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In recent years, mechanical metamaterials have been developed that support
the propagation of an intriguing variety of nonlinear waves, including transi-
tion waves and vector solitons (solitons with coupling between multiple
degrees of freedom). Here we report observations of phase transitions in 2D
multistable mechanical metamaterials that are initiated by collisions of soliton-
like pulses in the metamaterial. Analogous to first-order phase transitions in
crystalline solids, we observe that the multistable metamaterials support
phase transitions if the new phase meets or exceeds a critical nucleus size. If
this criterion is met, the new phase subsequently propagates in the form of

M Check for updates

transition waves, converting the rest of the metamaterial to the new phase.
More interestingly, we numerically show, using an experimentally validated
model, that the critical nucleus can be formed via collisions of soliton-like
pulses. Moreover, the rich direction-dependent behavior of the nonlinear
pulses enables control of the location of nucleation and the spatio-temporal
shape of the growing phase.

Nonlinear mechanical metamaterials have received significant atten-
tion in the past decade, due to their versatile static and dynamic
behaviors?, and the ability to tune their response®*. For example,
nonlinear mechanical metamaterials have been previously designed
that exhibit tunable kinematics®, stiffness®, Poisson’s ratio’, thermal
expansion®, and band gaps®'°. Nonlinear mechanical metamaterials
often exhibit rich amplitude-dependent properties, such as weakly
nonlinear harmonic waves" ", cnoidal waves", solitons™'¢, and tran-
sition waves'’ %,

One particular class of mechanical metamaterial obtains its non-
linear properties from the rotation of periodic internal features, such
as squares connected at their hinges. Systems based on the rotating-
squares mechanism have long been studied due to their interesting
static properties (i.e., their auxetic characteristics)> . More recently,
it has been observed that they are also capable of propagating a variety

of nonlinear waves'***>!, A notable example is the propagation of
vector solitons, which have coupled translational and rotational
degrees of freedom (DOFs) and can display distinct solitary modes for
different propagation directions®. Interactions of these nonlinear
waves have also been investigated, albeit mostly for one-dimensional
systems®. Due to the coupling between different DOFs, which is less
often considered in Hertzian granular media® %, the collision of vector
solitons has been shown to exhibit anomalous phenomena, including
repelling, destruction, etc., in addition to classical soliton collisions™.

Recently, the dynamics of multistable versions of these systems
have also been studied. For example, multistability can be achieved by
introducing permanent magnets®*°, which can produce multiple
energy minima, each associated with equilibrium angles that the
squares can snap between. If squares are rotated from one stable angle
to another, it is possible for this reconfiguration to propagate

"Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA. 2School of Aerospace Engineering and
Applied Mechanics, Tongji University, Shanghai, China. 3Laboratoire d’Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d’Acoustique - Graduate
School (IA-GS), CNRS, Le Mans Université, Le Mans, France. *Aviation Technology Directorate, Japan Aerospace Exploration Agency, Mitaka, Tokyo, Japan.
SInstitute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan. " e-mail: raney@seas.upenn.edu

Nature Communications | (2024)15:333 1


http://orcid.org/0000-0003-1796-2209
http://orcid.org/0000-0003-1796-2209
http://orcid.org/0000-0003-1796-2209
http://orcid.org/0000-0003-1796-2209
http://orcid.org/0000-0003-1796-2209
http://orcid.org/0000-0003-4497-5742
http://orcid.org/0000-0003-4497-5742
http://orcid.org/0000-0003-4497-5742
http://orcid.org/0000-0003-4497-5742
http://orcid.org/0000-0003-4497-5742
http://orcid.org/0000-0001-5329-9980
http://orcid.org/0000-0001-5329-9980
http://orcid.org/0000-0001-5329-9980
http://orcid.org/0000-0001-5329-9980
http://orcid.org/0000-0001-5329-9980
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44293-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44293-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44293-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-44293-w&domain=pdf
mailto:raney@seas.upenn.edu

Article

https://doi.org/10.1038/s41467-023-44293-w

throughout the structure in the form of a transition wave. In addition,
the collision of transition waves of incompatible type can cause the
formation of stationary domain walls, which can be exploited for the
design of reconfigurable metamaterials®.

