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Elasticity in Apéry Sets

Abstract. A numerical semigroup S is an additive subsemigroup of the non-negative integers,
containing zero, with finite complement. Its multiplicity m is its smallest nonzero element.
The Apéry set of S is the set of elements Ap(S) = {n ∈ S : n−m 6∈ S}. Fixing a numerical
semigroup, we ask how many elements of its Apéry set have nonunique factorization, and
define several new invariants.

1. INTRODUCTION Every child’s first semigroup is the natural numbers, and their
first factorization theorem is the Fundamental Theorem of Arithmetic, which gives
unique factorization as a product of primes. The other operation, addition, is not ad-
dressed. Much attention has been given to factorization in various semigroups; for a
general introduction, see [10]. Often, the operation is multiplication [4, 7, 12], but
addition is worth studying as well [19]; it will be our operation here.

A numerical semigroup S is a subset of Z≥0 with finite complement that is closed
under + and contains 0. Numerical semigroups have been the subject of considerable
recent study [8, 11, 14, 15, 16, 17]. Many applications are known, such as in coding
theory [6]. For a general introduction to numerical semigroups, see [3] or [18].

The atoms of a numerical semigroup S are the nonzero elements that cannot
be expressed as the combination of two nonzero elements. The set A(S) of atoms
of S is finite; we call e(S) = |A(S)| the embedding dimension of S. We write
〈a1, a2, . . . , ak〉, with ai listed in ascending order, to denote the numerical semigroup
with atoms a1, . . . , ak. The smallest atom a1 is also the smallest nonzero element of
S; we call it m(S), the multiplicity of S.

An important tool for the study of numerical semigroups, from [2], is the Apéry set

Ap(S) = {x ∈ S : x−m(S) /∈ S},

which contains the smallest element of S in each congruence class modulo m(S).
It is easy to show that |Ap(S)| = m(S) and A(S) \ {m(S)} ⊆ Ap(S). If we want
to express elements of S as a free combination of atoms, A(S) is what we study.
However, if we want to use as many copies of m(S) as possible and other atoms as
little as possible, we look to Ap(S) instead.

We study properties about factorization into atoms. The most famous factorization
invariant is elasticity. Given a semigroup S and some x ∈ S, we write x as the com-
bination of atoms in every possible way. The elasticity of x, denoted ρ(x), is the the
largest number of atoms that can be used, divided by the smallest number. Clearly
ρ(x) ≥ 1; if equality holds, we say x is half-factorial. Conventionally we say that the
unit 0 is half-factorial.

In this note, we consider the elasticity function restricted to elements of Ap(S).
We write ρ(Ap(S)) for the maximum elasticity over the elements of Ap(S); if
ρ(Ap(S)) = 1, we say that S is Apéry half factorial, or AHF.

We can visualize the factorization structure of Ap(S) using a partially ordered set
(Ap(S),�) with x � y whenever y − x ∈ S, called the Apéry poset of S. The Hasse
diagrams of two Apéry posets are depicted in Figure 1. The atoms of the Apéry poset
(i.e., the elements directly above the unique minimal element 0) are precisely the ele-
ments ofA(S) apart fromm(S), and an edge connects x up to y in the Hasse diagram
exactly when y − x ∈ A(S). This leads to the following interesting observation.
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(a) Poset for S = 〈10, 14, 21〉, as in
Theorem 4 with n = 2 and p = 7.

(b) Poset for S = 〈9, 12, 19〉, as in
Theorem 5 with n = 3.

Figure 1. Examples of Apéry posets.

Theorem 1. A numerical semigroup S has graded Apéry poset if and only if S is AHF.

Proof. By the above discussion, each length ` chain (set of mutually comparable el-
ements) from 0 to an element n ∈ S corresponds to an ordered factorization of n
with length `. As such, two different chain lengths are present if and only if n is not
half-factorial.

2. APÉRY ELASTICITIES We begin by observing that if e(S) = 2, then we can
write S = 〈m, a〉 and Ap(S) = {0, a, 2a, . . . , (m− 1)a}. Each element of Ap(S)
is then not only half-factorial, but has unique factorization. On the other hand, if S has
maximal embedding dimension (i.e., e(S) = m(S)), then S = 〈m, a1, a2, . . . , am−1〉
and Ap(S) = {0, a1, a2, . . . , am−1}. Again each element of Ap(S) has unique fac-
torization. These observations are extended slightly in the following.

Theorem 2. Let S be a numerical semigroup with e(S) = 2 or e(S) ≥ m(S)− 1.
Then S is Apéry half-factorial.

