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Long-read sequencing has recently transformed metagenomics, enhancing
strain-level pathogen characterization, enabling accurate and complete

metagenome-assembled genomes, and improving microbiome taxonomic
classification and profiling. These advancements are not only due to
improvements in sequencing accuracy, but also happening across rapidly
changing analysis methods. In this Review, we explore long-read sequencing’s
profound impact on metagenomics, focusing on computational pipelines
for genome assembly, taxonomic characterization and variant detection,
tosummarize recent advancements in the field and provide an overview

of available analytical methods to fully leverage long reads. We provide
insights into the advantages and disadvantages of long reads over short
reads and their evolution from the early days of long-read sequencing to
their recentimpact on metagenomics and clinical diagnostics. We further
point out remaining challenges for the field such as the integration of
methylation signals in sub-strain analysis and the lack of benchmarks.

High-throughput sequencingtechnologies were first used in metagen-
omicstudiesin2006 (ref.1), initiating a transformative paradigm shift
within the field. Over time, these technologies have become more
cost-efficient and widely utilized, profoundly impacting metagenom-
ics. Another crucialadvancement emerged in the early 2010s with the
introduction of long-read sequencing, usheringinanew eraof metagen-
omic exploration. Compared to short-read technologies, long-read
technologies (Table 1) allow for the sequencing of both intergenomic
andintragenomic repetitive regions and their neighboring sequences
in the same read, resulting in less fragmented metagenome assem-
bled genomes (including plasmids), more accurate taxonomic char-
acterization (species/strain level)?, improved detection of horizontal
gene transfer®, and cataloging of large structural variations*’, such as
duplications orinversions. Long reads can also be used for identifying
methylation patterns, as they can detect modified nucleotides during
sequencing, and the reads are long enough to map full methylation
sites, especially in repetitive regions®. Nevertheless, long reads also
have drawbacks, such as increased costs and DNA amount require-
ments’. Furthermore, in the context of metagenomics, DNA extraction

oftenyields shorter fragments, which might negate the full benefits
of long-read sequencing.

Recently, long-read sequencing has matured considerably, provid-
ing continuous cost and yield improvements, and reduced sequenc-
ing error rates (Table 1). In addition, there have also been reduced
input DNA requirements, allowing the sequencing of smaller sample
DNA concentrations. Currently, two main companies dominate the
long-read market: Pacific Biosciences (PacBio) and Oxford Nanop-
ore Technologies (ONT). PacBio delivers very highly accurate long
reads, while ONT produces slightly less accurate reads, but with mul-
tiple devices operating at different scales, from handheld sequenc-
ing devices (MinlON) to high-throughput sequencers (PromethlON).
To date, ONT is the only technology capable of performing direct
RNA sequencing (RNA-seq)?, although it is still in the experimental
stage (Fig. 1a).

Inthis Review, we examine the application of long-read sequencing
inmetagenomics, encompassing both targeted and non-targeted strat-
egies. We evaluate contemporary analytical methodologies that facili-
tate more comprehensive metagenomic analyses, assessing diverse
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Table 1| Comparison between short-read and long-read technologies

Platform MiSeq NovaSeq 6000 Sequelll Revio Flongle MinlON GridION PromethlON
Company Illumina Illumina PacBio PacBio Nanopore Nanopore Nanopore Nanopore
Read length Upto2x300bp Upto2x250bp® ~13.5-20kb* 15-18kb 20kb 20kb 20kb 20kb
(average)®

Yield per cell (Gb) Upto15 ~350 25 (HiFi) 90 1-1.5 15-20 15-20 ~120
Runtime (h) 4-56 13-44 30 24 16-24 72 72 72

Read accuracy 99.75% % 99.75%'% 9918-99.8%>  >99.5%'% 97-99%" 97-99%" 97-99%" 97-99%"
(Q20+)

Can perform Direct No No No No Yes Yes Yes Yes
RNA-seq

DNA input needed 1-500ng® 1-500ng" 150ng-1pg’®  150ng-1ug’®  150ng-1ug’ 150ng-1ug’ 150ng-1pg’  150ng-1ug’
Estimated UsS$178- US$3.95" US$30-43""2  US$8-11"* US$118-437""%  US$21-51""1%2  US$29-51%*  US$6-12'*
sequencing costs 1,705

per Gb*

?Complex metagenomic samples very rarely reach average lengths superior to 2.5-9.0kb (see text for details). "Available only on Illumina SP flow cells. °An exception might be the
ultra-low-input protocol for PacBio. ‘Please note that these sequencing costs are estimates, subject to rapid changes, and the information presented here may quickly become outdated.

approaches, differentiating between mapping and assembly-based
methods based ontheir respective utilities with long reads. Addition-
ally, we not only scrutinize recent progress but also illuminate existing
constraints and potential future prospects within the field. This Review
isintended to provide researchers and practitioners with a compre-
hensive overview of the latest trends and computational techniques
in the field, empowering them to leverage long-read technologies
and methodologies to drive discoveries and push the boundaries of
metagenomics research.

Long-read sequencing technologiesin the
context of metagenomics

llluminashort-read technology is still widely used and has great advan-
tages suchaslow cost, high throughput, accuracy and sensitivity across
low-abundance genomes, but also has its limitations®’. Repetitive
genomic regions or highly homologous regions can impact the effi-
ciency of assembly and alignment tools, especially if these regions are
longer than the overlapping length of reads or contigs’. Consequently,
complete genome resolution using short reads is nearly always unat-
tainable'. In metagenomic approaches, taxonomic differentiationin
the sample can become complicated as there are probably multiple
closely related strains whose genomes differ in just a few locations™.
Theseintergenomic repeats, segments shared by various organisms, are
difficult to resolve computationally without simultaneously sequenc-
ing their neighboring regions**”. One potential strategy to overcome
these issues is to increase the read length, thus increasing the likeli-
hood that aread includes an organism’s specific region to improve
identification’.

Longer reads produced by ONT and PacBio aim to fill this gap.
PacBio’s single-molecule, real-time (SMRT) technology yields
high-fidelity (HiFi) long reads at a very low error rate’. Each SMRT Cell
(8 M) for the PacBio Sequel Il system can generate up to 80 Gb of
sequence datain ~-30 h, with an average read length of ~15-20 kb, or
about4 millionreads. The new PacBio Revio system can run up to four
SMRT Cells (25 M) in parallel, with each producing up to 90 Gb of data
foratotal of 360 Gbin~24 h (Table1). PacBiolibrary preparation gener-
ally takes aminimum of 7 h.