Here, we investigate collisions of nonlinear, soliton-like pulses in
2D multistable systems of rotating squares, and how these collisions
can be used to remotely nucleate phase transitions at arbitrary loca-
tions. As a first step, we experimentally and numerically show how
phase transitions can be initiated via quasistatic rotation of a “critical
nucleus” of squares, analogous to nucleation during first-order phase
transitions**2. Note, that in this work, the phase transitions are
enabled by multistability, which is achieved by embedding magnets in
the squares. This is in contrast with other work**™*, in which phase
transitions are induced by applying static precompression to the entire
system, or by dynamic recoil*. Second, we investigate the criteria
necessary for collisions of soliton-like pulses to induce this phase
transition. Finally, we describe how the anisotropy associated with the
symmetry of the system produces direction-dependent nucleation and
propagation of the phase transition. The presented method for
nucleation of phase transitions could enable new insights for the
design of high-dimensional reconfigurable, shape-transforming, and
deployable mechanical metamaterials. For example, a deployable
structure can be designed to exhibit monostability or multistability at
arbitrary locations, and the phase (shape) of the multistable parts,
even if they are located in the bulk, can still be controlled (possibly
independently) by exciting pulses from the boundary.

Results

Phase transitions in multistable metamaterials

We start by experimentally and analytically characterizing the energy
landscape of the building block of the mechanical system, i.e., a
2 x 2 set of squares. To experimentally measure the behavior of such a
system, we fabricate an elastomeric building block, following a
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Fig. 1| Experimental observations and numerical characterization of
quasistatically-induced phase transitions in 2D multistable metamaterials.

a Building block of the metamaterial. b Multistable potential energy landscape of
the hinge. ¢ Optical images of an experimental specimen with the center four
squares subjected to quasistatic rotation via the application of the force F; this
causes the formation of a new phase and its eventual growth outward through the
rest of the metamaterial. The angles obtained by the numerical simulations are
superimposed over the experimental images (indicated by color). The positive
(negative) rotational direction is defined in a way that rotates the squares from the
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conventional molding-casting process. Specifically, we design and 3D
print a mold (MakerGear M2, polylactic acid). We then pour silicone
precursor (Dragon Skin 10) into the mold and allow it to cure. The
squares have side length 12 mm and are connected by thin hinges of
thickness 1.5 mm. Permanent magnets are inserted into each square
(see Methods for fabrication details). A schematic of the building block
is shown in Fig. 1a. The competition between the strain energy of the
hinge and the interaction of the magnets gives the squares three stable
angles”. Each of these corresponds to a local minimum in the potential
energy landscape (Fig. 1b). Then, to quantify the effects of different
design parameters, we introduce a discrete model capable of captur-
ing the multistable energy landscape. Each square, assumed to be a
rigid body with mass M and moment of inertia / (experimentally
measured to be M=2.501 g and J=60.024 x10”° kg-m?), has two
translational degrees of freedom (u and v) and one rotational degree of
freedom (0). Each hinge is modeled by three springs (Fig. 1a): a linear
longitudinal spring with stiffness K}, a linear shear spring with stiffness
Ks, and a nonlinear torsional spring with potential energy E4(A6)
expressed as

Ep(AB)= %KH(AB)Z +Vytorse(A0), @

Vatoree(A0) = A [eZa(A9+200 ~20y) _ 9ga(80+20, 729M>]

