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Unveiling microbial diversity: harnessing 
long-read sequencing technology

Daniel P. Agustinho    1, Yilei Fu    2, Vipin K. Menon    1,3, Ginger A. Metcalf1, 
Todd J. Treangen    2,4 & Fritz J. Sedlazeck    1,2 

Long-read sequencing has recently transformed metagenomics, enhancing 
strain-level pathogen characterization, enabling accurate and complete 
metagenome-assembled genomes, and improving microbiome taxonomic 
classification and profiling. These advancements are not only due to 
improvements in sequencing accuracy, but also happening across rapidly 
changing analysis methods. In this Review, we explore long-read sequencing’s 
profound impact on metagenomics, focusing on computational pipelines 
for genome assembly, taxonomic characterization and variant detection, 
to summarize recent advancements in the field and provide an overview 
of available analytical methods to fully leverage long reads. We provide 
insights into the advantages and disadvantages of long reads over short 
reads and their evolution from the early days of long-read sequencing to 
their recent impact on metagenomics and clinical diagnostics. We further 
point out remaining challenges for the field such as the integration of 
methylation signals in sub-strain analysis and the lack of benchmarks.

High-throughput sequencing technologies were first used in metagen-
omic studies in 2006 (ref. 1), initiating a transformative paradigm shift 
within the field. Over time, these technologies have become more 
cost-efficient and widely utilized, profoundly impacting metagenom-
ics. Another crucial advancement emerged in the early 2010s with the 
introduction of long-read sequencing, ushering in a new era of metagen-
omic exploration. Compared to short-read technologies, long-read 
technologies (Table 1) allow for the sequencing of both intergenomic 
and intragenomic repetitive regions and their neighboring sequences 
in the same read, resulting in less fragmented metagenome assem-
bled genomes (including plasmids), more accurate taxonomic char-
acterization (species/strain level)2, improved detection of horizontal 
gene transfer3, and cataloging of large structural variations4,5, such as 
duplications or inversions. Long reads can also be used for identifying 
methylation patterns, as they can detect modified nucleotides during 
sequencing, and the reads are long enough to map full methylation 
sites, especially in repetitive regions6. Nevertheless, long reads also 
have drawbacks, such as increased costs and DNA amount require-
ments7. Furthermore, in the context of metagenomics, DNA extraction 

often yields shorter fragments, which might negate the full benefits 
of long-read sequencing.

Recently, long-read sequencing has matured considerably, provid-
ing continuous cost and yield improvements, and reduced sequenc-
ing error rates (Table 1). In addition, there have also been reduced 
input DNA requirements, allowing the sequencing of smaller sample 
DNA concentrations. Currently, two main companies dominate the 
long-read market: Pacific Biosciences (PacBio) and Oxford Nanop-
ore Technologies (ONT). PacBio delivers very highly accurate long 
reads, while ONT produces slightly less accurate reads, but with mul-
tiple devices operating at different scales, from handheld sequenc-
ing devices (MinION) to high-throughput sequencers (PromethION). 
To date, ONT is the only technology capable of performing direct 
RNA sequencing (RNA-seq)8, although it is still in the experimental  
stage (Fig. 1a).

In this Review, we examine the application of long-read sequencing 
in metagenomics, encompassing both targeted and non-targeted strat-
egies. We evaluate contemporary analytical methodologies that facili-
tate more comprehensive metagenomic analyses, assessing diverse 

Received: 8 September 2022

Accepted: 29 March 2024

Published online: xx xx xxxx

 Check for updates

1Human Genome Sequencing center, Baylor College of Medicine, Houston, TX, USA. 2Department of Computer Science, Rice University, Houston,  
TX, USA. 3Senior research project manager, Human Genetics, Genentech, South San Francisco, CA, USA. 4Department of Bioengineering, Rice University, 
Houston, TX, USA.  e-mail: fritz.sedlazeck@bcm.edu

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02262-1
http://orcid.org/0000-0003-2242-4798
http://orcid.org/0000-0002-7721-7027
http://orcid.org/0000-0001-7404-678X
http://orcid.org/0000-0002-3760-564X
http://orcid.org/0000-0001-6040-2691
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02262-1&domain=pdf
mailto:fritz.sedlazeck@bcm.edu


Nature Methods

Review article https://doi.org/10.1038/s41592-024-02262-1

up to ~100 Gb (PromethION R10, kit14). This newest ONT technol-
ogy allows for reads that are slightly less accurate than short reads 
(~1–3% sequencing error)12. ONT long reads are in general a bit less 
accurate in their base calling than PacBio HiFi reads but have a higher 
throughput and lower cost7. One of the biggest advantages of the ONT 
MiniON and Flongle platforms is their portability due to the small size 
and off-line functionality of the machines, allowing them to be taken 
on expeditions to isolated places and performing DNA sequencing 
in situ and in isolated regions such as the International Space Station13,  
for example.

In addition to nucleotides sequences, long reads can simultane-
ously read out the methylation status on CpG islands for 5mC and 
5hmC6 (more details below). Most interestingly, ONT has the ability to 
read this out not only on DNA, but also directly via sequencing RNA8. 
This allows further separation of different organisms within a sample 
(Fig. 1a).

Thus, while long-read sequencing is still not as common as 
short-read sequencing, it holds a remarkable promise with ever- 
decreasing costs and error rates. Nevertheless, it is worth noting that 
both platforms (ONT and Pacbio) rely on the quality and quantity of the 
input DNA. Overall, the use of long-read-based metagenomics is devel-
oping rapidly (Fig. 1b). Novel analytical approaches and bioinformatic 
tools are constantly being developed to fully exploit their properties. 
Their importance has been shown in the clinical context as well, such 
as the surveillance of antibiotic resistance genes14 and pathogens in the 
hospital environment and potential hospital-associated infections15, 
and in the identification of recent outbreaks, such as monkeypox16 and 
coronavirus disease 2019 (COVID-19)17.

The success of a metagenomic study hinges on various factors, 
starting with the initial experimental design, including the selection 
of technology and whether a targeted or non-targeted approach is 
used. Notably, long-read sequencing typically needs a larger quan-
tity of high-quality DNA compared to short-read studies. PacBio- and 
ONT-specific extraction can require a minimum input of 150 ng up to 
1 µg of amplification-free, high-quality genetic material for sequencing 
single-organism samples7. In comparison, Illumina protocols normally 
need as low as 1–500 ng of DNA18. Table 1 shows a comparison across 
the technologies.

