nature photonics

Article

https://doi.org/10.1038/s41566-023-01318-6

Three-dimensional nonlinear optical
materials from twisted two-dimensional
vander Waalsinterfaces

Received: 22 February 2023

Accepted: 21 September 2023

Bumho Kim®", Jicheng Jin®", Zhi Wang®", Li He', Thomas Christensen ® 23,
Eugene J. Mele®' & Bo Zhen®'

Published online: 2 November 2023

W Check for updates

To enable new nonlinear responses, metamaterials are created by organizing
structural units (meta-atoms), which are typically on the scale of about a

hundred nanometres. However, truly altering the atomic symmetry and
enabling new nonlinear responses requires control at the atomicscale,
downto afew dngstroms. Here we report three-dimensional nonlinear

optical materials realized by the precise control and twist of individual
two-dimensional van der Waals interfaces. Specifically, new nonlinear crystals
areachieved by adding pseudo-screw symmetries to a multiple of four-layer
WS, stacks (for example, four layer, eight layer and so on). Nonlinear
susceptibility and circular selectivity of the resulting three-dimensional
crystals are fundamentally different from natural WS,, demonstrating a
microscopic analogue to the fabrication of metamaterials with unique optical
properties. Furthermore, we show that the magnitude of the newly enabled
nonlinearity is enhanced by controlling the number of interfaces and the
excitation wavelength. Our findings suggest anew approach to redesign
theintrinsic nonlinearity in artificial atomic configurations, scalable from a
few-nanometre-thick unit cells to bulk materials.

Material responses to light are highly constrained by symmetry. For
example, two photons of identical frequency incident on a mate-
rial can excite second-harmonic (SH) polarization at double the fre-
quency with an amplitude proportional to the allowed second-order
nonlinear susceptibility components of the material. Meanwhile,
these nonlinear components are constrained by the point group sym-
metry of the materials'. Crystalline three-dimensional (3D) mate-
rials have fixed intrinsic point group symmetries, which are often
limited to naturally existing and stable phases of materials. Beyond
natural materials, new nonlinear responses have been enabled in
metamaterials through symmetry control® . Forinstance, breaking
the inversion symmetry at the surfaces of natural materials'®™? or
large-scale (<100 nm) meta-atoms®"”™" has enabled second-order

second-order nonlinear susceptibility components are otherwise
forbidden. Such new responses are mostly confined to the sur-
faces of materials, whereas the bulk mainly contributes to absorp-
tion losses®®*'%, As constituent meta-atoms inherently have low
surface-to-volume ratios, current metamaterials typically have lim-
ited performances, such as overall frequency conversion efficiency,
in practical applications®®8,

Different from conventional approaches in 3D materials, the
advent of twisted van der Waals (vdW) materials enables control over
their intrinsic point group symmetries'*%. The modified symmetry of
twisted vdW stacks, in turn, significantly affects the electronic wave-
function at the twisted interfaces and enables previously forbidden
new nonlinear responses®. Although previous studies have focused

nonlinear responses from inversion symmetric materials, where all  on controlling nonlinear responses at a single twisted interface” or
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Fig.1|Redesigned second-order susceptibility in a twisted 3D crystal. Atomic
structures and SH polarizations in different stacks, including a WS, monolayer
(D5, symmetry), a(0°, 30°) twisted bilayer stack (D, symmetry), a (0°, 30°, 60°)
twisted trilayer stack (D, symmetry),a(0°, 30°, 60°, 90°) four-layer stack
(D;symmetry and pseudo-4;) and a twisted bulk with a fixed twist angle of 30°
(D, symmetry) under y,,,- and z,,,-polarized excitation. The twisted bulk
structure is equivalent to (0°, 30°, 60°, 90°) four layers stacked along the Z
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direction. Representative allowed second-order susceptibility elements ()(g()) by
various symmetries are listed for each stack (Supplementary Table 1). Twisted
four-layer and bulk structures only allow chiral interfacial nonlinear
susceptibility ()()(02,2) whose SH polarizations are denoted by blue arrows. SH
polarizations along an armchair direction of each monolayer are denoted by the
red arrows whose sum is denoted by the black arrow. The grey and yellow circles

represent tungsten and sulfur atoms, respectively.