+A [e—Za(A9+ 20, +26,) _ 26—a(A6+200+20M)] ) @
where Kj is the linear torsional spring constant, 6y is the initial equi-
librium angle, Af is the relative angle of the hinge, and Vjorse is the
Morse potential, which is used to empirically describe the nonlinear
magnetic interactions between squares. In Eq. (2), A and a define the
depth and width of the Morse potential, respectively, and 6,, deter-
mines the equilibrium points. To obtain these parameters for the
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initial Phase C to the new Phase R (Phase L). d Effect of system size on the formation
of a 2 x2 nucleus, using the validated numerical model with experimentally-
obtained parameters (K;=3.958 x 10? N/m, K~ 58 N/m, K;~2.5x10™* N-m/rad,
A=2x10", a=8.5, 6y ~20", 6),=45). e New parameters were selected and nor-
malized for the subsequent numerical simulations of this study, ensuring that a
critical nucleus size of 2 x 2 squares would be obtained (K;=0.2, K> =0.0306,
B=3.0556, A=0.0186, a =11, By~ 25. 4, By,=43). In both d and e, the total energy
(normalized by E =K,a?) is that of the 12 squares, including the center 2 x 2 squares
and their eight neighbors for three different system sizes.
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numerical simulations, we conduct experimental tensile and shear
tests using a commercial quasistatic test system (Instron model 68SC-
5) with custom fixtures (Supplementary Figs. 2 and 3). These are
designed to allow the squares to rotate during the tests. Then, Eq. (1)
gives the energy landscape of the building block, which exhibits three
distinct phases (labeled as Phase L, C, and R), as shown in the inset
of Fig. 1b.

Next, we focus on the dynamic behavior of the multistable system.
We derive the equations of motion (EOMs) of the system. By intro-
ducing the following normalized parameters: K; = Ky/K,, K> =Kq/(Kia?),
T=t\/K,/M, B=a\/M/J, A=A/(K,a%), U=u/a, V=v/a (where a is the
distance between the centers of two neighboring squares), we obtain
the dimensionless EOMs (see Supplementary Note 1). Then, we inves-
tigate the dynamic response of the system by numerically solving the
EOMs, using the fourth-order Runge-Kutta method.

Before performing numerical simulations to explore whether
collisions of impulses can induce a phase transition, we first conduct
experiments to validate the discrete model. To this end, we fabricate a
larger prototype of size 10 x 10 squares, following the same proce-
dures described earlier (note, to reduce the effect of the boundaries on
the behavior of the mechanical system, magnets are not embedded in
the exterior squares). The system is initially in Phase C. Nucleation is
induced by quasistatically forcing the 2 x 2 squares at the center of the
specimen to the new Phase R. Once the new phase is nucleated, the
entire specimen subsequently undergoes a transition to the new
phase, as shown in the optical images of Fig. 1c, obtained via a high-
speed camera (Photron FASTCAM Mini AX; Supplementary Movie 1
and Supplementary Figs. 4 and 5).

We perform numerical simulations by numerically solving the
EOMs of a system of 10 x10 squares, with the parameters obtained
from experimental tensile and shear tests (see Methods for details):
K;=3.958 x10> N/m, K;=58 N/m, Kj=2.5x 10* N-m/rad, A=2x10™,
a=8.5, 0p=20°, and 6),~45". In Fig. 1c, we superimpose the angles
predicted by the simulations (indicated by color) on the experimental
images, showing excellent agreement.