Proof. If e(S) = m(S)− 1, then the only element of Ap(S) that is not an atom only
has length 2 factorizations.

Theorem 2 can’t be extended in general to smaller embedding dimension than
m(S)− 1. Consider S = 〈5, 6, 9〉, where m = 5, a1 = 6, a2 = 9. Now

Ap(S) = {0, a1, a2, 2a1, 3a1 = 2a2},

so ρ(3a1) = 3
2
.

Given a subset T ⊂ S, define the set of elasticities of T as

R(T ) = {ρ(n) : n ∈ T}.

This invariant has been studied for numerical semigroups in [5], wherein R(S) is
characterized for all but finitely many elasticities coming from “small” elements of S.
As such, R(Ap(S)) is a natural starting place for studying the remainder of R(S).

It is easy to see that if e(S) = m(S)− 2, either S is AHF orR(Ap(S)) = {1, 3
2
}.

DeterminingR(Ap(S)) for other near-maximal embedding dimensions remains open.

2 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 August 18, 2019 3:12 p.m. monthly-apery.tex page 3

We now present a family of semigroups in Theorem 3 which demonstrate several
extremal behaviors, as discussed thereafter.

Theorem 3. Fix a > b ≥ 1 with gcd(a, b) = 1. There is a numerical semigroup S
with (i) R(Ap(S)) = {1, a

b
} and (ii) only one element of Ap(S) has elasticity a

b
.

Proof. Fix a prime p - (a+ b) with a+ b < pb, and let S = 〈a+ b, pa, pb〉. We have

Ap(S) = {0, pb, 2pb, . . . , (a− 1)pb, pa, 2pa, . . . , (b− 1)pa, pab},

wherein each element has unique factorization except pab, which has elasticity a
b
.

One natural question to ask is: which subsets of Q≥1 can occur as R(Ap(S)) for
some numerical semigroup S? Certainly we must have 1 ∈ R(Ap(S)), and the sole
singleton subset, {1}, is achieved for all Apéry half-factorial S. All subsets of size two
are realizable by Corollary 1. Larger subsets of Q≥1 remain unresolved.

Corollary 1. Given r ∈ Q>1, some numerical semigroup S hasR(Ap(S)) = {1, r}.

Proof. Write r = a
b

in reduced form, and apply Theorem 3.

Since Ap(S) is a finite set, we can consider the full distribution of elasticity over
its elements, and not just its maximum ρ(Ap(S)). We call the Apéry half-factorial
fraction, or AHFF, the ratio of the number of half-factorial elements of Ap(S), to
|Ap(S)|. If S is AHF, then its AHFF is 1.

Theorem 3 produced a single non-half-factorial element of Ap(S); hence S had
AHFF close to 1. Certainly the AHFF cannot be zero, as each element of A(S) is
half-factorial. One wonders how small the AHFF can be. Theorem 4, illustrated in
Figure 1(a), displays the smallest possible AHFF while maintaining e(S) = 3.

Theorem 4. The fraction of Apéry set elements of a numerical semigroup that are
half-factorial can be arbitrarily close to 0.

Proof. Let p, n ∈ Z≥1 with p prime, p 6= 5, and 2p > 5n > 5. Setm = 5n, a1 = 2p,
a2 = 3p, and take S = 〈m, a1, a2〉. We have

Ap(S) = {0, 2p, 3p, . . . , (5n− 1)p, (5n+ 1)p}.

Since 6p = 3a1 = 2a2, only 0, 2p, 3p, 4p, 5p and 7p are half-factorial in Ap(S).
As such, the AHFF of S is 6

5n
.

With the generality of the family in Theorem 3, one might wonder if any S with
e(S) = 3 can be AHF. One such family is provided in Theorem 5, an example of
which is illustrated in Figure 1(b).

Theorem 5. For each n ∈ Z≥2, the semigroup S = 〈n2, n2 + n, 2n2 + 1〉 is AHF.

Proof. Ap(S) = {a(n2 + n) + b(2n2 + 1) : 0 ≤ a, b ≤ n− 1}.

Theorem 5 also demonstrates that the width of the Apéry poset, which is always
bounded below by e(S), can be larger.

Corollary 2. The width of an Apéry poset can be arbitrarily large, even for e(S) = 3.
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3. MEAN APÉRY ELASTICITY Motivated in part by recent investigations into
“average” factorization lengths in numerical semigroups [9], we next consider the
mean Apéry elasticity, i.e.,

MAE(S) =
1

|Ap(S)|
∑

n∈Ap(S)

ρ(n).