afew twisted interfaces withalow interface-to-volumeratio®, here we
demonstrate a3D crystal, completely made of twisted two-dimensional
(2D) interfaces. In contrast to conventional metamaterials, our 3D crys-
tal exhibits new interfacial nonlinear responses throughout its bulk.
Overall, our study opens anew path toredesign the optical nonlineari-
ties of 3D materials at the microscopic scale by stacking and controlling
individual 2D interfaces and promises new nonlinear functionalities
forabroad range of applications including frequency conversion**°,
bioimaging®¥, ultrafast photonics*?**, quantum computing®* and
communication®®,

Theory for nonlinear twisted 3D crystals

In this section, we introduce a new approach to build nonlinear 3D
crystals from twisted 2D interfaces (Fig. 1). We start by discussing non-
linear responses of monolayer and twisted bilayer WS, based on their
symmetries. A WS, monolayer belongs to the D, point group, which
supports second-order susceptibility elements** of )(ﬁi = —Xﬁi and
enables an SH polarization along the armchair direction (Fig. 1, red
arrow). On stacking two monolayers at a generic twist angle (¢ # 0°
and 180°), the point group is reduced from D,, (monolayer) to D,
(twisted bilayer) due to the breaking of mirror symmetries'*?%. The
twisted bilayers have both in-plane ()(f(fg( = —)(f;;) and interfacial
(Xgl = —)(ﬁi) second-order susceptibility elements. Although the
former response (black arrow) is the sum of amplitudes fromindividual
monolayer responses (red arrows), the latter response (blue arrow)
is a new chiral response arising from broken mirror symmetries
(Fig. 1). In particular, this interfacial nonlinear response does not
come from either layer separately but is a cooperative effect origi-
nating from the coupling between the electronic wavefunctions
from the two layers®.

Further analysis of this interfacial nonlinear susceptibility )(g,i,

reveals two interesting properties. First, when the sample rotates in
plane, theinterfacial SH polarization always points to afixed direction,
whereasthein-plane (and monolayer) SH polarization rotates with the
sample (Supplementary Fig. 1). For instance, when a twisted stack is
tilted by B around the lab x axis, a vertically polarized excitation can
generate horizontal in-plane SH polarization (« )(f(ﬁcoszﬁ cos30),
sensitive toin-plane sample orientation 8 (Supplementary Section III).
Meanwhile, interfacial SH polarization (e« )(g)z sin2f) is independent
ofthein-plane sample orientation and always points to the horizontal
direction. Furthermore, )()(;)Z strongly depends on the relative twist
angle of the top layer with respect to the bottom (¢). The sign of )(g,l
flipswhenthe twist angleisreversed: )(g;(d)) = —)(g)z(—qb). Supplemen-
tary Fig. 3 provides more details and Fig. 2e shows our experimental
demonstration.

Twisted trilayer samples can be similarly analysed as two twisted
interfaces: onebetween the bottom layer and the middle, and the other
between the middle and the top. For example, a trilayer stack in the
(0°,30°, 60°) configuration has two twisted interfaces, both at +30°,
creatingidentical interfacial SH polarizations that constructively add
up.Ontheotherhand, atrilayer stackinthe (0°,30°, 0°) configuration
has two oppositely twisted interfaces, one at +30° and the other at
-30°. The opposite interfacial SH polarizations cancel out any chiral
responses, which is consistent with the preserved up-down mirror
symmetry of the stack.