We now rely on numerical simulations to characterize some fun-
damental properties of the phase transition, such as the critical
nucleus size and the energy threshold that quantifies the minimum
amount of energy required for the phase transition to occur in an ideal,
thermodynamic sense. Analogous to classical first-order phase transi-
tions, we define the critical nucleus size for our system as the minimum
square size in a new phase from which the new phase is stable and
begins to grow. Here, we intentionally aim to produce the smallest
critical square nucleus, i.e., 2 x 2 squares, to make it easier to induce
phase transitions via collisions. To identify the energy threshold for the
quasistatically induced phase transition, we calculate the total energy
(normalized by E =K;a?) of the 12 squares, including the center four
squares (where the loading is applied) and their nearest neighbors, as a
function of angle 6y +6;, (0;, is the input rotation induced by the
quasistatic loading). The total energy can be divided into two com-
ponents. The first is associated with the center four squares (i.e.,
energy change as they move from Phase C to Phase R). The second is
the amount of energy associated with the interface (i.e., the eight
nearest neighbors of the center four squares). Interestingly, we
observe that the total energy displays an energy barrier E. at
6o + 0;,= 6., as indicated by the blue star in Fig. 1d. The existence of an
energy barrier implies that, under certain input rotations, the phase
transition may be favourable once the energy barrier is overcome
during quasistatic loading.

To investigate the effects of system size on nucleation, we repeat
the above analysis for two larger systems of size 20 x 20 and 30 x 30.
As shown by the yellow and red curves in Fig. 1d, the total energy
monotonically increases as the center four squares rotate to Phase R.
The interface energy (the second energy component) surpasses the
energy released from the phase change (the first energy component),

which indicates that a nucleus size of 2 x 2 squares is not big enough to
start the nucleation process (and therefore the growth of the new
phase is not favourable). The critical nucleus size is a thermodynamic
quantity that does not depend on the system size. Thus, by definition, a
2 x2 nucleus size cannot be identified as the critical nucleus size for
systems with the experimentally-obtained parameters, even though it
can trigger a phase transition in the 10 x 10 system (due to boundary
effects).

To achieve a critical nucleus size of 2 x 2 squares, we choose the
following parameters: 0y=25.4", 0,=43", K;=0.2, K,=0.0306,
A=2.74x1073, a=11, and B=3.0556. With these parameters, we per-
form an energy analysis for three systems of size 20 x 20, 30 x 30, and
40 x 40 (Fig. 1e). The three energy curves overlap for the most part,
with three nearly identical energy barriers E.~1.064 x1072, and only
differ slightly as the loading angle gets close to Phase R. These findings
indicate that, for the given parameters, the effects of system size on
the nucleation is negligible for system size greater than 20 x 20. Thus,
we have achieved a critical nucleus of 2 x 2 squares. For completeness,
we report in Supplementary Fig. 6 snapshots from the numerical
simulation for a system of 30 x 30 squares, exhibiting the nucleation of
a critical nucleus of 2 x 2 squares and the phase transition that pro-
pagates outward throughout the rest of the metamaterial in the form
of a transition wave (see Supplementary Movie 2 and characterization
of the transition wave in Supplementary Fig. 7). Finally, we note that it
is possible to obtain a critical nucleus size other than 2 x 2 squares
(Supplementary Fig. 8).

Initiating phase transitions via collisions of soliton-like pulses
Now that we have chosen parameters that produce the smallest critical
square nucleus (i.e., 2 x 2 squares), we next consider how such a critical
nucleus could be nucleated by colliding vector solitons. Previous
studies®®* have shown that vector solitons can propagate in similar
but monostable systems of squares without magnets. We first ask
whether the multistable metamaterial can support the propagation of
vector solitons or soliton-like pulses. To derive analytical solutions for
solitons, we develop a continuum model by taking the continuum
approximation of the discrete model and fitting a polynomial to the
torsional potential within the energy well around the initial equilibrium
6o (see derivation in Supplementary Note 2). Using the analytical
findings as guidelines, we perform full-scale simulations to explore the
potential of using collisions of soliton-like pulses to initiate a phase
transition.

Here, we consider a nearly circular system with 30 squares along
its diagonal. We impact the sample at different squares along its cir-
cumference to initiate pulses that propagate along different direc-
tions. Specifically, the impacts are displacement profiles in the form

D(T)= %tanh (T —To)/W]+ %tanh(TO/W) 3

where Ag and W are parameters that alter the impact amplitude and
shape, respectively. To avoid triggering a nucleation directly at the
impacted squares, in the simulations we impose 8= 0 to all squares on
the boundary.

