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Variational quantum algorithms exploit the features of superposition and entanglement to optimize a cost
function efficiently by manipulating the quantum states. They are suitable for noisy intermediate-scale quantum
(NISQ) computers that recently became accessible to the worldwide research community. Here, we implement
and demonstrate the numerical processes on the 5-qubit and 7-qubit quantum processors on the IBM Qiskit
Runtime platform. We combine the commercial finite-element-method (FEM) software ABAQUS with the
implementation of Variational Quantum Eigensolver (VQE) to establish an integrated pipeline. Three examples are

used to investigate the performance: a hexagonal truss, a Timoshenko beam, and a plane-strain continuum. We
conduct parametric studies on the convergence of fundamental natural frequency estimation using this hybrid
quantum-classical approach. Our findings can be extended to problems with many more degrees of freedom
when quantum computers with hundreds of qubits become available in the near future.

1. Introduction

Variational quantum algorithms (VQAs) [1] can solve problems in
optimization [2], machine learning [3,4], physics [5], chemistry [6],
material sciences [7], and cryptography [8]. Due to the unique features
of entanglement and superposition, quantum computers can leverage
VQAs to tackle problems efficiently and accurately while bypassing the
limitation of memory allocation and computational complexity. VQAs
achieve the goal of finding the solution by integrating classical opti-
mizers with a quantum circuit. The quantum part here is designed to
prepare quantum states and their measurements thereafter while the
classical part is used to tune the quantum circuit parameters. The po-
tential advantages of VQAs lie in the scaling law with respect to degrees
of freedom (DOFs) in the mathematical model of problems: A particular
quantum state represented by N qubits can encode the information of 2N
DOFs. This translates to an exponential scaling that surpasses any
possible classical computing process, thereby facilitating a significant
speed-up as compared to traditional solvers.

Specialized algorithms within VQAs suitable for near-term noisy
intermediate-scale quantum (NISQ) computers were recently demon-
strated in analyzing electronic structures [9,10], molecular spectra [11],
fluid flows [12,13], heat transfer [14,15], as well as general algebraic
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[16,17] and differential systems [18-22].

While these recent studies exemplify the vast potential of quantum
computing and its implementation, the research community has yet to
showcase an integrated pipeline that unifies VQAs with the finite-
element method (FEM), which is a robust and widely-used technique
across many disciplines. Motivated by this gap, we aim to investigate
strategies for deploying quantum solvers to solve eigenvalue problems
that are ubiquitous in mechanical systems. Focusing specifically on vi-
bration analyses, the precise identification of the fundamental natural
frequency in structures is critical in engineering practice. The impor-
tance is underscored by the resonant phenomenon where a small oscil-
latory perturbation can provoke a disproportionally large response.

In this Letter, we combine the FEM capability of the commercial
software package ABAQUS together with the Variational Quantum
Eigensolver (VQE) [23-25] on Qiskit quantum computing platform to
implement an integrative FEM-VQE pipeline aiming at finding the
fundamental natural frequency of different structures. We demonstrate
and analyze three example cases: (I) hexagonal truss, (II) Timoshenko
beam, and (III) plane-strain continuum. We first test our hybrid
quantum-classical algorithm on a simulator backend and then on
quantum processing units (QPUs) with 3 ~ 7 qubits. Results from clas-
sical solvers are used as benchmarks to quantify the errors. We perform a
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series of parametric studies on the key factors in the implementation. In
addition, we also discuss current limitations and potential future
directions.

2. Numerical implementation

The field of quantum computing is burgeoning, giving rise to a suite
of software toolsets that each offer a different method of implementation
and computational capabilities [29]. These toolsets are pivotal in
translating the intricate theories of quantum computing into a
user-friendly interface. As the research community in this domain
flourishes, an array of such toolsets are (in chronological order of release
dates): Forest SDK/PyQuil [30,31], Microsoft Quantum Development
Kit [32], ProjectQ [33], PennyLane [34], Amazon Braket [35], IBM
Qiskit [36], Cirq/TensorFlow Quantum [37,38], and Bosonic Qiskit
[39]. Here, we employ the IBM Qiskit platform, primarily due to its
maturity and extensive community support.