Inparticular, screw symmetry emerges in atwisted four-layer stack
inthe (0°,30°, 60°, 90°) configuration. Specifically, all interfacial SH
polarizations (blue arrows) add up, whereas in-plane SH polarizations
from individual layers (red arrows) exactly cancel between the first
(second) layer and the third (fourth) layer as they point in opposite
directions (Fig. 1). Altogether, the four-layer stack only allows chiral
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Fig. 2| Interfacial nonlinear susceptibility in twisted bilayer WS,. a, SHG
measurement setup to characterize both individual layer and interfacial
nonlinear responses (Methods). V-pol (H-pol) denotes a vertical (horizontal)
polarizeralong they (x) direction. NA, numerical aperture. b-d, SHG signals are
measured at the two incidence angles, namely, 8 =50° (red) and =-50° (blue),
on different devices, including monolayer (b) and (0°, -30°) (¢) and (0°, 30°) (d)
bilayer stacks. The rotation angle of the half-wave plate (HWP) is denoted as a.

e, Differencesin the SHG signals (Alg;c) between the incidence angles of f = +50°
of amonolayer (grey), (0°, 30°) bilayer (green) and (0°, -30°) bilayer (orange
circles). The solid lines inb-d and e are the best-fit curves from symmetry
analysis (equation (1) and Supplementary Equation (14), respectively).

f, Schematic of (0°, +30°) bilayer stacks, mirror symmetric to each other,
inducing oppositely aligned interfacial SH polarizations (P)((Z), bluearrows).

interfacial susceptibility (ng thatis different fromthe D, pointgroup
constraints in twisted bilayers and trilayers (Supplementary Table 1).
This emerging constraint can be understood by a pseudo-4; screw
symmetry that forbids in-plane susceptibility ,\g((ii (Supplementary
Sectionl).Suchanartificially added screw symmetry opens new paths
to engineer 3D symmetries and nonlinearities of vdW stacks (Supple-
mentary Section ).

The unconventional nonlinearities that we discovered in twisted
four-layer stacks are preserved in the 3D bulk crystal limit, which is
well understood by the new point group. Specifically, a twisted bulk
withatwistangle of ¢ = 30° between any two adjacent layers belongs
tothe D,, pointgroup. Applying Neumann’s principle to the less under-
stood D;, point group, our theoretical analysis shows that only chiral
susceptibility components, xﬁl are allowed, whereas all in-plane
susceptibility components (forexample,)(;;;and )(;i}()are forbidden.
This feature is consistent with a single four-layer twisted stack as we
analysed before. The consistency can be intuitively understood as the
bulk crystal is essentially a vertical stacking of the four-layer twisted
stack. In other words, the four-layer twisted stack is the new unit cell

of the twisted bulk crystal, so they support the same nonlinear sus-
ceptibility components.

Experimental demonstration
We perform second-harmonic generation (SHG) measurements to
verify the predicted nonlinearities of twisted WS, in the various stack-
ing configurations. Twisted WS, stacks, up to eight layers thick, are
prepared on fused silica substrates using the ‘tear and stack’ method***
(Methods). In contrast to SHG under normal excitation only arising
from in-plane responses, we measure SHG under oblique incident
angles (B) set to be either +50° and -50° to observe both in-plane and
interfacial nonlinear responses (Fig. 2a and Methods). A monolayer
shows identical SHG signals between = 50° (Fig. 2b, red circles) and
-50° (bluecircles). Thisresultindicates that thein-plane SH responses
from the monolayer are independent of the opposite incident angle,
which is also consistent with theoretical modelling based on the D,
point group (Fig. 2b, solid line).

Incontrast, twisted bilayers, belonging to the D; point group, cre-
ate SH polarizations intwo ways: through thein-plane layer responses
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Fig. 3| Scalability of interfacial nonlinear susceptibility in twisted trilayer
WS, stacks. a,b, Schematic of SH polarizations from interfaces (blue arrows)
andindividual layers (red arrows) in (0°,30°, 60°) (a) and (0°, 30°, 0°) (b)
trilayer stacks. The interfacial SH polarizations interfere constructively and add
upina,butinterfere destructively and cancel inb. c,d, Measured SHG signals
under anincidence angle of f=50° (8=-50°) are shown inred (blue) circles
for (0°,30°, 60°) (c) and (0°, 30°, 0°) (d) stacks. e, Difference in SHG intensity
between the incidence angles of f = +50° shows vanishing (orange) and enhanced
(green) interfacial susceptibility in the (0°, 30°, 0°) and (0°, 30°, 60°) stacks.

and the interfacial responses producing a net SHG intensity (Supple-
mentary Section III).

