests (Liang
et al., 2017b). Carbon nanotube materials have intriguing properties
(1) a small region where the material behaves (linear) elastically, and hold potential for many applications (Miao, 2013), e.g., mechanical
followed by (2) a region of softening/stress plateauing correspond- (Coleman et al., 2006; Peng et al., 2008), thermal (Yu et al., 2005),
ing to the onset of instabilities at the structural scale, like intense electrical (Tawfick et al., 2009), optical (Butt et al., 2012). They remain
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of research interest, so their constitutive behavior, which includes the
three representative aforementioned loading stages, is adopted in this
work.

Many of these porous materials have excellent shock absorption
properties; this is why there is extensive literature on their response
under impact loading (Sun and Li, 2018). In the past decades, numerous
experimental (just to name a few (Reid and Peng, 1997; Deshpande
and Fleck, 2000; Tan et al., 2005a; Jang and Kyriakides, 2009a; Barnes
et al., 2014; Ozdemir et al., 2016; Mueller et al., 2019)), theoretical
(Herrmann, 1969; Ruzzene et al., 2003; Zheng et al., 2014; Babaee
et al.,, 2015; Gaitanaros and Kyriakides, 2015; Wang et al., 2015),
and combined, i.e., experiments and theoretical analysis (Tan et al.,
2005a; Jang and Kyriakides, 2009b; Zheng et al., 2012; Kader et al.,
2016; Dattelbaum et al., 2020; Khajehtourian and Kochmann, 2020;
Portela et al., 2021) efforts have been made to gain insight into
the dynamic behavior of porous (meta-)materials. In this work, the
problem of dynamic loading of porous meta-materials is treated as
a dynamic phase transition problem, in which the pristine material
is assumed to be in the rarefied phase, and during compaction, the
material transits to the densified phase. The softening/plateauing be-
havior occurring in the material after the initial elastic loading is
associated with the phase transition process. The advantage of mod-
eling the dynamic response as a phase transition problem is the robust
continuum mechanics framework developed for these types of problems
(Lakes et al., 1993; Knowles, 1999; Abeyaratne and Knowles, 2006;
Niemczura and Ravi-Chandar, 2006; Agrawal and Bhattacharya, 2014;
Purohit and Bhattacharya, 2002, 2003) and used with success in other
dynamic phenomena, like impact induced martensitic transformation
(Escobar and Clifton, 1993; Winfree, 1999; Abeyaratne and Knowles,
2000; Niemczura and Ravi-Chandar, 2006), or power generation in
ferroelectric materials (Agrawal and Bhattacharya, 2018), and artificial
muscle yarns actuation (Zhao and Purohit, 2016). Beyond the dynamic
compression problem, the dynamic de-compression problem is also
studied in this work, partly because less attention is paid to it in the
literature, but mainly because the focus here is on materials that can
recover their structure after unloading, so they can be subjected to
repeated cycles of dynamic loading/unloading. Furthermore, decom-
pression leads to the propagation of rarefaction waves, or fans, which
have not received much attention within the literature on dynamic
phase transitions, except in (Winfree, 1999; Knowles, 2002, 2003). Kha-
jehtourian and Kochmann (2020) refer to rarefaction waves which are
phase transitions from a densified to a rarefied phase in a multistable
architected material, but these are different from the rarefaction waves
considered in this work which are also known as rarefaction fans and
do not involve phase change.

This work is articulated as follows: in Section 2 a concise description
is given of the continuum mechanical theory of dynamic phase transi-
tions utilized in this work. Section 3 provides a short description of the
constitutive model adopted, including the double-well stored energy
function which is characteristic of phase transforming materials. In
Section 4, the initial boundary value problem is defined for the impact
induced compression and decompression problem, while in Section 5
the solutions for the compressive impact are presented first, and then
are followed by the decompressive impact solutions. In the conclusions,
a brief summary is given for how the solutions given here are related
to those already discussed in literature and predicted solutions are
mentioned, so they may be verified through experiments.

2. Kinematics, balance laws, jump conditions and driving force at
a discontinuity

2.1. Description of the problem
Impact problems on a semi-infinite one-dimensional continuum (or

bar) are studied in this paper. In the reference state, the continuum oc-
cupies the positive x-axis. The continuum is assumed to be semi-infinite
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to avoid reflection of waves at the right end. Impact problems on finite
bars can be solved using a Godunov method which is built using the
solutions of impact and Riemann problems (Purohit and Bhattacharya,
2003). These methods can handle reflections and interactions of waves.
However, they are beyond the scope of the current work. It is assumed
here that the bar is immobile and in mechanical equilibrium under
an initial strain y; and stress o; before the impact occurs. The initial
strain y; and stress o; are usually zero for the compressive impact case,
while it is non-zero for the decompressive impact case. The schematic
representation of the compressive impact case is depicted in Fig. la.
The impact takes place at the left boundary of the continuum (x =
0) at time r = 0%, whence the left boundary of the continuum is
assumed to have the same velocity as the impactor. At later times, a
material point occupying the reference position x is displaced to a new
position x + u(x,t) with u(x,r) being the longitudinal displacement of
that material point at time 7.

While the term “impact” implies compressive loading (positive
impactor velocities), it is used also for decompressive loading (neg-
ative impactor velocities) in this work. Decompressive impact means
that the left end of the continuum is pulled leftwards. This hap-
pens in the schematic representation of the decompressive impact
depicted in Fig. 1b. The exact initial-boundary-value problem for both
the compressive and decompressive impact problems is formulated in
Section 4.

2.2. Kinematics

A Lagrangian formulation of the problem is adopted in this work, as
suggested in Abeyaratne and Knowles (2006), and also used by others
(e.g., Zheng et al., 2012; Gaitanaros and Kyriakides, 2015). u(x,?) is
the displacement of the particle in the x-direction at time ¢, and it
must be a piecewise continuously differentiable function, i.e., u(x,?) is
continuous everywhere and its derivatives are piecewise continuous.
The strain y(x,7) and the particle velocity v(x,t) are derived from the
displacements u(x, t) as:
y(x, 1) = u,(x,1) & u(x, 1) = u,(x,1), (@D)]

where the subscripts denote partial derivatives with respect to position
or time. Both y(x,7) and v(x,7) are assumed to be piecewise smooth
functions, with possibly a finite number of jump discontinuities. In
the Lagrangian description of the problem, kinematic compatibility is
expressed through the relation:

7%, 1) = v (x, ). (2)

Unique mapping of x — x + u(x,7) and no material interpenetration is
guaranteed by having

y(,)>—-1  Vx,t 3
2.3. Balance of linear momentum

Following the Lagrangian description of the problem, the nomi-
nal stress o(x,t) experienced by a particle at position x at time 7 is
introduced. Then, the balance of linear momentum is expressed as:

0, (x,1) = pu,(x, 1), 4

where p is the initial/referential density of the material and v,(x, ?) is the
particle acceleration. Assuming that the nominal stress ¢ is a function
of y alone through a constitutive law, i.e., ¢ = o(y), the chain rule can
be used to re-write (4) as the one dimensional wave equation:

o (r(x, 1) 7, = pUy(x,1). 5)

where 1/6'(y)/p is the slope of the characteristic lines in the x—t plane.
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Fig. 1. Schematic representations of different instants of a bar subject to (a) a compressive, and (b) a decompressive impact. The rectangles represent the bar in the current

configuration. The black line in the top left rectangle is the one dimensional reference coordinate system superimposed on the stress free bar before impact.

