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Abstract
A numerical semigroup S is a subset of the non-negative integers containing 0 that
is closed under addition. The Hilbert series of S (a formal power series equal to the
sum of terms t" over all n € S) can be expressed as a rational function in ¢ whose
numerator is characterized in terms of the topology of a simplicial complex deter-
mined by membership in S. In this paper, we obtain analogous rational expressions
for the related power series whose coefficient of t" equals f(n) for one of several
semigroup-theoretic invariants f : S — R known to be eventually quasipolynomial.

1. Introduction

A numerical semigroup is a subset S C Zx>( containing 0 that is closed under ad-
dition and has finite complement, and a factorization of an element n € S is an
expression of n as a sum of generators of S. A clear trend that has emerged in
the study of numerical semigroups is the eventually quasipolynomial behavior of
arithmetic invariants derived from their factorization structure [14]. More specifi-
cally, each of these invariants (which we call S-invariants) is a function assigning
to each element n € S a value determined by the possible factorizations of n in S.
This includes invariants from discrete optimization such as maximum and minimum
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factorization length [2], distinct factorization length count [11], and maximum and
minimum O-norm [1], as well as more semigroup-theoretic invariants like the delta
set [7], w-primality [12], and the catenary degree [6], each of which agrees with a
quasipolynomial for large input.

When (eventually) quasipolynomial functions arise in combinatorial settings,
there are several potential ways to study them: (i) directly, using tools specific to the
setting in question; (ii) via combinatorial commutative algebra, using Hilbert func-
tions of graded modules; and (iii) via rational generating functions. Approaches (ii)
and (iii) were largely pioneered by Stanley [17], among others, and carry with them
powerful algebraic tools. The eventually quasipolynomial behavior of each semi-
group invariant mentioned above was initially examined using standard semigroup-
theoretic tools, and more recently an approach using Hilbert functions was devel-
oped [11]. The goal of this paper is to initiate the use of approach (iii) in studying
S-invariants.

To date, rational generating functions have been used to study several aspects of
numerical semigroups [4, 8], primarily using the Hilbert series

KC(S;t)
H(S;t)= ) t"= :
’ nze; (T —tm)-o (1 —tmw)
associated to each numerical semigroup S = (n1,...,n;). A natural consequence of

the Hilbert syzygy theorem from commutative algebra [10] states that the numer-
ator K(S;t) in the second expression above is a polynomial in ¢ whose coefficients
are obtained from the graded Betti numbers of the defining toric ideal of S. An
alternative characterization of the coefficients of K(S;t) (stated formally in Theo-
rem 2) uses the topology of a simplicial complex determined by membership in S
[5]. Onme of the key selling points of the latter characterization is that it is given
entirely in terms of the underlying semigroup S, without the theoretical overhead
often necessary when incorporating commutative algebra techniques.

The primary goal of this paper is to obtain analogous rational expressions for
various augmented Hilbert series, which we define to be series of the form

Hp(Sit) = f(n)t"

nes

where f is some S-invariant admitting eventually quasipolynomial behavior. We
give two such expressions: (i) when f(n) counts the number of distinct factoriza-
tion lengths of n (Proposition 1) and (ii) when f(n) is the maximum or minimum
factorization length of n (Theorem 3). Examples 3 and 4 illustrate the need for
distinct rational forms for these invariants. We also specify how to obtain the dis-
sonance point of each quasipolynomial function f (i.e. the optimal bound on the
start of quasipolynomiality) from the numerator of its rational generating function
(Theorem 4). Lastly, we examine these rational expressions under the operation of
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gluing numerical semigroups (Section 5) and give a closed form for each rational
expression in the special case when S has 2 generators (Section 6).

2. Background

Definition 1. A numerical semigroup S is a cofinite, additive subsemigroup of Zx>.
When we write S = (nl, ... ,nk> in terms of generators, we assume n; < - -+ < ng.
The Frobenius number of S is the largest integer F(S) lying in the complement of
S. A factorization of n € S is an expression

n=any+---+ank

of n as a sum of generators of S, and the length of a factorization is the sum
a1 + -+ -+ ag. The set of factorizations of n € S is

Zs(n)={a€Zt:n=an + -+ apni}

and the length set of n is the set
Ls(n)={a1+---+ag:a€Zg(n)}

of all possible factorization lengths of n. The mazimum and minimum factorization
length functions, and the length denumerant function, are defined as

Mg(n) = maxLg(n) mg(n) = minLg(n) and ls(n) = |Ls(n)|,
respectively. The Apéry set of an element n € S is the set
Ap(S;n)={meS:m—n¢ S}
It can be easily shown that | Ap(S;n)| =n for any n € S.

