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NUMERICAL SEMIGROUPS, POLYHEDRA, AND POSETS II:
LOCATING CERTAIN FAMILIES OF SEMIGROUPS
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CHRISTOPHER PREUSS, TARANG SALUJA, AND EDUARDO TORRES DAVILA

ABSTRACT. Several recent papers have examined a rational polyhedron P,, whose in-
teger points are in bijection with the numerical semigroups (cofinite, additively closed
subsets of the non-negative integers) containing m. A combinatorial description of
the faces of P,, was recently introduced, one that can be obtained from the divisibility
posets of the numerical semigroups a given face contains. In this paper, we study
the faces of P, containing arithmetical numerical semigroups and those containing
certain glued numerical semigroups, as an initial step towards better understanding
the full face structure of P,,. In most cases, such faces only contain semigroups from
these families, yielding a tight connection to the geometry of P,,.

1. INTRODUCTION

A numerical semigroup is a cofinite subset S C Z>( of the non-negative integers
that is closed under addition. Numerical semigroups are often specified using a set of
generators ny < --- < ng, 1.e.,

S = <n1,...,nk) :{alnl—i—---—l—aknk:ai EZZO}'
The Apéry set of m € S is the set
Ap(S;m)={neS:n—m¢S}

of the minimal elements of S within each equivalence class modulo m. Since S is
cofinite, we are guaranteed |Ap(S;m)| = m, and that Ap(S;m) contains exactly one
element in each equivalence class modulo m. The elements of Ap(S;m) are partially
ordered by divisibility, that is, a < @’ whenever o’ —a € S (or, equivalently, whenever
a' —a € Ap(S;m)); we call this the Apéry poset of m in S.

A family of rational polyhedra whose integer points are in bijection with certain
numerical semigroups, first introduced by Kunz [11] and independently in [16], has
received a flurry of recent attention [1, 3, 6, 7, 8, 12, 16]. More specifically, given m > 2,
the Kunz polyhedron P,, is a pointed rational cone, translated from the origin, whose
integer points are in bijection with the numerical semigroups containing m (we defer
precise definitions to Section 2). One of the primary goals of studying these polyhedra
is to utilize tools from lattice point geometry (e.g., Ehrhart’s theorem) to approach
some long-standing enumerative questions involving numerical semigroups [5, 7).
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Recent developments have produced a combinatorial description of the faces of P,,.
Given a numerical semigroup S containing m, the Kunz poset is the partially ordered
set with ground set Z,, obtained by replacing each element of the Apéry poset Ap(S;m)
with its equivalence class in Z,,. In [3], it was shown that two numerical semigroups
lie in the interior of the same face of P,, if and only if they have identical Kunz
posets, thereby providing a natural combinatorial object that indexes the faces of P,
containing numerical semigroups. This combinatorial description was extended in [§]
to include every face of P,,, even those that do not contain any numerical semigroups.

When studying questions that are difficult to answer for general numerical semi-
groups, it is common to restrict to certain families with some additional structure.
In this paper, we examine two such families. The first (one of the most common in
the literature) are arithmetical numerical semigroups, whose minimal generating sets
are arithmetic sequences. Thanks to a particularly powerful membership criterion,
these semigroups admit closed forms for many quantities that are difficult to obtain
in general [2, 13, 15]. The second family is comprised of numerical semigroups ob-
tained by scaling every element of a given semigroup S by some common factor 3
and then adding one new generator « to obtain (a) + 85 (this process is known as
gluing). The result is a broad class of semigroups (which we call monoscopic numerical
semigroups (Definition 5.1)) that includes several other families of independent inter-
est, such as supersymmetric [4] and telescopic [10] numerical semigroups, as well as
numerical semigroups on compound sequences [9].

The combinatorial interpretation of the faces of P, in terms of posets is still young,
and many basic questions are still unanswered. The goal of this paper is to describe
geometrically the faces of P,, containing numerical semigroups from the families de-
scribed above, as an initial step towards better understanding the full face structure
of P,,. To this end, we give a formula for the dimension of every such face, and in most
cases characterize their extremal rays (both of which are still not well understood in
general for P,,). Our results yield two particularly notable geometric insights.

e We provide a collection of combinatorial embeddings of the form P,, < Pga,,,
which we call monoscopic embeddings, whose images contain precisely those
semigroups obtained from monoscopic gluings of semigroups in P,, with scal-
ing factor 8. This provides a complete characterization of the faces containing
monoscopic numerical semigroups, as well as all faces they contain. One inter-
pretation of this construction is that monoscopic gluing of numerical semigroups
can be realized as a geometric operation on Kunz polyhedra.

e The posets associated to low-dimensional faces, such as rays, possess the most
relations, making them more difficult to classify in general. Moreover, many
rays do not contain numerical semigroups. When describing a ray 7 of a face
F' containing arithmetical numerical semigroups, we do so by examining the
effect adding 7 to each integer point in F' has on the minimal generators of the
corresponding semigroup.
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FIGURE 1. Apéry posets of two numerical semigroups. The first, given
by S = (15,17,19,21,23) (left), is arithmetical, and the second, given
by S = (15,18, 20, 27) (right), is monoscopic.

In addition to providing a glimpse of the face structure of P,,, our results have several
consequences for numerical semigroups outside the realm of geometry.

e The elements in the Apéry sets of arithmetical and monoscopic numerical semi-
groups are well understood (indeed, this is one of the reasons these families are
considered especially “nice”). We extend both of these classical results to include
a description of the divisibility poset structure of the Apéry set, each of which
has an elegant combinatorial structure; see Figure 1 for examples.

e In most cases, the membership criterion for generalized arithmetical numerical
semigroups can be extended to all semigroups lying on their same face. This gives
rise to a new family of semigroups, which we call extra-generalized arithmetical
numerical semigroups, possessing most of the desirable properties of arithmetical
numerical semigroups. We develop this new family, independent of the geometry
of P, including a membership criterion (Proposition 3.3) and a formula for their
Frobenius number (Corollary 3.7).