2.4. Jump conditions

The problem of interest includes discontinuities which can be shock
waves and phase transition fronts in the medium, as will become clearer
soon. Both shock waves and phase transition fronts are surfaces at
which quantities like strain, stress, particle velocity, etc. may suffer
finite jumps. The degree of smoothness assumed here is enough to
permit such jumps at a finite number of places, while the fields remain
smooth everywhere else in the medium. In the simpler one-dimensional
theory presented here, these singular surfaces are replaced by singular
points, which travel through the medium, i.e. they are not stationary.
One such singular point is at the referential location x = s(¢) at time ¢,
and traverses the continuum with a Lagrangian (or referential) velocity
$.

For an arbitrary smooth—enough function g(x, ) the jump at discon-
tinuity s(z) is defined as

[el = g(s*.0) — g(s™,1), (6)

which is the difference between the values of g(x,7) as one approaches
the discontinuity from the plus (right) and minus (left) sides. The
one-dimensional Lagrangian jump conditions which arise from the
continuity of the motion u(x, r) of the particle and the balance of linear
momentum (Gurtin et al., 2010) are:

1. Kinematic jump condition:

vl = =s0r1. @)
2. Linear momentum jump condition:

[el = —psllvll. (8)

The Lagrangian velocity s with which the discontinuity traverses the
medium is derived by replacing (7) into (8):

o [1lol ‘2:_‘7&_‘77 9
Vo R T o ©

Relation (9) attributes a geometric interpretation to the discontinu-
ity velocity s. That is, ps? is the slope of the chord connecting the
stress-strain states, before (i.e., (y*,c%)) and after (i.e., (y~,07)) the
discontinuity in the stress-strain curve o(y).

2.5. Driving force acting on a discontinuity

The next step is to perform a balance of mechanical power on a
portion of the one-dimensional continuum in the interval (x;,x,) in
the reference configuration such that x; < s(f) < x,. If the rate of
work on the boundaries of the continuum (per unit reference volume)
is W (¢) and the rate of energy stored in mechanical deformations (per
unit reference volume) is U (), then the dissipated energy rate D(t) (per
unit reference volume) is given by the difference between these two

rates. This statement can be localized to the discontinuity to express
the dissipation rate as a product of a driving force f(r) and speed s(¢)
as (Purohit and Bhattacharya, 2003):

D) =W -U® = f0)5®). (10)

Thus, the propagation of discontinuities dissipates energy. On every
discontinuity moving with a Lagrangian velocity $(f) a driving force
f(®) = f(y~,y") is exerted. The expression for f can be computed from
the balance of mechanical power after combining it with the balance
of linear momentum. The result is Abeyaratne and Knowles (2006):

SO=MUMI- % [cGH+o()] I¥]

V+
= [ oty = e+ ot 0t 1) an
-

From (11) the driving force is geometrically interpreted as the signed
difference between the area of the stress-strain curve from y~ to y*
and the trapezoid made from the points (y~,0), (y*,0), (*,o%) and
(y~,07). The geometric interpretations of the driving force in (11)
and the discontinuity velocity in (9) are presented in Figs. 2a and
b for the compressive and decompressive impact, respectively. These
representations of the problem provide a graphic tool to understand
the nature of the solution before the initial boundary value problem
(IBVP) is even solved, as is shown later in this work.

Here the driving force can be perceived as a thermodynamic force
driving the process of phase transition. The notion of driving force
goes back to Eshelby (1951) who wrote down a generalized force on a
singularity, which laid the foundation for Rice (1968) to interpret that
generalized force in the context of fracture mechanics as the energy
release rate at crack advancement. Abeyaratne and Knowles (1990)
studied the driving force (traction) on a surface of strain discontinuity
for a thermomechanical problem. They showed that non-uniqueness
in the solution of Riemann and impact problems involving marten-
sitic phase transitions can be removed by invoking kinetic relations
that relate the speed s to the driving force f(y~,y") acting on the
discontinuity.

Relation (10) poses important restrictions on admissible solutions
to initial boundary value problems involving moving discontinuities.
From the second law of thermodynamics, the dissipation rate should
be non-negative:

D) = f(t)s(t) 2 0. 12)

For both compressive and decompressive impact, the discontinuities
propagate from left to right (see Fig. 1), meaning it is always true that
$(f) > 0. Consequently, all admissible solutions with the propagation
of discontinuities in both compressive and decompressive impact prob-
lems must satisfy the requirement of f(r) > 0. For the special case of
discontinuities propagating in linear media (sonic waves), the driving
force vanishes, i.e., the propagation is dissipation—free.
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Fig. 2. Geometric interpretation of the discontinuity velocity in (9) and the driving force in (11) for (a) the compressive, and (b) the decompressive impact.

3. Constitutive model

The continuum constitutive model is one-dimensional, i.e. depends
only on the strain y. Denoting with U(y) the stored energy density per
unit reference volume associated with the strain y, the nominal stress
o(y) is given by:

o =42, a3

dy

The stress as a function of the strain y is chosen to be that of a
carbon nanotube forest material (Liang et al., 2017b) as described
in (14), as these materials are of interest in applications. This work
is confined mostly to compressive strains, and the stress-strain curve
in (14) has the qualitative behavior observed in porous materials
which can recover their original configuration upon unloading. More
specifically, the stress—strain relation incorporates the description of
a linear phase ((14)a), which is usually called rarefied phase, the
unstable phase with negative slope of the stress-strain curve ((14)b),
and a non-linear phase ((14)c), which is usually called densified. For
plastic deformations under impact loading other constitutive relations
are also utilized, which have the same qualitative behavior as the one
suggested here, i.e., linear phase, followed by a hardening crushed
phase (e.g., Deshpande and Fleck, 2000; Tan et al., 2005a,b; Kader
et al., 2016).

Ey I
WU _Jar+a M SV S Vo
o(y) = 4y ") A-B m 14

Ty +B -1 <y<—yy.
The linear/rarefied phase is the unperturbed/pristine phase of the
material and is applicable for strains y > —y,. It is assumed that
the linear region of the stress-strain response is valid also for the
tensile strains. Under compression, the buckling of the carbon nan-
otube forests results in an unstable region over the range -y, <
y < -y, In absence of knowledge of its exact form and following
previous works (Abeyaratne and Knowles, 2000), it is assumed to be
linear with a negative slope. The negative slope, or softening regime,
which is associated with bending instability is observed in quasi-static
compression of honeycomb structures (Xiong et al., 2016; Wei et al.,
2019) or tension of multi-stable architectured materials (Jin et al.,
2020), programmable buckling of micro-lattices (Frenzel et al., 2016),
dynamic compression of aluminum foams (Tan et al., 2005a), quasi-
static (Lakes et al., 1993; Schaedler et al., 2011; Al-Ketan and Abu
Al-Rub, 2019) and dynamic (Smith et al., 2011; Ozdemir et al., 2016)
compression of lattice structures (Schaedler et al., 2011), and carbon
nanotubes (Kuzumaki and Mitsuda, 2006; Shima, 2011). These instabil-
ities corresponding to negative slope are also seen in the compression
of carbon nanotube foams (Pathak et al., 2012; Hutchens et al., 2012).
For compressive strains —1 < y < —y,,, the non-linear response is given

Table 1
Material parameters for the different materials used.
Source: Taken from Liang et al. (2017b).