Ispg < (—)(gi)xxcoszﬂ (cos2acos 36
()

2
+ cos fsin2asin 36) +ng)yz sin2f cos Za) ,

where )(g,?xx and ngyz arethein-plane andinterfacial sheet susceptibil-

ity elements, respectively. The SHG intensity is proportlonal tothe
square of the SH polarizations from |nd1v1dual layers (the )(S o term
inequation (1)) and theinterface (the )(myzterm) Unlike the monolayer
example, the observed SHG signalis generally stronger for f=50° than
B =-50° for the (0°, -30°) bilayer stack (Fig. 2c); conversely, the

opposite trend is observed for the (0°, 30°) bilayer stack (Fig. 2d). Spe-
CIflcaIly,underthetwo obliqueincidences (8 =+50°), the in-plane SH
polarizations ()(s,m) areidentical, whereas the interfacial SH polariza-
tions ()(S;yz) are exactly opposite (equation (1)). The clear difference
in SHG signals under the two opposite incident angles evinces the
interfacial response of the twisted bilayers.

Next, we examine the interfacial responses of bilayer samples with
opposite twist angles, namely, ¢ = +30°, in more detail. Following
equation (1), the difference between SHG signals, Al = I(f =+ 50°) -
1(B=-50°),is proportional to the interfacial sheet susceptibility ng)yz
The (0°,30°) (Fig. 2e, green circles) and (0°, -30°) (orange circles)
bilayer stacks have Al of approximately equal magnitude but oppo-
site signs. Using our theoretical model (green and orange solid lines;
see Supplementary Section IV for details), we extract Xs “yznorm=0-027
for the (0°, 30°) stack and ng,?yz norm = —0.031 for the (0°, -30°) stack.
Both values are normalized to the monolayer sheet susceptibility (Sup-
plementary Section V). This result is consistent with our earlier predic-
tion )(g)z(q)) = —Xgl(—(l’) , namely, the interfacial SH polarization
reverses its direction when the twist angle is reversed (Fig. 2f).

We next examine the scalability of interfacial responses by measur-
ingatrilayerstackinthe (0°, 30°, 60°) configuration. Figure 3a shows
a schematic of interfacial SH polarizations (blue arrows) pointing to
thesamedirection and adding up. The observed SHG signals from the
trilayer show asignificant difference between = 50°and -50°, indicat-
ing finite interfacial responses (Fig. 3c,e). The observed Al (Fig. 3e,
circles) i lS consistent with our theoretical model (solid line), which
yields )(S “yznorm = 0.042, exceedmg the corresponding responseinthe
(0°,30°) bilayer stack ()(S,,G,Z norm = 0.027). We further show that the
interfacial SH field amplitude linearly scales with the sample thickness
within the experimental uncertainty (Fig. 4f). This experimental obser-
vationagrees well with our theory prediction: the interfacial nonlinear
responses coherently add up wheninterfacial twist angles are the same.
This stacking sequence is different from the widely studied 3R-type
stacks (¢ = 0°) where the in-planelayer nonlinear responses coherently
add up®*°. To further validate the origin of the differences in SHG, we
examineatrilayerinthe (0°, 30°, 0°) configuration with two oppositely
twisted interfaces (Fig. 3b). Figure 3d,e shows the SHG signals with
almost no difference at the incident angles between = 50° and -50°,
implying anegligible netinterfacial response: Xgi)yz =0, whichresults
from the cancellation between the two opposite interfacial SH polariza-
tions, aswe predicted. The contrasting resultsbetween the two trilayers
with the same constituent layers but differentinterfaces confirm that
the observed Al value originates from vdW interfaces.