Notation 1. Unless otherwise stated, thoughout the paper, S = (ny,...,n;) de-
notes a numerical semigroup with a fixed generating set ny < --- < ng.

Definition 2. A function f:7Z — R is an S-invariant if f(n) =0 for alln ¢ S.
Definition 3. A function f : Z — R is an r-quasipolynomial of degree « if
f(n) = aa(n)n® +-- -+ ar(n)n + ao(n)

for periodic functions ag,...,as, Whose periods all divide r, with a, not identi-
cally 0. We say f is eventually quasipolynomial if the above equality holds for all
n > 0.
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Theorem 1 ([2, 11]). For sufficiently large n € S,

Ms(n+mny) = Mg(n) + 1, mg(n +ng) = mg(n) + 1,
and ls(n + ning) = lg(n) + 2 (ng —ny),
where d = ged{n; —n,—1 : i = 2,...,d}. In particular, the S-invariants Mg, mg,

and lg are each eventually quasilinear.

Definition 4. The Hilbert series of S is the formal power series

H(S;t) =Y t" € Z[H].

nes

Given n € S, the squarefree divisor compler A, is a simplicial complex on the
ground set [k] = {1,...,k} where FF € A, if n—npr € S, where np = >, n;. The
Euler characteristic of a simplicial complex A is the alternating sum

X&) = 37 (-,
FeA,

Remark 1. The definition of Euler characteristic above differs slightly from the
usual topological definition, but has the advantage that x(A) = 0 for any con-
tractible simplicial complex A.

Theorem 2 ([5]). The Hilbert series of S can be written as

n ZGGAP(SWH) t Zmes X(Am)tm
H(S’t)_zt o 1 — ¢m (1 —trr).o (1 —tnw)’

nes
where both numerators have finitely many terms.

Example 1. For S = (6,9, 20), Theorem 2 yields

H(St)_ 1+t9+t20+t29+t40+t49 B 1_t18_t60+t78
yU) = 1—1¢6 - (1—t6)(1—t9)(1_t20)'

Here, Ap(S;6) = {0,49,20,9,40,29} and each entry is distinct modulo 6. The
elements
18=3-6=2-9 and 60=4-6+4-9=3-20

are, respectively, the first element that can be factored using 6’s and 9’s and the
first element that can be factored using 6’s, 9’s, and 20’s. In particular, these two
elements encode minimal relations between the generators of S, viewed as minimal
“trades” from one factorization to another. Moreover,

8=7-64+4-9=2-943-20
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is the first element in which two distinct sequences of trades between factorizations
are possible: one can perform the exchange 3 -6 ~» 2 -9 followed by 4 -6 + 4 -
9 ~» 3 - 20, or these trades can be applied in the reverse order. This represents a
“relation between minimal relations”. These properties are encoded in the element’s
respective squarefree divisor complexes, since A1g and Agy are each disconnected,
and Arg is connected but has nontrivial 1-dimensional homology.

Remark 2. One remarkable aspect of Theorem 2 is that simple algebraic manip-
ulation of the rational expression of the Hilbert series reveals additional structural
information about the underlying semigroup. Indeed, cancelling all common factors
in Example 1 yields Pg(t)/(1 —t) (see [8]), where

Ps(t):]._t +t6 _t7 +t9 _t10+t12—t13+t15_t16+t18
_t19+t20_t22+t24_t25+t26_t28+t29_t31 +t32
—t34+t35 —t37+t38 —t43+t44

has significantly more terms than the numerator of either form in Theorem 2. This is
not a coincidence: since they represent the same power series, the fewer terms that
appear in a particular expression, the more information each term must encode.

3. Numerators of Augmented Hilbert series

In this section, we formally introduce augmented Hilbert series of a general semi-
group invariant f (Definition 5), present two rational expressions in the spirit of
Theorem 2 (Proposition 1 and Theorem 3), and illustrate and compare their use
when f is one of the S-invariants appearing in Theorem 1 (Examples 3 and 4).