The paper is organized as follows. After reviewing the necessary terminology in Sec-
tion 2, we introduce extra-generalized arithmetical numerical semigroups in Section 3,
providing a membership criterion (Proposition 3.3), a characterization of their Apéry
posets (Theorem 3.4), and a formula for their Frobenius numbers (Corollary 3.7). We
then examine the faces of P, containing extra-generalized arithmetical numerical semi-
groups in Section 4, giving a formula for their dimension (Theorem 4.2) and, in most
cases, their extremal rays (Theorem 4.6). In the final two sections of the paper, we
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turn attention to monoscopic numerical semigroups, characterizing their Apéry poset
structure (Theorem 5.4) and the complete structure of the faces containing them (The-
orems 6.7 and 6.10) via monoscopic embeddings (Definition 6.2).

2. THE GROUP CONE AND ITS FACES

After recalling basic definitions from polyhedral geometry (see [17] for a thorough
introduction), we define the Kunz polyhedron P,, and a related polyhedron from [§].

A rational polyhedron P C R%is the set of solutions to a finite list of linear inequalities
with rational coefficients, that is,

P={zcR%: Az <b}

for some matrix A and vector b. If none of the inequalities can be omitted without
altering P, we call this list the H-description or facet description of P (such a list of
inequalities is unique up to reordering and scaling by positive constants). The inequal-
ities appearing in the H-description of P are called facet inequalities of P.

Given a facet inequality a;z; + - -+ + agrg < b of P, the intersection of P with the
equation a;xy + - - - + aqgrg = b is called a facet of P. A face F of P is a subset of P
equal to the intersection of some collection of facets of P. The set of facets containing
F is called the H-description or facet description of F'. The dimension of a face F' is
the dimension dim(F") of the affine linear span of F. The relative interior of a face
F' is the set of points in F' that do not also lie in a face of dimension strictly smaller
than F' (or, equivalently, do not lie in a proper face of F'). We say F' is a vertez if
dim(F') = 0, and edge if dim(F') = 1 and F is bounded, a ray if dim(F) =1 and F is
unbounded, and a ridge if dim(F) =d — 2.

If there is a unique point v satisfying every inequality in the H-description of P with
equality, then we call P a cone with vertex v. If, additionally, b = 0 above, we call P
a pointed cone. Separately, we say P is a polytope if P is bounded. If P is a pointed
cone, then any face F' equals the non-negative span of the rays of P it contains, and
if P is a polytope, then any face F' equals the convex hull of the set of vertices of P it
contains; in each case, we call this the V-description of F.

A partially ordered set (or poset) is a set () equipped with a partial order < that is
reflexive, antisymmetric, and transitive. We say ¢ covers ¢ if ¢ < ¢ and and there is
no intermediate element ¢” with ¢’ < ¢” < ¢. If (Q, <) has a unique minimal element
0 € Q, the atoms of () are the elements that cover 0. The set of faces of a polyhedron
P forms a poset under containment that is a lattice (i.e., every element has a unique
greatest common divisor and least common multiple) and is graded, where the height
function is given by dimension. If P is a cone, then every face of P equals the sum
of some collection of extremal rays and the intersection of some collection of facets,
meaning the face lattice of P is both atomic and coatomic.
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Definition 2.1. Fix m € Z>,, and a numerical semigroup S containing m. Write
Ap(sa m) = {07 ag,. .. 7amfl}7

where a; = mz; + ¢ for each i = 1,...,m — 1. We refer to the tuples (ay,...,a,_1)
and (z1,...,2m-1) as the Apéry tuple/Apéry coordinates and the Kunz tuple/Kunz
coordinates of S, respectively.

Definition 2.2. Fix a finite Abelian group G, and let m = |G|. The group cone
C(G) c R™! is the pointed cone with facet inequalities

ZL’Z'—FZBJ'EZEZ'_H fOTZ,]GG\{O}Wlch—Fj?éO,

where the coordinates of R™™! are indexed by G \ {0}. Additionally, for each integer
m > 2, let P, denote the translation of C(Z,,) with vertex (==, ..., —™=1) whose
facets are given by

Ti+ T > iy for1<i<j<m-—1withi+j<m, and
Ti+x;+1>3, for1<i<j<m-—1withi+j>m.

We refer to P, as the Kunz polyhedron.
Parts (a) and (b) of the following theorem appear in [11] and [8], respectively.

Theorem 2.3. Fix an integer m > 2.

(a) The set of all Kunz tuples of numerical semigroups containing m coincides with
the set of integer points in P,,.

(b) The set of all Apéry tuples of numerical semigroups containing m coincides with
the set of integer points (ay,...,am-1) in C(Zy) with a; =i mod m for every i.

In view of Theorem 2.3, given a face F' C C(Z,,), we say F' contains a numerical
semigroup S if the Apéry tuple lies in the relative interior of F'. Analogously, we say
a face F' C P, contains S if the Kunz tuple of S lies in the relative interior of F”.

Theorem 2.4 ([8, Theorem 3.3]). Fiz a finite Abelian group G and a face F' C C(G).

(a) The set H={h € G :x, =0 for all z € F} is a subgroup of G (called the Kunz
subgroup of F'), and the relation P = (G/H, <) with unique minimal element 0
and @ <p b whenever x, + Ty_o = xp for distinct a,b € G is a well defined partial
order (called the Kunz poset of F).