We experimentally demonstrate the unconventional susceptibility
()(gﬁxx =0and ,\/S .7 0) of atwisted four layer-unit-cell structure. We
flrstmeasurethem -planeresponse, )(xxx, ofthefour-layer stack under
normal excitation (8 =0°), where we observe a substantially reduced
response (Fig.4b, purple) relative to the monolayer (grey). SHG spatial
maps further confirm the strong suppression of )(gfx)x,( of twisted
four-layer stacks (Supplementary Fig. 6), consistent with the presence
of pseudo-4, screw symmetry. Figure 4c shows stronger SHG signals
in oblique-excitation measurements (8 = +50°) compared with the
normal-incidence measurements (= 0°). This is direct evidence of
stronger interfacial sheet susceptibility than in-plane sheet susceptibil-
ityinthe twisted four-layer stack, which agrees with our previous theo-
retical prediction. Moreover, the nearly identical SHG signals at the
two oppositeincident angles are consistent with the sheet susceptibil-
ity of the four-layer stack: )(gigxx =0and )((2) # 0 (equation (1)). In par-
ticular, theintrinsic nonlinearities of the four layer stack are the same
as those of some 3D materials (such as TeO, (ref. 41) and La,InSbS,
(ref. 42)), but fundamentally different from those of previously studied
natural and twisted 2D materials (Supplementary Table 2). Our
approach of engineering electronic wavefunction symmetries com-
pletely alters theintrinsic nonlinearity at the microscopic scale, which
substantially reduces the required feature size (-100 nm) in
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circles), are both enhanced when the SH frequency is on resonance with excitons.
Datarepresent values extracted from one spot of each sample where the error
barsrepresent uncertainties estimated by the s.d. of intensity noise over the

measured spectra.

conventional nonlinear optical metamaterials****. Moreover, we
observe chiral Ramanscattering fromour twisted stacks (Supplemen-
tary Section VIII), implying that broken mirror symmetries atinterfaces
promise diverse chiroptical responses such as circular dichroism**®
and circular birefringence”.

To scale up a four-layer unit cell into a 3D crystal, we experimen-
tally verify the nonlinearities of a vertical stack of two four-layer unit
cells (Fig. 4d). Our experimental results show a strong suppression of
ngx (Fig.4e) and aneven further enhancementin ng)yz (Fig.4f)inthe
twisted eight-layer stack, consisting of two four-layer unit cells.
Although strongly suppressed, )(gi?xx is increased relative to the
four-layer stack, which might be caused by the reabsorption of SHG
from each layer as well as imperfect twist-angle alignment (Supple-
mentary Section Vland Supplementary Table 3). Meanwhile, interfacial
SH field amplitude (o ng)yz) scales approximately linearly with the
sample thickness, whichis consistent with our theoretical modelincor-
poratinginterference and reabsorption effects (Fig. 4f, solid line). Our
observation promises even stronger interfacial responses in thicker
samples by simply stacking four-layer unit cells together. Moreover,
the interfacial nonlinearity can also be further enhanced by the exci-
tonic resonance effect (Fig. 5). The in-plane sheet susceptibility of a
monolayer has two prominent peaks at the A-exciton (-620 nm) and
B-exciton (-525 nm) wavelengths, known as the exciton-enhanced
SHG***°, The excitonic resonance effect is also observed in the interfa-
cial sheet susceptibility of four-layer WS,, reaching x». norm = 0.14,
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Fig. 6 | Nonlinear circular selectivity enabled by afour-fold screw symmetry.
a, Monolayer with three-fold rotational symmetry forbids THG under circularly
polarized excitation. b, A (0°,30°, 60°, 90°) four-layer stack with a pseudo-four-
fold screw symmetry converts right-circularly polarized excitation into left-
circularly polarized THG. ¢, Helicity-resolved THG intensity as a function of layer
number. Allinterlayer twist angles are +30°. Data for three-, four- and eight-layer
stacks represent mean values * s.d., extracted from five, seven and five different
spots on each sample, respectively. Data of one- and two-layer stacks represent
values extracted from one spot of each sample, where the error bars represent
uncertainties estimated by the s.d. of intensity noise over the measured spectra.

whichis over three times higher than the off-resonance value. Moreo-
ver, we theoretically suggest an approach to achieve quasi-phase
matchinginathick 3D twisted stack, which promises strong interfacial
responses (Supplementary Section IX).