Definition 5. Fix an S-invariant f. The augmented Hilbert series of S with respect
to f is the formal power series

He(Sit) =Y f(n)e™.

nes

Given n € S, the weighted Euler characteristic of A, is defined as

xr(An) = Y (D)l (n—np),

FeA,

and the augmented FEuler characteristic of A, is defined as

Xp(An) =Y (=D)F(f(n = np) + [F)).

FeA
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Figure 1: The complex Aj3g in S = (6,9,20) in Example 2.

Example 2. Let S = (6,9,20). The complex Ajsg is given in Figure 1, and each
face F is labeled with the value Mg(138 — np). Together with Mg(138) = 23 as the
label for the empty face, we obtain

XMs (A138) = Xmg (A1sg) =0,

in part because the label of each face containing the vertex 6 matches its label on
the face obtained by deleting 6.

Proposition 1. Fiz an S-invariant f. For any fized p € Z>1, we have

2unes(F(n) =2f(n —p) + f(n = 2p))1" 3., coXxs(An)t"
(1—¢tr)2 T, (1 —tme)

Proof. Clearing respective denominators yields

(L =t7)2 D f)tm =" fm)t" = > 2f ()" + > f(n)t" T2

Hy(S;t) =

nes nes nes nes
=Y (f(n) = 2f(n —p)+ f(n—2p))t",
nes

which proves the first equality, and the second equality follows from

Soxr At =" > (=) fm—nptm = Y0 (—)A fn)ertra

meS meS  FC[k] AC[k] neS
m—np€S
k
g g
AC[K] nes i=1 nes
where the second step uses the substitution m =n + n4. O]

Example 3. For S = (9,10, 23), we have

D7 Xug ()" =19+ 110 4 418 4420 423 4 427 4 g30 4 436 4440 4 445
nes _ t46 _ 3t50 + t54 _ t55 _ t56 _ t59 _ 4t63 _ t64 _ t66
{68 9473 _ 476 _ 4TT | 3486 _ 490 4 4113
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whereas

Z X\MS(n)tn - _ 2t46 - 4t50 o 5t63 + 5t73 + 6t86 o t90 + t113.
nes

This difference in number of terms occurs in nearly every example of Hm, (S;¢) the
authors have computed, and illustrates the primary reason for Theorem 3: filtering
many of the extraneous terms from the first expression above. At play here is
the philosophy discussed in Remark 2, namely that expressions with fewer terms
necessarily encode more combinatorial information per term.

Example 4. For S = (9,10,23) as in Example 3, the polynomials

5 () = 1— 10

nes

and

Z X\lg(n)tn — 1 _ t9 _ th _ t18 _ t20 _ t23 _ t27 _ t30 _ t36 _ t40
nes _ t45 _ 2«:46 _ t50 _ t54 + t55 + t56 + t59 _ t63 + t64
+ 100 4 408 4 3478 470 4477 4 3¢50 — 4140

also differ greatly in the number of terms, but in the opposite direction. This is in
part because L(0) = {0} for every numerical semigroup S, as the lack of a constant
term in Hj, (S;t) adds many erroneous terms in the numerator of Proposition 1 that
the constant term 1 in H,,(S;t) avoids. Additionally, this example illustrates that
examining S-invariants via generating functions will sometimes require specialized
expressions, rather than a “one-size-fits-all” characterization.

Notation 2. In what follows, we make heavy use of the power series

k

1 tm
z(t) = H T and At) = Z T
i=1 i=1

the second of which often occurs in the form z(¢)A(¢) (for instance, in Theorem 3).
The coefficient of t" in the series z(¢t) (usually notated as Ho(S;t) in the literature)
equals the number of factorizations of n € S (known as the denumerant of n), while
the coefficients of z(t)A(t) are described in Lemma 1.

