Identification of module replacements in US utility-scale photovoltaic
installations

Chenyang Deng!, Jacob T. Stid?, Preeti Nain!, Annick Anctil

"Department of Civil and Environmental Engineering, Michigan State University, East Lansing, 48824, MI,

USA

2 Department of Earth and Environmental Science, Michigan State University, East Lansing, 48824, MI,
USA

Abstract — Including replaced modules is crucial to estimate waste after 25-30 years [4]. However, the lifetime of the

PV waste generation. A new method is proposed to identify past
module replacements, which could assist in estimating PV waste.
The authors analyzed the variation in the capacity factor (CF) of
the US solar plants from 2011 to 2020 to identify possible
repowering. A sudden increase in CF is attributed to the possible
replacement of old, less efficient modules with higher efficiency
modules. The generation and construction data of major PV
projects (1MW) is collected from US Energy Information
Administration and converted into a statistical model to evaluate
the capacity factor performance. An algorithmic program is
generated that analyses and identify the plants with repowering.
Multiple methods, including satellite image, machine learning, and

data comparison, are applied to validate and optimize the program.

Results show that the method can overall evaluate and monitor the
trend of module replacement, although the identification accuracy
of a single plant needs further validation. The model will use more
parameters, including temperature, location, and irradiance, to
improve the success rate.

Keywords—PV Replacement, PV Repowering, Solar capacity
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I. INTRODUCTION

Solar photovoltaics (PV) has rapidly developed in the 21st
century as an environment-friendly technology. It is considered
one of the cleanest renewable energy sources meeting the
challenges of increased energy demand with low environmental
emissions. In 2021, a large capacity of solar plants was added
to the US grids, and utility-scale (29%) and distributed (15%)
solar accounted for a combined 45% of the all capacity added
to US grids[1]. While the PV modules have low environmental
emissions during their operational phase, they still have some
environmental impacts during the entire life cycle. Production
and end-of-life (EoL) stages contribute maximum to the
environmental impacts and human health [2].

To better specify the material flow of the LCA, studies
focused on the estimation of PV waste. One general
methodology is to track the materials components in PV
technologies [3]. The quantification of materials is used to
forecast PV waste. The method relies mainly on references
from related studies and accounts for crystalline technology and
thus, doesn’t account for new technologies. Related research
typically uses the installation year as the baseline to forecast the

modules is not as long as manufacturers claim because
operators prefer to replace the modules with new ones in the
early years to achieve higher electricity generation for
economic benefit. Therefore, the ‘number/capacity of modules
replaced per year’ is a critical parameter in the PV waste
estimation.

It is economically favorable to replace modules with more
efficient ones. The critical condition is that the efficiency gain
over installed modules must be large enough to justify the
added replacement cost [5]. For crystalline silicon, an increase
of 1% in cell efficiency would require the increase of cell
production cost to be less than 25% for the process to be
accepted [6]. PV manufacturers compete for higher efficiency,
continuously developing better-performing modules at a
reduced cost. For example, the manufacturer Longi has reached
a 26.09% efficiency rate, claiming the materials applied are
cheaper and more environmentally friendly [7]. JinkoSolar has
released TOPCon solar modules with maximum efficiency of
23.23% [8]. Considering higher electricity generation and
financial benefits, utility-scaled solar plant operators are
motivated to replace less efficient modules with these new,
more efficient ones. The suddenly increased efficiency has
provided an excellent opportunity to identify the plants with
module replacement.

II. METHODS

The capacity factor (CF) refers to the ratio of the electricity
output from a power plant over a particular time to the
maximum possible output at its maximum capacity for the
entire duration. Assuming that the annual difference of average
sunlight time is ignorable for solar energy, the CF is
representable for the performance of the solar module. Due to a
series of factors, mainly module’s degradation, the performance
will decrease yearly, as represented by the CF. Since the CF
represents the module’s efficiency to some extent, an increase
in CF from one year to the next is assumed as a replacement
(old modules with lower efficiency are replaced with new
modules with higher efficiency). The present study applies this
approach to utility-scale solar plants (>1 MW) to identify
repowered plants.