Finally, we discover emerging nonlinear circular selectivity ena-
bled by the artificially added screw symmetry. In a monolayer WS,
(Fig. 6a), third-harmonic generation (THG) is not observed under
circularly polarized excitation. This is consistent with the circular
selection rule from the D5, point group of a monolayer (Supplemen-
tary Section X). Meanwhile, right-circularly polarized (¢") excitation
at the frequency of w produces left-circularly polarized (¢”) THG at
the frequency of 3w in a twisted four-layer structure (Fig. 6b). The
counter-circularly polarized THG is typically produced by materi-
als with a four-fold symmetry*°=?, where the lattice symmetry pro-
vides the mismatched angular momentum between the input and
output photons.

To better understand the emerging circular selectivity, we per-
formed the helicity-resolved THG measurements for twisted WS, stacks
with different layer numbers and symmetries (Fig. 6¢). The circularly
polarized THG intensity increases with the twisted stack thickness.
The production of THG implies broken three-fold symmetry that has
been often observed in twisted stacks due to the strain effect®.
Indeed, the observed THG from the individual twisted stacks can be
well understood by taking into account the strain effect as well as
their symmetries (Supplementary Section X). We predict that twisted
bilayer and trilayer can have mixed left- and right-circularly polarized

THG, consistent with the observed THG. Meanwhile, twisted four-and
eight-layer stacks with the four-fold screw symmetry show THG with
near-unity polarization of ~90% and ~91%, respectively. This sharp
riseinthe polarization conversion efficiency in the twisted four-layer
configuration provides strong evidence that the four-fold screw sym-
metry is required for the emerging circular selectivity. Intuitively,
this effect can be understood by angular momentum conservation
enabled by the artificial four-fold screw symmetry, which promises
to control nonlinear selectivity through a proper selection of intrinsic
and artificial symmetries.

Discussion

To conclude, we directly engineer the symmetries of electronic
wavefunctions by stacking individual monolayers into a precisely
designed 3D configuration. Compared with conventional optical
metamaterials composed of meta-atoms on the scale of <100 nm
(refs. 8,43,44), our approach suggests a new path to engineer optical
nonlinearity at the microscopic scale down to afew nanometres. Our
engineered stacks show completely redesigned nonlinear suscepti-
bility as well as circular selectivity, which takes us one step closer to
the designing of intrinsic nonlinearities at will. The newly enabled
chiral nonlinearities could be applied to a broad range of photonic
device applications to harness spin angular momentum of light*¢~°,
Furthermore, stacking monolayers with ascrew symmetry can enable
various quasi-crystals, providing a practical platform to explore their
emerging nonlinearity. Our approach to control symmetries can be
readily extended to other physical responses that are also sensitive
to material symmetries including elasticity, thermal expansion and
piezoelectricity®®*.
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Methods