ONT library preparation generally takes 1-2 h, and the sequenc-
ing runs last -72 h for most of the platforms used, except for Flongle
(16-24 h; Table 1). The MinlON and PromethlON platforms have an
average read length of 13-20 kb and can reach up to 4 Mb*?, which
would be sufficient to encompass whole chromosomes/genomes
for some organisms. ONT machines’ yield varies according to
the kits and platforms used", and it can range from up to 2.8 Gb
(Flongle) passing through the ~-10-20 Gb range (MinION), all the way

up to ~100 Gb (PromethION R10, kit14). This newest ONT technol-
ogy allows for reads that are slightly less accurate than short reads
(-1-3% sequencing error)'>. ONT long reads are in general a bit less
accurate in their base calling than PacBio HiFi reads but have a higher
throughput and lower cost’. One of the biggest advantages of the ONT
MiniON and Flongle platformsis their portability due to the small size
and off-line functionality of the machines, allowing them to be taken
on expeditions to isolated places and performing DNA sequencing
insituandinisolated regions such as the International Space Station®,
for example.

In addition to nucleotides sequences, long reads can simultane-
ously read out the methylation status on CpG islands for 5mC and
5hmC*® (more details below). Most interestingly, ONT has the ability to
read this out not only on DNA, but also directly via sequencing RNA®,
This allows further separation of different organisms within asample
(Fig.1a).

Thus, while long-read sequencing is still not as common as
short-read sequencing, it holds a remarkable promise with ever-
decreasing costs and error rates. Nevertheless, it is worth noting that
both platforms (ONT and Pacbio) rely on the quality and quantity of the
input DNA. Overall, the use of long-read-based metagenomicsis devel-
opingrapidly (Fig.1b). Novel analytical approaches and bioinformatic
tools are constantly being developed to fully exploit their properties.
Theirimportance has been shown in the clinical context as well, such
asthesurveillance of antibiotic resistance genes' and pathogens in the
hospital environment and potential hospital-associated infections”,
andintheidentification of recent outbreaks, such as monkeypox*® and
coronavirus disease 2019 (COVID-19)".

The success of a metagenomic study hinges on various factors,
starting with the initial experimental design, including the selection
of technology and whether a targeted or non-targeted approach is
used. Notably, long-read sequencing typically needs a larger quan-
tity of high-quality DNA compared to short-read studies. PacBio- and
ONT-specific extraction can require a minimum input of 150 ng up to
1pgofamplification-free, high-quality genetic material for sequencing
single-organism samples’. Incomparison, lllumina protocols normally
need as low as 1-500 ng of DNA'®, Table 1 shows a comparison across
the technologies.

Extracting genetic material from complex communities canbea
challenging process due to the variety of organisms found, which may
each require specific extraction protocols (for example, circularized
or linear DNA). As aresult, distinct DNA fragments are generated for
differentorganisms, limiting the average read length obtained insuch
studiestoaround 2.5-9.0 kb for both synthetic and real microbial com-
munities'. Organisms with low biomass might not be represented in
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Fig.1|Overview of long reads in metagenomics. a, Differences between
short-read and long-read technologies. Long reads have some advantages over
short-read technologies. They can generate less fragmented genome assemblies,
lower-level (species/strain) taxonomic characterization, DNA/RNA methylation
patternidentification, large SV detection and highly portable sequencers. In
contrast, short-read technologies still present overall cheaper sequencing

T T T
2018 2020 2022

Year

costs and lower DNA input requirements due to the amplification stepinlibrary
preparation. Image credit: Oxford Nanopore Technologies plc. b, The growth
of long-read-related submission to the Sequence Read Archive (SRA) inrecent
years. Long-read platforms (ONT and PacBio SMRT) are being more widely used
eachyear. The plot represents the accumulated number of data submissions
related to each tag to the SRA each year.

the sequencingresults. New preparation methods are constantly being
developed together with low-input kits'>°.

Contamination mitigation and targeted

approachesinlong-read metagenomics

Contamination from the laboratory apparatus or reagent kits can
dramatically impact the result of metagenomic studies”. In clinical
samples, contamination with host DNA is another important issue
that might lower the detection of pathogens. There are currently many
methods for dealing with contamination both before and after sequenc-
ing?. There are also commercial kits available to extract enriched
microbial DNA based on differential methylation patterns between
the host and microbiome. Bioinformatic tools have been developed for

detecting and removing contamination or host reads from the sample.
This is needed to avoid wrongful prediction of, for example, variants.
Methods such as Decontam? and Recentrifuge” use comparisons
between samples and negative controls to identify and remove con-
taminants from sequencing data.

Another solution is using a targeted instead of an untargeted
approach. Thelatter ismore exploratory as one captures the entire set
of organisms but might suffer from higher requirements of coverage
and sample input. Thus, it is common to pursue a targeted approach
where scientists are interested in a defined set of organisms'. A com-
mon strategy for targeting is to amplify the whole genetic material in
the sample through PCR techniques, such as multiple displacement
amplification’®. These methods, however, can generate anew problem,
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as they can create a high number of chimeric reads that are difficult
to interpret. Some bioinformatic tools have been created to tackle
this issue and have had moderate success. Interestingly, the usage
of ahybrid approach (combining long reads and short reads) helped
circumvent this issue with chimeric long reads™®.

Alternatively, other methods for targeting organisms in a sam-
ple have been developed, such as capture panels®, LAMP-seq* and
adaptive sampling. The latter can be performed only by ONT, and it
can be used to either deplete host reads or enrich for some microbial
taxonomic groups during sequencing. This targeted enrichment/
depletionis possible due to the ‘ReadUntil’ technology thatallows the
pores in the flow cells to selectively sequence DNA molecules based
ongenomes of interest”. Asthe DNA/RNA moleculeis sequenced, the
emerging readis aligned to genomes or genomicregions input by the
user, and the software can decide whether toreject or acceptit based
on the parameters defined by the user (Fig. 1a).