(b) If G = Zy, with m > 2 and F contains a numerical semigroup S, then the Kunz
subgroup of F is trivial and the Kunz poset of F' equals the Kunz poset of S.

(c) In the Kunz poset P of F, b covers @ if and only if b — @ is an atom of P.

Remark 2.5. The automorphism group of a finite Abelian group G acts on the face
lattice of C(G) by permuting coordinates in the natural way. Each such automorphsim
induces a group isomorphism between the corresponding Kunz subgroups, as well as
on the corresponding Kunz posets.
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FIGURE 2. Apéry posets of the semigroups S = (11,12, 14,16, 18,20)
(left) and S" = (11,20, 29, 38,47,56) (middle) from Example 3.2, along
with their shared Kunz poset (right).

3. EXTRA-GENERALIZED ARITHMETICAL NUMERICAL SEMIGROUPS

Arithmetical numerical semigroups, which are numerical semigroups whose minimal
generating set is an arithmetic sequence, are a common focal point in the literature.
It turns out the polyhedral faces that contain arithmetical numerical semigroups also
contain semigroups from two related families: generalized arithmetical numerical semi-
groups (previously studied in [13, 14]) and a new family (Definition 3.1). In this section,
we provide a characterization of the Kunz posets for this new family (Corollary 3.5)
using an adapted membership criterion (Proposition 3.3), as well as a formula for their
Frobenius numbers (Corollary 3.7).

Definition 3.1. An extra-generalized arithmetical numerical semigroup has the form
S ={a,ah+d,ah +2d, ..., ah+ kd)
for a,h,k € Z>, and d € Z with k < a, ged(a,d) = 1 and ah + kd > a. If d > 1, then

we call S a generalized arithmetical numerical semigroup, and if d < 0, then we call S
a pessimistic arithmetical numerical semigroup.

Example 3.2. Consider the semigroup S = (11,12, 14, 16, 18, 20), whose Kunz poset is
depicted in Figure 2a. Reordering the generators as S = (11,20, 18, 16, 14, 12) reveals
that S is extra-generalized arithmetical with d = —2. This has the same Kunz poset
as " = (11, 20, 29, 38,47, 56), whose common difference d’ = 9 satisfies d' = d mod a.
It is important to note the extra requirement that ah + kd > a in Definition 3.1
is in place to ensure the given generating set is minimal. Indeed, the semigroup
(11,20, 18,16, 14,12,10) demonstrates this need not be the case if the assumption is
dropped. As it turns out, this assumption also forces a to be the multiplicity of S.

We begin by generalizing a membership criterion for generalized arithmetical numer-
ical semigroups to the extra-generalized family.
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Proposition 3.3. Fix an extra-generalized arithmetical numerical semigroup
S ={a,ah+d,ah +2d, ... ah+ kd).

Fizn € Z, and let n = qa + rd for q,v € Z>y with 0 <r < a —1. We have
(a) n€ S if and only if [7]1h < q, and
(b) n € Ap(S;a) if and only if [7]1h = q.
Proof. First, suppose n € S, so for some 2y, 21, ..., zx € Z>(, we have

k

n = zpa + Zzi(ah +id).

i=1

Write Zle zit = q¢'a+r for ¢,r € Z>o with r < a. Letting
k
q = ZO_'_hZZi —i—q’d,

=1

we obtain

k k
qa+rd= zoa—l—ahZzi+q'ad+rd:zoa+Zzi(ah+id) =n
i=1 i=1

and
. Lk k k
[ﬂhg [E;zzz—‘h < {;z{‘h:h;zl <q.

Conversely, assume [ |h < ¢ for some n = ag+rd with ¢,r € Z>pand 0 < r < a—1.
If r = 0, then n = aq clearly implies n € S, and if 0 < r < k, then the bounds on r
imply [7] =1, s0 h < ¢ and

n=aq+rd=(q—h)a+ (ha+rd) € S.
Lastly, if & < r, then
n=gqa+rd=(q—h+h)a+ (r—k+k)d= (ha+kd)+ (¢—h)a+ (r—k)d,
so it suffices to show (¢ — h)a+ (r —k)d € S. Since 0 <r —k <a—1 and

r—k T
p— —_— —_— < J—
“ }h Mh h<q—h,

we conclude by induction on r that n € S. This completes the proof of part (a).

For part (b), n € Ap(S;a) occurs when n € S and n —a ¢ S. Writing n = qa + rd
as above, we check by part (a) that this happens if and only if g —1 < [{]h < ¢, which
is equivalent to the desired equality. O
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Theorem 3.4. Fix an extra-generalized arithmetical numerical semigroup
S = (a,ah+d,ah +2d, ..., ah+ kd),

and write a — 1 = gk +r for q,r € Z>o with r < k.

(a) Each nonzero element a; € Ap(S;a) has the form

a; = xah + ((z; — 1)k + y;)d

for either z; € [1,q] and y; € [1,k], or z; = q+ 1 and y; € [1,7].
(b) We have a; < a; in Ap(S;a) if and only if x; < x; and y; > y;.
(¢) An element a; covers a; in Ap(S;a) if and only if v; = x; + 1 and y; > y;.

Proof. Part (a) follows from Proposition 3.3(b). For part (c), if v; = z;+1 and y; > y;,
then a; —a; = ah+ (k+y; —y;)d is a minimal generator of S, which by Theorem 2.4(c)
implies a; covers a;. Conversely, suppose a; covers a;, which by Theorem 2.4(c) means
aj —a; = ah +md with 1 < m < k. With a; and a; written as in part (a), we see
rj—x; =1land y; —y; = k —m > 0, as desired.