Material E [MPa] A [MPa] B [MPa] p [kg/m’] Ym ™

1 6 0.66 0.67 2000 0.05 0.76
2 20 1.36 1.37 2000 0.05 0.82
3 6 0.66 0.67 2000 0.05 0.70

by the hyperbola in ((14)c), which asymptotes at y = —1. Asy — —1, the
material gets highly crushed and compressed. The stress—strain law in
(14) is depicted schematically in Fig. 3a. Various constants entering this
constitutive law are given in Table 1 and correspond to three different
materials. In the above E, a;, a,, A and B are constants that may be
fitted to experimental data. Utilizing (13), the stored energy density
U(y), corresponding to the stress in (14), is given in (15) and is depicted
in Fig. 3b:

E
77 +C Y Y
Ll
Uly) = 772+02Y+Cz M XY=~V (15)
A-B
—————+By+GC; -1<y<-ry.
20+ 77 14 3 4 147

The material parameters in (15) are chosen in the following way:
E, A, and B are taken from actual experiments (Liang et al., 2017b).
The initial density p is assigned a value that is representative of these
porous materials; numerical experimentation showed that the results
depend weakly on the value of p. The strain —y,, at which the densified
phase begins is of greater importance for the material response than the
lower strain of the rarefied phase —y,,. Hence, —y,, is taken to be a small
enough strain, while there is some freedom in picking —y,, because
the experiments cannot provide information directly about its value.
a, and «, are taken such that the unstable linear response satisfies the
continuity of o(y) at the transformation strains, i.e., o(=y}) = o(-7y;,)
and a(—y;’d) = o(=7y)- Cy is selected such that for a pristine material
for y = 0 the energy in (15)a vanishes, i.e.,, C; = 0. C, and C;
are selected such that the energy is continuous at the transformation
strains, i.e., U(-y}) = U(~y,,) and U(=r},) = U(=ry,).

4. Initial boundary value problem

The governing equations of the problem are laid out explicitly in
Section 2. In order to fully define the initial boundary value problem
a set of boundary and initial conditions need to be prescribed. These
conditions have been outlined in Section 2.1 and in Fig. 1, but are
formally presented here.



K. Garyfallogiannis and P.K. Purohit

-1 —Y™ —Ym

Om

(a)

International Journal of Solids and Structures 288 (2024) 112597

U

(b)

Fig. 3. Schematic representation of the one-dimensional (a) continuum stress—strain constitutive relation in (14), and (b) stored energy density in (15).

4.1. Initial conditions

The continuum is assumed to exist at a pre-strain of y; prior to the
impact:

y(x,t<07)=y; forx>0, (16)

and at a stress o; = o(y;). For a pristine specimen, which underwent
no loading in advance, it is true that y; = 0. A non-zero pre-strain
arises from the prior loading of the material. For example, an initial
compressive impact could compress the material at a strain y;, and
subsequently, the loading is reversed (assuming that the dynamics of
the original impact have fully damped out).

The continuum is also assumed to be immobile at the time of the
impact with its left end being located at x = 0.

v(x,t<07)=0 forx>0. 17

A non-zero velocity of the continuum prior to impact is not of high
interest for actual experimental configurations. The only difference in
the analysis presented would be that it makes the impactor velocity
look greater (opposite directions) or smaller (same directions). But
the solutions presented include all the possible impactor velocities
since V € (—o0,+o0), the case of non-zero initial velocity is included
implicitly.

4.2. Boundary conditions

The boundary condition applied is that after impact the left end of
the continuum moves at the impactor velocity.

v(0,t)=+V fort>0". (18)

The (+) sign corresponds to compressive impact, while the (-) sign
to decompressive impact. To summarize, the exact initial boundary
value problem is defined by the kinematic compatibility relation (2),
the conservation of linear momentum (4), the kinematic jump condi-
tion (7), the momentum jump condition (8), the constitutive law (14),
and the dissipation inequality (12) if a discontinuity is present, the
initial conditions on the strain (16) and the velocity (17) accompanied
with the boundary condition (18) of impact.

5. Results

For time ¢ < 0 the equations of motion are satisfied trivially because
the initial conditions correspond to constant strain and zero particle
velocity everywhere. The boundary condition changes discontinuously
at r = 0% to a non-zero particle velocity at x = 0; this discontinuity at
the boundary will propagate into the bar x > 0 because the equation
of motion is a wave equation. As such, the solutions of interest are

those in which u(x, ) is continuous for x > 0 and ¢ > 0, with possibly
discontinuous particle velocities v(x,?) and strains y(x, f). The simplest
solutions with discontinuities in particle velocity and strain are those
in which these quantities are piece-wise constant for x > 0, r > 0.
For such solutions the equation of motion is trivially satisfied at all
points in the x— plane except at discontinuities. The jumps in the strain,
particle velocity and stress at these discontinuities must satisfy the
kinematic jump condition in (7) and momentum jump condition in (8).
The solution to the compressive impact problem with the constitutive
model in (14) admits two types of discontinuities — shock waves and
phase transition fronts. For a shock wave the strains and stresses on
both sides of a discontinuity are on the same branch of the stress-strain
curve, and for a phase transition front they are on different branches.
A shock wave or phase transition front is considered admissible only if
its dissipation rate D is non-negative. Several x—¢ planes with piecewise
constant strains and particle velocities could be constructed to satisfy
a given set of boundary and initial conditions as discussed at length
in Abeyaratne and Knowles (2006) and references therein, and shown
below. Therefore, extra conditions must be imposed on the initial-
boundary value problem to pick a unique solution corresponding to a
particular x— plane.

For the decompression problem, a rarefaction wave (fan) is also an
admissible solution when the material is highly strained, in addition
to the previously stated solutions with piece-wise constant strain and
particle velocity fields. A fan is a continuous solution for which the
driving force vanishes. Solutions involving fans are not discussed at
length in Abeyaratne and Knowles (2006), but they can be found in the
literature (see Knowles, 2002, for example). Solutions involving fans
are discussed in the context of phase changing meta-materials in the
following.

5.1. Compressive impact

For a compressive impact the initial strain y; can either be y; < —y,,
or y; > —7,,- The material cannot exhibit strain in the unstable region
—Ym < ¥ < —rp. For the initial boundary value problem there is
exactly one solution for y; < -y, and three possible solutions for

¥i = —Ym and each one has its own x— plane. For y; > —y,, two
out of three possible solutions involve propagating phase boundaries.
This non-uniqueness is well-known; a unique solution is selected only
if a kinetic relation and a nucleation criterion are specified for the
phase boundary. The kinetic relation is of the form s = ¢(f) and the
nucleation criterion can be for example that f needs to be greater
than a lower bound value for an interface to nucleate (Abeyaratne and
Knowles, 2006; Knowles, 1999). A specific example showing how a
nucleation criterion and kinetic relation lead to a unique solution is
described in the Appendix. For the case with initial strain y; > -,
i.e., the prestrained material is still in the rarefied phase, it is assumed
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Fig. 4. The possible x—t planes of the compressive impact problem for (a) a sonic wave propagating in the unstrained rarefied phase (b) a shock wave propagating in the
pre-strained (y; < —y,,) densified phase, (c) a sonic wave propagating in the unstrained rarefied phase followed by a phase transition front, and (d) the overdriven transition front.

that y; = 0. This corresponds to a pristine unloaded material and is
of practical interest. However, the analysis presented below for y; >
—7,, holds for any -y, < y; # 0. Similarly to the way it is done in
this work, jump conditions are utilized by Zheng et al. (2012, 2014),
and Gaitanaros and Kyriakides (2015) in order to describe the observed
behavior from experiments and finite element simulations.

Knowing that no more than two discontinuities can exist in the
medium (Abeyaratne and Knowles, 2006), the four cases considered
for the compression problem are:

1. A sonic wave propagates in the unstrained rarefied phase, with
the x— plane as shown in Fig. 4a.

2. A shock wave propagates in the pre-strained densified phase
(y; £ —yp), with the x— plane as shown in Fig. 4b.

3. A sonic wave propagates in the unstrained rarefied phase fol-
lowed by a phase transition front transforming material from the
rarefied to the densified phase, with the x—¢ plane as shown in
Fig. 4c.

4. A phase transition front propagates supersonically into the un-
strained rarefied phase transforming material to the densified
phase, with the x—¢ plane as shown in Fig. 4d. This is called the
overdriven case (Abeyaratne and Knowles, 2006).