Head-on collisions of two pulses with the same rotation

We first investigate head-on collisions of pulses by applying impacts at
the left and right boundary. In Fig. 2a, we show snapshots of the
wavefields at T=15, 28.7, 35, and 60, demonstrating that a phase
transition is induced where the two pulses collide (Supplementary
Movie 3). By sweeping the impact amplitude Ao, we identify a critical
amplitude A.=0.306, below which a nucleation is not induced by the
colliding pulses (see Fig. 3a and Supplementary Movie 4). When A >
A, the collision of the two pulses can lead to the formation of a critical
nucleus. In that case, the new phase propagates outward to the rest of
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Fig. 2 | Head-on collisions of two soliton-like pulses with nucleation of phase
transitions. a Snapshots of wavefields for Ao = 0.306 = A.: before collision at T=15,
during collision at 7=28.7, nucleation at T=35, and phase transition at 7=100
(T=t\/K,/M is the normalized time). b Normalized energy of the cluster at the
nucleation site as a function of time, suggesting an energy barrier £2“ in the total
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energy curve. ¢ Spatiotemporal plot obtained from the numerical simulation,
showing the angle 6 for squares along the propagation direction (x axis) as a
function of time. d and e Control of the location of nucleation via timing of the
impulses for d AT=10 and e AT =20, where AT is the time delay of the impact on
the left boundary with respect to the impact on the right boundary.

the structure via a transition wave. In Fig. 2b, we plot the normalized
energy of the squares at the nucleation site (i.e., the squares in the inset
of the third snapshot in Fig. 2a) as a function of time for Ap=A.. We
observe that there also exists an energy threshold EZ=3.84 x 1072
during the collision process. Comparing this energy threshold £2“ with
its counterpart in the previous quasistatic analysis, we note that £2“ is
much larger than £, a result of the fact that not all of the energy in the
propagating pulses will be directed toward forming a new phase dur-
ing the collision (e.g., some energy is lost in the form of scattered
waves). Figure 2¢ shows a spatiotemporal plot that provides the angle
of the squares along the propagation direction (x axis) as a function of
time and position (see Fig. 3b for a case of Ao <A,). We also note that
the location of nucleation can be changed simply by introducing a time
delay AT for the initiation of the impulse on the left with respect to the
initiation of the impulse on the right. We demonstrate this by showing
snapshots of the simulations in Fig. 2d and e for AT=10 and 20
(Supplementary Movie 5), respectively.

Head-on collisions of two pulses with the opposite rotation

We also explore head-on collisions of pulses with different rotational
directions (Fig. 3). In contrast with collisions between impulses with
the same (positive) rotation (as was triggered by applying two com-
pressive impulses at the left and right boundaries in Fig. 2a), Fig. 3c
shows a collision of two pulses with opposite rotational directions,
whose spatiotemporal plot is given in Fig. 3d. This is accomplished by
changing the excitation at the right boundary from a compressive
impact to a tensile impact. The two pulses pass through each other

without inducing a nucleation for Ao = A (Supplementary Movie 6). To
better understand this observation, we separate the kinetic energy into
two components: one associated with translational motion and the
other associated with rotational motion. The results are plotted in
Fig. 3e and f with Ao = A. for the same rotation and opposite rotation,
respectively. We find that there is some energy exchange between the
two kinetic energy components for the same rotation case, i.e., some
portion of the translational kinetic energy is transferred to the rota-
tional kinetic energy, which is associated with the change in relative
angle between squares. However, this energy exchange is almost
negligible for the opposite rotation case. This is because, by our defi-
nition of the positive/negative rotational direction, the change of the
relative angle between two connecting squares is less significant (or
even zero) when the two squares have rotations of opposite direction
(and of the same amplitude). This finding implies that the rotational
kinetic energy gained during the collision process is critical for over-
coming the energy barrier associated with nucleation. Another inter-
esting scenario is the collision of two pulses with negative rotation,
triggered by two tensile impulses. In this case, the energy exchange is
almost negligible. As a result, nucleation cannot be initiated (Supple-
mentary Fig. 9).