If S is half-factorial, of courseMAE(S) = 1. The family from Corollary 1 has mean
Apéry elasticity 1 + 1

b
− 2

a+b
. Theorem 6 will show that mean Apéry elasticity may

be arbitrarily large, though one may still wonder which elements of Q≥1 occur as
MAE(S) for some numerical semigroup S.

Theorem 6. The values of MAE(S), with e(S) = 3, can be arbitrarily large.

Proof. Let p, q be odd primes with p > 2q + 4. Set m = 4q + 8, a1 = 2p, a2 = qp,
and take S = 〈m, a1, a2〉. We have

Ap(S) = {0, 2p, 4p, . . . , (q − 1)p, qp, (q + 1)p, . . . , 1
2
(9q + 17)p},

where all multiples of p are present after qp except (4q + 8)p. Now, consider the set

T = {(2q + 2i)p : 0 ≤ i < q} ⊂ Ap(S).

We calculate elasticity of the elements of T as

ρ((2q + 2i)p) = ρ((q + i)a1) = ρ(2a2 + ia1) =
q + i

2 + i
≥ q

2 + i
,

and consequently

MAE(S) =
1

m

∑
n∈Ap(S)

ρ(n) ≥ 3q + 8

m
+

1

m

∑
n∈T

ρ(n) ≥ 3q + 8

m
+

q

m

q−1∑
i=0

1

2 + i

grows arbitrarily large as q →∞.

4. ASYMPTOTIC DISTRIBUTIONS Given a numerical semigroup S, denote by
g(S) = |Z≥0 \ S| the genus of S. Let ng denote the number of numerical semigroups
with genus g, and let nm,g denote the number of numerical semigroups with multiplic-
ity m and genus g. For example, letting fg denote the g’th Fibonacci number, it was
recently proven that ng/fg approaches a constant as g →∞ [20], although it is still
open whether ng+1 ≥ ng for every g ≥ 0. On the other hand, for fixed m, the ratio
nm,g/g

m−1 approaches a constant as g →∞.
There has been a recent push to understand the distribution of numerical semi-

groups with a given genus across different special families. For example, if Mg and
Mm,g denote, respectively, the number of maximal embedding dimension numerical
semigroups with genus g and the number with both multiplicity m and genus g, then
Mg/ng → 0 as g →∞, while Mm,g/nm,g → 1 as g →∞; see [1, 13].

Continuing in this vein, let hg denote the number of AHF numerical semigroups
with genus g, and let hm,g denote the number of AHF numerical semigroups with
multiplicitym and genus g. Theorems 7 and 8 below demonstrate that AHF numerical
semigroups form a much larger class than those with maximum embedding dimension.

4 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 August 18, 2019 3:12 p.m. monthly-apery.tex page 5

Theorem 7. For each fixed m ≥ 2, we have

lim
g→∞

hm,g

nm,g

= 1.

Proof. Apply [1, Corollary 1].

Identifying the precise value of the limit below will likely be challenging, consider-
ing the long and technical nature of the proof of [20, Theorem 1]. Out of the 1179593
numerical semigroups with genus at most 25, we find 1032971 (about 88%) are AHF.

Theorem 8. We have

0 < lim
g→∞

hg

ng

< 1.

Proof. Let fn denote the n’th Fibonacci number. By [20, Theorem 1], we have

lim
g→∞

fg+1

ng

> 0.

As such, for the first inequality, it suffices to show that fg+1 ≤ hg. Fix a multiplicity
m ≤ g + 1. For each subset T ⊂ {1, . . . ,m− 1}, consider the numerical semigroup
S with Apéry set given by Ap(S) = {0, a1, . . . , am−1}, where

ai =

{
2m+ i if i ∈ T ;
m+ i if i /∈ T.

It is clear S has multiplicity m and genus m+ |T |, and is AHF. As such,

hg =
g+1∑
m=2

hm,g ≥
g+1∑
m=2

(
m− 1

g − (m− 1)

)
= fg+1.

For the other inequality, we use a similar construction, where we first let a1 = m+ 1,
a2 = 2m + 2, a3 = 3m + 3, a4 = m + 4, and am−1 = m + (m − 1), and then
choose the remaining ai as above. In each resulting semigroup,

a3 = 3a1 = a4 + am−1

is not half-factorial, and by similar reasoning to above, this family of semigroups also
comprises a positive asymptotic proportion of those with genus g.
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