5.1.1. Sonic wave in the unstrained rarefied phase

The first case appears for weak impactor velocities and includes
only one propagating shock (sonic) wave in the unstrained medium,
such that the material ahead and behind the wave is in the rarefied
(linear) phase, as seen in Fig. 4a. The resulting stress-strain curves are
linear, and this case is qualitatively similar to the so-called “Quasi-
static Mode” of deformation observed in slow impact loading of cellular
materials in Zheng et al. (2012) or “Weak Shock” in slow impact
of aluminum foams (Gaitanaros and Kyriakides, 2014). Similar linear
stress—strain profiles are observed in Fig. 7 in Zheng et al. (2012), and
Figs. 18b and 20 in Gaitanaros and Kyriakides (2014). For a linear
material with Young’s modulus E, the dissipated energy vanishes, and
the sonic wave propagation velocity is derived from (9):

cy = do-_m =\/E, 19
V" o p

The impactor velocity V' is the parameter of the problem and the only
unknown is y~. From the kinematic jump condition (7):

[ol = =3yl =V = —cor”. (20)

Hence, the strain and particle velocities profiles satisfying the initial
boundary value problem are piecewise constant and they are:

| =V /cq for
reen = { 0 for

0<x<cyt

0<x<cyt Vv for
o, (,t>={
X > ¢yt

X > ¢t 0 for
(21)

This solution will appear for all impact velocities smaller than an upper
bound which can be obtained by insisting that y < —y,,. This means that
the impactor velocity ¥ in (21) must satisfy the condition: V' < ¢;y,,.
The stress profile with the jump in the bar for two different instants for
an impactor velocity V) =2 m/s (< ¢y,,) is plotted in Fig. 6a.

5.1.2. Shock wave in the prestrained densified phase

Similar to the propagation of a shock wave in the unstrained rar-
efied phase, is the propagation of a shock wave in the prestrained
densified phase during compression. In this case, though, the material
exists initially at a strain y; < —y,, and stress o(y;) = o;. Again there
is no phase transition and the shock wave transverses the medium
from the left (behind the wave region) to the right (ahead of the wave
region), as seen in Fig. 4b. The impactor velocity V' and the initial strain
y; are parameters of the problem and the unknowns are the strain after
the shock wave y~ and its propagation velocity s. The kinematic jump
condition (7) gives:
ol = 3yl = § = ——, 22)

1
which results in the following piecewise constant strains and particle
velocities profiles satisfying the initial boundary value problem:

[ rn—-V/ifor 0<x<st _JVfor O<x<st
v = { 7 for x> st Sulx 1) = 0 for x> st
(23)
Replacing (22) in the stress jump condition (8):
V2
o]l = —psllv]l = o —0(y™) = " 24
1
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Fig. 5. (a) - (c) Admissible solutions where the driving force is positive f >0 and —1 <y~ < y; for (a) Material 1, (b) Material 2, and (c) Material 3. Note that any combination

of initial strain —1 < y; < —y,, and impactor velocity ¥ provides an admissible solution. (d) Shock wave velocity s for Material 1 impacted with V' = ¢, compared with sonic wave

velocities.

which results in a quartic equation for y~, which is too lengthy to write
here. Only one of the four roots provides admissible solutions in terms
of strains and driving force, i.e., -1 <y~ < y; and f > 0. Unlike the
shock wave propagation in the linear rarefied phase, in the densified
phase the driving force, and the dissipated energy, are non-zero and
always positive. Figs. 5a-c present the region of the V-y; plane where
admissible solutions exist for the three different materials in Table 1.
Note that for every combination of an initial strain y; and impactor
velocity V, there is always a solution to the problem. Fig. 5d shows that
the propagation velocity s of the shock wave in the densified non-linear
phase always lies between the sonic wave velocities corresponding to
strains y; and y~:

g =cly)= ﬂ zM'T{dy , and ¢ =c(y)= 5 . (25

r=n Y=y

The impactor velocity in Fig. 5d is chosen to be V' = ¢,, but the
trend is the same for any V and all materials in Table 1. Also, it is
interesting to note the fast shock wave velocities s (logarithmic vertical
axis normalized by V' = ) arising in the problem, e.g. for y; = —0.9,
$ = 20c.

5.1.3. A sonic wave followed by a phase transition front

A sonic wave can propagate in the unstrained rarefied phase, fol-
lowed by a phase transition front converting the material from the
rarefied to the densified phase, as seen in Fig. 4c. Fig. 2a illustrates
geometrically the driving force and the discontinuity velocity s. The
phase transition front propagates with a subsonic velocity, i.e. § < ¢.

In the one-dimensional continuum, three distinct regions are observed
at any moment. The first region is already traversed by the sonic wave
and the phase transition front (0 < x < §¢), and it lies in the densified
phase. All the material points move with velocity V' and the strain
is y~. The second region is traversed only by the shock wave (5t <
x < ¢ot) and lies in the rarefied phase. The solution for this regime
has the same structure as in (21) for 0 < x < ¢yt. Lastly, there is the
unperturbed/unstrained material (x > ¢(1).

This mode of deformation appears for intermediate impactor ve-
locities. It is analogous to the so-called “Transitional Mode” observed
for foams in Zheng et al. (2012) (if one recognizes that ¢y - +o0 in
their case because the unperturbed material is modeled as rigid and
not linearly elastic) or two-dimensional honeycombs in Zheng et al.
(2005). Elastic “precursor waves” before the compaction waves are
met in experiments in foams too (Lopatnikov et al., 2004; Petel et al.,
2014; Kader et al., 2016). This mode of deformation is also observed
in the dynamic compression of engineered lattice materials (Hawreliak
et al., 2016) where the phase transition wave is called the “compaction
wave”. In mathematical form:

y~ for O<x<st V for 0<x<st
y(x,) =4yt for §t<x<cyt ,v(x,)=9 vt for st<x<cpt (26)
0 for x>yt 0 for x>yt

The unknowns in (26) are y*, y~, v*, while the impactor velocity
V, as well as the phase transition front speed s are parameters of
the problem. The structure of the solution in Fig. 4c and (26) is the
same as the one obtained for phase-transitioning dissipative multistable
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Fig. 6. Stress profiles in the bar for the compressive impact for Material 1. (a) Sonic wave, (b) sonic wave followed by phase transition front, and (c¢) overdriven phase transition.

metamaterials in Khajehtourian and Kochmann (2020). For the sonic
wave discontinuity, the kinematic jump condition in (7) results in:

ol = =slyl = v = —¢or™. @7)

Utilizing the velocity and stress jump conditions in (7) and (8) for the

phase transition discontinuity, respectively, y* and y~ are found. The

solutions are parametric with respect to the impactor velocity V and

the phase transition velocity s. Beginning with the jump condition in

(7), vt is:

V+sy~
§—cy

vl = =slyl = r* = (28)
Replacing (28) in (8), simplifying and rearranging terms leads to the
following quartic equation for y~:

epSG H{B+pBes+(c+ VG +3{B+psV +c(V + )} ¢
+{3B+ples+3V(c+ )]}y +(c+5)pV +A=0.
(29)

Eq. (29) is solved in closed form using the computational software
Mathematica. Note that § is a parameter in (29). In other words, one
can pick s freely and each § corresponds to a different solution of
the impact problem satisfying all balance laws and jump conditions.
Thus, we have massive non uniqueness in the possible solutions. To
pick a particular s and get rid of the non-uniqueness a kinetic relation
must be specified. Often, this kinetic relation is of the form s = ¢(f)
where f is the driving force on the phase transition front. To satisfy the
dissipation inequality the kinetic law must satisfy f§ = f¢(f) > 0 for
all values of f. A simple choice of kinetic relation and how this leads to
a unique value of s is discussed in the Appendix. Here we let s remain a
parameter because our interest is in mapping out the space of possible
solutions. The resulting expressions/roots for y~ are lengthy and are
not reproduced here. y* can then be calculated from y~ and (28).
Arithmetic experimentation with material parameters showed that from
the four roots in (29) only one provides an admissible solution. The
stricter admissibility constraints, in this case, are the driving force to
be positive, i.e, f > 0, and the sonic wave retains the material in the
rarefied phase, i.e., y* > —y,, for varying impactor velocity V and
phase boundary velocity s. This root is used later to make a map of
all possible solutions. The stress profile with the jumps in the bar for
two different instants for an impactor velocity ¥, = 35 m/s and a phase
transition front velocity s = 45 m/s is plotted in Fig. 6b.

