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Abstract  —   Including replaced modules is crucial to estimate 

PV waste generation. A new method is proposed to identify past 
module replacements, which could assist in estimating PV waste. 

The authors analyzed the variation in the capacity factor (CF) of 
the US solar plants from 2011 to 2020 to identify possible 
repowering.  A sudden increase in CF is attributed to the possible 

replacement of old, less efficient modules with higher efficiency 
modules. The generation and construction data of major PV 
projects (≥1MW) is collected from US Energy Information 

Administration and converted into a statistical model to evaluate 
the capacity factor performance. An algorithmic program is 
generated that analyses and identify the plants with repowering. 

Multiple methods, including satellite image, machine learning, and 
data comparison, are applied to validate and optimize the program. 
Results show that the method can overall evaluate and monitor the 

trend of module replacement, although the identification accuracy 
of a single plant needs further validation. The model will use more 
parameters, including temperature, location, and irradiance, to 

improve the success rate. 
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I. INTRODUCTION 

Solar photovoltaics (PV) has rapidly developed in the 21st 

century as an environment-friendly technology. It is considered 

one of the cleanest renewable energy sources meeting the 

challenges of increased energy demand with low environmental 

emissions. In 2021, a large capacity of solar plants was added 

to the US grids, and utility-scale (29%) and distributed (15%) 

solar accounted for a combined 45% of the  all capacity added 

to US grids[1]. While the PV modules have low environmental 

emissions during their operational phase, they still have some 

environmental impacts during the entire life cycle. Production 

and end-of-life (EoL) stages contribute maximum to the 

environmental impacts and human health [2].  

To better specify the material flow of the LCA, studies 

focused on the estimation of PV waste.  One general 

methodology is to track the materials components in PV 

technologies [3]. The quantification of materials is used to 

forecast PV waste. The method relies mainly on references 

from related studies and accounts for crystalline technology and 

thus, doesn’t account for new technologies. Related research 

typically uses the installation year as the baseline to forecast the 

waste after 25-30 years [4]. However, the lifetime of the 

modules is not as long as manufacturers claim because 

operators prefer to replace the modules with new ones in the 

early years to achieve higher electricity generation for 

economic benefit. Therefore, the ‘number/capacity of modules 

replaced per year’ is a critical parameter in the PV waste 

estimation. 

It is economically favorable to replace modules with more 

efficient ones. The critical condition is that the efficiency gain 

over installed modules must be large enough to justify the 

added replacement cost [5]. For crystalline silicon, an increase 

of 1% in cell efficiency would require the increase of cell 

production cost to be less than 25% for the process to be 

accepted [6]. PV manufacturers compete for higher efficiency, 

continuously developing better-performing modules at a 

reduced cost. For example, the manufacturer Longi has reached 

a 26.09% efficiency rate, claiming the materials applied are 

cheaper and more environmentally friendly [7]. JinkoSolar has 

released TOPCon solar modules with maximum efficiency of 

23.23% [8]. Considering higher electricity generation and 

financial benefits, utility-scaled solar plant operators are 

motivated to replace less efficient modules with these new, 

more efficient ones. The suddenly increased efficiency has 

provided an excellent opportunity to identify the plants with 

module replacement. 

II. METHODS 

The capacity factor (CF) refers to the ratio of the electricity 

output from a power plant over a particular time to the 

maximum possible output at its maximum capacity for the 

entire duration. Assuming that the annual difference of average 

sunlight time is ignorable for solar energy, the CF is 

representable for the performance of the solar module. Due to a 

series of factors, mainly module’s degradation, the performance 

will decrease yearly, as represented by the CF. Since the CF 

represents the module’s efficiency to some extent, an increase 

in CF from one year to the next is assumed as a replacement 

(old modules with lower efficiency are replaced with new 

modules with higher efficiency). The present study applies this 

approach to utility-scale solar plants (>1 MW) to identify 

repowered plants. 



 

A. Data collection and calculation 

The construction data is extracted from EIA 860 forms [9], 

and the generated data is extracted from EIA 923 forms [10]. 