Lastly, for part (b), we cannot have a; < a; unless z; < z; by part (c). In this case,

a; —a; = (x; — x;)ah + ((x; — x)k +y; — yi)d

with 0 < (z; —x;))k+y; —y; <a—1,s0 a; —a; € Ap(S;a) by Proposition 3.3(b) when
(3@ — @)k +y; — )| =25 — 2+ [3(y; —w)| = 25 — @,
which happens precisely when y; > ;. U

Corollary 3.5. Resume notation from Theorem 3.4, and suppose S has Kunz poset P.

(a) The elements of P have the form [a;] = [md], where m = ((z; — 1)k + y;) takes
each integer value in [0,a — 1].

(b) The Kunz poset P is graded, with each [a;] occuring with height x;.

(¢c) The Kunz poset P depends only on a, k, and the residue of d modulo a.

Proof. Part (a) follows from Theorem 3.4(a) and the division algorithm, and part (b)
follows from Theorem 3.4(c). Lastly, part (c) follows by examining the statements of
parts (a) and (b). O

Remark 3.6. Again resuming notation from Theorem 3.4, the poset P can be drawn
so that the nonzero elements form a grid with & columns where y; specifies the position
from the left within each row, and cover relations between sequential rows are drawn
precisely when they do not have positive slope. Additionally, reading elements left to
right and bottom to top yields [0], [d], [2d], ..., [(a — 1)d], and all rows have k elements
except possibly the top row (where x; = ¢ + 1), which has r elements.

We close this section with a formula for the Frobenius number of an extra-generalized
arithmetical numerical semigroup, extending [14, Theorem 2.8] to the case when d < 0.
Our proof, including for positive d, utilizes the poset structure from Theorem 3.4.
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Corollary 3.7. For a given extra-generalized arithmetical numerical semigroup
S ={a,ah+d,ah +2d, ..., ah+ kd),

we have

[“2ah+ (a—1)d —a if d>0;
F(S) = {(le(athkd)jL(l—k)d—a if d < 0.

Proof. Write a — 1 = gk + r for q,r € Z>o with » < k. Regardless of whether d is
positive or negative, by Theorem 3.4 and Remark 3.6, a; = max(Ap(S;a)) must occur
in the top row of the Apéry poset. If d > 0, then a; is the last element of the top row,
meaning either z; = ¢ + 1 and y; = r, or x; = ¢ and y; = k (this is the case where
r = 0), both of which yield

F(S)=a; —a=mzah+ ((z; — )k +y;)d — a= [“L]ah+ (a — 1)d —

On the other hand, if d < 0, then a; is the first element in the top row, meaning y = 1
and either x; = ¢+ 1 or z; = ¢. In either case, z; = f"“—;W and

F(S)=a; —a=mzjah+ ((z; — )k +y;)d — a = [“2|(ah + kd) + (1 — k)d — a,
as desired. U

4. POLYHEDRA FACES CONTAINING ARITHMETICAL NUMERICAL SEMIGROUPS

Having now characterized the Kunz posets of extra-generalized arithmetical numer-
ical semigroups, we examine the geometric properties of faces containing such semi-
groups. In particular, we characterize their dimension (Theorem 4.2) and, for some,
their defining rays (Theorem 4.6). Additionally, we prove that in most cases, the faces
contain only extra-generalized numerical semigroups (Theorem 4.3)

We begin by describing the orbits (in the sense of Remark 2.5) of faces contain-
ing extra-generalized arithmetical numerical semigroups, allowing us to restrict some
arguments to the case when d = 1 mod a.

Lemma 4.1. Fix an extra-generalized arithmetical numerical semigroup
S = {a,ah+d,ah+2d,...,ah+ kd)

with containing face F C C(Z,). Applying any automorphism of C(Z,) induced by
multiplication by some u € Z* to F yields the face F'. Moreover, F' contains

S"=(a,ah+d ah+2d,... ah+ kd')
for any positive d’ with d’ = ud mod a.

Proof. Multiply each element of the Kunz poset of S by u and apply Corollary 3.5. [J
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Theorem 4.2. Given an extra-generalized arithmetical numerical semigroup
S ={a,ah+d,ah+2d, ..., ah+ kd)
with containing face F' C C(Z,), we have

a—1 ifk=a-—1;
5] ifk=a-2
2 ifl<k<a-—2

1 ifk=1.

dim F =

Proof. By Lemma 4.1, it suffices to assume d = 1 mod a. First, & = 1 implies e(.S) = 2,
so S lies on the ray (1,2,...,a—1), and if k = a — 1, then S has maximal embedding
dimension, meaning dim F' = a — 1. Next, suppose k£ = a — 2. By Corollary 3.5, the
facet equations of F' each have the form z; + x4, 1_; = x,_1 for i = 1,2,..., L“T_lj
Since the matrices

10 00 -+ 01 —1 é ?:: 88 8 ?é :}

and Lo Do ; :
S 00 10 1 00 —1
00 --11-- 00 —1 0 0 020 00 —1
both have full rank ||, we conclude dimF =a —1— |[451] = |

[NJIS]
[

(S

Lastly, suppose 1 < k < a — 2. Again applying Corollary 3.5, we obtain facet

equations of the form
ZBk+1:£E1+ZEk:I2+$k_1:"' and xk+2:$2+ﬂfk:$3+$k_1:"-
Subtracting corresponding equations above yields
Ty — X1 =XT3 —Tg =" """ =Tg-1 — Tk—2 = Tk — Tk—1,

meaning that the values of x; and x5 determine the values for xs3...,z,, and thus
for the remainder of the coordinates as well. This proves dim F' < 2, and since the
coordinates in C(Z,) of the semigroups S,

S"={a,a(h+1)+d,...,a(h4+1)+kd), and S" = (a,ah+(d+a),...,ah+k(d+a)),
are affine independent and lie in F' by Corollary 3.5(c), we conclude dim F' = 2. U

Our next result implies that, outside of the first 2 cases in Theorem 4.2, faces con-
taining extra-generalized arithmetical numerical semigroups contain exclusively such
semigroups.