Extracting genetic material from complex communities can be a 
challenging process due to the variety of organisms found, which may 
each require specific extraction protocols (for example, circularized 
or linear DNA). As a result, distinct DNA fragments are generated for 
different organisms, limiting the average read length obtained in such 
studies to around 2.5–9.0 kb for both synthetic and real microbial com-
munities19. Organisms with low biomass might not be represented in 

approaches, differentiating between mapping and assembly-based 
methods based on their respective utilities with long reads. Addition-
ally, we not only scrutinize recent progress but also illuminate existing 
constraints and potential future prospects within the field. This Review 
is intended to provide researchers and practitioners with a compre-
hensive overview of the latest trends and computational techniques 
in the field, empowering them to leverage long-read technologies 
and methodologies to drive discoveries and push the boundaries of 
metagenomics research.

Long-read sequencing technologies in the 
context of metagenomics
Illumina short-read technology is still widely used and has great advan-
tages such as low cost, high throughput, accuracy and sensitivity across 
low-abundance genomes, but also has its limitations5,7. Repetitive 
genomic regions or highly homologous regions can impact the effi-
ciency of assembly and alignment tools, especially if these regions are 
longer than the overlapping length of reads or contigs9. Consequently, 
complete genome resolution using short reads is nearly always unat-
tainable10. In metagenomic approaches, taxonomic differentiation in 
the sample can become complicated as there are probably multiple 
closely related strains whose genomes differ in just a few locations11. 
These intergenomic repeats, segments shared by various organisms, are 
difficult to resolve computationally without simultaneously sequenc-
ing their neighboring regions4,5,7. One potential strategy to overcome 
these issues is to increase the read length, thus increasing the likeli-
hood that a read includes an organism’s specific region to improve 
identification9.

Longer reads produced by ONT and PacBio aim to fill this gap. 
PacBio’s single-molecule, real-time (SMRT) technology yields 
high-fidelity (HiFi) long reads at a very low error rate9. Each SMRT Cell 
(8 M) for the PacBio Sequel II system can generate up to 80 Gb of 
sequence data in ~30 h, with an average read length of ~15–20 kb, or 
about 4 million reads. The new PacBio Revio system can run up to four 
SMRT Cells (25 M) in parallel, with each producing up to 90 Gb of data 
for a total of 360 Gb in ~24 h (Table 1). PacBio library preparation gener-
ally takes a minimum of 7 h.

ONT library preparation generally takes 1–2 h, and the sequenc-
ing runs last ~72 h for most of the platforms used, except for Flongle 
(16–24 h; Table 1). The MinION and PromethION platforms have an 
average read length of 13–20 kb and can reach up to 4 Mb12, which 
would be sufficient to encompass whole chromosomes/genomes 
for some organisms. ONT machines’ yield varies according to 
the kits and platforms used12, and it can range from up to 2.8 Gb  
(Flongle) passing through the ~10–20 Gb range (MinION), all the way 

Table 1 | Comparison between short-read and long-read technologies

Platform MiSeq NovaSeq 6000 Sequel II Revio Flongle MinION GridION PromethION

Company Illumina Illumina PacBio PacBio Nanopore Nanopore Nanopore Nanopore

Read length 
(average)a

Up to 2 × 300 bp Up to 2 × 250 bpb ~13.5–20 kb52 15–18 kb 20 kb 20 kb 20 kb 20 kb

Yield per cell (Gb) Up to 15 ~350 25 (HiFi) 90 1–1.5 15–20 15–20 ~120

Runtime (h) 4–56 13–44 30 24 16–24 72 72 72

Read accuracy 
(Q20+)

99.75%128 99.75%128 99.18–99.8%52 >99.5%129 97–99%12 97–99%12 97–99%12 97–99%12

Can perform Direct 
RNA-seq

No No No No Yes Yes Yes Yes

DNA input needed 1–500 ng18 1–500 ng18 150 ng–1 µg7 c 150 ng–1 µg7 c 150 ng–1 µg7 150 ng–1 µg7 150 ng–1 µg7 150 ng–1 µg7

Estimated 
sequencing costs 
per Gbd

US$178–
1,705130,131

US$3.95131 US$30–43131,132 US$8–11132 US$118–437131,132 US$21–51131,132 US$29–51132 US$6–12132

aComplex metagenomic samples very rarely reach average lengths superior to 2.5–9.0 kb (see text for details). bAvailable only on Illumina SP flow cells. cAn exception might be the 
ultra-low-input protocol for PacBio. dPlease note that these sequencing costs are estimates, subject to rapid changes, and the information presented here may quickly become outdated.
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the sequencing results. New preparation methods are constantly being 
developed together with low-input kits12,20.

Contamination mitigation and targeted 
approaches in long-read metagenomics
Contamination from the laboratory apparatus or reagent kits can 
dramatically impact the result of metagenomic studies21. In clinical 
samples, contamination with host DNA is another important issue 
that might lower the detection of pathogens. There are currently many 
methods for dealing with contamination both before and after sequenc-
ing20. There are also commercial kits available to extract enriched 
microbial DNA based on differential methylation patterns between 
the host and microbiome. Bioinformatic tools have been developed for 

detecting and removing contamination or host reads from the sample. 
This is needed to avoid wrongful prediction of, for example, variants. 
Methods such as Decontam22 and Recentrifuge23 use comparisons 
between samples and negative controls to identify and remove con-
taminants from sequencing data.

Another solution is using a targeted instead of an untargeted 
approach. The latter is more exploratory as one captures the entire set 
of organisms but might suffer from higher requirements of coverage 
and sample input. Thus, it is common to pursue a targeted approach 
where scientists are interested in a defined set of organisms19. A com-
mon strategy for targeting is to amplify the whole genetic material in 
the sample through PCR techniques, such as multiple displacement 
amplification10. These methods, however, can generate a new problem, 
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Fig. 1 | Overview of long reads in metagenomics. a, Differences between 
short-read and long-read technologies. Long reads have some advantages over 
short-read technologies. They can generate less fragmented genome assemblies, 
lower-level (species/strain) taxonomic characterization, DNA/RNA methylation 
pattern identification, large SV detection and highly portable sequencers. In 
contrast, short-read technologies still present overall cheaper sequencing 

costs and lower DNA input requirements due to the amplification step in library 
preparation. Image credit: Oxford Nanopore Technologies plc. b, The growth 
of long-read-related submission to the Sequence Read Archive (SRA) in recent 
years. Long-read platforms (ONT and PacBio SMRT) are being more widely used 
each year. The plot represents the accumulated number of data submissions 
related to each tag to the SRA each year.

http://www.nature.com/naturemethods


Nature Methods

Review article https://doi.org/10.1038/s41592-024-02262-1

as they can create a high number of chimeric reads that are difficult 
to interpret. Some bioinformatic tools have been created to tackle 
this issue and have had moderate success24. Interestingly, the usage 
of a hybrid approach (combining long reads and short reads) helped 
circumvent this issue with chimeric long reads10.