Base calling and quality control

Base calling for PacBio is encapsulated into the sequencing software
and Lima can be used for demultiplexing (Supplementary Table 1).
For ONT, Guppy has replaced Bonito as the official base-calling tool,
and arecently introduced and much faster tool called Dorado is likely
toreplace Guppy inthe short future®. Currently, the ONT base callers
canoperate using three distinct algorithms chosen when running the
software: FAST, high-accuracy and super-accuracy base calling. In that
order, they provide increasing accuracy at the expense of speed and
computational resources, with the speed of the base caller being a fac-
tor of the number of parameters in the neural network model*. Often
after base calling, the read quality is estimated and some read filtering
is performed, with failed reads not being reported. This filtering is
based on different thresholds set during base calling, such as sample
accuracy estimates (Q scores) or the number of subreads obtained
from a DNA fragment in PacBio.

There are many software tools available that are used to obtain
some important basic statistics about the sequencing run, such as
read length distribution, the presence of adaptor sequence in the
reads or contamination with small fragments. Read filtering also hap-
pens at this stage, and it is normally performed to remove low-quality
reads, adaptors and reads that are too short. Ultimately, the scientist
analyzing these data requires an understanding of potential biases of
the data, which informs the potential limitations of the analysis and
potential conclusions. Some of the tools designed for short reads are
compatible with long-read technology. For instance, FastQC also works
with ONT and PacBio long reads, and can provide a range of quality
metrics for eachrread. Nanoplot” is atool from the Nanopack package
specific for ONT sequencing data, and canalso provide quality-control
statistics, metrics, processing and visualization for long reads. Guppy
also provides simple quality-control reports about read sizes and other
fullmetrics. Similarly, the Lima demultiplexing software from PacBio
detects and trims adaptor sequences from PacBio reads. All tools are
reviewed in Supplementary Table 1. These tools can be used either
separately or in combination to perform quality control of long-read
sequencing data. The importance of these methods cannot be over-
stated and is often crucial for the later success of an experiment.

Analysis using long-read sequencing
Giventhe unique aspects of long reads, new methods have been devel-
oped to enhance metagenomic analysis; selecting which methods to
useisanintegral part of the experimental design from the start (Fig. 2).
Selecting appropriate tools for analysis and assessing the quality of the
resultsis critical, and itis recommended to refer tobenchmark studies
or community-driven initiatives like CAMI/CAMI2 (ref. 30) to guide the
choice of computational methods.

Depending on the experimental objectives, metagenomic
approaches vary in their scope. Traditionally, when conducting

taxonomic characterization, the emphasis was placed on analyz-
ing marker genes, such as 16S/18S rRNA. However, contemporary
approaches have broadened their focus to encompass whole-genome
sequencingand, consequently, better discrimination of sub-strain-level
genetic variations. Another strategy involves assembling individual
genomes within metagenomic samples, requiring specialized meth-
odstoresolve ortholog clusters and correct potential analysis errors.
Additionally, mapping reads to known references offers the advantage
of characterizing low-frequency variants within the samples. In the
following sections, we will provide an overview of these approaches
and essential insights.

Taxonomic profiling with 16S/18S/ITS
Taxonomic characterization and quantification within a sample can
beaccomplished through two primary methodologiesin metagenom-
ics:165/18S/ITS rRNA sequencing (commonly known as marker gene
or amplicon sequencing) and metagenomic shotgun whole-genome
sequencing. In the 16S/18S/ITS approach, DNA is selectively ampli-
fied using PCR from specific marker genes, including the 16S rRNA
gene for prokaryotes, the 18S rRNA gene for eukaryotes and the ITS
regions for fungal identification. The resulting amplicons are then
sequenced and aligned to reference databases, such as the NCBI 16S
database’, SILVA*, RDP* and Greengenes®, which represent diverse
taxonomic groups. These marker genes serve as molecular signatures,
enabling researchers to accurately identify, classify and quantify micro-
organisms, providing valuable insights into the taxonomic structure
of complex microbial communities. Generally, these databases are
not complete, and classification of organisms that are not present
there will fail. While this approach has many limitations compared
to whole-genome approaches, such as being more susceptible to
primer biases, lower sensitivity to shallower taxonomic classification
and unsuitability for organisms without marker genes (for example,
viruses), it is still being often used due to its efficiency and sensitive-
nessinbacterial taxonomic profiling in complex microbiomes and its
low price advantage®. To the extent of our knowledge, there are two
computational tools designed for long reads to perform 16S taxonomic
profiling—Emu?® and NanoClust*’—although most short-read methods
canalso work with long reads.

Previous comparisons between short-read and long-read 16S/18S/
ITS analysis showed long reads achieve improved performance at the
genus and species levels’. The higher resolution offered by long reads
enhances the 16S rRNA classification and reduces the number of reads
that cannot be classified or cannot be ascribed to lower-level taxa®®.
Moreimportantly, long reads have the potential touncover complete
16SrRNA sequences from microbial ‘dark matter’ with a higher resolu-
tion and reliability of classification®,

Taxonomic characterization and abundance profilingin the
whole-genome shotgun metagenomic approach
Whole-genome shotgun metagenomic profiling encompasses the
sequencing of the complete genetic material within a mixed microbial
sample, bypassing the need for prior selection or amplification of spe-
cific marker genes. Much like the 16S/18S/ITS approach, sequencing
reads are matched against comprehensive whole-genome databases,
suchas IMG/M*, MG-RAST*’and NCBI's RefSeq™'. Based on this match-
ing, thesereads are subsequently categorized into taxonomic groups,
profiled and abundance can be evaluated.

There are multiple reference-based metagenomic tools that were
designed specifically for long reads, such as Metamaps*, Megan-LR*,
MMseqs2 (ref. 43), CDKAM** and BugSeq*. These reference-based
profilers utilize machine learning or statistical models to assign taxo-
nomic labels to genetic sequences, differently from genome aligners,
which use algorithmic approaches such as dynamic programming or
seed-and-extend methods to find optimal alignments or similarities
between sequences. MetaMaps uses a reference-based approach,
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of marker genes using primers specific to conserved regions of these genes to
sequence the maximum number of organisms possible. The choice of approach
considerably affects the available analyses and hypotheses that can be tested in
each experiment. In this Review, we describe three main metagenomic analysis
pipelines: mapping, de novo assembly, and taxonomic characterization. Each
pipeline is more appropriate for different studies based on their objectives.
Finally, we discuss post-sequencing steps that can be taken based on the different
designs proposed. Dashed line arrows represent indirect processes that require
otherintermediate steps.