Theorem 4.3. Fix an extra-generalized arithmetical numerical semigroup

S ={(a,ah+d,ah+2d,...,ah + kd).
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FIGURE 3. Kunz posets for S; and S (left) and for Sy and S}, (middle)
from Example 4.4, along with the Kunz poset of S3 = (7,23, 25,27, 29)
to which Theorem 4.3 does apply.

If kE < a— 2, then any numerical semigroup S’ with identical Kunz poset to S is also
an extra-generalized arithmetical numerical semigroup. In particular, the face of C(Z,)
containing S contains only extra-generalized arithmetical numerical semigroups.

Proof. If S and S’ have identical Kunz poset P, then m(S’) = a is the number of
elements of P and e(S’) = k + 1 is one more than the number of atoms of P by
Theorem 2.4(c), so write S" = (a,ny, ..., ny) with each n; = di mod a. Since k < a—2,
Ap(5’; a) has at least 2 more elements a1 = (k+1)d mod a and ago = (k+2)d mod a.
By Theorem 3.4(c),

Ogr1 =M1+ N =nNg+ N1 =~ and Agy2 =Ny + N = N3 +Ng—1 =+ -+
must all hold. Let d' = a2 — ag, 1. Subtracting corresponding equations above yields
!
d = Qpy2 — gy =Ny —Ng =Nz —Ng =+~

as well as

d' = Gpio — Qpy1 = Mg — N1 = Npp—1 — Np_g = -+ -
If k = 2j is even, then ayyo = 2nj41 = nj+nj40 and app1 = n;+nj41,50d =n;—n;_
and d’ = n;4; —n; both appear above. If k = 2j — 1 is odd, then a2 = n; +n;.; and
ap41 = 2nj = nj_1+n;41, so again d’ = nj—n;_; and d’ = n,41 —n; both appear above.
Putting everything together, we must have d = d’ mod a, so we can write n; = ah’+d’
for some h' > 1, and thus each n; = ah’ + id’, as desired. O

Example 4.4. The hypothesis £ < a—2 is necessary in Theorem 4.3. If k = a—1, such
as for the semigroup S = (6,7,8,9,10,11), then S is max embedding dimension, so
there are ample examples of other numerical semigroups (e.g., S; = (6,8, 10,13,15,17))
with identical Kunz poset (depicted in Figure 3a). If k& = a—2, such as for the numerical
semigroup Sy = (6,13, 14,15, 16), then S shares its Kunz poset (depicted in Figure 3b)
with the semigroup S5 = (6,15, 16, 19, 20).
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Corollary 4.5. Any face with an extra-generalized arithmetical numerical semigroup
S ={a,ah+d,ah+2d, ..., ah+ kd)

in its interior also contains infinitely many arithmetical numerical semigroups.

Proof. This follows from applying Theorem 3.4 to S and S’ = (a,a +d',...,a + kd')
where d' is any positive integer with d’ = d mod a. O

There is still no known classification of the extremal rays of group cones. The ma-
chinery developed in [8] yields a method to prove that a given ray is indeed a ray, but
proving that a given list of rays is complete, even for a particular face, is a much more
difficult task. However, it is a fact from polyhedral geometry (see [17], for instance)
that any 2-dimensional face of a pointed cone has exactly 2 extremal rays. As our final
result in this section, we characterize both bounding rays of the 2-dimensional faces of
the group cone containing extra-generalized arithmetical numerical semigroups.

Theorem 4.6. Fix an extra-generalized arithmetical numerical semigroup
S ={a,ah+d,ah+2d, ..., ah+ kd),

and suppose 1 < k < a —2. The extremal rays of the face F C C(Z,) containing S are
spanned by the following:

(i) the vector T that, when added to the Kunz coordinates of S in P,, yields
(a,ah + (d+a),...,ah + k(d+ a));

and
(ii) the vector t that, when added to the Kunz coordinates of S in P,, yields

(a,a(h+a)+ (d—ala/k]),...,a(h+a) + k(d — ala/k])).

The ray 7 contains all of the numerical semigroups {(a,b) for positive b = d mod a, and
the ray t contains numerical semigroups if k | (a — 1), in which case those semigroups
have the form {(a,b) for some positive b = kd mod a.

Proof. By Lemma 4.1, it suffices to assume d = 1. Under this assumption, it is easy to
check that 7= (1,2,...,a — 1), and that ¢ is given by

ti = zia — ((z; — Dk + ;) |la/k],
with x; and y; defined as in Theorem 3.4(a). Note each t; is surely non-negative, as
(zi — Dk +yi)|a/k| <xikla/k] < x;a.

Since every integer point in F'is the Kunz tuple of some extra-generalized arithmetical
numerical semigroup by Theorem 4.3, adding 7 or ¢t to any integer point in F' yields
another point in F', so the rays 7 and t both lie in F.
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Now, the coordinates of 7" satisfy the equation 2r; = ro, which is not satisfied by the
Apéry coordinates of S since k > 1. To prove that ¢ is also an extremal ray, we consider
two cases. First, if k | a, then

ty = a—kla/k| =0,

so t lies in a face with nontrivial Kunz subgroup. Otherwise, we can write a—1 = gk +r
with ¢ = |a/k| and 0 < r < k — 2 and obtain
tgrr = tery) = a—(k—(r+1))g = a—(k—(a—qk))q = (a—kq)+(qa—¢*k) = ti+tq
as a facet equation not satisfied by the Apéry coordinates of S. As such, we conclude
7 and t both lie in proper faces of F', which necessarily are rays since dim F' = 2.