Alternatively, other methods for targeting organisms in a sam-
ple have been developed, such as capture panels25, LAMP-seq26 and 
adaptive sampling. The latter can be performed only by ONT, and it 
can be used to either deplete host reads or enrich for some microbial 
taxonomic groups during sequencing. This targeted enrichment/
depletion is possible due to the ‘ReadUntil’ technology that allows the 
pores in the flow cells to selectively sequence DNA molecules based 
on genomes of interest27. As the DNA/RNA molecule is sequenced, the 
emerging read is aligned to genomes or genomic regions input by the 
user, and the software can decide whether to reject or accept it based 
on the parameters defined by the user (Fig. 1a).

Base calling and quality control
Base calling for PacBio is encapsulated into the sequencing software 
and Lima can be used for demultiplexing (Supplementary Table 1). 
For ONT, Guppy has replaced Bonito as the official base-calling tool, 
and a recently introduced and much faster tool called Dorado is likely 
to replace Guppy in the short future28. Currently, the ONT base callers 
can operate using three distinct algorithms chosen when running the 
software: FAST, high-accuracy and super-accuracy base calling. In that 
order, they provide increasing accuracy at the expense of speed and 
computational resources, with the speed of the base caller being a fac-
tor of the number of parameters in the neural network model28. Often 
after base calling, the read quality is estimated and some read filtering 
is performed, with failed reads not being reported. This filtering is 
based on different thresholds set during base calling, such as sample 
accuracy estimates (Q scores) or the number of subreads obtained 
from a DNA fragment in PacBio.

There are many software tools available that are used to obtain 
some important basic statistics about the sequencing run, such as 
read length distribution, the presence of adaptor sequence in the 
reads or contamination with small fragments. Read filtering also hap-
pens at this stage, and it is normally performed to remove low-quality 
reads, adaptors and reads that are too short. Ultimately, the scientist 
analyzing these data requires an understanding of potential biases of 
the data, which informs the potential limitations of the analysis and 
potential conclusions. Some of the tools designed for short reads are 
compatible with long-read technology. For instance, FastQC also works 
with ONT and PacBio long reads, and can provide a range of quality 
metrics for each read. Nanoplot29 is a tool from the Nanopack package 
specific for ONT sequencing data, and can also provide quality-control 
statistics, metrics, processing and visualization for long reads. Guppy 
also provides simple quality-control reports about read sizes and other 
full metrics. Similarly, the Lima demultiplexing software from PacBio 
detects and trims adaptor sequences from PacBio reads. All tools are 
reviewed in Supplementary Table 1. These tools can be used either 
separately or in combination to perform quality control of long-read 
sequencing data. The importance of these methods cannot be over-
stated and is often crucial for the later success of an experiment.

Analysis using long-read sequencing
Given the unique aspects of long reads, new methods have been devel-
oped to enhance metagenomic analysis; selecting which methods to 
use is an integral part of the experimental design from the start (Fig. 2). 
Selecting appropriate tools for analysis and assessing the quality of the 
results is critical, and it is recommended to refer to benchmark studies 
or community-driven initiatives like CAMI/CAMI2 (ref. 30) to guide the 
choice of computational methods.

Depending on the experimental objectives, metagenomic 
approaches vary in their scope. Traditionally, when conducting 

taxonomic characterization, the emphasis was placed on analyz-
ing marker genes, such as 16S/18S rRNA. However, contemporary 
approaches have broadened their focus to encompass whole-genome 
sequencing and, consequently, better discrimination of sub-strain-level 
genetic variations. Another strategy involves assembling individual 
genomes within metagenomic samples, requiring specialized meth-
ods to resolve ortholog clusters and correct potential analysis errors. 
Additionally, mapping reads to known references offers the advantage 
of characterizing low-frequency variants within the samples. In the 
following sections, we will provide an overview of these approaches 
and essential insights.

Taxonomic profiling with 16S/18S/ITS
Taxonomic characterization and quantification within a sample can 
be accomplished through two primary methodologies in metagenom-
ics: 16S/18S/ITS rRNA sequencing (commonly known as marker gene 
or amplicon sequencing) and metagenomic shotgun whole-genome 
sequencing. In the 16S/18S/ITS approach, DNA is selectively ampli-
fied using PCR from specific marker genes, including the 16S rRNA 
gene for prokaryotes, the 18S rRNA gene for eukaryotes and the ITS 
regions for fungal identification. The resulting amplicons are then 
sequenced and aligned to reference databases, such as the NCBI 16S 
database31, SILVA32, RDP33 and Greengenes34, which represent diverse 
taxonomic groups. These marker genes serve as molecular signatures, 
enabling researchers to accurately identify, classify and quantify micro-
organisms, providing valuable insights into the taxonomic structure 
of complex microbial communities. Generally, these databases are 
not complete, and classification of organisms that are not present 
there will fail. While this approach has many limitations compared 
to whole-genome approaches, such as being more susceptible to 
primer biases, lower sensitivity to shallower taxonomic classification 
and unsuitability for organisms without marker genes (for example, 
viruses), it is still being often used due to its efficiency and sensitive-
ness in bacterial taxonomic profiling in complex microbiomes and its 
low price advantage35. To the extent of our knowledge, there are two 
computational tools designed for long reads to perform 16S taxonomic 
profiling—Emu36 and NanoClust37—although most short-read methods 
can also work with long reads.

Previous comparisons between short-read and long-read 16S/18S/
ITS analysis showed long reads achieve improved performance at the 
genus and species levels9. The higher resolution offered by long reads 
enhances the 16S rRNA classification and reduces the number of reads 
that cannot be classified or cannot be ascribed to lower-level taxa38. 
More importantly, long reads have the potential to uncover complete 
16S rRNA sequences from microbial ‘dark matter’ with a higher resolu-
tion and reliability of classification38.

Taxonomic characterization and abundance profiling in the 
whole-genome shotgun metagenomic approach
Whole-genome shotgun metagenomic profiling encompasses the 
sequencing of the complete genetic material within a mixed microbial 
sample, bypassing the need for prior selection or amplification of spe-
cific marker genes. Much like the 16S/18S/ITS approach, sequencing 
reads are matched against comprehensive whole-genome databases, 
such as IMG/M39, MG-RAST40 and NCBI’s RefSeq31. Based on this match-
ing, these reads are subsequently categorized into taxonomic groups, 
profiled and abundance can be evaluated.