Fig. 1 depicts the steps to realize the integrative quantum-classical
pipeline. Our approach involves the following components:

e ABAQUS/CAE and ABAQUS/STANDARD
e Qiskit quantum hardware and simulators
e NumPy and Matplotlib

There are three major parts of this hybrid framework:

(A) ABAQUS Pre-processing is shown as the orange-colored steps in
Fig. 1. This scripting approach indicates an automatic process
with user-defined problem settings. By converting user inputs
directly into a desired output format, ABAQUS Pre-processing
enables a high level of customization and could potentially
handle large-scale problems, depending on the robust computa-
tional capability of data processing.
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(B) VQE Implementation is shown as blue-colored steps in Fig. 1. It
consists of processes mapping the Hamiltonian operator to VQE
settings, which include three key factors: classical optimizer,
entanglement pattern, and entanglement depth. These settings
are crucial to the performance of Iterative Convergence.
Iterative Convergence includes purple-colored steps shown in
Fig. 1. They span from quantum circuit design to the decision-
making of cost function convergence, iterating until the mini-
mal eigenvalue estimate is obtained. The central inset of Fig. 1
shows an example of a quantum circuit with entanglement
pattern CX and entanglement depth = 1 applied on four qubits. In
this part, efficiency is ensured by using a convergence mechanism
and optimization strategy, while precision control influences the
balance between computational cost and solution accuracy.

(¢

-

2.1. ABAQUS pre-processing

Within the ABAQUS/CAE environment, a scripting approach con-
verts the input of user-defined problem settings to the .MTX file outputs.
The stiffness and mass matrices are the outcome of data processing.

We develop pre-processing commands to generate a FEM model with
a targeted number of free DOFs. The overall goal is to find a suitable
combination of the total number of degrees of freedom nill,; and the
prescribed (fixed) degrees of freedom nfX¢¢ in the model such that
2N = nill . —nfXd where N is an integer. The general procedures are
summarized as follows:

(1) Employ pre-processing Python script in the ABAQUS/CAE envi-
ronment to create an initial model with corresponding geometry,
material properties, and boundary conditions.

(2) Mesh the model with appropriate element types: T2D2 for the
hexagonal truss, B21 for the Timoshenko beam, and CPE3/CPE4
for the plane-strain continuum.

b
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Fig. 1. Pipeline of Variational Quantum Eigensolver algorithm for mechanics problems. The orange-colored steps refer to ABAQUS Pre-processing, those in blue to VQE
Implementation, and the remaining in purple to Iterative Convergence. An example stiffness matrix is shown in the left dashed-frame inset. A particular instance of
the “hardware-efficient ansatz” [26,27] is depicted in the central dashed-frame inset, where the entanglement pattern with 6 CX gates and depth = 1 is shown as an
example. Additional examples are presented in Supplemental Material [28]. The right dashed-frame inset lists the key user-defined parameters.
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(3) Adjust and modify the mesh of the model to reach the targeted
number of free DOFs determined by N. For the beam system, a
proper element size can be directly calculated for a given N,
whereas for truss and continuum systems, we perform an iterative
approach to adjust the assigned global element size (with sub-
sequent re-meshing). More details are presented in the Supple-
mental Material [28].

(4) Once the targeted free DOFs has been reached, export mass ma-
trix M and stiffness matrix K from ABAQUS. These matrices, by
default, will include all DOFs as a result of the internal processing
logistics.

(5) Execute another Python script to read the exported mass and
stiffness matrices from .MTX files. Then, apply partitioning to get
the matrices with only free DOFs by filtering out columns and
rows associated with boundary conditions.