Lemma 1. The power series z(t)A(t) is given by

2BAE) =D Un)t",

nes

where £(n) denotes the sum of the lengths of every factorization of n € S.
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Proof. Rewrite z(t)A(t) as

S s (M) = (e ) (T S )

i=1 J#i i=1 Na;>0 j#i Na;>0

In the final expression above, when expanding the product inside the outermost
sum, the term t" appears once for each factorization of n in S, with coefficient
equal to the number of copies of n; appearing in that factorization. As such,

ZZ ooatt =30 Y alm =t

i=1neS acZ(n) neS acZ(n) nes

as desired. O

Theorem 3. Fiz an S-invariant f. The augmented Hilbert series of f is given by

H(S;t) = (> XA +2(8) Y Rp(An)t"

nes nes
o A
= MOS0+ %ff) ?C.f.((l _)ttnk).

Proof. Multiplying both sides by the denominator of z(t), Proposition 1 implies

(lﬁ[(l—t’“))Zf( =3 S P e

i=1 nes meS FEA,,

In the second term on the right hand side of the claimed equality, we have

SORpAm =" > (=D)FI(F(m = np) + | F)E"

mes meS FEA,,
=SS s S e
meS FEA,, meS FeEA,,

so it suffices to show that

(Zkzl—tm>z S el £ 3OS (o EREn = o,

meS GEA, meS FEA,

Indeed, multiplying the first part by H?Zl(l — t") yields

S ([l 5 S eSS ey e

i=1 e meS GEA, meS i=1 AC[k] GeAn,
zeA
— E § |A| 1|A| E |G\tm+nA
meS AC[k] GeAn,

_ Z Z |F| I‘F‘ Z (_1)\G|tm

meS FEA, GeAn
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and multiplying the second part by the same factor yields

Hooe) 2 3 o 5 5 (i 5 e
(f-)

meS FEA,, meS AC[k] FEA,,
D WEIES WL
meS GeEA,, FeAn,
which completes the proof. O

4. The dissonance point

The numerator of each rational expression in Proposition 1 and Theorem 3 has
finite degree when f is any S-invariant listed in Theorem 1. This follows from
Theorem 1 and general facts from the theory of generating function [18], but we
prove this fact in Proposition 2 using weighted and augmented Euler characteristics,
as a demonstration of their utility.

The other main result of this section is Theorem 4, which demonstrates that
when f = Mg or f = mg, we can recover from the degree of » o Xr(A,)t" the
minimum integer input after which f becomes truly quasipolynomial. Note that by
Proposition 1, this fact is immediate if the coefficients xs(A,) are used in place of
Xf(Ay) for any eventually quasipolynomial function f.

Definition 6. Fix an S-invariant f that agrees with a quasipolynomial function
g : Z, — R for sufficiently large input values. The dissonance point of f is the largest
integer n > F(S) such that f(n) # g(n). We say the semigroup S is f-harmonic if
f(n) = g(n) for every n € S.

Example 5. Let S = (9,10, 23) from Example 3. The dissonance point of Mg is 71,
since Z(71) = {(2,3,1)} but Z(80) = {(3,3,1),(0,8,0)}, so

8 = Ms(SO) > M5(71) +1=".

In particular, the longest factorization of 80 does not have any copies of the first
generator. Generally, longer factorizations will involve more small generators than
large generators, but even though (3,3, 1) has more copies of the smallest generator,
it has enough larger generators to afford (0, 8,0) higher efficiency. This is exacer-
bated by the fact that 9 and 10 are close together, while 23 is significantly larger
than both.

On the other hand, S = (6,9, 20) is Mg-harmonic, since

Ms(n+6) e MS(TL) +1

for every n € S by Theorem 1 and exhaustive computation for small n using, for
instance, the GAP package numericalsgps [9].
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Proposition 2. If f is one of the S-invariants appearing in Theorem 1, then
Yoo XF(AEY and Y- <o Xf(Ap)t™ have finitely many terms.

Proof. We must show
Xr(An) =Xfr(An) =0

for all sufficiently large n. If f = mg, then f satisfies f(n +ng) = f(n) + 1 for
sufficiently large n, so provided that n > F(S) + ny) also holds, we have

X(Bn)= > ()t —np) = Y (D)Ffn—np)+ Y (DI (- np —ny)

FCK] FClk—1] FClh—1]
= Z (_1)|F|(f(n_nF)_f(n—np—nk)): Z (_1)‘F| =0.
FClk—1] FCIht]
Additionally,