There are multiple reference-based metagenomic tools that were 
designed specifically for long reads, such as Metamaps41, Megan-LR42, 
MMseqs2 (ref. 43), CDKAM44 and BugSeq45. These reference-based 
profilers utilize machine learning or statistical models to assign taxo-
nomic labels to genetic sequences, differently from genome aligners, 
which use algorithmic approaches such as dynamic programming or 
seed-and-extend methods to find optimal alignments or similarities 
between sequences. MetaMaps uses a reference-based approach, 
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aligning sequences to a database, together with reference-free meth-
ods such as nucleotide composition to identify taxonomic groups. 
MEGAN-LR uses the alignments performed by other software to assign 
reads to a taxonomic group using a lowest common ancestor (LCA) 
algorithm. It can use a nucleotide sequence alignment, such as those 
produced by Minimap2 (ref. 46) or NGMLR4, or a protein sequence 
aligned from the translation of the reads, such as those obtained from 
DIAMOND47. MMseqs2 works by extracting all protein fragments in six 
frames, filtering them, aligning them to a reference protein database, 
and using an LCA algorithm to assign the reads to specific taxa. CDKAM 
uses inexact k-mer matches to compensate for the increased error rate 
of long reads and identify matches in a reference database. BugSeq is 
a cloud platform and presents two different internal pipelines (V1 and 
V2), with one of those being auto-selected during the run. Both use 
Minimap2 alignments to a database, but in V1 it is followed by Bayesian 
reassignment and LCA identification, whereas in V2 the alignment is 

followed by LCA identification and abundance calculation19 (Supple-
mentary Table 1).

A recent benchmark performed using long reads and short reads, 
and with most of these tools, concluded that: (i) long reads increased 
precision of the calls; (ii) short-read methods used with long-read 
data resulted in high rates of false positives, specially Kraken2 and 
Centrifuge; (iii) most tools presented low precision, which could be 
increased with filtering, but at the cost of reducing recall; and (iv) the 
best-performing tools for long reads were Sourmash, BugSeq and 
MEGAN-LR (using either Minimap2 or DIAMOND for alignments), 
with high precision and recall without the need of read filtering19. This 
trade-off between precision and recall has also been observed in the 
CAMI challenge30. CDKAM was not included in this benchmark study. 
More recently, a study compared alignment and classification tools, 
finding similar or better accuracy and less RAM requirements for align-
ers such as Minimap2, despite being slower. Tools using nucleotide 
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Fig. 2 | A generalized decision tree for metagenomic studies. When embarking 
on a metagenomic study, one of the first decisions a researcher must make is 
whether to use a targeted or an untargeted approach. A targeted approach 
involves sequencing a specific organism or group of organisms, often requiring 
enriching the target organism’s genetic material from the microbiome sample 
using tiling amplicon panels, adaptive sampling or capture panels and probe 
designs. In contrast, an untargeted approach involves sequencing the entire 
population without prior selection. Another option to untargeted metagenomics 
is the 16S/18S rRNA approach, which involves sequencing the amplicons of a set 

of marker genes using primers specific to conserved regions of these genes to 
sequence the maximum number of organisms possible. The choice of approach 
considerably affects the available analyses and hypotheses that can be tested in 
each experiment. In this Review, we describe three main metagenomic analysis 
pipelines: mapping, de novo assembly, and taxonomic characterization. Each 
pipeline is more appropriate for different studies based on their objectives. 
Finally, we discuss post-sequencing steps that can be taken based on the different 
designs proposed. Dashed line arrows represent indirect processes that require 
other intermediate steps.
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databases outperformed those using protein databases, with read 
length and database completeness influencing classification accuracy 
across datasets48.

It is worth mentioning that protein sequence-based methods 
rely on pruning heuristics to consider only a certain number of open 
reading frames (ORFs). The longer the reads, the higher the chances 
of it containing frameshift sequencing errors and additional ORFs, 
which makes the challenge of identifying all ORFs across the reads 
nontrivial, and potentially missing some ORFs with those methods49. 
On the other hand, these methods require the presence of multiple 
ORFs in the read to work well, with their accuracy declining as reads 
get shorter50. This can be somewhat circumvented by fine-tuning of the 
parameters, which often involves a trade-off between sensitivity and 
execution time, with higher method sensitivity resulting in increased 
computational demands and processing time, without the guarantee 
of successful results50.

De novo long-read assembly of genomes from metagenomes
The goal of metagenomic assembly methods is to reconstruct com-
plete genomes for each microorganism present in a sample (called 
metagenome-assembled genomes or MAGs), thus avoiding potential 
representation or contamination issues with previously published refer-
ence genomes51. Bioinformatic tools perform this by tiling dovetailed 
reads that come from the same genomic region, forming contigs5. Like-
wise, contigs in close proximity inferred over reads can be tiled together 
to form longer stretches of sequences with unresolved regions, a pro-
cess often referred to as scaffolding, until potentially forming chromo-
somes or whole genomes5. The most popular approaches for assemblies 
using long reads are to use the overlap-layout-consensus (OLC) 
method or de Bruijn graph (DBG) approach5. Within OLC, long reads 
are first aligned with each other to identify overlapping regions that 
are then joined together to form contigs. The DBG approach reduces 
this complexity to a k-mer space and guides the joining of reads in  
this way.

Repetitive regions and intergenomic repeats can impact on the 
efficiency of assembly tools, especially if these regions are longer than 
the overlapping length of reads or contigs52,53. Short reads can be used 
to detect variants between strains, but fail (due to the length) to relate 
(that is, phase) these variants into continuous haplotypes53, which 
makes short-read assemblies notorious for contig fragmentation10, 
and highly inefficient at assembling multi-copy DNA sequences, such 
as the 16S gene, mobile genetic elements (that is, transposons) and 
plasmids54 (Fig. 1). Long-read methods can overcome this issue, but 
higher error rates present in some of the platforms could cause dif-
ferent problems. Initially, the alternative to minimize this effect was to 
perform hybrid assembly using long reads and short reads, but recent 
advancements to decrease long-read error rates have been making this 
approach obsolete55.

The use of a hybrid approach to genome assembly. Hybrid assem-
bly benefits from the advantages of long reads, and from the lower 
base-calling error rates from the short reads56,57. The addition of long 
reads to short-read-only assemblies generates an improvement in 
overall assembly statistics, contig size, binning and gene complete-
ness9,38, and increases the discovery of new species38. While hybrid 
assemblies show this remarkable advantage in comparison to short 
reads only, it comes with an increase in costs and necessary depth 
of sequencing. Besides, while long reads are efficient in dealing with 
repeats (intragenomic or intergenomic), short reads are not, and this 
can create ambiguities during the assembly process. Working with 
multiple platforms at the same time, can also introduce biases during 
assembly5. For instance, short reads can reintroduce G+C or primer 
biases from their different library preparation. Likewise, with the 
improvement in long-read technologies, error rates and costs per base 
have been dropping, allowing for increased sequencing coverage that 

can mitigate the long-read error rates. Besides, bioinformatics methods 
have evolved to circumvent these higher error rates using multiple 
strategies, either before or after assembly. Finally, hybrid assembly may 
not be beneficial when the accuracy of long reads is equivalent to that of  
short reads9,58.