5.1.4. Overdriven phase transition front

The last possibility is to have only one phase transition front prop-
agating with supersonic speed (s > c¢,, the phase transition front is
said to be overdriven), as seen in Fig. 4d. Two distinct regions exist
in the continuum in this case. The first region is traversed by the
supersonic phase transition wave (0 < x < §r), and it lies in the
densified phase under strain y~ and moving with velocity V. The
second region is the unperturbed material. This mode of deformation
appears for strong impacts and it is analogous with the so-called “Shock

mode” for foams in Zheng et al. (2012) or “Dynamic Mode” for two-
dimensional honeycombs in Zheng et al. (2005) or the shock formation
study in Gaitanaros and Kyriakides (2015). In mathematical form:

Yt = { y~ for

0<x<st

x> it 30

0 for

0<x <t b, 1) = V for
x> §t T 0 for

The unknowns in (30) are y~ and § with the impactor velocity V'
being the parameter of the problem. Unlike the case with the sonic
wave followed by the phase transition front, in the overdriven case the
phase transition velocity s is calculated from the initial boundary value
problem, and the solution is uniquely determined for a given impactor
velocity V. Utilizing the kinematic and momentum jump conditions in
(7) and (8), respectively, y~ and § are found. Beginning with the jump
condition in (7), § is:

ol = =571 = § = —yK_, @1
and replacing (31) in (8), the stress behind the overdriven shock front
is:

2

ol = —psllol = o~ = p‘y/—_. (32)

The quadratic dependence of the stress on the impactor velocity V
behind the shock front is verified also experimentally (Tan et al.,
2005b; Li et al., 2007; Barnes et al., 2014; Petel et al., 2014; Gaitanaros
and Kyriakides, 2015). Simplifying and rearranging terms in (32) leads
to the following quartic equation for y~:

B+ BB = oV +3(B—pVH( ™) +(A=3pV2)y~ — pV2 =0.
(33)

There are potentially four roots for y~, out of which only one is
admissible. The stricter constraint for admissibility, in this case, is the
driving force to be positive. The stress profile with the jump in the bar
for two different instants for an impactor velocity V) = 55 m/s (= ¢;) is
plotted in Fig. 6c.

5.1.5. The totality of solutions for the compressive impact

As seen above, for the sonic wave followed by a transition front
case, the solution is parametric in the impactor velocity ¥ and the
phase transition front velocity $. In contrast, the pure shock wave in
the rarefied phase and the overdriven case are parametric only in the
impactor velocity V. The shock wave propagation case in the pre-
strained densified phase is parametric in the impactor velocity V' and
the initial strain y;, but from Fig. 5 one notices that the dependence
is trivial, i.e. there is always an admissible solution with the positive
driving force for all values of V and y; < —y,,. Hence, this case is not
discussed further here. Keeping these points in mind, a map in the V-
s plane is made to show the different admissible solutions that exist,
i.e., the totality of solutions. This map serves the same purpose as, for
example, a pressure-temperature phase transition diagram for water,
in which for a given set of pressure and temperature, the reader is
informed about the state of water, e.g. if it is in the solid phase, a
liquid-vapor mixture, etc. The totality of solutions for Materials 1, 2,
and 3 in Table 1 are presented in Fig. 7. Figs. 7a and b present the
same qualitative behavior. The following observations can be made:
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Fig. 7. Totality of solutions for the impact problem for (a) Material 1, and (b) Material 2 in Table 1.

1. There is a range of impactor velocities V' up to point A, where
only the sonic wave solution exists.

2. For impactor velocities V after point A until point B (V' = ¢;y,,)
a sonic wave followed by a phase transition solution can also
exist in addition to the single sonic wave solution. This non-
uniqueness can be remedied by having a nucleation criterion that
sets a condition for the emergence of a phase transition front.
If the nucleation criterion is satisfied then the solution with the
shock wave followed by the phase transition front is chosen. The
non-uniqueness arising due to the speed s being a parameter can
be remedied by prescribing a kinetic law law that picks only one
value of s. The reader is referred to the Appendix for a specific
example with numerical values.

3. Impactor velocities from point B to point C result only in the
sonic wave followed by a phase transition solution. The non-
uniqueness arising due to the speed s being a parameter can be
remedied by prescribing a kinetic law that picks only one value
of 5.

4. For impactor velocities higher than point C, the overdriven
case is only possible, i.e., the supersonic phase transition. The
solution is a uniquely defined function of the impactor velocity,
and it appears to be linear, which is also observed in experi-
ments (Barnes et al., 2014) and finite element simulations (Gai-
tanaros and Kyriakides, 2015). Note that the overdriven solution

(green line) can be expanded into the subsonic domain of phase
transition velocities s. However, by definition, the overdriven
case implies § > c,. In fact, this would correspond to the sonic
wave plus phase transition front solution with y* =0 or vt =0.
The x—¢ plane in this case of Fig. 4c degenerates to Fig. 4d.

Fig. 7c, which depicts the totality of solutions for Material 3, has
all the features above, but two solutions are possible at point A. This
is understood by noticing that U(-y,) < U(0) = 0, which makes
the phase transition favorable to happen directly without the need of
higher impactor velocities. The non-uniqueness arising due to this can
be remedied by having a nucleation criterion.

5.2. Decompressive impact

Now, attention is focused on the case of a decompressive impact
where the impactor velocity is V' to the left, like in Fig. 1b. The material
exists under an initial strain y; and stress o;. This initial boundary value
problem admits potentially six different solutions. Knowing that no
more than two discontinuities can exist in the medium (Abeyaratne
and Knowles, 2006), the six cases considered for the decompression
problem are:

1. A sonic wave propagates in the pre-strained rarefied phase (y; >
—¥), with the x— plane as shown in Fig. 8a.
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Fig. 8. The possible solutions of the decompressive impact problem for an initial strain y;: (a) A sonic wave propagating in the pre-strained rarefied phase, (b) a rarefaction wave
(fan) propagating in the densified phase, (c) a fan followed by a phase transition front, (d) a single phase transition front, (e) a phase transition front followed by a sonic wave
in the rarefied phase, and (d) a fan followed by a phase transition front followed by a sonic wave in the rarefied phase.

The remaining 5 cases are the more interesting ones and corre-
spond to y; < =y

2. A rarefaction wave, also called fan, which is a discontinuity-free
solution with the x— plane as shown in Fig. 8b.

3. A rarefaction wave (fan) followed by a phase transition front
transforming material from the densified to the rarefied phase
with the x—¢ plane as shown in Fig. 8c.

4. A single phase transition front transforming material from the
densified to the rarefied phase with the x—¢ plane as shown in
Fig. 8d. It will be shown that this case can be considered as a
special case of the fan followed by the phase transition front.

5. A phase transition front followed by a sonic wave with the x—
t plane as shown in Fig. 8e. In this case, although admissible
solutions are generated in the compression problem, it does not
provide admissible solutions in the decompression case.

6. A rarefaction wave followed by a phase transition front followed
by a sonic wave in the rarefied phase with the x—¢ plane as shown
in Fig. 8f. This case is not solvable.