2.2. VQE implementation

In the nascent stages of quantum computing, NISQ devices demon-
strate the practice of outpacing classical computers by leveraging
exponentially fewer resources for certain computations. The implica-
tions of quantum computational abilities extend well beyond purely
quantum mechanical realms. Due to the susceptibility of qubits to
operational errors induced by quantum noise, algorithms suitable for
NISQ systems are crafted to have a shallow circuit depth, enhancing
their noise resilience. While constrained by such limitations, these noise-
tolerant algorithms remain proficient in the physical interpretation of
mechanical problems. The VQE algorithm stands at the forefront of
NISQ applications, essential for calculating the ground state energy of a
given Hamiltonian, which in turn reveals the fundamental natural fre-
quency of a mechanical system [23,40,41]. In this work, we demonstrate
two types of implementations: a noise-free simulator and quantum
processors [42].

Generally, a 2" x 2V square matrix needs N qubits to encode it as a
quantum Hamiltonian. From the .MTX files exported from ABAQUS, we
prepare and decompose our Hamiltonian as

H=M"K= chPl, (¢}

where P; € {I, X, Y, ZyeN represents a multi-qubit (N-qubit) Pauli
operator [43], and ¢;’s are coefficients of decomposition.

The accuracy of the VQE depends on three key factors including
classical optimizer [44,45], entanglement pattern [40,46], and entan-
glement depth [47,48]. In this study, we test all of the following.

- Classical optimizers:

— Simultaneous Perturbation Stochastic Approximation (SPSA) - a
derivative-free optimization algorithm utilizing stochastic
approximation of the gradient to efficiently handle large-scale
problems [49].

— Constrained Optimization by Linear Approximation (COBYLA) - a
derivative-free optimization method using linear approximations
for cost function and constraints to handle nonlinear optimization
[501.

- Sequential Least Squares Programming (SLSQP) - a quasi-Newton
method using a sequence of quadratic programming sub-
problems to handle constrained nonlinear optimization problems
[51].

— Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bound (L-
BFGS-B) - a quasi-Newton method using a limited amount of
memory to approximate the inverse Hessian matrix for bound-
constrained optimization [52].

- Entanglement patterns:

— Controlled Not (CNOT or CX) gate

— Controlled Z (CZ) gate

- Controlled Rotation X (CRX) gate
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- Entanglement depths:
— An integer (1 ~ 10) specifying the quantum circuit

Together, these components constitute a hardware-efficient ansatz
(i.e., a parameterized quantum circuit) in the variational form of the
“EfficientSU2” class [23]. In this class, the single-qubit gates manipulate
individual quantum states, while entanglement patterns create correla-
tions among each pair of qubits, resulting in entangled states that are
inseparable into individual quantum states.

As a specific example, the central inset in Fig. 1 illustrates a partic-
ular instance of the ansatz comprising N = 4 qubits, utilizing single-
qubit gates R, and Ry, and adopting depth =1 with entanglement
pattern CX. In quantum state transformations, the single-qubit gates R,
and Ry are parameterized while the entanglement operators consisting
of two-qubit CX gates are non-parameterized.

First, quantum states are prepared for the qubits, and their initial
joint state can be written as [53].

W)™ = 1) @ @ ) © ) = &5 1)), @

where ® denotes the tensor product between quantum states. Then, the
initial joint state undergoes two sequential layers, or “slices”, of pre-
rotation [43,54] denoted by the pre-operator Uy, and this results in
(@5 R,0:)] [ R(00)] [0 |
= /N:BI [R»(HZJ)R7(0I‘/)|W/>} = Uprell//>&N'

3

Next, the states are fully entangled together by the entanglement oper-
ator CX gates,

N-2 N-1

Uent = H H CX/I:/Z’ @

J1=0 ja=ji+1
which is followed by another two “slices” of rotations,
U = [0 Ry(01)] [ 25 R(63,)] ®)

where 6 = {6;;} is a set of variational parameters that controls the qubit
states. The angle ¢ in a single-qubit gate R,(6) represents the magnitude
of rotation applied to the quantum state around the y-axis of the Bloch
sphere [43]. Executing an R,(0;;) gate effectively transforms the quan-
tum state by an angle 0 in a qubit’s Hilbert space. Here, s =1, ..., 4
indicates the “slice” of the single-qubit gates, and j, j;, j2 € {0, 1, ...,
N — 1} are indices of qubits. The combined effect of Eqgs. (4) and (5)
constitutes one “depth”, and the total operator of the parameterized
variational ansatz is

U(O) = [Urol} [Uem][Upre}' (6)

Alternative implementations of other entanglement patterns and ex-
pressions are presented in Supplemental Material [28].