Some of the most popular tools for hybrid assembly are 
DBG2OLC56, OPERA-MS59 and Unicycler57. DBG2OLC converts a DBG rep-
resentation of sequencing data into an OLC assembly by resolving ambi-
guities in the graph using long reads. OPERA-MS uses coverage-based 
clustering and Bayesian information criterion of clusters to perform 
short-read assembly, followed by overlaying with long reads to pro-
duce an assembly graph. Unicycler utilizes a combination of de novo 
assembly, read mapping and iterative correction steps to achieve 
accurate and complete reconstructions of bacterial genomes (Sup-
plementary Table 1).

Long-read-based assembly methods for metagenomics. Due to 
improvements in sequencing technologies and decreased error rates, 
metagenome assemblies using long reads only have become sufficient 
to generate comprehensive and relatively error-free metagenome 
assemblies55. Figure 3 depicts a graph-based representation of a human 
gut metagenome assembly using exclusively PacBio HiFi reads. The 
graph distinguishes individual contigs by assigning each one a unique 
color. The presence of circularized contigs in the graph indicates the 
completeness of a genome sequence. This study was able to circular-
ize 56 genomes from the human gut microbiome, highlighting the 
advancements made possible by novel long-read sequencing technolo-
gies and improved bioinformatics tools.

Nevertheless, due to error rates in the long reads (up to 1–3%; 
Table 1), multiple approaches rely on a read error correction before 
starting the actual assembly. Error correction can be important for 
downstream analysis and interpretation of metagenomic data. Cor-
recting errors can increase the sensitivity and specificity of taxonomic 
classification and functional annotation and improve the accuracy of 
genome assembly and gene prediction. Furthermore, error correction 
can reduce the amount of noise in the data, which can lead to more 
accurate identification of rare taxa and the discovery of novel microor-
ganisms60. However, error correction tools should be considered care-
fully before use in metagenomic studies, as although they can mitigate 
sequencing errors, they can also erase low-frequency variations and 
lower-frequency strains, affecting strain detection61.

Read error correction is often performed by comparing the shorter 
reads to the longer reads in order to improve the quality of the longer 
reads (for example, Q score). Some assembler software provides 
built-in error correction features, such as MetaFlye62, which uses a 
two-step overlap-based and assembly-based correction approach, and 
Canu63, which uses a multiple sequence alignment approach. VeChat60 
uses a different approach—a variation graphs method to perform 
haplotype-aware error correction of reads.

The main tools designed for metagenome assembly using long 
reads are hifiasm-meta64, Canu63 and MetaFlye62 and pipelines such 
as Lathe65. Other long-read assembly tools not specifically designed 
for a metagenomic approach are also used, although a recent bench-
marking study using metagenomic data showed a subpar performance 
from those compared to metagenomic-specific tools61. A benchmark 
between Canu and MetaFlye reported a more complete assembly using 
Canu10, while others showed a slight advantage to MetaFlye61, sug-
gesting that these tools have similar efficacy, probably subject to 
differences in the samples. Hifiasm-meta64 is an assembler that takes 
advantage of reduced error rates from recent long-read sequencers 
and consists of several steps; optional read selection, sequencing error 
correction, read overlapping, string graph construction and graph 
cleaning (Fig. 3). Using HiFi reads, hifiasm-meta produced more total 
MAGs and more complete, single-contig circular MAGs than Canu  
or metaFlye64.
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Once contigs are assembled, they can be investigated using read 
information to look for connections between each other, and then 
further merged to form bigger structures, called scaffolds66. A few 
assemblers such as MetaFlye have this feature already built in, but 
this can also be performed by scaffolding software such as MetaC-
arvel67. Some pipelines using combinations of different tools have 
also proven efficient; for instance, MetaBooster/MetaBooster-HiFi68 
combines error correction from VeChat with Canu metagenome assem-
bly. Trycycler69 is a long-read consensus tool designed specifically for 
bacterial genomes and constructs a consensus assembly based on 
multiple assemblies created by different tools. Other methods allow 
for post-assembly refinements. Strainberry70 is a pipeline that takes 
a long-read metagenome assembly and performs variant calling and 
haplotype phasing to perform strain separation. stRainy53 is a tool that 
can either perform assembly itself or take an already assembled set of 
MAGs as input and perform strain separation as well. These tools can 
be reviewed in Supplementary Table 1.

Taxonomic separation of MAGs (contig binning). Once the assem-
bly is performed, the next step is the binning of contigs and scaf-
folds. Contig binning involves clustering of contigs into different 
bins based on their taxonomic or functional characteristics. The pur-
pose of binning is to assign the contigs to the microbial organisms 
that they originated from, allowing for downstream analyses such 
as functional annotation and taxonomic profiling. Not all contigs 
need to be binned, particularly if they are already circularized and 
assigned to a specific organism or strain. However, it is generally rec-
ommended to bin as many contigs as possible, as this can improve the 
accuracy and completeness of downstream analyses71. It is worth not-
ing that in multi-sample metagenomic datasets, using multi-coverage 
binning leads to higher-quality bins with reduced contamination 
compared to single-coverage binning. Direct comparison of both 
approaches using the same set of samples shows that multi-coverage 
binning outperforms single-coverage binning. It successfully 

identifies contaminant contigs and chimeric bins that other methods  
fail to detect72.

Reference-free methods are generally recommended after assem-
bly because reference-based tools will struggle with MAGs that are not 
present in their database. Tools designed for long-read contig binning 
already exist, such as MetaBCC-LR73 and LRBinner74. Interestingly, 
these tools can also be used to perform binning of long reads directly 
as well, without previous assembly. MetaBCC-LR uses contig compo-
sition and coverage to infer the number of bins, and then a maximum 
likelihood framework to separate them into different bins. However, 
MetaBCC-LR uses a sampling strategy with large datasets, which can 
hinder the identification of low-frequency organisms. LRBinner com-
bines compositional analysis with contig coverage (calculated by read 
alignment to the contigs) using Deep Learning and an iterative medoid 
clustering algorithm in addition to a distance-histogram-based clus-
tering algorithm to separate the contigs into different bins without 
sub-sampling. Besides those, GraphMB75 is a binner software designed 
for MAGs assembled from long reads and uses graph neural networks 
to incorporate the assembly graph into the binning process. Binnacle76 
uses scaffolding information to help separate genomes into bins. Some 
contig binners used for short-read assemblies will also work for this 
step, even if the assembly was produced with long reads. Short-read 
binner software has been exhaustively reviewed and benchmarked 
elsewhere71 and are beyond the scope of this Review.