Xr(An) = xr(An) = Y (-D)FIIF| =0,
FCIk]
which proves Xf(A,) = 0. Replacing n, with n; throughout the above argument
proves the same equalities hold for f = Mg, leaving only the case f = lg. By The-
orem 1, we have f(n) = %(M(n) — m(n)) — ly(n) for large n, where Iy is some
ning-periodic function. As such,

> fytt = ;(Z M(n)t" = m(n)t") = lo(n)t",
nes nes nes nes

and by Proposition 1, each power series on the right hand side is rational with
denominator dividing Hle(l —t™). This proves xf(A,) = 0 for large n. Just as
above, X7(Ay) = 0 then readily follows for large n, so the proof is complete. O

Theorem 4. If f = Mg or f = mg, then the dissonance point of f is d — np,

where
d = deg (Z )?f(An)t").

n>0

Proof. Suppose f = mg, and let m € S denote the largest element of S such that
m(m —ng) + 1 # m(m). Clearly m < d — ny,, since each n > m + np,) must have
Xf(Ay) =0 by the proof of Proposition 2. Moreover,

Xp(Aa) = Y (D)FI(f(d—np) + |F]) = (~1)* (1 + f(d = np) — £(d = np_1)))

FC[k]

is nonzero, proving the claim when f = mg. The case f = Mg follows analogously.
O
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5. Augmented Hilbert series of gluings

Gluing (Definition 7) is a method of combining two numerical semigroups S and S,
to obtain a numerical semigroup S = d1.57 + d2.S2 whose factorization structure can
be expressed explicitly in terms of the factorizations of S; and Sy [16]. Several
families of numerical semigroups of interest in the literature (e.g. complete inter-
section, supersymmetric, telescopic) are described in terms of gluings. Moreover,
the Hilbert series of S can be concisely expressed as

H(S;t) = (1 — tM2)H (S M) H (S5 %)

in terms of the Hilbert series of S; and Sa (see [8]).

One might hope that a similar relation can be obtained for augmented Hilbert
series, but unfortunately, this is not the case. In fact, even gluing two harmonic
numerical semigroups need not yield a harmonic numerical semigroup; see Exam-
ple 6. However, if the gluing is sufficiently well-behaved (see Definition 8), then an
expression for the augmented Hilbert series of S can be obtained (Theorem 5).

Remark 3. All results and definitions in this section are stated in terms of the max-
imum factorization length S-invariant Mg, but analogous results (with analogous
proofs) also hold for the minimum factorization length S-invariant mg.

Definition 7. Fix numerical semigroups S; and Ss, and elements d; € Sy and
dy € S that are not minimal generators of their respective semigroups. We say
S = d151 + doS2 is a gluing of S1 and S if ged(dy,ds) = 1.

Example 6. Let S; = (6,10, 15) and Sy = (5,7), and let
S = 23S; + 278, = (138,230, 345, 135, 162).

Both S; and Sy are Mg-harmonic (and supersymmetric, one of the most well-
behaved families of numerical semigroups under gluing), but the glued numerical
semigroup S fails to satisfy Mg(n 4+ ny) = Mg(n) + 1 for each n in the set

831, 969, 993,1061,1131,1155,1199,1223,1291, 1293,
1317, 1361, 1385, 1429, 1453, 1455, 1479, 1523, 1547, 1591
1615, 1617, 1685, 1709, 1753, 1777, 1847, 1915, 1939, 2077

(this can be verified using the GAP package numericalsgps [9]). The primary issue
is that the images of the smallest generators of S7 and Sy are relatively close in S,
a property that was observed by the second author when writing [2] to correlate
with a large dissonance point for maximum factorization length.

Definition 8. Resume notation from Definition 7. We say S is a Mg-harmonic
gluing if every n € S satifies Mg(n) = Mg, (n') + Mg, (n”), where n = din’ + dan”
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for n’ € S1, n” € S, and n’ maximal among all such expressions. Note that this
property is dependent on the order of S7 and S3. We define an mg-harmonic gluing
analogously, where the expression n = din’ 4+ don’’ is chosen so that n’ is maximal.