aligning sequences to a database, together with reference-free meth-
ods such as nucleotide composition to identify taxonomic groups.
MEGAN-LR uses the alignments performed by other software to assign
reads to a taxonomic group using a lowest common ancestor (LCA)
algorithm. It can use a nucleotide sequence alignment, such as those
produced by Minimap2 (ref. 46) or NGMLR®, or a protein sequence
aligned fromthe translation of the reads, such as those obtained from
DIAMOND". MMseqs2 works by extracting all protein fragmentsinsix
frames, filtering them, aligning them to areference protein database,
and using an LCA algorithmto assign the reads to specific taxa. CDKAM
uses inexact k-mer matches to compensate for theincreased error rate
of long reads and identify matches in areference database. BugSeq is
acloud platformand presents two differentinternal pipelines (V1and
V2), with one of those being auto-selected during the run. Both use
Minimap2 alignments to adatabase, butin V1itis followed by Bayesian
reassignment and LCA identification, whereas in V2 the alignment is

followed by LCA identification and abundance calculation® (Supple-
mentary Table1).

Arecentbenchmark performed using long reads and shortreads,
and with most of these tools, concluded that: (i) long reads increased
precision of the calls; (ii) short-read methods used with long-read
dataresulted in high rates of false positives, specially Kraken2 and
Centrifuge; (iii) most tools presented low precision, which could be
increased with filtering, but at the cost of reducing recall; and (iv) the
best-performing tools for long reads were Sourmash, BugSeq and
MEGAN-LR (using either Minimap2 or DIAMOND for alignments),
with high precision and recall without the need of read filtering'®. This
trade-off between precision and recall has also been observed in the
CAMI challenge®**. CDKAM was not included in this benchmark study.
More recently, a study compared alignment and classification tools,
finding similar or better accuracy and less RAM requirements for align-
ers such as Minimap2, despite being slower. Tools using nucleotide
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databases outperformed those using protein databases, with read
length and database completeness influencing classification accuracy
across datasets*,

It is worth mentioning that protein sequence-based methods
rely on pruning heuristics to consider only a certain number of open
reading frames (ORFs). The longer the reads, the higher the chances
of it containing frameshift sequencing errors and additional ORFs,
which makes the challenge of identifying all ORFs across the reads
nontrivial, and potentially missing some ORFs with those methods®.
On the other hand, these methods require the presence of multiple
ORFs in the read to work well, with their accuracy declining as reads
getshorter®’. This can be somewhat circumvented by fine-tuning of the
parameters, which often involves a trade-off between sensitivity and
execution time, with higher method sensitivity resulting inincreased
computational demands and processing time, without the guarantee
of successful results®.

De novo long-read assembly of genomes from metagenomes
The goal of metagenomic assembly methods is to reconstruct com-
plete genomes for each microorganism presentin a sample (called
metagenome-assembled genomes or MAGs), thus avoiding potential
representation or contaminationissues with previously published refer-
ence genomes”., Bioinformatic tools perform this by tiling dovetailed
reads that come from the same genomic region, forming contigs’. Like-
wise, contigsin close proximity inferred over reads can be tiled together
to formlonger stretches of sequences with unresolved regions, a pro-
cess oftenreferred to as scaffolding, until potentially forming chromo-
somes or whole genomes’. The most popular approaches for assemblies
using long reads are to use the overlap-layout-consensus (OLC)
method or de Bruijn graph (DBG) approach®. Within OLC, long reads
are first aligned with each other to identify overlapping regions that
are then joined together to form contigs. The DBG approach reduces
this complexity to a k-mer space and guides the joining of reads in
this way.

Repetitive regions and intergenomic repeats can impact on the
efficiency of assembly tools, especially if these regions are longer than
the overlapping length of reads or contigs®>*>. Short reads can be used
to detect variants between strains, but fail (due to the length) torelate
(that is, phase) these variants into continuous haplotypes®, which
makes short-read assemblies notorious for contig fragmentation',
and highly inefficient at assembling multi-copy DNA sequences, such
as the 16S gene, mobile genetic elements (that is, transposons) and
plasmids® (Fig. 1). Long-read methods can overcome this issue, but
higher error rates present in some of the platforms could cause dif-
ferent problems. Initially, the alternative to minimize this effect was to
perform hybrid assembly using long reads and shortreads, but recent
advancementsto decrease long-read error rates have been making this
approach obsolete®.

The use of a hybrid approach to genome assembly. Hybrid assem-
bly benefits from the advantages of long reads, and from the lower
base-calling error rates from the short reads**”’. The addition of long
reads to short-read-only assemblies generates an improvement in
overall assembly statistics, contig size, binning and gene complete-
ness”*®, and increases the discovery of new species®. While hybrid
assemblies show this remarkable advantage in comparison to short
reads only, it comes with an increase in costs and necessary depth
of sequencing. Besides, while long reads are efficient in dealing with
repeats (intragenomic or intergenomic), short reads are not, and this
can create ambiguities during the assembly process. Working with
multiple platforms at the same time, canalso introduce biases during
assembly’. For instance, short reads can reintroduce G+C or primer
biases from their different library preparation. Likewise, with the
improvementin long-read technologies, error rates and costs per base
have beendropping, allowing forincreased sequencing coverage that

can mitigate the long-read error rates. Besides, bioinformatics methods
have evolved to circumvent these higher error rates using multiple
strategies, either before or after assembly. Finally, hybrid assembly may
notbebeneficial when the accuracy oflongreadsis equivalent to that of
shortreads”*.

Some of the most popular tools for hybrid assembly are
DBG20LC**, OPERA-MS* and Unicycler”. DBG20OLC convertsaDBG rep-
resentation of sequencing datainto an OLC assembly by resolving ambi-
guitiesinthe graph usinglongreads. OPERA-MS uses coverage-based
clustering and Bayesian information criterion of clusters to perform
short-read assembly, followed by overlaying with long reads to pro-
duce an assembly graph. Unicycler utilizes a combination of de novo
assembly, read mapping and iterative correction steps to achieve
accurate and complete reconstructions of bacterial genomes (Sup-
plementary Table1).