Binning in metagenomic samples can be challenging due to 
various factors such as horizontal gene transfers of DNA fragments 
like plasmids, as well as the presence of phages, which exhibit high 
sequence diversity and can exist as integrated proviruses within their 
host’s DNA. To aid in the separation of these different sequences dur-
ing contig binning, the identification of DNA methylation patterns 
using long-read sequencing data has been proposed77. Methylation 
pattern identification can also help in detecting chimeric reads78, 
which could potentially improve contig binning. Furthermore, the 
genomic three-dimensional structure information provided by Hi-C 

Fig. 3 | Graph representation of a metagenome assembly. Data were generated 
using HiFi reads and hifiasm-meta for long-read-only assembly. The figures 
represent all the contigs arranged by decreasing length, with each color 
representing a single contig. The sample is a commercially available pooled 
human gut reference (ZymoBIOMICS D6323). The dataset was generated  

with four SMRT Cells (8 M) on the PacBio Sequel IIe system, which yielded 11.9 
million HiFi reads and 88.3 Gb of total data. There are 56 large circular contigs 
visible in the graph, ranging from 1.5 Mb to 6 Mb in size, along with numerous 
circular plasmids.
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can be utilized to enhance binning accuracy by leveraging proximity 
information, while also associating mobile elements with their respec-
tive host genomes55.

Assembly polishing and quality control. After long-read MAG 
assembly, a common step for ONT is to ‘polish the assembly’, that is, 
to improve the accuracy of the draft assembly by using read data to 
correct errors in the assembly. Using short-read data is also possible, 
with polisher tools designed for that purpose. For technologies with 
low error rates, polishing with short reads does not provide improve-
ments55. Besides, that involves another round of sequencing using 
a different platform, which can increase the costs. Hence, new tools 
were developed to use the same reads used to produce the assembly 
to perform polishing (Supplementary Table 1). A recent benchmark79 
study comparing these tools using Escherichia coli single-species 
sequencing data reached two main conclusions. First, ONT-only data 
can achieve the same quality of assembly without complementary 
short-read sequencing. Second, the most efficient tool for assembly 
polishing for single-species data was the reference-based HomoPol-
ish80, since a reference genome was already available. For unknown, 
multiple-species samples, their best results were with a combination 
of PEPPER81 and Medaka (Supplementary Table 1).

Upon finishing the assembly, its quality can be measured using 
some specific metrics, such as N50, L50, genome completeness, 
genome size, assembly accuracy and contamination rate. N50 is the 
length of the shortest contig that, together with all the contigs of the 
assembly that have the same length or longer than it, covers 50% of 
the length of the genome assembled5. It is a measure of the contiguity 
of the assembly, and higher N50 values indicate longer contigs. L50 is 
the number of contigs needed to cover 50% of the genome assembly. 
It is also a measure of contiguity, and lower L50 values indicate fewer 
but longer contigs. While these metrics provide valuable insights into 
assembly length, they do not inherently guarantee its actual quality 
or completeness5. One way to assess this is to measure the number of 
unique single-copy genes (SCGs) that should be present. Contamina-
tion or assembly errors can be identified by the lack or multiple number 
of SCG copies82. Of course, caution is needed when assessing samples 
with multiple species, where only the lack of SCGs can be assessed5.

These metrics can be obtained by a variety of tools, and many 
of those are also reviewed elsewhere11,71. BUSCO83 uses a database of 
ortholog genomes (OrthoDB) to estimate complexity and redundancy 
of assembled genomes. It generates reports containing meaningful 
metrics that complement other statistics related to contig contiguity. 
Inspector84 is a long-read de novo assembly evaluator that uses con-
sensus sequences derived from raw reads covering erroneous regions 
in a reference-free way. It reports generic metrics and can accurately 
identify both large-scale and small-scale assembly errors. CheckM2 
(ref. 85) provides robust estimates of genome completeness by using 
co-located sets of genes that are ubiquitous and SCGs within a phylo-
genetic lineage. They can also assess contamination, which is derived 
from the number(s) of SCGs present in the genome. DeepMAsED86 
uses a deep learning approach to detect misassembled contigs in a 
reference-free way. Taxonomic characterization tools such as Kraken2 
(ref. 87) can also be used to identify and filter MAGs that match or don’t 
match a taxonomic cluster of interest. Merqury88 is a reference-free 
tool that works by comparing k-mers in an assembly to those found 
in unassembled high-accuracy reads and then estimating base-level 
accuracy and completeness (Supplementary Table 1).

Bin taxonomic classification. After the metagenomes are assembled 
and binned, the next challenge is the quantification and correct clas-
sification of organisms in a mixed metagenomic sample. The Genome 
Taxonomy Database Toolkit (GTDB-Tk)89 is the gold-standard method 
to assign binned MAGs to specific taxonomic groups. MetaPhlAn4 
(ref. 90) now incorporates MAG assembly followed by taxonomic 

characterization using the MetaPhlAn database. Abundance infor-
mation can be inferred using tools like MEGAN-LR42. Novel organisms, 
however, might not be present in these databases. In that case, there 
are tools that can be used for the detection and annotation of ORFs. 
Some of the tools work directly on the reads, such as MMseqs2 (ref. 43) 
and MEGAN-LR42 (together with DIAMOND47), while others can detect 
ORFs in MAGs, such as Prokka91, PGAP92 and SeqScreen-Nano50. CAT/
BAT tools set is a pipeline for taxonomic classification of contigs and 
MAGs (bins), involving gene calling, ORF mapping and voting-based 
classification of contigs/MAGs, applicable to both known and unknown 
microorganisms in a sample93. Gene prediction and annotation have 
also been reviewed elsewhere71 and are not specific to long reads. One 
special note is that these classification methods rely on databases that 
can sometimes be misleading due to contaminants or other biases from 
older assemblies51. Clearly, improvements are needed to avoid such 
biases with more and more novel species being discovered.

Reference-based analysis approaches of metagenomic samples
A mapping-based approach compares the raw reads directly to a refer-
ence genome, ideally taken from the same species or a very close rela-
tive. Its limitation is that one relies on reference genomes that can be 
unavailable or are only partially resolved. Nevertheless, mapping-based 
approaches have multiple advantages as they allow the identification of 
low-frequency mutations, easier comparison across multiple samples 
from the same, for example, pathogen and fewer constraints on cover-
age or read length94. Consequently, sequences absent in the reference, 
such as plasmids, might be missed in the analysis. A way to circumvent 
this is to perform this analysis in combination with assembly methods, 
creating a sample’s reference genome95.