Theorem 5. If S = d1.51 + d252 is an Mg-harmonic gluing, then

Hus (S5t) = H(S1;th) ( > Mg, (n)(t*) )+HMS1 (Sl;tdl)( > (tdz)n),

neAs neAs

where Ay = Ap(Sa2;dy), and if S is an mg-harmonic gluing, then

s (550) = (X mss (e 20+ (3 (6" o (S51%),

neA; neA

where A1 = Ap(Sy;ds)

Proof. The key is that whenever n = din’ + don” € S with n’ € S; and n” € S5,
we have n’ maximal among all such expressions for n if and only if n” € Ap(Sa;dy).
Indeed, if n” — dy € Ss, then we can write n = dy(n’ + d3) + da(n” — dy), and
the converse holds since ged(dy, d2) = 1. This implies the coefficient of ™ obtained
from expanding the right hand side of the first equality is Mg, (n') + Mg, (n’), so
the harmonic assumption on S proves the first equality. An analogous argument
proves the second equality. O

6. Numerical semigroups with 2 generators

In this section, we restrict our attention to the case S = (ny,n2).

Theorem 6. If S = (ny,ns), then
Z )/(\MS(AH)tn = 77L1tn1n2 CI,TLd Z )?ms (An)tn = 77?,215”1”2.
nes nes

Proof. 1t suffices to prove the first equality, as the second follows analogously. We
use the well-known fact that

Ap(S;ni) ={0,n2,...,(n1 — )na},

every element of which is uniquely factorable, and that Mg(n + ny) = Mg(n) + 1
for every n € S [16]. As such,

XMs (Anyny) = Ms(nin2) — (Mg(ning —ny) +1) — (Ms(ning —ng2) + 1)
:ngf(n271+1)f(n171+1):7n1.

For all other elements n # ning, the complex A,, is either (i) the a single vertex 1,
(ii) the single vertex 2, or (iii) the full simplex 2[?l. In each case, one readily checks
that Xmg(A,) = 0, thereby completing the proof. O
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Remark 4. Tt is known that for S = (nj,ns2), no two factorizations of a given
element n € S have the same length, so

Z Is(n)t" = Z |ZS(n)|tn = Z<t) = (1 _ tnl)l(l — tn2)

nes nes

Remark 5. The disparity between xms(Ay) and Xm, (A) is perhaps most exempli-
fied in the case S = (n1,nz). Indeed, for S = (9,11), we have > ¢ Xms(Ap)t" =
—9t% by Theorem 6, whereas

Z XMs (An)t" = t9 + tll + 24:18 + t22 + t27 + t33 + t36 + t44 + t45 + 24;54
nes + 175 103 4100 4472 4 47T 4 481 4488 4490 — 79

has one additional term for each element of Ap(S;n;) and Ap(S;ng).

7. Future work

The w-primality invariant wg, a semigroup-theoretic measure of nonunique factor-
ization [13], is also known to be eventually quasilinear over numerical semigroups.
More precisely, for all sufficiently large n € S,

wm+n1) =wn)+ 1.

Additionally, it is known [3] that the domain of wg can be naturally extended to the
quotient group Z, i.e. wg : Z — Z>g, in such a way that sufficiently negative input
values yield 0. In many cases, after the domain is extended in this way, the lower
bound on n after which quasilinearity holds for wg can be significantly lowered.

Problem 1. Find rational expressions for the power series ), _qws(n)t" and its
extension ), ws(n)t"™ in the style of Proposition 1 or Theorem 3.

There are eventually quasipolynomial S-invariants that arise naturally in study-
ing numerical semigroups whose period does not divide the product nq ---ng. For
example, writing £>°(a) for the component-wise maximum of a € Z~,, it is not hard
to show -

n +— min{f>*(a) : a € Z(n)}

is eventually quasilinear in n with period dividing n; + -+ + ng. As this often
does not divide the product n; - - - ng, the rational expressions in Proposition 1 and
Theorem 3 will not have numerators with finite degree.

Problem 2. Develop an analogue of Proposition 1 and Theorem 3 for S-invariants
whose periods do not divide the product nq ---ny.
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Given n € S, define the simplicial complex V,, with vertex set Z(n) where
F C Z(n) is a face of V,, whenever there is some generator appearing in every
factorization in F. The complex V,, is topologically equivalent to A, (this was
first observed in [15]), and thus is sometimes used in place of A, when examining
Hilbert series of numerical semigroups via Theorem 2.

Problem 3. Find labelings of the simplicial complex V,, so that the weighted and
augmented Euler characteristic matches those of A,,.
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