Effects of propagation distance on nucleation

Since the pulses are triggered at the boundary and collide at the center
of the structure, it is expected that the propagation distance can affect
the wave interactions during the collisions, and therefore may affect
the nucleation. We repeat the above analysis for systems with different
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Fig. 3 | Head-on collisions of two soliton-like pulses without nucleation of
phase transitions. a Head-on collision of two pulses with the same rotational
direction for Ag = 0.3 < A.: snapshots of wavefields before collision at 7=15 and
after collision at 7=35 and 40, resulting in no phase transition. b Spatiotemporal
plot extracted from the numerical simulation, showing the angle 6 for squares
along the propagation direction as a function of time. ¢ Head-on collision of two
pulses with the opposite rotational direction for A = A.: snapshots of wavefields
before collision at 7 =15 and after collision at 7= 28 and 35, showing that the pulses

pass through each other. d Spatiotemporal plot obtained from the numerical
simulation, showing the angle 6 for squares along the propagation direction as a
function of time. e and f Normalized kinetic energy of the whole structure as a
function of time for a head-on collision of pulses for Ag = A, with e the same rota-
tional direction and f the opposite rotational direction (the vertical dashed lines
indicate the time when the two pulses collide); the former case exhibits a significant
exchange between the translational and rotational components of the kinetic
energy.

sizes to examine this effect. The results, as reported in Supplementary
Figure 10, show that the critical amplitude A increases significantly as
the size increases. We observe dispersion, especially in the direction
perpendicular to propagation, which is qualitatively similar to the
expected 2D dispersion behavior observed previously®. As a result, its
amplitude spatially decays as it propagates through the media. In
contrast, the critical energy barrier £/ does not change in an appre-
ciable way, which indicates that the energy barrier for inducing a
nucleation is a local quantity, and therefore there is no statistically
significant change to the energy barrier.

Collisions of pulses at other angles

Finally, we consider the effect of propagation direction on the ability of
colliding pulses to nucleate a new phase (Fig. 4 and Supplementary
Movie 7). The circular shape of the system allows facile excitation of
pulses with arbitrary directions. For example, by applying impacts at
the left and top boundary, the two pulses can propagate along both the
x and y principal axes (i.e., the positive x direction and the negative y
direction, respectively). As shown in Fig. 4b, the two pulses nucleate a
new phase during their collision. In this case, the nucleation can be

induced atimpact amplitude Ao = 0.292, which is lower than the critical
amplitude of a head-on collision (replotted in Fig. 4a). In addition, we
observe that, after nucleation, the new phase grows predominantly
along the diagonal, at 45’ relative to the x and y axes. We refer to such
pulses, traveling along the x or y axes, as mode I pulses. Another fea-
sible propagation direction is along the diagonals (referred to as mode
Il pulses), a direction previously found to support the propagation of
vector solitons in monostable systems of rotating squares®. Figure 4c
shows a head-on collision between impulses propagating along this
direction. Mode-I pulses travel much faster than mode-Il pulses under
the same impact amplitude, and the wave speeds of both modes
slightly decrease as the impact amplitude increases (Supplementary
Fig. 12). With the above observations from Fig. 4c, we demonstrate that
the head-on collisions of two mode-II pulses can initiate a nucleation
with impact amplitude Ao =0.278. Then, the new phase grows pre-
dominantly along the diagonal at -45°. Fig. 4d shows collision of two
mode-Il pulses propagating along principal axes oriented to one
another at 90° for Ag = 0.24. Interestingly, we report in Fig. 4e that a
mode-I pulse can collide with a mode-Il pulse at nearly 135° to initiate a
nucleation for Ag = 0.302 (note that the pulse of mode I is delayed by
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Fig. 4 | Different collision scenarios. a Head-on collision of two mode-I pulses with
Ao =0.306. b Perpendicular collision of two mode-I pulses, with Ag = 0.292. ¢ Head-
on collision of two mode-II pulses along the diagonal, with Ao =0.278.