A mapping approach is most commonly used with a targeted 
metagenomic approach (Fig. 2), where read enrichment from a spe-
cific organism or group of organisms is performed in the sample. One 
example is the detection of COVID-19 virus in patient samples96 or 
wastewater17. Detection of new genomic variants is also important for 
pathogen surveillance, while tracking low-frequency intra-host vari-
ants provides important insights to elucidate host–virus population 
dynamics and transmission97.

The mapping approach normally consists of aligning reads to a ref-
erence genome and then using these alignment files to quantify species 
presence or detect variations. There are multiple benefits from aligning 
long reads, such as higher alignment rates or overcoming ambiguity 
due to repeats or high homologous regions compared to short-read 
methods. In addition, structural variants are often easier to identify 
and resolve5,7. Similarly to assembly methods, one should also choose 
a long-read-alignment method carefully5,7. Long-read aligners often 
use a seed-and-chain paradigm, where multiple anchors are gathered 
and chained together to form a candidate extending procedure, allow-
ing often for more accurate mapping than short reads. Additionally, 
long-read aligners have incorporated sketching techniques, borrowed 
from comparative genomics to improve throughput and efficiency in 
handling the large number of reads98. The most widespread aligners 
used are Minimap2 (ref. 46) and NGMLR4. While most of these methods 
are developed outside metagenomics, they can be successfully used 
in this field5.

Variant calling methods use alignments to identify locations 
where the sequence from the sample differs from the reference 
sequence. They use statistical algorithms to distinguish true variants 
from sequencing errors and other biases. The variants are often clas-
sified into single nucleotide variants (SNVs), small insertions/dele-
tions (indels, typically <50 bp) or larger structural variants (SVs)5,7. 
Clair3 (ref. 99) uses a pileup and full-alignment, two-module method 
to detect SNVs and indels. DeepVariant100 uses a deep convolutional 
neural network to call SNVs and indels in alignment files. Medaka uses 
a local realignment approach to detect and genotype variants and then 
applies a neural network to estimate allele frequency. It is especially 
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designed for SNVs and indels, but it also works on SVs. NanoCaller101 
is a deep learning method that detects SNVs using long-range haplo-
type information, then phases long reads with called SNVs and calls 
indels with local realignment. Lofreq102 is designed to work on any 
kind of sequencing technology and models sequencing run-specific 
error rates to accurately call SNVs and indels. Variabel97 is a variant 
call filtering tool to be used after variant calling and designed for viral 
samples, improving the prediction of low-frequency variants in ONT 
data (Supplementary Table 1). Variants are then annotated to determine 
their impact on gene structure and protein sequence. The most used 
variant annotation tools for SNVs and indels are SNPEff103, ANNOVAR104 
and Ensembl-VEP105 (Supplementary Table 1).

Some tools have been created specifically for viral surveillance, 
and they can detect new variants of concern in samples, such as waste-
water. Data from mixed strains in the sample can be deconvoluted to 
define the individual strains and their abundance, and phylogenetic dis-
tances can be measured to create a phylogenetic tree between strains. 
An example of such a tool is Read2tree106, which as the name suggests, 
skips all these steps going straight from the raw reads to a phylogenetic 
tree, although it does perform alignments using Minimap2 to a data-
base of genome-wide reference orthologous groups and other steps 
internally. When performing phylogenetic analysis, it should be taken 
into consideration that microorganisms such as bacteria can exchange 
genetic material via horizontal gene transfer, recombination and other 
mechanisms, which can result in complex and reticulate evolutionary 
relationships, and are better represented by phylogenetic networks 
rather than by traditional bifurcating phylogenetic trees107.

SV analysis. SVs are ubiquitous in both individual bacteria and across 
microbial communities inhabiting human hosts108. SVs are often 
defined as >50-bp genomic alterations including insertions, inver-
sions, deletions, duplications and translocations66, and have shown 
a profound impact on eukaryotes (for example, human population 
diversity, diseases and other phenotypes). In a phenomenon specific 
to microbial genomes, bacterial genomes can undergo horizontal 
gene transfer, a process central to bacterial evolution and adaptation3. 
Besides, viral genomes exhibit complex transcriptional patterns and 
a high propensity for recombination, distinguishing them from other 
biological entities109. While there are numerous studies that have ana-
lyzed SVs in microbial genomes, to date only a few studies have analyzed 
SVs across metagenomic samples108. This occurs despite evidence of 
their occurrence and potential impacts on viruses, bacteria and oth-
ers. Thus, most of the existing SV methods are designed with diploid 
genomes (for example, humans) in mind.

In general, there are two different tool categories: assembly-based 
and mapping-based methods. To name a few assembly-based SV call-
ing methods, Dipcall110 or Mummer111 have demonstrated consid-
erable reliability. Whereas for mapping-based methods, Sniffles2 
(ref. 112) and SVIM-asm113 are excellent examples. The former uses 
an SV scoring scheme to exclude false SVs, while incorporating the 
detection of low-frequency SVs across different datasets. The latter 
uses split-read and read-depth methods to identify SVs, and it can 
detect complex events. The interpretation of SVs in a metagenom-
ics context is challenging but also presents a great opportunity for 
future studies. In eukaryotes, much was learned by assessing the SV 
frequency in specific populations, while similar metagenomic studies 
are nonexistent. SV annotation can be performed by Ensembl-VEP105 
and AnnotSV114 (Supplementary Table 1). Comparing mapping-based 
SVs across metagenomic samples might be possible with SURVIVOR115 
and Truvari116, but again more specialized methods are needed for 
metagenomics.

While SV detection with long reads in individual microbial 
genomes is straightforward, SV detecting in microbiomes containing 
a diverse set of microorganisms presents a substantial challenge due 
to unknown reference genomes and the presence of mixed microbial 

strains within the sample. A recent method in this space, Rhea117, for-
goes reference genomes and MAGs by building a single metagenome 
coassembly graph constructed from temporally sampled microbiomes. 
Rhea then maps the long reads to the coassembly graph to infer SVs 
between time points based on graph-based variant detection.

Utilization of epigenetic signals in metagenomic analysis
The role of DNA and RNA modifications in both prokaryotes and 
eukaryotes, as well as the available methods to detect them, have 
been thoroughly reviewed by Kong et al.6. The most common of 
DNA methylation-based modifications are N6-methyladenine (6mA), 
N4-methylcytosine (4mC), 5-hydroxymethylcytosine (5hmC) and 
5-methylcytosine (5mC), but others exist. 5mC is the dominant modifi-
cation in eukaryotes, while 6mA is the most prevalent in prokaryotes6. 
Both RNA and DNA6 viruses can also present genomic methylation, 
with m6A (N6-methyladenosine RNA modification, as opposed to 6mA, 
which is a DNA modification) as an important marker in RNA viruses118. 
Both long-read platforms provide methylation information on CpGs 
for DNA sequencing, outperforming bisulfite-based, short-read 
sequencing for methylation detection by identifying methylation 
in diverse bases and obviating the need for a reference genome119. 
Nanopore sequencing technology allows for direct RNA-seq, mak-
ing it possible to detect these RNA modifications steadily118. Besides 
the study of epigenetic modifications being important in itself, the 
detection of these modifications can facilitate taxonomic characteri-
zation, binning and strain separation during metagenomic studies77. 
Currently, the literature and available tools are mostly focused on 
the detection of DNA methylation in eukaryotes, and hence on 5mC 
modifications6.