For the final claims, it is clear that ¥ = (1,2,...,a — 1) contains semigroups of

the form (a,b) for b = 1 mod a since the Kunz poset is a total ordering. Likewise, if
a— 1= gk for ¢ € Z>y, then ¢, =1 and

t—i=a—(k—i)g=1+1iq

for each i = 1,...,k — 1, so the Kunz poset of ¢ is also a total ordering with unique
atom k. This completes the proof. Il

Example 4.7. The Kunz poset of S = (13,14,15,16,17) is depicted in Figure 4b,
along with the posets of its bounding rays in Figures 4a and 4c. By Theorem 4.6, the
Kunz poset of the first ray will always be a total order, obtained by “reading across
the rows” of the Kunz poset for S. For this particular semigroup & | (a — 1), so the
latter ray is also a total order, obtained by reading “bottom to top and right to left”
in the Kunz poset of S. The condition & | (e — 1) holds whenever the top row of the
Kunz poset has the full k£ elements.

Example 4.8. When & { (a — 1), the Kunz poset of the ray £ in Theorem 4.6 can be
substantially more complicated. One such example, for S = (16,23, 30,37, 44,51, 58),
is depicted in Figure 4d. Generally speaking, the ray ¢ often does not contain numerical
semigroups, and sometimes corresponds to a nontrivial subgroup (for instance, it is not
hard to show using Theorem 4.6 that this happens if & | a).

Remark 4.9. The remaining faces of C(Z,) containing extra-generalized arithmetical
numerical semigroups have substantially more extremal rays than those described in
Theorem 4.6. Indeed, if a = 19 and k = 17, then each such face has 726 rays, while
Pig itself has a grand total of 11,665,781 rays [3].

5. POSETS OF MONOSCOPIC NUMERICAL SEMIGROUPS

In this section, we introduce monoscopic numerical semigroups (Definition 5.1), and
extend a known characterization of the Apéry set of monoscopic numerical semigroups
to a characterization of their Apéry posets (Theorem 5.4) and Kunz posets (Corol-
lary 5.5).
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FIGURE 4. The Kunz poset of S = (13,14,15,16,17) ((b) above) and
its two bounding rays ((a) and (c) above), as in Example 4.7. The final
Kunz poset is that of a bounding ray for S = (16,23, 30, 37,44, 51, 58)
discussed in Example 4.8.

Definition 5.1. Fix a numerical semigroup S = (ny,...,ng), an integer 5 € Z>o, and
an element o € S\ {nq,...,nx} with ged(e, 8) = 1. The semigroup

T = <Oé> +5S = <CK,BTL1, s 7ﬁnk>
is called a monoscopic gluing of S, or simply monoscopic.

It is well known [15, Lemma 8.8] that under the given conditions, the generating set
for T given in Definition 5.1 is minimal.

Theorem 5.2 ([15, Theorem 8.2]). Suppose S = (m,na,...,ng) and that T = (a)+ S
1s a monoscopic gluing. We have

Ap(T; pm) ={ba+af :a € Ap(S;m) and 0 < b < f—1}.
Example 5.3. Let S = (4,13, 18), and consider the monoscopic gluings
Ty = (43) + 35 = (12,39, 43, 54) and T, = (31) + 35 = (12,31, 39, 54)

of S. Although the Apéry sets of 77 and T, have identical structure by Theorem 5.2,
and have nearly identical Kunz posets, as depicted in Figure 5, there is a subtle dis-
tinction. The key turns out to be that 31 € Ap(S;4), meaning ov = 31 is the smallest
possible value o can take in its equivalence class modulo 12. When we examine where
monoscopic semigroups lie in the Kunz polyhedron in Section 6, we will see that vary-
ing o within its equivalence class modulo fm yields semigroups within the same face,
unless @ € Ap(S;m), which places the resulting semigroup on a boundary face.



NUMERICAL SEMIGROUPS, POLYHEDRA, AND POSETS II 15

FIGURE 5. The Kunz poset for T} = (12,39, 43, 54) (without the dashed
edge) and Ty = (12,31, 39, 54) (with the dashed edge) from Example 5.3,
both of which are monoscopic gluings of S = (4,13, 18).

Theorem 5.4. Let S = (m,na, ..., ng). Suppose T = (a)+ S is a monoscopic gluing,
and fix ba+ af, ba+d' 5 € Ap(T; Bm).
(a) If a ¢ Ap(S;m), then ba+ aff < ba+d' B if and only if a <ga’ and b <V'.
(b) If o« € Ap(S;m), then ba+af <r b'a+d B if and only if a <g a’ and either b <V’
ora =g a —a.
Proof. 1t is clear, in either case, that if a <g a’ and b < V', then ba + aff <7 V'a+ d'5.
On the other hand, if b > ¥/, but a € Ap(S;m) and fa <g @’ — a, then
Wa+dp)—(ba+aB)=0 —-ba+(d —a)f=0 —-b+p)a+(d —a—a)feT,
so again ba + aff <7 ba+ d'f.
Conversely, suppose ba+af =<7 b'a+d' [, meaning (V' —b)a+(a’—a)B € Ap(T; fm).