d Perpendicular collision of two mode-II pulses, with Ao = 0.24. e Collision of a

T =25

mode-I pulse and a mode-Il pulse propagating along directions oriented 135" with
respect to one another, with Ao = 0.302. f Collision of a mode-I pulse and a mode-II
pulse propagating along directions oriented 45 with respect to one another, with
Ao=0314.

AT=16 to compensate for the speed difference between the two
modes). Lastly, Fig. 4f shows the collision of a mode-I pulse and a
mode-Il pulse propagating along directions oriented 45° with respect
to one another for Ao =0.314 and AT =10. From these various collision
scenarios, we note that the spatio-temporal shape of the nucleated
phase is affected by where and how the two pulses intersect, which is
directly linked to the two impact angles as they dictate the propagation
directions and wave characteristics of the two colliding pulses (see
Supplementary Note 3 for details). Considering the symmetry of the
system, we can control the spatio-temporal shape by changing the
impact angles. For example, by moving the left impact shown in Fig. 4b
to the right boundary, the new phase will grow predominantly along
the other diagonal, at —45° relative to the x and y axes (see Supple-
mentary Fig. 14).

Discussion

In conclusion, we have experimentally and numerically investigated
phase transitions in macroscopic mechanical metamaterials, analo-
gous to classical solid-solid phase transitions in crystals. First, we have
experimentally confirmed and numerically corroborated the existence
of phase transitions, which can propagate in the form of transition
waves in 2D rotating-squares structures. We have identified the fun-
damental requirements for inducing nucleation, including the energy
threshold and the critical nucleus size. More importantly, we have
proposed a fundamentally new way via numerical investigations to
initiate these phase transitions, i.e., by colliding two soliton-like pulses.
This allows nucleation to occur at arbitrary locations in the metama-
terial, which may have significant utility in facile control of shape-
morphing structures. Although there are a number of practical chal-
lenges for experimental observation of nonlinear mechanical waves,
such as fabrication errors, material damping, imperfect excitation, etc,
the presented approach and the underlying physics could, in principle,
be realized experimentally using more advanced manufacturing and
measuring techniques. Therefore, this work not only contributes fun-
damentally to the understanding of nonlinear waves, and particularly

how collisions of one type of nonlinear wave can induce formation of
another type, but could also open new doors for the design of tunable,
shape-transforming, and deployable structures.

Methods

Materials and fabrication

In this work, experiments are conducted on building blocks of 2 x2
elastomeric rotating squares and larger 10 x 10 metamaterials (Fig. 1c).
The squares have edge length d=12 mm and are rotated by an angle
6,:,=5" with respect to the vertical axis (note that 6,;, is the initial
equilibrium angle without magnets inserted). We print a mold
(MakerGear M2, Polylactic acid (PLA)) with cylindrical extrusions of
radius r=6 mm at the center (see Supplementary Fig. 1). Adjacent
squares are connected via thin hinges of thickness 4 =1.5 mm. Silicone
(Dragonskin 10, Smooth-On, Inc.) is mixed under vacuum using a
Speedmixer (FlackTek, Inc), then poured into the mold and cured at
room temperature (six hours). After curing, permanent cylindrical
magnets (D41-N52 Neodymium Magnets, K& Magnetics) are embed-
ded at the center to provide attraction between adjacent squares. Note
that magnets are not included in the squares along the edges, to pre-
vent unintended phase changes at the boundary squares that can
result from boundary effects. Finally, 3D-printed (MakerGear M2, PLA),
diamond-shaped trackers are adhered to the surface of each unit to
allow tracking of the nodal rotation during dynamic testing.