Tools tailored for metagenomics must be able to detect 5mC, 6mA 
and 4mC modifications, thus being able to detect both prokaryote and 
eukaryote microorganisms, such as fungi. Among them, Nanopolish120 
can detect several types of DNA modifications, using a statistical model 
to analyze the raw signal data generated by ONT. DeepSignal121 is a deep 
learning-based software that can detect several types of DNA modifica-
tions, including 5mC and 6mA, using a convolutional neural network 
to analyze the raw signal ONT data. DeepMP122 is a convolutional neural 
network-based model that takes information from ONT raw signals 
and base-calling errors to detect whether a given motif in a read is 
methylated, being able to detect 6mA and 5mC modifications. Remora 
(Supplementary Table 1) can identify 4mC, 5mC and 6mA modifica-
tions in ONT reads after base calling. Most of these tools depend on 
the identification of the genomic context to detect methylation, such 
as 5mC in CpG islands, or 6mA at GATC motifs. Nanodisco123 is a tool to 
detect DNA methylation in prokaryotes regardless of the genomic con-
text, and that has shown the three types of DNA methylation in diverse 
sequence contexts (Supplementary Table 1). It is important to note that 
most bioinformatic methods for long-read methylation detection typi-
cally require a negative control, such as synthetically amplified whole 
genomes, to ensure accurate and reliable methylation detection. For 
the detection of RNA methylation markers from direct RNA-seq, in 
particular the m6A modification, there are few state-of-the-art tools. 
Of note, Nanocompore124 and Epinano125 are well-consolidated tools. 
While methylation analysis has the potential to provide deeper insights, 
it is not as commonly used by the community yet.

Challenges and future directions
In this review, we reported the state-of-the-art metagenomics methods 
utilizing long-read sequencing technologies. We discussed steps from 
experimental design across sequencing and analytical approaches and 
mentioned several secondary analysis approaches as well. Together 
with these individual steps and suggestions, we provide an extensive 
list of methodologies for the reader. Although we could not list all 
available methods designed for long reads, we highlighted some of 
the most relevant for each approach.
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Metagenomic analysis faces a multitude of challenges. Foremost 
among them is the quest for accurate and unbiased species identifica-
tion within a given sample. The effectiveness of this endeavor is inevita-
bly tied to the chosen detection method, and often, different methods 
yield conflicting results. This might be improved with future develop-
ments where long reads hold a strong promise to disentangle this 
information. Furthermore, the absence of universally accepted bench-
mark samples in metagenomics, analogous to the well-established 
GIAB66 for human genomes, poses a substantial hurdle. While mock 
samples exist, they frequently suffer from contamination and impu-
rities, thereby complicating the enforcement of stringent standards 
for strain identifications. The persistent challenge of metagenomic 
sample classification lies in the ability to discern sub-strain variations, 
a common yet elusive target.

Some aspects of long-read sequencing remain underutilized, 
such as the simultaneous assessment of nucleotide and methylation 
information. Recent studies in eukaryotes showed that methylation 
can be utilized to distinguish even haplotypes126. This could easily be 
extended to improve metagenomic analysis to detect even below strain 
levels. Furthermore, in the eukaryotic world, long reads considerably 
improved the study of SVs, which led to multiple discoveries such as 
speciation events and other phenotypic impacts7. The current state 
of structural variation detection in metagenomic samples is unfor-
tunately overlooked. The primary challenge lies in our inability to 
generate sufficiently high-quality MAG assemblies to comprehensively 
explore these phenomena within microbiomes. The current methods 
in use are mainly designed for diploid genomes (that is, human sam-
ples) and ignore challenges of cross-species mapping or other signals. 
Incorporating methylation and SV information into metagenomic 
algorithms promises to yield new biological insights and enhance the 
effectiveness of long-read technologies, thereby remarkably advancing 
metagenomic analysis.

Furthermore, the ongoing expansion of genomic databases 
presents a unique opportunity for advancing the precision of long- 
read taxonomic classification algorithms. As these databases grow, 
they encompass an increasingly diverse array of genomes from vari-
ous microorganisms. Long-read sequencing, when coupled with 
multi-omics data integration, can harness this wealth of genomic infor-
mation to enhance taxonomic classification accuracy. The availability 
of more comprehensive reference genomes, derived from long-read 
sequencing technologies, contributes to a better representation of 
the microbial world. With extensive genomic coverage and a broader 
range of genetic markers, the taxonomic resolution achievable by these 
algorithms is poised to improve substantially. This convergence of 
growing genomic databases, long-read sequencing and multi-omics 
integration underscores the potential for achieving unprecedented 
taxonomic precision in metagenomic analyses.

In recent years, there have been promising innovations in 
long-read sequencing technologies, marked by increased yield and 
reduced sample requirements. These innovations, however, are still 
on the path to fulfilling their full potential. Notably, breakthroughs 
like the telomere-to-telomere (T2T) assemblies127, primarily applied 
within the realm of eukaryotes, hold the promise of translation into 
metagenomic practices. Undoubtedly, these advancements will make 
an important impact on the field, necessitating further computa-
tional methods.

In the clinical setting, the decreasing prices, runtime and port-
ability of sequencers, together with the development of accessible 
bioinformatic pipelines, can make long-read sequencing ubiquitous 
in the physicians’ toolbox, and a useful instrument in personalized 
medicine helping in the diagnosis of infections by sequencing patient 
samples, as well as help choosing the best treatment by identifying 
antibiotic resistance genes. In addition, targeted metagenomics has 
shown to be a useful asset for pathogen surveillance, as evidenced 
by using long-read sequencing on targeted metagenomic analysis of 

wastewater, which proved very efficacious and emerged as a great tool 
in improving viral surveillance in the microbial community17.

In conclusion, long-read sequencing has considerably impacted 
the field of metagenomics and beyond, paving the way for ground-
breaking research in various disciplines. While it continues to evolve, 
with new developments and advancements enhancing its capabilities, 
some challenges such as error rates, sample requirements and cost 
persist. Nevertheless, long-read sequencing has firmly established its 
position and is poised to revolutionize another frontier in life sciences 
with unwavering potential.
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