2.3. Iterative convergence

Regarding the accuracy of Iterative convergence, other tunable pa-
rameters are involved: 1) optimizer-dependent tol; 2) quantum
processor-dependent shots, transpile optimization, statistical quantum
state measurement, and error mitigation techniques; as well as 3)
maximum number of iterations maxiter which depends on both the
optimizer and quantum processor.

In each iteration, a new quantum state is generated as

ly(8)) = U(0) )™, %)

where |y)®N denotes the initial quantum states defined in Eq. (2).
The new state [y(@)) is then used to evaluate the cost function

defined in Eq. (8), where |y(0)) is the output quantum state determined
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by both the parameters 6 = {6;;} shown in Egs. (3) and (5) and the
entanglement shown in Eq. (4). The quantum-classical hybrid iteration
process successively alters the quantum circuit parameters to minimize
the cost function, which is defined as:

C(0) = (w(0)|H|y(9)), ()

The hybrid algorithm iteratively updates the quantum-circuit parame-
ters 6 using protocols encoded in the classical optimizer until it reaches
either the user-defined tolerance tol or the maximum number of itera-
tions maxiter. Ideally, the convergence criterion, represented by the
tolerance parameter, ensures convergence when the absolute difference
between evaluations of two consecutive cost functions is smaller than
the tolerance parameter, indicating proximity to the optimal solution of
VQE Implementation. A list of user-defined parameters for the accuracy
of Iterative Convergence:

e tol represents the convergence criterion, which is used against the
absolute approximate error:

|E; —E;_i| < tol, 9
where E; is the ground state energy estimate of the j-th iteration.

e shots is the number of times the quantum circuit is executed for each
evaluation of the cost function, determining the statistical accuracy
of E;.

e maxiter denotes the maximum number of iterations that an optimizer
is allowed to go through.

To minimize the effect of optimizer-dependent parameters on a noise-
free simulator, as well as processor-dependent parameters on real
quantum devices, we pre-define the following parameters with constant
values to generate all data presented in this Letter. The noise-free
simulator uses shots = 10° and maxiter = 10°, while QPUs employ
shots = 2 x 10* and maxiter = 100, which are the largest possible on the
quantum hardware. In all cases, we set tol = 10™%.

When the threshold tol is reached by iterations, the optimization
yields the final expectation value (i.e., minimized cost function) as

C(00pl) = <W(00P‘)|H}W(aopl)> ~ Eg, (10)
where 6, and Egs denote the optimal set of parameters and the quantum
ground state energy, respectively.

Upon convergence, we obtain

Amin ~ Egs and |Wmin> ~ |W(00P‘)>7 (11)

where Ay, is the minimum eigenvalue, and |y, ;,) is the quantum state
corresponding to Ay;,.

(®)
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Other parameters including transpile optimization, statistical quan-
tum state measurement, and error mitigation techniques depend on the
gate fidelity, qubit connectivity, coherence time, and noise level of
specific quantum hardware [55-58].

3. Example problem cases

We investigate three different systems subjected to prescribed
boundary conditions. In all cases, we use linear elastic, isotropic mate-
rial properties that are similar to steel with density p = 7850 kg/m°,
Young’s modulus E = 21 x 10* GPa, and Poisson’s ratio v = 0.3.