Static testing
To characterize the static properties of the sample, we perform qua-
sistatic tensile tests using an Instron model 68SC-5 in displacement
control with a displacement rate of 0.02 mm/s. Two aluminum fixtures
are used to apply displacement to a specimen comprising four squares
(two columns), as shown in Supplementary Fig. 2a. Tensile tests are
conducted both with and without magnets.

For tests without magnets (Supplementary Fig. 2b), we embed an
aluminum rod at the center of each square. The two ends of the rod
maintain alignment via a horizontal slot in the fixture, which allows free
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rotation and displacement of each square. Supplementary Fig. 2b, c
indicate the locations of the applied force and the direction of rotation
of each square. Supplementary Fig. 3 shows the measured force-
displacement data (in blue).

As discussed in the main text, we introduce a discrete model to
capture the behavior of the prototypes. Based on the discrete model
(see schematic in Supplementary Fig. 2d), we can explicitly obtain the
force-displacement relationship for a 2 x 2 system under tensile load-
ing (the two squares at the bottom are fixed in the vertical direction
but free to rotate). The equations of equilibrium for the square high-
lighted by the red box can be written as

F+F, = 0 @
M +rxF, = 0
where  r=[lsin(0, +AB) — [ cos(f, + AD)] T F=- KiAue, and

M;=-2K;AOe, are the longitudinal force and moment of the linkage,
respectively. The vertical displacement u (i.e., change in height H
defined in Supplementary Fig. 2d) can be expressed as

u=H — Hy=2lcos(f,+A8) — 2l cos O, + Au; 5)

where Hy is the initial height.
Eq. (4) leads to

4K;00

F=Fey= —mey (6)

For specimens with magnets, we use the Morse potential to
empirically capture the magnetic interactions between squares. In this
case, the moment from the hinge M; becomes

Mi = _ZKjAeez - TMorse(Ae) (7)
where Thorse IS
av
T porse(A0) = d(ZA/IAores)e
=204 [e4a<Ae+eo—eM,,,se) _ eZa(Aewo—eMw)] 8)

_2aA [ e~ 4a(80+00 +Byorse) _ o—2a(A0+6 + 9M,,,se)}

By empirically fitting the experimental data using Egs. (5)-(7) (red
lines in Supplementary Fig. 3), we obtain the following parameters for
the discrete model: K;=3.958 x10° N/m, K;= 58 N/m, K;=2.5x107* N+
m/rad, A=2x10", a=8.5, 6,=20°, and O,,~45. Then, we can
approximate the multistable energy landscape of the hinge and per-
form the numerical simulation (see Fig. 1c).

Dynamic testing

To experimentally demonstrate phase transitions, we use a 10-column
by 10-row sample on a plastic surface (see Supplementary Fig. 4a).
Quasistatic loading is applied to the two vertical hinges connecting the
center four squares at the nucleation site. Note, the squares at the
edges do not have magnets, to prevent unintended nucleation at the
edges induced by boundary effects. Supplementary Fig. 4b, c show a
detailed view of the center four squares and friction-reducing feet
(MakerGear M2, PLA), respectively. The phase transformation is
recorded using a high-speed camera (Photron FASTCAM Mini AX) at
6400 frames per second. Diamond-shaped markers are placed at the
center of each square to allow tracking of the rotation and displace-
ment of the squares, using a custom Python script (see Supplementary
Fig. 4b). In Supplementary Fig. 5, we plot the experimentally measured
angles of the four squares highlighted in inset, showing the transition
from the initial phase to the new phase (i.e., Phase R, with 8 = 45).

Data availability

Data supporting the findings of this study are included within the
paper and its Supplementary Information files. The numerical data
underlying the figures and the raw data are generated from numerical
simulations using the code available at Ref. 47.

Code availability
Matlab code for numerical simulations is available at Ref. 47.
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