By Theorem 5.2, this means

(b —ba+(ad —a)f=b'a+d"s
with a” € Ap(S;m) and 0 < b’ < 5 — 1. Rearranging this equality yields

b —-b—b"Na+(d —a—ad")B =0,
and since ged(a, 5) = 1, we must have g | (' —b—1b8") and a | (¢’ —a —a”). Given the
bounds on b, b/, and b”, this is only possible if b+ 0" — b =0 or b+ 0" —V = . If the

former holds, then & — b =0" >0 and o' —a = a” € S, so we are done. If the latter
holds, then ¢’ —a — a = a” € S, which is only possible if « € Ap(S;m) as well. O

Corollary 5.5. If S = (m,na,...,ng) and T = () + S is a monoscopic gluing, then
ba+d'p covers ba + af in Ap(T; fm) if and only if one of the following holds:
(i) a=d and b —b=1;
(1) b="V and a’ —a =n; for some j > 2; or
(isi) b=0—1,0 =0, and a’ —a = a.
Moreover, condition (iii) occurs in Ap(T'; Sm) if and only if « € Ap(S;m).
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Proof. By Theorem 2.4(c), b'a + '8 covers ba + af in Ap(T; fm) if and only if their
difference equals either o or fn; for some j > 2. By Theorem 5.4, the latter case
forces (ii) to hold, and the former case holds precisely when either (i) or (iii) holds. [

6. MONOSCOPIC EMBEDDINGS OF POLYHEDRA

In this section, we characterize the faces of the Kunz polyhedron P,, containing
monoscopic numerical semigroups, as well as all lower dimensional faces contained
therein. We do so by constructing a family of combinatorial embeddings (Definition 6.2)
of group cones, which we show in Theorem 6.7 induces an injection of face lattices. The
faces of P, corresponding to these faces, together with those described in Theorem 6.10,
contain all of the monoscopic numerical semigroups, and only monoscopic numerical
semigroups (Theorem 6.11).

Figure 6 depicts the portion of the face lattice of C(Z2) described by Theorems 6.7
and 6.10, including all posets therein.

Notation 6.1. In order to simplify numerous expressions in the remainder of the paper,
we adopt the convention of prepending a “0” entry to each point in C(G), indexed by
the identity element of G. More precisely, we write each (z1,z2,...) € C(G) in the
form (xg,x1, xo,...) with 2y = 0, effectively replacing C(G) with {0} x C(G).

Definition 6.2. Fix an Abelian group G, a subgroup H C G so that G/H is cyclic,
and an element p € G whose image in G/H is a generator. Letting 5 = |G/H]|, define
®,:C(H) — C(G)

wr— T

where x444, = Pw, + bwg, for each a € H and 0 < b < 8. We call ®, a monoscopic
embedding of C(H) into C(G) along p.

Lemma 6.3. The monoscopic embedding ®, is well-defined and injective.

Proof. Under the given assumptions, every element of G can be written uniquely in
the form a + kp for some a € H and b € Z with 0 < b < 5 — 1. Moreover, if w € C(H)
and z = ®,(w), it is easy to check that o = 0, and for any a,a’ € H and 0 < b,b' < f3,

Tatbp + T(w-a)+p/—b)p = (BWa + bwgy) + (Bww—a + (U = bJwp,) = B(wa + war—a) + Vwg,
2 Bwa/ —+ b/wﬁp = xa’+b’p

so the image of @, lies in C(G). This proves @, is well-defined. From here, it is clear
that ®, is linear, and projecting the image of ®, onto the coordinates indexed by H
yields a linear map that simply scales each vector by 3, so ®, is injective as well. [

Definition 6.4. Fix a poset P = (H/H', <p), where H' C H is some subgroup, and
suppose a,b € H/H' and 0 < b, b’ < 5 — 1.
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(a) The monoscopic extension of P along p is the poset Q = (G/H', <) satisfying
a+bp =g a’ +b'p whenever a <p a’ and b <V'.
(b) The augmented monoscopic extension of P along p is the poset () defined as follows.
(i) If Bp # 0, then Q = (G/H', Zg) with a + bp < a’ + b'p whenever a <p @
and either b < V' or fp <p d’ — a.
(ii) If Bp = 0, then @ is the poset on G/(H' + (p)) that is identical to P under
the natural group isomorphism G/(H' + (p)) = H/H'.

Remark 6.5. The (non-augmented) monoscopic extension of a poset P is isomorphic
to the Cartesian product of P with a total ordering. Also, any augmented monoscopic
extension is a refinement of the corresponding non-augmented monoscopic extension.

Corollary 6.6. If S = (m,ng,...,ng), and T = (&) + S is a monoscopic gluing, then
the Kunz poset of T is the monoscopic extension of the Kunz poset of S along p = @,
one that is augmented if and only if « € Ap(S).

Proof. Note that if Sp = 0, then a € Ap(S) is impossible. As such, the claim follows
from Theorem 5.4 upon unraveling definitions. U

Theorem 6.7. The image of ®, is a face of C(G). More precisely, given any face
F C C(H) with Kunz poset P = (H/H', =), the image ®,(F) is a face of C(G) whose
Kunz poset is the augmented monoscopic extension QQ of P along p.

Proof. First, fix w € F C C(H), let x = ®,(w), let F’ denote the face containing =, and
let @ denote the corresponding Kunz poset of F'. If fp = 0, then x,4, = 0 whenever
w, = 0 and bwg, = 0. If Bp # 0, then this occurs when @ € H' and b = 0. In either
case, () has the claimed ground set.
Now, suppose a,b € H and 0 < b,/ < 3 —1. If 8p =0, then
La+bp + T(a'—a)+(b'—b)p = /Bwa + ﬁwa’—a > Bwa’ = Ta'+b'p
with equality precisely when a <p a’, so assume Sp # 0. If b < ¥/, then
Latbp + T(a'—a)+(b'—b)p = (Bwa + bwﬁp) + (ﬁwa’fa + (b/ - b)wﬁp) = ﬂ(wa =+ wa’fa) + b/wﬁp
> ﬂwa/ + b/wﬁp = Ta'+b'p,
with equality precisely when a <p a/. Alternatively, if b > ¥’, then
(@ +bp)—(a+bp)=(a"—a—Pp)+ (' —b+B)p
with 0 <V —b+ 8 < —1, so we have
Za+bp T T(a'—a—Bp)+ ¥ —b+8)p = (6wa + bwﬂp) + (5waf—a—ﬂp + (b, —b+ 5)wﬂp)
= B(Wa + War—a—gp + Wsp) + bwp,
Z ﬁ(wa + wa’fa) + b/wﬂp

> ﬁwa’ + b/wﬁp = Ta'4V p)
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with equality precisely when Sp <p @’ — a and a <p a/. In either case, we obtain
a+bp =g @’ +b'p in the exact cases required by Definition 6.4, thereby proving ®,(w)
lies in the interior of the claimed face.