5.2.1. Sonic wave in the pre-strained rarefied phase

The sonic wave solution in a linear elastic medium, as outlined in
Section 5.1.1, is applicable for decompressive impacts and y; > —,,,
resulting in the following strain and particle velocity fields:

vi+V/cy for 0<x<cyt

() = -V for 0<x <cyt
D=0 for x > ¢yt '

1) = { 0 for x> ¢yt

This solution is dissipation free, and the only constraint on its applica-
bility is the extent to which the linear behavior is legitimate for tensile
strains. This case is not further discussed in this work because the focus
here is on compression and decompression, not the tensile response.

(34

5.2.2. Rarefaction wave (fan)

The material exists in the densified phase under strain y; and the
decompressive impact causes the material to stretch. The slope of
the characteristic lines of the wave equation in (5) in the x— plane,
calculated by 4/¢’(y)/p, decreases during decompression. It is evident
from the constitutive Eq. (14)c and Fig. 3a that ¢'(y;) > o'(y) for

10

vi < v < —yum-. Hence, the wave front corresponding to the initial
strain y; travels the fastest in the material with velocity &,, and the
wave front corresponding to strain y;, which strain is found from the
solution of the IBVP, travels the slowest with velocity &,. Hence, the
result is a discontinuity-free wave decompressing the material, called a
rarefaction wave. In the x— plane there are infinite characteristic lines
between x = &t and x = &7 opening like a “fan”, and that is why
the solution is also called the “fan” solution. In the case where the
stress—strain curve o(y) was such that ¢/(y;) < ¢'(y) for y; < v < vy
then the back of the wave travels the fastest, meets with the front
of the wave and generates a shock. Based on this explanation, Fig. 9
illustrates abstractly and more generally when a rarefaction wave (fan)
or a shock wave can be created. Whether a rarefaction or a shock wave
is generated, depends on the convexity of the stress—strain curve, and
the direction it is traversed during a dynamic process.

As a continuous solution, the fan is a dissipation-free solution to the
problem. Fan solutions of this type are discussed in (Knowles, 2002,
2003). In mathematical form:

y, for 0<x<¢t -V for 0<x<¢t
r(x.0 =97 for  &r<x <& ulx, ) =9 0¢) for &1 <x <&yt
g for x>é&t 0 for x>é&t
(35)

Solution (35) is continuous, meaning that 7(&;) = y; and 7(&) = ;.
Similarly, #(¢;) = —V and 9(£,) = 0. The unknowns in (35) are the
functions 9(€), or equivalently v(y), and (&), as well as the constant
v1; & and & can be found by demanding continuity of the solution.
The impactor velocity V' and the initial strain y; are the parameters
of the problem. Using (2) and the chain rule, the following ordinary
differential equation for the particle velocity #(¢) and strain (&) arise
in the case of a fan:

(&) = —&7" (©). (36

The sonic wave speed in the densified phase, unlike the rarefied phase,
is a function of the strain and it is given as:

c(y) = do/dy = L where Q = M
p (1+7)? p

37
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Fig. 9. Creation of rarefaction waves (fans) or shock waves depends on the convexity
of the stress—strain curve and the direction it is traversed.

Applying the chain rule on the equation of motion (5), combining it
with ¢(y) from (37) and using also (36), the following relation holds
true for the fan:

c(F@) =¢. (38)

By requiring the solution to be continuous, & and &, are calculated by
(37) and (38):
Q

e @
02
&= Rk (40)

Integrating (36), requiring that 9(&,) = 0 and changing the integration
variable ¢ — (&) while utilizing (38), the particle velocity is:

1 1
=—-— )@
o <1+y 1+n>
Setting in (41)y = y; and from continuity v(y;) = -V, the resulting

strain after the fan is:
VI +7)+7r82

(41D

=T Yirm-a “2)
From (37) and (38), 7(&) is derived:
?(«s>=i,/§ -1, 43)

where out of the two solutions, the one with the negative sign is re-
jected because it would result in y < —1 and violate (3). The maximum
impactor (decompression) velocity with which the continuum can be
pulled and result in a fan solution is obtained by demanding:

vitrm

nWIEme VS G -
So, the maximum velocity with which the continuum can be pulled so
that a fan solution is applicable depends on the initial strain of the ma-
terial y; and tends to infinity as the material gets infinitely compacted.
The region of admissible solutions for the fan case for Materials 1, 2
and 3 are presented in Fig. 10. Their qualitative characteristics are the
same and only the hyperbola on the right-hand side of (44) changes.

(44)

5.2.3. What are the characteristics of discontinuities in the decompressive
impact?

The rarefaction wave is a continuous solution, so no driving force
or discontinuity velocity is involved in its solution. But, before the
discontinuous solutions are presented, the discussion is diverted to the
discussion of the qualitative characteristics the discontinuities should
possess in the decompression problem. The geometric interpretation
of the driving force and discontinuity velocity, as shown in Fig. 2, is
employed to offer some understanding.

11
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Fig. 11 presents the four cases which prohibit a discontinuity to
exist in the decompressive impact problem. Fig. 11a presents the case
where the discontinuity velocity is supersonic (5§ > c,). Although the
driving force can be potentially positive (4, — A; > 0), the chord
connecting the stresses and strains before and after the discontinuity
does not intersect the rarefied linear phase, or intersects the linear
phase at infinity, meaning that y~ — +oo, hence it is rejected. It is
also possible that for intense compaction, i.e., values of y* near -1, the
chord actually might intersect the linear phase for finite values of y~,
but in that case, A, = 0, and the driving force is negative prohibiting the
solution as seen in Fig. 11b. Consequently, in the decompressive impact
problem, no discontinuity can propagate supersonically, i.e., § > ¢,
which is a very strong restriction. This is a byproduct of the linearity
in the tensile region; if the linear behavior at small tensile strains is
followed by a non-linear strain-stiffening behavior, then the two curves
might intersect at a finite value of y~, and supersonic discontinuities
can propagate in decompressive impact.

It is useful, at this point, to introduce the strain at which the
projection of the linear phase intersects the densified phase curve which
is denoted as y*. If the discontinuity propagates with exactly the sonic
velocity § = ¢, then for y* # y* the chord is parallel to the linear
phase, and again y~ — +oo provides an inadmissible solution. For the
special case of y* = y*, a finite value of y~ is attained, but as seen from
Fig. 11c the driving force is negative (f = —A; < 0), and the solution
is prohibited again. Again a non-linear tensile behavior can make this
case admissible.

The case where the discontinuity propagates subsonically (s < ¢,) is
investigated last. Fig. 11d presents the subsonic case where y* < y*.
In this case not only the chord does not intersect the rarefied case
(y~ — 4o0), but it is also obvious from Fig. 11d that the driving force is
negative. A non-linear tensile behavior cannot remedy this case. From
the brief discussion of the geometrical interpretation of the solutions,
it is found that the only possible scenario for a discontinuity to exist in
the decompressive impact is if: (1) it propagates subsonically (s < ¢;),
and (2) y* > y*.

5.2.4. Rarefaction wave (fan) followed by phase transition

The phase transition front trails the end of the fan, which moves
with velocity &, so the restriction § < &, arises. The continuum is
composed of four different regions: (1) a rarefied material moving
with velocity V to the left and being transversed by the fan and the
phase transition front (0 < x < $t), (2) a densified region at strain y*
transversed only by the fan (st < x < &), (3) the region included
in the rarefaction wave where strains and particle velocities change
continuously (&7 < x < &¢), and the pre-strained material ahead of

the fan (x > &1). In mathematical form:

y~ for 0<x<3st -V for 0<x<st
)yt for st<x<égt _ )t for st<x<égt
TED=1 5@ for sr<x<en PP TV 0@ for gr<x<én
y; for x>é&¢ 0 for x2>é&¢
(45)

The unknowns in (45) are y~, y*, and the functions (&) and (&), or
equivalently v(y). &, &, and v are calculated by the continuity of the
fan solution. The initial strain y;, impactor velocity ¥ and the transition
front velocity s are the parameters of the solution. The structure of the
solution for the fan x > ;¢ is the same as the one in Section 5.2.2:

1 1
v(y) = (m - T}q) Q, (46)
+ —U+pvt +10
To(l4put+Q 7 47
ﬂ:)=,/%—1, 48)
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Fig. 10. Fan solution for the decompression impact problem for (a) Material 1, (b) Material 2, and (c) Material 3 in Table 1.
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Fig. 11. The four a priori inadmissible cases for a discontinuity in the decompression problem.