Sample preparation

A gold tape was prepared following the detailed procedures in the
previous study*’. A 150-nm-thick gold film on SiO,/Si substrates was
coated with polyvinylpyrrolidone and then picked up by a thermal
releasetape. Afreshly cleaved surface of the gold film was attached to
afreshly cleaved WS, bulk crystal (CVT crystal from HQ graphene).
Gold exfoliation of alarge (-1 x 1 cm?) bulk WS, crystal produces various
sizes of continuous single-crystal monolayers up to near the lateral
size of the bulk crystal. A gold tape attached on top of a polydimethyl-
siloxane microlens was used to pick up a part of a single-crystal WS,
monolayer and reposition it on top of the remaining monolayer after
adjusting the twist angle using the tear and stack method***. This
procedure was repeated to produce up to an eight-layer WS, stack.
A(0°,30°,60°,90°) four-layer WS, stack was prepared by picking up
partofabilayer WS, stack with an internal twist angle of 30° and placing
itontop of the remaining bilayer after 60° rotation. Similarly, we fab-
ricateatwo-unit-cell eight-layer stack by lifting and stacking afour-layer
stack without rotation. Supplementary Fig. 6 shows the optical micros-
copy images of the four-layer and eight-layer stacks. Twisted angles of
each stack are estimated by polarization-resolved SHG, showing the
uncertainty of approximately +1° from the target twist angles. The
uncertainty of twist angles can cause an uncertainty of -3% in the esti-
mated nggyz value, which is small compared with the measurement
uncertainty (Supplementary Table 3).

Details of nonlinear optical measurements

An optical parametric oscillator (OPO from Light Conversion) with
awavelength of 1,030 nm, repetition frequency of 75 MHz and pulse
duration of 96 fs was used to measure the SHG responses for all sam-
ples. The SHG signals of twisted bilayer (Fig. 2), trilayer (Fig. 3) and
four-layer stacks (Fig. 4b,c) were acquired using the setup shown in
Fig. 2a. The sample was mounted on a rotational stage, allowing us
to tilt the sample around the x axis and thus to control the incidence
angle (8). Thesetup limits the incident anglesup to +50° that have been
usedtoincrease therelative amplitude of the interfacial response with
respecttothatofthein-planeresponse. Vertically polarized OPO light
was focused onto the tilted sample through an apochromat x10 objec-
tivelenswith anumerical aperture of 0.26 (Mitutoyo). The transmitted
SHG signals were collected by the same second objective lens, passed
through a half-wave plate and horizontal polarizer, and are finally
directed to a thermoelectrically cooled 2D charge-coupled device
array (iKkon-M 912, Andor Technology) equipped with a spectrometer
(Kymera 328i, Andor Technology).

For four-layer and eight-layer stacks, imperfect sample prepara-
tion can exacerbate distortions of the twist angle. To minimize spatial
inhomogeneity, asecond setup with areflective objective lens was used
to estimate the normalized ng;y, of the four- and eight-layer stacks
(Fig. 4f, purplesquares). Transmission SHG is performed using a reflec-
tive objective lens (LMM40X-UVV, Thorlabs) withanumerical aperture
of 0.5, which enables the simultaneous injections of two oblique inci-
dences at =+22.5° (Supplementary Fig. 5a). The oblique beams are
tightly focused onto a spot at a diffraction-limited radius of ~1.3 pm.
The transmitted SHG signals were collected by an Apochromat
x20 objective lens with a numerical aperture of 0.4 (Mitutoyo).
The SHG signals created by p-polarized injection were selectively col-
lected using a vertically aligned one-dimensional slit and read by the
2D charge-coupled devices (Supplementary Fig. 5b,d). The differ-
ence in the SHG signals (Supplementary Fig. 5c,e) is fitted using

Supplementary Equation (12), yielding the interfacial sheet susceptibil-
ity of the four-layer and eight-layer stacks (Fig. 4f) and minimizing the
inhomogeneity effect.

To estimate the excitonic resonance effect of second-order sheet
susceptibility elements, we performed SHG measurements using an
optical parametric amplifier with a repetition frequency of 3 kHz and
apulseduration of -180 fs, as well as tuning the excitation wavelength
from 1,030 to 1,360 nm. The in-plane sheet susceptibility (x),) of a
monolayer is estimated from SHG under normal excitation. The inter-
facial sheet susceptibility (nggyz) of afour-layer stack is estimated by
measuring the difference in SHG (Algu/ X3 o X\ ;) Using the setup
with areflective objective lens. Both sheet susceptibility elements are
normalized by ngy)yy of a monolayer at an excitation of 1,030 nm
(Fig.5). The optical parametric amplifier is tuned to the wavelength of
1,270 nm to perform the THG measurements.
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