Conversely, let F' C C(G) denote the face whose Kunz poset is the augmented
monoscopic extension @) of P (which must exist by the above argument), and fix

x € F'. Defining w, = %xa for a € H, we see

Tatbp = Tq + 0T, = T4 + %b(xp + X(s-1)p) = Ta + %bl’gp = Bw, + bwg, = D, (w),

where the first and second equalities hold since () is an augmented monoscopic exten-
sion. This proves set equality ®,(F) = F’, thereby completing the proof. O

Definition 6.8. The beta ray 5 of a monoscopic embedding ®, is defined

$a+bp = b

for each a € H and 0 < b < 3 — 1. Notice that s, = 0 precisely when a € H, so § must
lie in a face whose Kunz subgroup under is H.

Lemma 6.9. The beta ray §

(a) lies in a face of C(G) whose corresponding subgroup is H, and
(b) is linearly independent to each vector in the image of ®,.

Proof. The first claim is easy to verify. For the second claim, since ®, is linear and
C(H) is full-dimensional, it suffices to prove § lies outside of the image of ®,. Indeed,
projecting the image of ®, onto the coordinates indexed by H is injective by the proof
of Lemma 6.3, while applying the same projection to s yields 0. U

Theorem 6.10. For any face F C C(H), the set R>o5+®,(F') is a face of C(G) whose
Kunz poset is the monoscopic extension of the Kunz poset of F.

Proof. Let P = (H/H', <p) denote the Kunz poset of F', let F’ denote the smallest face
containing R>¢5+ ®,(F), and let Q = (G/H",=¢) denote the Kunz poset of F’. Since
®,(F) C F', Theorem 6.7 implies H” C H’, and the coordinates in which s is zero are
precisely those indexed by H, so we must have H” = H’'. Next, fix v € R5¢5+ ©,(F),
and write z in the form x = y+c¢s for y € ®,(F) and ¢ > 0. If a +bp,d’ +Vp € G
satisfy a <p a’ and b < ¥/, then by Theorem 6.7,

La+bp + T(a'—a)+(b'—b)p = Ya+bp +cb + Y(a'—a)+(b'=b)p + C(bl - b) = Ya'+b'p + e = La/+b/p-

Additionally, among the facet equations satisfied by ®,(F), these are the only ones
satisfied by s. As such, we conclude () equals the monoscopic extension of P.

Lastly, fix x € F'. Let c =z, — %xgp, and write y = x — c¢s. To complete the proof,
we must show y € ®,(F). Fix a+bp,a’ +b'p e G. If b <V, then

Yatvp + Y@ —a)+t—b)p = Tarbp — b+ T(w—ay+w—typ — (V) = b) = Tarywrp — ' = Yariwy
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with equality precisely when a <p a’. On the other hand, if b > ¢/, then
zmMp+y@uw¢m+w—Hmp:ﬂhwp—Cb+$muwﬂm+w—HMp_C@“—b+5)
= Tatbp + T(a'—a—Bp)+ (' —b+B)p — cf—clf
= Tatbp T T(a/—a—Bp)+(b/—b+B8)p — BTp + Tz, — b
> Tatbp + T(a—a)+(—b+B)p — BT, — b
= Tatbp + T(@—a) — (b—V)z, — b’
> Tarbp = (b—b)a, — b/
= Ta'+bp — b = Ya'+b/p
with equality whenever 8p <p ¢’ —a and a <p a’. We conclude y € ®,(F). O

Our final result of this section is a converse of sorts to Corollary 6.6, namely that
the faces of the group cone containing monoscopic numerical semigroups contain only
monoscopic numerical semigroups.

Theorem 6.11. Let S = (m,ng,...,ng), suppose T = () + BS is a monoscopic
gluing, and let F C C(Zgy,) denote the face containing T'. Any numerical semigroup T"
in F' can be expressed as a monoscopic gluing T' = (/) + 8S’, where o/ = o mod fm
and S" is a numerical semigroup on the same face of C(Z,) as S.

Proof. Let o/ € T" denote the minimal generator of 7" satisfying o/ = o mod m, and
let p € Zg,, denote the equivalence class containing o and o’. The remaining gener-
ators of 7" must each be divisible by §, so we can write 77 = (a/, Bm, Bn), ..., pn}).
Letting 8" = (m,n),...,n}), we claim 7" = (a/) + 55" is a gluing. Indeed, it is
clear ged(a, B) = 1 since the above generating set for 7" is minimal, so we must show
o € 8"\ {m,n},...,n.}. However, this follows from Corollary 6.6 since Sa’ can be
factored using fn, ..., n). This proves the claim.

It remains to show that S’ lies in the same face of C(Z,,) as S. Again, Corollary 6.6
implies every element of Ap(7”; fm) divisible by § can be factored using fnj, ..., fn}.
This implies S and S’ have identical Kunz posets, thereby completing the proof. [

Corollary 6.12. If S = (m,na,...,ng) lies in the face F C C(Z,,) and T = (a) + S
is a monoscopic gluing lying in the face F' C C(Zgy), then

- dim F' if a € Ap(S;m);
dim F" =< )
dimF+1 ifa¢ Ap(S;m).
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