Long-read-based assembly methods for metagenomics. Due to
improvementsinsequencingtechnologies and decreased error rates,
metagenome assemblies usinglong reads only have become sufficient
to generate comprehensive and relatively error-free metagenome
assemblies™. Figure 3 depicts agraph-based representation of ahuman
gut metagenome assembly using exclusively PacBio HiFi reads. The
graph distinguishesindividual contigs by assigning each oneaunique
color. The presence of circularized contigs in the graph indicates the
completeness of a genome sequence. This study was able to circular-
ize 56 genomes from the human gut microbiome, highlighting the
advancements made possible by novel long-read sequencing technolo-
gies and improved bioinformatics tools.

Nevertheless, due to error rates in the long reads (up to 1-3%;
Table 1), multiple approaches rely on a read error correction before
starting the actual assembly. Error correction can be important for
downstream analysis and interpretation of metagenomic data. Cor-
recting errors canincrease the sensitivity and specificity of taxonomic
classification and functional annotation and improve the accuracy of
genome assembly and gene prediction. Furthermore, error correction
can reduce the amount of noise in the data, which can lead to more
accurateidentification of rare taxa and the discovery of novel microor-
ganisms®’. However, error correction tools should be considered care-
fully before use in metagenomic studies, as although they can mitigate
sequencing errors, they can also erase low-frequency variations and
lower-frequency strains, affecting strain detection®.

Readerror correctionis often performed by comparing the shorter
reads to the longer readsin order toimprove the quality of the longer
reads (for example, Q score). Some assembler software provides
built-in error correction features, such as MetaFlye®, which uses a
two-step overlap-based and assembly-based correction approach, and
Canu®, which uses a multiple sequence alignment approach. VeChat®°
uses a different approach—a variation graphs method to perform
haplotype-aware error correction of reads.

The main tools designed for metagenome assembly using long
reads are hifiasm-meta®, Canu®® and MetaFlye® and pipelines such
as Lathe®. Other long-read assembly tools not specifically designed
for ametagenomic approach are also used, although a recent bench-
marking study using metagenomic data showed a subpar performance
from those compared to metagenomic-specific tools®’. Abenchmark
between Canu and MetaFlye reported amore complete assembly using
Canu'®, while others showed a slight advantage to MetaFlye®, sug-
gesting that these tools have similar efficacy, probably subject to
differences in the samples. Hifiasm-meta®* is an assembler that takes
advantage of reduced error rates from recent long-read sequencers
and consists of several steps; optional read selection, sequencing error
correction, read overlapping, string graph construction and graph
cleaning (Fig. 3). Using HiFi reads, hifiasm-meta produced more total
MAGs and more complete, single-contig circular MAGs than Canu
or metaFlye®*.
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Fig.3|Graphrepresentation of a metagenome assembly. Data were generated
using HiFireads and hifiasm-meta for long-read-only assembly. The figures
represent all the contigs arranged by decreasing length, with each color
representing a single contig. The sample is acommercially available pooled
human gut reference (ZymoBIOMICS D6323). The dataset was generated

with four SMRT Cells (8 M) on the PacBio Sequel lle system, which yielded 11.9
million HiFi reads and 88.3 Gb of total data. There are 56 large circular contigs
visible in the graph, ranging from 1.5 Mb to 6 Mb in size, along with numerous
circular plasmids.

Once contigs are assembled, they can be investigated using read
information to look for connections between each other, and then
further merged to form bigger structures, called scaffolds®. A few
assemblers such as MetaFlye have this feature already built in, but
this can also be performed by scaffolding software such as MetaC-
arvel®. Some pipelines using combinations of different tools have
also proven efficient; for instance, MetaBooster/MetaBooster-HiFi®®
combines error correction from VeChat with Canu metagenome assem-
bly. Trycycler® is along-read consensus tool designed specifically for
bacterial genomes and constructs a consensus assembly based on
multiple assemblies created by different tools. Other methods allow
for post-assembly refinements. Strainberry’ is a pipeline that takes
along-read metagenome assembly and performs variant calling and
haplotype phasing to perform strain separation. stRainy>is a tool that
caneither performassembly itself or take an already assembled set of
MAGs as input and perform strain separation as well. These tools can
bereviewed in Supplementary Table1.

Taxonomic separation of MAGs (contig binning). Once the assem-
bly is performed, the next step is the binning of contigs and scaf-
folds. Contig binning involves clustering of contigs into different
bins based on their taxonomic or functional characteristics. The pur-
pose of binning is to assign the contigs to the microbial organisms
that they originated from, allowing for downstream analyses such
as functional annotation and taxonomic profiling. Not all contigs
need to be binned, particularly if they are already circularized and
assigned to a specific organism or strain. However, it is generally rec-
ommended to bin as many contigs as possible, as this canimprove the
accuracy and completeness of downstream analyses’. It is worth not-
ing thatin multi-sample metagenomic datasets, using multi-coverage
binning leads to higher-quality bins with reduced contamination
compared to single-coverage binning. Direct comparison of both
approaches using the same set of samples shows that multi-coverage
binning outperforms single-coverage binning. It successfully

identifies contaminant contigs and chimeric bins that other methods
fail to detect™.

Reference-free methods are generally recommended after assem-
bly because reference-based tools will struggle with MAGs that are not
presentintheir database. Tools designed for long-read contig binning
already exist, such as MetaBCC-LR” and LRBinner”. Interestingly,
these tools can also be used to perform binning of long reads directly
as well, without previous assembly. MetaBCC-LR uses contig compo-
sition and coverage to infer the number of bins, and then a maximum
likelihood framework to separate them into different bins. However,
MetaBCC-LR uses a sampling strategy with large datasets, which can
hinder theidentification of low-frequency organisms. LRBinner com-
bines compositional analysis with contig coverage (calculated by read
alignmentto the contigs) using Deep Learning and aniterative medoid
clustering algorithm in addition to a distance-histogram-based clus-
tering algorithm to separate the contigs into different bins without
sub-sampling. Besides those, GraphMB” is abinner software designed
for MAGs assembled from long reads and uses graph neural networks
toincorporate the assembly graph into the binning process. Binnacle”
uses scaffoldinginformationto help separate genomesinto bins. Some
contig binners used for short-read assemblies will also work for this
step, even if the assembly was produced with long reads. Short-read
binner software has been exhaustively reviewed and benchmarked
elsewhere’ and are beyond the scope of this Review.