Q

& = m (49)
Q
&= (7’1‘"—1)2 (50)

For the phase transition discontinuity the velocity jump condition (7)
is used first and solved for y~:

_ Vot +syt
Lol = =iyl =y~ = ————— (51)
Then, the stress jump condition in (8) is:
o] = —psllvl > —2—2— 1 B~ Ey~ = —ps(w* + V), 52)
A +y)3

and replacing y~ from (51), a quartic polynomial for y* is solved.
Out of the four roots, only one provides admissible solutions with the
driving force positive and y* < —y;, being the strictest constraints.
Figs. 12a and b show the V—y; plane for the fan followed by a phase
transition problem in decompression for Material 1 and 2, respectively.
The solution is parametric in V, y;, and s, i.e., it is a three-dimensional

12

region in the V-y;—s space. The (blue) region in Figs. 12a and b is
merely the projection of the three-dimensional region on the V—y; plane
with § increasing as shown by the yellow arrow. In Figs. 12¢ and d, the
solution is plotted together with the pure fan case. It is obvious that
these two solutions are enough to guarantee that there is always an
admissible solution to the decompression problem for a material pre-
strained with a strain of y; and decompressed at a velocity V. Note that
an admissible solution can exist even for V' = 0. The pure fan solution
for V' =0 is trivial; the fan followed by phase transition front solution
can be eliminated for V' = 0 by invoking a nucleation criterion.

5.2.5. Single phase transition front

Another solution is to have only one phase transition front from
the densified to rarefied phase, as seen in Fig. 8d. Two distinct regions
exist in the continuum in this case. The first region is traversed by the
phase transition wave (0 < x < §t), and it lies in the rarefied phase
under strain y~ and moving with velocity —V. The second region is
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Fig. 12. Projection of the fan followed by a phase transition front solution for the decompression impact problem for (a) Material 1, and (b) Material 2 in Table 1. The solution
(blue) is plotted together with the pure fan case (red) for (¢) Material 1, and (d) Material 2.

the originally strained material in the densified phase under the initial
strain y; and stress o; = 6(y;). In mathematical form:
-V for

y(x, 1) = { ,0(x, 1) = { 0 for

The unknowns in (53) are y~ and s, while the impactor velocity V'
and the initial strain are free parameters. Utilizing the velocity and
stress jump conditions in (7) and (8), respectively, y~ and s are found.
Starting with the jump condition in (7), s is calculated:

0<x<st
x> 8t

0<x< st
x> 8t

y~ for

y; for (53)

(54

ol = =5yl = § = ———.
vi—v

Replacing (54) in (8), simplifying, and rearranging terms leads to the
following quadratic equation which provides two roots for y~—:

Ey™2 —(o;+ Ey)y™ + oy, — pV? =0, (55)
and the roots are:
- _Eritoi£V(En —Gi)2+4EﬂV2. (56)

2E
The solution corresponding to the minus root results in strains y~ < ;,
which is unrealistic, and hence disqualifies as a solution to the problem.
Hence, the solution for y~ for the single transition front case in the
decompression problem is:

_ _ Eyi+o;+(Ey—0)? +4EpV?

2E (57)

13

Figs. 13a and b depict the admissible solutions for the single transition
front case plotted together with the fan followed by the phase transition
solution for Materials 1 and 2, respectively. On the V-y; plane, the
latter is entirely encompassed by the former. Moreover, Figs. 13c and
d present the solutions on the corresponding V-3 planes for specific
values of y;. Again, one can notice that the solution of the single phase
transition front exists within the domain of the fan followed by the
phase transition solution. Observation of the x—¢ planes in Fig. 8c and d
makes clear that the single phase transition front x— plane in Fig. 8d is
a degenerated version of the x— plane in Fig. 8c provided that v™ = 0 or
yt =y or § =¢&,. Indeed, in the set of Egs. (46)-(50), replacing one of
the three conditions, the other two are automatically satisfied and the
single phase transition solution is retrieved. Consequently, unlike the
compression case, in decompressive impact, a single phase transition
front solution does not add new solutions to the problem, and hence it
will not be discussed further.

The remaining two candidate solutions to the problem fail to pro-
vide any admissible solution at all. The first one is the phase transition
front followed by a sonic wave in the rarefied phase, and the second
one is the fan followed by a phase transition front followed by a sonic
wave in the rarefied phase. Each of them is discussed separately below
and an explanation for why they are not admissible is provided.

5.2.6. Phase transition front followed by a sonic wave in the rarefied phase
Consider a propagating phase transition front from the densified to
the rarefied phase followed by a sonic wave both sides of which are
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Fig. 13. Admissible solutions for the single phase transition front plotted together with the fan followed by the phase transition solution for (a) Material 1, and (b) Material 2 on
the V-y; plane. (c) and (d) the corresponding solutions on V-3 plane for specific values of y;.

in the rarefied phase, as seen in Fig. 8e. The phase transition front
propagates with a supersonic velocity, i.e. § > ¢,. As discussed in Sec-
tion 5.2.3 the supersonic (or even sonic) discontinuity propagation is
not admissible in the decompressive impact. Nevertheless, the analysis
for the supersonic phase transition front followed by a sonic wave is
presented, because if the linear rarefied phase is changed to a non-
linear behavior, this case will generate permissible solutions. In that
scenario, the phase transition front will be followed by a shock, and
not a sonic, wave.

In the continuum, for the phase transition front followed by a sonic
wave case, three distinct regions are observed at any moment. The
first region is already transversed by the shock wave and the phase
transition front (0 < x < ¢yt), and lies in the rarefied phase. All the
material points move with velocity ¥ and the strain is y~. The second
region is transversed only by the transition front (cyt < x < §1) and it
is in the rarefied phase. Lastly is the pre-strained material (x > s¢). In
mathematical form:

y~ for 0<x<cyt V for O<x<et
y(x,t) =4yt for ot <x <t ,v(x,0)=9 vt for ct<x<it (58)
y; for x>t 0 for x>t

The unknowns in (58) are y*, y~, vt and the impactor velocity V,
the phase transition front speed s, as well as, the initial strain y; are

14

parameters of the problem. Employing the kinematic jump condition
in (7) for the sonic wave discontinuity results in:

ol = =slyl = v ==V +co(y~ = 7). (59

For the phase transition discontinuity, utilizing the velocity jump con-
dition in (7) and replacing v* from (59):

V + sy + 71T (co—3)
o ’

[v]l ==yl =y~ = (60)
Then, using the stress jump conditions in (8) for the phase transition
discontinuity combined with (59) and (60):

o — $%1ip

. 61
E—s2) (61)

Lol = —pslvl = vyt =

5.2.7. Fan followed by a phase transition front followed by a shock wave
in the rarefied phase

The last case considered is that of a fan followed by a phase tran-
sition front followed by a shock wave in the rarefied phase, as seen in
Fig. 8e. This is the most complex of all cases. The same considerations
for the admissibility of the solutions made in 5.2.3 regarding the
supersonic propagation of discontinuities, apply here too because the
supersonic phase transition front followed by the sonic wave is included
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Fig. 14. Totality of solutions for Material 1 with initial strain (a) y, = —0.8, (b) 7, = —0.9 and Material 2 with (c) y, = —0.85, (d) y, = —0.95.