The location and other geological information are obtained 

from EIA Atlas [11]. The CF is calculated as per the following 

equation: 

                                         𝐶𝐹 =  
𝑊

𝐶 × 24ℎ𝑟 × 365𝑑
                                (1) 

Where W refers to the annual generation, and C refers to the 

plant’s total capacity. Though a solar plant cannot operate for 

24 consecutive hours, it is still used to represent the maximum 

power output. For a plant with multiple arrays which was 

installed in a different year, the total capacity in a specified year 

could be represented as: 

                        𝐶(𝑦𝑒𝑎𝑟) =  ∑ 𝐶1𝑗 + ∑ (𝐶2𝑗 ×
𝑚𝑗

12
)                         (2) 

C1i refers to the module’s capacity installed before the year; 

C2i refers to the module’s capacity installed this year; mj refers 

to the entire operating months. Notably, the newly installed 

modules may not be entirely operated in the initial year, but the 

overestimation will not impact the results. 

B. Identification and correction 

The total number of utility-scale solar plants reported by EIA 

is 4581, and the number of newly operated plants since 2013 is 

listed in TABLE I. 

TABLE I.  SUMMARY OF NEWLY INSTALLED PLANTS SINCE 2013 

Year 2013 2014 2015 2016 2017 2018 2019 2020 

Plants 243 310 370 469 526 473 487 534 

  

The solar plant data includes many abnormal values, 

including 0 values, negative generation, and non-zero values 

before the operation year. It is addressed by initial data cleaning 

and organizing. Also, it is assumed that the fluctuation in annual 

irradiation has a negligible impact on the CF; therefore not 

considered. The three considered factors contributing to the 

yearly variation in capacity factor are: 

i) Degradation of the PV modules 

ii) Module alteration 

iii) Grid fluctuations  

 

A code is developed to detect the variation in capacity factor 

and reduce the impact of the degradation and grid. Further, a 

three-class criterion is applied to rank the replacement:  i) no 

replacement, ii) average probability of replacement, and iii) 

high replacement probability. To reduce the error, the yearly 

evaluation will depend on the performance for 3 to 5 

consecutive years. 

C. Validation 

To validate the results for the identified replacement in 

Arizona, satellite images from National Agriculture Imagery 

Program (NAIP) are used to identify module replacements.  

 III. RESULTS 

Figure 1: Operation Condition of solar plants in Arizona  

Figure 2: Number of identified repowered plants by year based 

on the CF change. 

Figure 1 shows the capacity factor variation from 2011 to 

2020 for plants over 1 MW capacity in Arizona. The total 

number of solar plants with over 1 MW capacity in Arizona 

gradually increases. The period from 2011 to 2013 is the fastest 

growing time, where most plants have more than five years of 

operation. For increased CF in 2016, the chance of replacement 

could be anticipated (the overall tendency for all states also 

happened in 2016). 

Figure 2 shows the number of identified repowered plants 

from the initial algorithm, where the plants are only divided into 

non-replacement and replacement categories. To reduce the 

impact of the annual sunlight time, the algorithm detects the 

replacement based on the performance in a 5-year overall 

performance to, and the abnormal capacity factor change is 



 

excluded. The peak in 2016 is already observed and recorded. 

This proves the validity of the present method and approach. 

Figure 3 shows the solar plant distribution with no 

replacement, the average probability of replacement, and the 

high probability of replacement in the Mainland of the US, 

Hawaii, and Alaska not included. The figure shows that in 2016 

most replacements happened in the coastal, and in 2020  

northern areas have more replacement than 2016. This could be 

explained by the start year and location of the solar plants. In 

coastal regions like California and North Carolina, they have a 

very early solar plant start, while the north area has a late start 

following the trends in 2014-2017. Considering the economic 

benefits, most operators will replace the modules with higher 

efficient modules for more electricity generation for modules 

operated over 5 years. Another factor, the location/region, 

could impact the motivation for replacement. In the northern 

area, the modules are more frequently impacted by bad weather 

conditions, mainly the snow. Under such conditions, the 

modules are easier to be damaged or degraded, causing a 

shorter lifetime of the module with more frequent replacement.  

 

Figure 1: Replacement distribution map of US solar plants in 

a) 2016; b)2020. 

From the figure, there are some patterns about the module 

replacement related to the location and operation year. If the 

correlation of the replacement with those parameters could be 

thoroughly understood, it is possible to build a model covering 

all the parameters, to explore the relationship between the 

replacement trends with time, location, temperature, and 

generation, furtherly predict the capacity of replaced modules. 

In addition, the machine learning methods could be applied to 

optimize the algorithm, using the plant information and CF as 

input and the results from relative studies for training, which is 

expected to increase the accuracy for the identification.  
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