Binning in metagenomic samples can be challenging due to
various factors such as horizontal gene transfers of DNA fragments
like plasmids, as well as the presence of phages, which exhibit high
sequence diversity and can exist asintegrated proviruses within their
host’s DNA. To aid in the separation of these different sequences dur-
ing contig binning, the identification of DNA methylation patterns
using long-read sequencing data has been proposed”’. Methylation
pattern identification can also help in detecting chimeric reads’,
which could potentially improve contig binning. Furthermore, the
genomic three-dimensional structure information provided by Hi-C

Nature Methods


http://www.nature.com/naturemethods

Review article

https://doi.org/10.1038/s41592-024-02262-1

can be utilized to enhance binning accuracy by leveraging proximity
information, while also associating mobile elements with their respec-
tive host genomes™.

Assembly polishing and quality control. After long-read MAG
assembly, a common step for ONT is to ‘polish the assembly’, that is,
to improve the accuracy of the draft assembly by using read data to
correcterrors in the assembly. Using short-read data is also possible,
with polisher tools designed for that purpose. For technologies with
low error rates, polishing with short reads does not provide improve-
ments®. Besides, that involves another round of sequencing using
a different platform, which can increase the costs. Hence, new tools
were developed to use the same reads used to produce the assembly
to perform polishing (Supplementary Table1). A recent benchmark”™
study comparing these tools using Escherichia coli single-species
sequencing data reached two main conclusions. First, ONT-only data
can achieve the same quality of assembly without complementary
short-read sequencing. Second, the most efficient tool for assembly
polishing for single-species data was the reference-based HomoPol-
ish®, since a reference genome was already available. For unknown,
multiple-species samples, their best results were with a combination
of PEPPER® and Medaka (Supplementary Table 1).

Upon finishing the assembly, its quality can be measured using
some specific metrics, such as N50, L50, genome completeness,
genome size, assembly accuracy and contamination rate. N50 is the
length of the shortest contig that, together with all the contigs of the
assembly that have the same length or longer than it, covers 50% of
thelength of the genome assembled’. It is ameasure of the contiguity
ofthe assembly, and higher N50 values indicate longer contigs. L50 is
the number of contigs needed to cover 50% of the genome assembly.
It is also a measure of contiguity, and lower L50 values indicate fewer
butlonger contigs. While these metrics provide valuable insightsinto
assembly length, they do not inherently guarantee its actual quality
or completeness’®. One way to assess this is to measure the number of
unique single-copy genes (SCGs) that should be present. Contamina-
tion or assembly errors can be identified by the lack or multiple number
of SCG copies®’. Of course, caution is needed when assessing samples
with multiple species, where only the lack of SCGs can be assessed”.

These metrics can be obtained by a variety of tools, and many
of those are also reviewed elsewhere™”". BUSCO® uses a database of
orthologgenomes (OrthoDB) to estimate complexity and redundancy
of assembled genomes. It generates reports containing meaningful
metrics that complement other statistics related to contig contiguity.
Inspector® is a long-read de novo assembly evaluator that uses con-
sensus sequences derived from raw reads covering erroneous regions
in areference-free way. It reports generic metrics and can accurately
identify both large-scale and small-scale assembly errors. CheckM2
(ref. 85) provides robust estimates of genome completeness by using
co-located sets of genes that are ubiquitous and SCGs within a phylo-
geneticlineage. They can also assess contamination, which is derived
from the number(s) of SCGs present in the genome. DeepMAsED*®
uses a deep learning approach to detect misassembled contigsina
reference-free way. Taxonomic characterization tools such as Kraken2
(ref.87) can also be used to identify and filter MAGs that match or don’t
match a taxonomic cluster of interest. Merqury®® is a reference-free
tool that works by comparing k-mers in an assembly to those found
in unassembled high-accuracy reads and then estimating base-level
accuracy and completeness (Supplementary Table1).

Bin taxonomic classification. After the metagenomes are assembled
and binned, the next challenge is the quantification and correct clas-
sification of organisms in amixed metagenomic sample. The Genome
Taxonomy Database Toolkit (GTDB-Tk)* is the gold-standard method
to assign binned MAGs to specific taxonomic groups. MetaPhlAn4
(ref. 90) now incorporates MAG assembly followed by taxonomic

characterization using the MetaPhlAn database. Abundance infor-
mation can be inferred using tools like MEGAN-LR*. Novel organisms,
however, might not be present in these databases. In that case, there
are tools that can be used for the detection and annotation of ORFs.
Some of the tools work directly on the reads, such as MMseqs2 (ref. 43)
and MEGAN-LR* (together with DIAMOND*), while others can detect
ORFs in MAGs, such as Prokka®, PGAP®* and SeqScreen-Nano*. CAT/
BAT tools set is a pipeline for taxonomic classification of contigs and
MAGs (bins), involving gene calling, ORF mapping and voting-based
classification of contigs/MAGs, applicable to both known and unknown
microorganisms in a sample”. Gene prediction and annotation have
alsobeenreviewed elsewhere’ and are not specific to long reads. One
special noteis that these classification methods rely on databases that
cansometimes be misleading due to contaminants or other biases from
older assemblies®'. Clearly, improvements are needed to avoid such
biases with more and more novel species being discovered.

Reference-based analysis approaches of metagenomic samples
Amapping-based approach compares therawreads directly to arefer-
ence genome, ideally taken from the same species or a very close rela-
tive. Its limitation is that one relies on reference genomes that can be
unavailable or are only partially resolved. Nevertheless, mapping-based
approaches have multiple advantages as they allow the identification of
low-frequency mutations, easier comparison across multiple samples
fromthe same, for example, pathogen and fewer constraints on cover-
ageorread length®. Consequently, sequences absentin the reference,
such as plasmids, might be missed in the analysis. A way to circumvent
thisis to perform this analysisin combination with assembly methods,
creating a sample’s reference genome®™.

A mapping approach is most commonly used with a targeted
metagenomic approach (Fig. 2), where read enrichment from a spe-
cificorganismor group of organismsis performed in the sample. One
example is the detection of COVID-19 virus in patient samples® or
wastewater”. Detection of new genomic variantsis also important for
pathogen surveillance, while tracking low-frequency intra-host vari-
ants provides important insights to elucidate host-virus population
dynamics and transmission””.