in this case. In mathematical form:

y~ for O0<x<cy -V for 0<x<cyt
yt for ot <x< st vt for ¢yt < x < §t
y(x,t) =4y, for st<x<&r u(x,t)=4 v, for §t<x<¢ét
7(¢) for gt <x <&t o) for gt <x <&t
yp, for x>é&t 0 for x>é&t
(62)

From the fan solution in Section 5.2.2, the strain 7(&) and velocity v(y)
fields are known and can be used to calculate y, and velocity v, after
the fan as a function of ¢&:

[ Q
7= a—l, (63)
1 1
= () ©

Therefore, the four unknowns are &, y~, y*, and v, while the impactor
velocity V, the phase transition velocity s and the initial strain y; are
parameters of the solution. The jump conditions in the phase transition
give two equations. Another equation is obtained from the sonic wave
jump condition. So, the system has three equations and four unknowns,
hence it is undetermined. A limiting case is when the densified phase
is not concave during compression, but linear or even convex. Then,
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the fan will turn into a discontinuity and it is proven that in any
medium there are maximum two discontinuities that can exist at the
same time (Abeyaratne and Knowles, 2006). Therefore, this class of
solutions to the impact problem is ruled out.

5.2.8. The totality of solutions for the decompressive impact

Fig. 14 presents the totality of solutions for the decompressive
impact. Out of the six possible solutions mentioned at the beginning of
the discussion, eventually, only two qualify for plotting, the rest being
disqualified for various reasons. If the material in the rarefied phase
was not linear, but stain-stiffening at least one more solution (i.e., phase
transition front followed by shock wave) could be possible.

From Figs. 14a and c, one notes that for initial strains y; closer
to —y,, the fan solution is applicable for a small range of impactor
velocities and the fan followed by the phase transition case appears
early. This is because for smaller compressive strains the material is
closer to the strain y* (projection of the rarefied stress—strain curve to
the densified one), and phase transition is easier, see Section 5.2.3. In
contrast, when the material is intensely compacted, Figs. 14b and d, it
starts further from y*, the fan solution has a wider range of applica-
bility, and the fan followed by the phase transition requires stronger
(decompressive) impacts. Essentially, the fan assists the material to
decompress to a favorable strain such that phase transition can take
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place. In all cases though, there is a region of decompressive velocities
between points A and B where both solutions are possible. Finally, one
can notice the asymptotic behavior of the fan followed by the phase
transition solution as § — cy. As it was found from the geometrical
interpretation of the problem in Section 5.2.3, no discontinuity, the
phase transition in this case, can propagate supersonically, not even
sonically, in the decompressive impact problem with linear rarefied
phase. This strong restriction can be mitigated if the linear behavior
is changed to a non-linear one.

6. Conclusions

Compressive and decompressive impact of porous meta-materials
is investigated in this paper. The porous materials are assumed to
have the ability to recover their initial configuration after cycles of
(dynamic) loading/unloading. The materials are modeled using a con-
tinuum theory of phase transitions (Abeyaratne and Knowles, 2006)
and the dynamical behavior is shown to involve propagating shocks,
phase boundaries, and rarefaction waves (fans). Some of the solutions
discussed are similar to those already described in the literature such
as Zheng et al. (2012) and Gaitanaros and Kyriakides (2015), but
others, such as the fan solutions, have not been described at length
before. The compressive impact case is well-studied with an abundance
of experimental data in the literature, while decompressive impact has
received minimum theoretical and little experimental attention (to the
best of the authors’ knowledge). The analysis and results provided in
this work can guide future theoretical and experimental efforts inves-
tigating the decompressive impact response of porous meta-materials.
Maps have been constructed to show all possible, or totality of solutions
to impact problems on these materials. These maps depict regions in
which multiple solutions to the impact problem are possible. The non-
uniqueness in the solutions can be remedied by adding a nucleation
criterion and kinetic law for phase boundaries to the constitutive
description. The kinetic relation is of the form § = ¢(f) and the
nucleation criterion can be for example that f needs to be greater
than a lower bound value for an interface to nucleate (Abeyaratne and
Knowles, 2006; Knowles, 1999). This is left to future work. The analysis
described here may be applicable to various types of porous materials,
such as foams (Tan et al., 2005a), fiber networks (Picu and Ganghoffer,
2019), truss meta-structures (like Schaedler et al., 2011; Ozdemir et al.,
2016), and a broader class of architectured materials (like Al-Ketan and
Abu Al-Rub, 2019).
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Appendix. Retrieving unique solution from kinetic relation and
nucleation criterion

In this Appendix, a kinetic relation and a nucleation criterion are
used to alleviate the nonuniqueness of solutions in the case of a sonic
wave followed by a phase transition front. The kinetic relation is of the
form § = ¢(f). The nucleation criterion adopted is that in order for
the densified phase to nucleate, the driving force must be higher than
a critical value, called f,. This is similar to saying that in order for
the transition to happen an energy barrier must be surpassed first. The
kinetic relation assumed here is just a linear function of the form § =
a(f — fu). The kinetic relation and the nucleation criterion are shown
in Fig. A.15a. The nucleation driving force is a material parameter and
here for demonstration reasons, it is taken to be f, = 30 kPa. The
proportionality constant « is the mobility of the phase boundary and
it is varied in the results presented below. It has units of velocity over
stress, i.e. [m/s/Pa]. Material 1 is used from Table 1.

Since the kinetic relation and the nucleation criterion specify uniquely
a solution given an impactor velocity V', we will consider three different
impactor velocity cases, as presented in Fig. A.15b, to demonstrate how
to make use of them:

*V = 18 m/s or V/c, = 0.032. In this case, the driving force
from the sonic wave followed by the phase transition front with
§ — 0 is less than f,,, so the densified phase cannot nucleate, and
the sonic wave solution in (23) is admitted. This is an example
of how the nucleation criterion remedies the non-uniqueness. A
lower nucleation value of f, could allow the nucleation of the
densified phase.

V =2.0m/s or V /¢, = 0.036. In this case, the driving force from
the sonic wave followed by the phase transition front with § — 0
is higher than f,,, so the densified phase nucleates at the left end
of the bar, and the two-wave solution in (26) is admitted. In the
next case, the methodology to alleviate the nonuniqueness with
the kinetic relation is presented.

0.40 . }
== Shock wave followed by phase

transition front

== Shock wave in rarefied phase

Case 3

Fig. A.15. (a) Kinetic relation and nucleation criterion assumed in this work. (b) The three different impactor velocities cases considered.
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Fig. A.16. Parametric study of the influence of mobility on the phase transition velocity
§ for an impactor velocity of V =16.4 m/s.

* V =164m/sorV /cy=0.3. In this case, the driving force from the
sonic wave followed by the phase transition front is higher than
Jn» so the densified phase nucleates at the left end of the bar, and
the two-wave solution in (26) is admitted. The unknowns in (26)
are y*, y~, vt, and s while the impactor velocity V is the only
parameter of the problem. The available equations, as shown in
Section 5.1.2, are:

[v] = =sly] = vt = —cor™, (A1)
Vot
[0l = =5l = 7+ = Z (A2)
(]

cpSG Y +{B+p[3cs+(c+)VIY )P +3 {B+p 5V +c(V+5)]} )2
+{3B+plcs+3V(c+ )}y +(c+5)pV +A=0,
(A.3)

§=alf - fo) (A.4)

This is a system of four equations with four unknowns. Given an
impactor velocity, the solution is uniquely defined. Fig. A.16 is
a parametric study of the mobility to the discontinuity velocity
s and the resulting strain in the densified phase. A two-order-
of-magnitude variation is considered. Like the nucleation driving
force f,,, mobility « is a material parameter.
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