A. Data collection and calculation

The construction data is extracted from EIA 860 forms [9],
and the generated data is extracted from EIA 923 forms [10].
The location and other geological information are obtained
from EIA Atlas [11]. The CF is calculated as per the following
equation:

w

CF = X 2ahr x 3654

®

Where W refers to the annual generation, and C refers to the
plant’s total capacity. Though a solar plant cannot operate for
24 consecutive hours, it is still used to represent the maximum
power output. For a plant with multiple arrays which was
installed in a different year, the total capacity in a specified year
could be represented as:

C(year) = Z Cyj+ Z (Czj X %) 2)

Ci; refers to the module’s capacity installed before the year;
C,; refers to the module’s capacity installed this year; m; refers
to the entire operating months. Notably, the newly installed
modules may not be entirely operated in the initial year, but the
overestimation will not impact the results.

B. Identification and correction

The total number of utility-scale solar plants reported by EIA
is 4581, and the number of newly operated plants since 2013 is
listed in TABLE 1.

TABLE I. SUMMARY OF NEWLY INSTALLED PLANTS SINCE 2013

Year 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020
Plants | 243 310 370 469 526 473 487 534

The solar plant data includes many abnormal values,
including 0 values, negative generation, and non-zero values
before the operation year. It is addressed by initial data cleaning
and organizing. Also, it is assumed that the fluctuation in annual
irradiation has a negligible impact on the CF; therefore not
considered. The three considered factors contributing to the
yearly variation in capacity factor are:

i) Degradation of the PV modules
ii) Module alteration
iii) Grid fluctuations

A code is developed to detect the variation in capacity factor
and reduce the impact of the degradation and grid. Further, a
three-class criterion is applied to rank the replacement: i) no
replacement, ii) average probability of replacement, and iii)
high replacement probability. To reduce the error, the yearly
evaluation will depend on the performance for 3 to 5
consecutive years.

C. Validation

To validate the results for the identified replacement in
Arizona, satellite images from National Agriculture Imagery
Program (NAIP) are used to identify module replacements.

III. RESULTS
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Figure 1: Operation Condition of solar plants in Arizona
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Figure 2: Number of identified repowered plants by year based
on the CF change.

Figure 1 shows the capacity factor variation from 2011 to
2020 for plants over 1| MW capacity in Arizona. The total
number of solar plants with over 1| MW capacity in Arizona
gradually increases. The period from 2011 to 2013 is the fastest
growing time, where most plants have more than five years of
operation. For increased CF in 2016, the chance of replacement
could be anticipated (the overall tendency for all states also
happened in 2016).

Figure 2 shows the number of identified repowered plants
from the initial algorithm, where the plants are only divided into
non-replacement and replacement categories. To reduce the
impact of the annual sunlight time, the algorithm detects the
replacement based on the performance in a 5-year overall
performance to, and the abnormal capacity factor change is



excluded. The peak in 2016 is already observed and recorded.
This proves the validity of the present method and approach.
Figure 3 shows the solar plant distribution with no
replacement, the average probability of replacement, and the
high probability of replacement in the Mainland of the US,
Hawaii, and Alaska not included. The figure shows that in 2016
most replacements happened in the coastal, and in 2020
northern areas have more replacement than 2016. This could be
explained by the start year and location of the solar plants. In
coastal regions like California and North Carolina, they have a
very early solar plant start, while the north area has a late start
following the trends in 2014-2017. Considering the economic
benefits, most operators will replace the modules with higher
efficient modules for more electricity generation for modules
operated over 5 years. Another factor, the location/region,
could impact the motivation for replacement. In the northern
area, the modules are more frequently impacted by bad weather
conditions, mainly the snow. Under such conditions, the
modules are easier to be damaged or degraded, causing a

shorter lifetime of the module with more frequent replacement.
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Figure 1: Replacement distribution map of US solar plants in
a) 2016; b)2020.

From the figure, there are some patterns about the module
replacement related to the location and operation year. If the
correlation of the replacement with those parameters could be

thoroughly understood, it is possible to build a model covering
all the parameters, to explore the relationship between the
replacement trends with time, location, temperature, and
generation, furtherly predict the capacity of replaced modules.
In addition, the machine learning methods could be applied to
optimize the algorithm, using the plant information and CF as
input and the results from relative studies for training, which is
expected to increase the accuracy for the identification.
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