The mapping approach normally consists of aligning reads to aref-
erence genome and then using these alignment files to quantify species
presence or detect variations. There are multiple benefits from aligning
long reads, such as higher alignment rates or overcoming ambiguity
due to repeats or high homologous regions compared to short-read
methods. In addition, structural variants are often easier to identify
and resolve®”. Similarly to assembly methods, one should also choose
along-read-alignment method carefully®’. Long-read aligners often
use aseed-and-chain paradigm, where multiple anchors are gathered
and chained together to form a candidate extending procedure, allow-
ing often for more accurate mapping than short reads. Additionally,
long-read aligners have incorporated sketching techniques, borrowed
from comparative genomics to improve throughput and efficiency in
handling the large number of reads’®. The most widespread aligners
used are Minimap2 (ref. 46) and NGMLR*. While most of these methods
are developed outside metagenomics, they can be successfully used
in this field’.

Variant calling methods use alignments to identify locations
where the sequence from the sample differs from the reference
sequence. They use statistical algorithms to distinguish true variants
from sequencing errors and other biases. The variants are often clas-
sified into single nucleotide variants (SNVs), small insertions/dele-
tions (indels, typically <50 bp) or larger structural variants (SVs)*’.
Clair3 (ref. 99) uses a pileup and full-alignment, two-module method
to detect SNVs and indels. DeepVariant'®° uses a deep convolutional
neural network to callSNVs and indels in alignment files. Medaka uses
alocalrealignment approach to detect and genotype variants and then
applies a neural network to estimate allele frequency. It is especially
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designed for SNVs and indels, but it also works on SVs. NanoCaller'”
is a deep learning method that detects SNVs using long-range haplo-
type information, then phases long reads with called SNVs and calls
indels with local realignment. Lofreq'®* is designed to work on any
kind of sequencing technology and models sequencing run-specific
error rates to accurately call SNVs and indels. Variabel® is a variant
callfiltering tool to be used after variant calling and designed for viral
samples, improving the prediction of low-frequency variants in ONT
data(Supplementary Table1). Variants are thenannotated to determine
their impact on gene structure and protein sequence. The most used
variantannotation tools for SNVs and indels are SNPEff'>, ANNOVAR'**
and Ensembl-VEP'®® (Supplementary Table 1).

Some tools have been created specifically for viral surveillance,
and they can detect new variants of concerninsamples, such as waste-
water. Data from mixed strains in the sample can be deconvoluted to
define theindividual strains and their abundance, and phylogenetic dis-
tances canbe measured to create aphylogenetictree between strains.
Anexample of such atoolis Read2tree'°®, which as the name suggests,
skipsall these steps going straight from the raw reads to a phylogenetic
tree, although it does perform alignments using Minimap2 to a data-
base of genome-wide reference orthologous groups and other steps
internally. When performing phylogenetic analysis, it should be taken
into consideration that microorganisms such as bacteria canexchange
genetic material via horizontal gene transfer, recombination and other
mechanisms, which canresultin complexand reticulate evolutionary
relationships, and are better represented by phylogenetic networks
rather than by traditional bifurcating phylogenetic trees'"”.

SV analysis. SVsare ubiquitousinboth individual bacteriaand across
microbial communities inhabiting human hosts'’®. SVs are often
defined as >50-bp genomic alterations including insertions, inver-
sions, deletions, duplications and translocations®, and have shown
a profound impact on eukaryotes (for example, human population
diversity, diseases and other phenotypes). In aphenomenon specific
to microbial genomes, bacterial genomes can undergo horizontal
gene transfer, a process central to bacterial evolution and adaptation’.
Besides, viral genomes exhibit complex transcriptional patterns and
ahigh propensity for recombination, distinguishing them from other
biological entities'*’. While there are numerous studies that have ana-
lyzed SVs in microbial genomes, to date only afew studies have analyzed
SVs across metagenomic samples'®®, This occurs despite evidence of
their occurrence and potential impacts on viruses, bacteria and oth-
ers. Thus, most of the existing SV methods are designed with diploid
genomes (for example, humans) in mind.

Ingeneral, there are two different tool categories: assembly-based
and mapping-based methods. To name afew assembly-based SV call-
ing methods, Dipcall"® or Mummer™ have demonstrated consid-
erable reliability. Whereas for mapping-based methods, Sniffles2
(ref.112) and SVIM-asm'” are excellent examples. The former uses
an SV scoring scheme to exclude false SVs, while incorporating the
detection of low-frequency SVs across different datasets. The latter
uses split-read and read-depth methods to identify SVs, and it can
detect complex events. The interpretation of SVs in a metagenom-
ics context is challenging but also presents a great opportunity for
future studies. In eukaryotes, much was learned by assessing the SV
frequency in specific populations, while similar metagenomic studies
are nonexistent. SV annotation can be performed by Ensembl-VEP'*®
and AnnotSV"* (Supplementary Table 1). Comparing mapping-based
SVs across metagenomic samples might be possible with SURVIVOR™
and Truvari'®, but again more specialized methods are needed for
metagenomics.

While SV detection with long reads in individual microbial
genomes is straightforward, SV detecting in microbiomes containing
adiverse set of microorganisms presents a substantial challenge due
to unknown reference genomes and the presence of mixed microbial

strains within the sample. A recent method in this space, Rhea'”, for-

goes reference genomes and MAGs by building a single metagenome
coassembly graph constructed from temporally sampled microbiomes.
Rhea then maps the long reads to the coassembly graph to infer SVs
between time points based on graph-based variant detection.

Utilization of epigenetic signals in metagenomic analysis

The role of DNA and RNA modifications in both prokaryotes and
eukaryotes, as well as the available methods to detect them, have
been thoroughly reviewed by Kong et al.®. The most common of
DNA methylation-based modifications are N®-methyladenine (6mA),
N*-methylcytosine (4mC), 5-hydroxymethylcytosine (ShmC) and
5-methylcytosine (SmC), but others exist. 5SmCis the dominant modifi-
cationin eukaryotes, while 6mA is the most prevalent in prokaryotes®.
Both RNA and DNA® viruses can also present genomic methylation,
with m®A (N®-methyladenosine RNA modification, as opposed to 6mA,
whichis a DNA modification) as animportant marker in RNA viruses's,
Bothlong-read platforms provide methylationinformation on CpGs
for DNA sequencing, outperforming bisulfite-based, short-read
sequencing for methylation detection by identifying methylation
in diverse bases and obviating the need for a reference genome'”.
Nanopore sequencing technology allows for direct RNA-seq, mak-
ing it possible to detect these RNA modifications steadily"®. Besides
the study of epigenetic modifications being important in itself, the
detection of these modifications can facilitate taxonomic characteri-
zation, binning and strain separation during metagenomic studies”’.
Currently, the literature and available tools are mostly focused on
the detection of DNA methylation in eukaryotes, and hence on 5mC
modifications®.

Tools tailored for metagenomics must be able to detect 5SmC, 6mA
and 4mC modifications, thus being able to detect both prokaryote and
eukaryote microorganisms, such as fungi. Among them, Nanopolish'*
candetect several types of DNA modifications, using a statistical model
toanalyze the raw signal data generated by ONT. DeepSignal''isadeep
learning-based software that can detect several types of DNA modifica-
tions, including 5mC and 6mA, using a convolutional neural network
toanalyze the rawsignal ONT data. DeepMP'*is a convolutional neural
network-based model that takes information from ONT raw signals
and base-calling errors to detect whether a given motifin aread is
methylated, being able to detect 6mA and SmC modifications. Remora
(Supplementary Table 1) can identify 4mC, 5mC and 6mA modifica-
tions in ONT reads after base calling. Most of these tools depend on
theidentification of the genomic context to detect methylation, such
as5mCinCpGislands, or 6mA at GATC motifs. Nanodisco'*isatool to
detect DNA methylationin prokaryotes regardless of the genomic con-
text, and that has shown the three types of DNA methylationin diverse
sequence contexts (Supplementary Table1). Itisimportant to note that
mostbioinformatic methods for long-read methylation detection typi-
callyrequire anegative control, such as synthetically amplified whole
genomes, to ensure accurate and reliable methylation detection. For
the detection of RNA methylation markers from direct RNA-seq, in
particular the m°A modification, there are few state-of-the-art tools.
Of note, Nanocompore'?* and Epinano'® are well-consolidated tools.
While methylation analysis has the potential to provide deeperinsights,
itis not ascommonly used by the community yet.

Challenges and future directions

Inthisreview, wereported the state-of-the-art metagenomics methods
utilizinglong-read sequencing technologies. We discussed steps from
experimental design across sequencing and analytical approaches and
mentioned several secondary analysis approaches as well. Together
with these individual steps and suggestions, we provide an extensive
list of methodologies for the reader. Although we could not list all
available methods designed for long reads, we highlighted some of
the most relevant for each approach.
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Metagenomic analysis faces amultitude of challenges. Foremost
amongthemisthe quest for accurate and unbiased species identifica-
tionwithinagivensample. The effectiveness of thisendeavor isinevita-
blytied to the chosendetection method, and often, different methods
yield conflicting results. This might be improved with future develop-
ments where long reads hold a strong promise to disentangle this
information. Furthermore, the absence of universally accepted bench-
mark samples in metagenomics, analogous to the well-established
GIAB®® for human genomes, poses a substantial hurdle. While mock
samples exist, they frequently suffer from contamination and impu-
rities, thereby complicating the enforcement of stringent standards
for strain identifications. The persistent challenge of metagenomic
sample classificationliesin the ability to discern sub-strain variations,
acommon yet elusive target.

Some aspects of long-read sequencing remain underutilized,
such as the simultaneous assessment of nucleotide and methylation
information. Recent studies in eukaryotes showed that methylation
can be utilized to distinguish even haplotypes'. This could easily be
extended toimprove metagenomic analysis to detect even below strain
levels. Furthermore, in the eukaryotic world, long reads considerably
improved the study of SVs, which led to multiple discoveries such as
speciation events and other phenotypic impacts’. The current state
of structural variation detection in metagenomic samples is unfor-
tunately overlooked. The primary challenge lies in our inability to
generate sufficiently high-quality MAG assemblies to comprehensively
explore these phenomena within microbiomes. The current methods
in use are mainly designed for diploid genomes (that is, human sam-
ples) and ignore challenges of cross-species mapping or other signals.
Incorporating methylation and SV information into metagenomic
algorithms promises to yield new biological insights and enhance the
effectiveness of long-read technologies, thereby remarkably advancing
metagenomic analysis.

Furthermore, the ongoing expansion of genomic databases
presents a unique opportunity for advancing the precision of long-
read taxonomic classification algorithms. As these databases grow,
they encompass an increasingly diverse array of genomes from vari-
ous microorganisms. Long-read sequencing, when coupled with
multi-omics dataintegration, can harness this wealth of genomicinfor-
mation to enhance taxonomic classification accuracy. The availability
of more comprehensive reference genomes, derived from long-read
sequencing technologies, contributes to a better representation of
the microbial world. With extensive genomic coverage and a broader
range of genetic markers, the taxonomic resolution achievable by these
algorithms is poised to improve substantially. This convergence of
growing genomic databases, long-read sequencing and multi-omics
integration underscores the potential for achieving unprecedented
taxonomic precision in metagenomic analyses.

In recent years, there have been promising innovations in
long-read sequencing technologies, marked by increased yield and
reduced sample requirements. These innovations, however, are still
on the path to fulfilling their full potential. Notably, breakthroughs
like the telomere-to-telomere (T2T) assemblies'”, primarily applied
within the realm of eukaryotes, hold the promise of translation into
metagenomic practices. Undoubtedly, these advancements will make
an important impact on the field, necessitating further computa-
tional methods.

In the clinical setting, the decreasing prices, runtime and port-
ability of sequencers, together with the development of accessible
bioinformatic pipelines, can make long-read sequencing ubiquitous
in the physicians’ toolbox, and a useful instrument in personalized
medicine helping in the diagnosis of infections by sequencing patient
samples, as well as help choosing the best treatment by identifying
antibiotic resistance genes. In addition, targeted metagenomics has
shown to be a useful asset for pathogen surveillance, as evidenced
by using long-read sequencing on targeted metagenomic analysis of

wastewater, which proved very efficacious and emerged as a great tool
inimproving viral surveillance in the microbial community".

In conclusion, long-read sequencing has considerably impacted
the field of metagenomics and beyond, paving the way for ground-
breaking researchin various disciplines. While it continues to evolve,
with new developments and advancements enhancingits capabilities,
some challenges such as error rates, sample requirements and cost
persist. Nevertheless, long-read sequencing has firmly established its
positionand s poised torevolutionize another frontierinlife sciences
with unwavering potential.
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