Case (I): The hexagonal truss, as illustrated in Fig. 2(a), consists of
truss members with length L = 1.5 mm and circular cross-section radius
r = 0.5 mm. Boundary conditions are applied in the following manner:
(1) For nodes located at the bottom, displacements in both horizontal
and vertical directions are fixed (u; = uy = 0); (2) For nodes at the left,
right, and top sides, u; is set to zero, whereas u; is free. In this formu-
lation, a consistent mass matrix (rather than a lumped-mass matrix) is
used.

Case (II): The Timoshenko beam is illustrated in Fig. 2(b) with
length L =9 mm and circular cross-section radius r =1 mm. For
boundary conditions, the translational displacements u; and uy of both
ends are set to zero. Here, we use the lumped-mass formulation for both
mass and stiffness matrices.

Case (III): The plane-strain continuum model, as depicted in Fig. 2
(c), consists of a quarter section of a square with a circular cutout in its
geometric center. The entire square is 2 mm x 2 mm, and the open hole
has radius r = 0.5 mm. Boundary conditions are: x-symmetric constraint
is prescribed on the left edge, while the y-symmetric constraint is pre-
scribed on the bottom edge. The right edge is constrained by u; = 0. We
also adopt the lumped-mass formulation in this case.

4. Results and discussion
4.1. Noise-free simulators

To test the performance, we first execute the FEM-VQE pipeline on a
noise-free quantum simulator (e.g., statevector simulator on Qiskit). We
conduct comprehensive parametric studies to evaluate the algorithmic
performance in the search for fundamental natural frequency on prob-
lems with a wide range of DOFs varying from 8 to more than 8000. We
measure the accuracy of VQE from parametric studies using the per-

centage error,
Error(%) = |dq — Ac| /e, 12)

where 14 and A. are eigenvalue estimates from VQE and conventional

\V4

PATATA A A A A

A
©

Fig. 2. Schematics of the three distinct case studies: (a) hexagonal truss, (b) Timoshenko beam, and (c) plane-strain continuum. Boundary conditions are prescribed

at the locations denoted by yellow dots/lines.
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classical solvers, respectively.

Focusing on the following three sets of simulator-based parametric
studies by fixing two key factors and varying: (a) optimizer types, (b)
entanglement patterns, or (c) entanglement depths, we plot the error
values defined by Eq. (12) in Figs. 3, 4, and 5 for all cases. Additional
data in terms of convergence rates are presented in the Supplemental
Material [28]. Our findings reveal that there is no one-size-fits-all
particular set of parameters ensuring fast and accurate computation
for all three cases. We discuss problem-specific performance character-
istics below. We note that all data presented here are reproducible due to
the noise-free environment of the simulator. No statistical deviation may
occur once all user-defined parameters have been set.

Case (I) - For the choice of optimizers, Fig. 3(a) indicates that, except
SLSQP, the error remains under 7.5% for all. There is no discernable
difference among the other three optimizers. Sparse Hamiltonians can
lead to an optimization landscape characterized by noisy gradient
evaluations. Both SPSA and COBYLA demonstrate resilience in such
noisy environments, enabling them to circumvent these challenges and
function effectively even when gradient information is uncertain.
Moreover, COBYLA exhibits superior navigation through the feasible
regions of parameter space in the context of sparse Hamiltonians. This is
attributable to the fact that the decomposition of sparse Hamiltonians
can introduce nonlinear constraints within the optimization space. Fig. 3
(b) does not show any apparent correlation between errors and entan-
glement patterns either. Furthermore, Fig. 3(c) shows that the error is
always below 5% for any entanglement depth up to 7, and the best
performance with errors below 3.5% can be consistently obtained when
depth = 4. However, the errors tend to rise above 10% when depth = 8,

30
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Fig. 3. Errors of VQE results, as defined by Eq. (12), for Case (I): (a) Different
optimizer choices with entanglement pattern CZ and depth 3. (b) Different
entanglement patterns with optimizer COBYLA and entanglement depth 3. (c)
Different entanglement depths with optimizer COBYLA and entanglement
pattern CZ.
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Fig. 4. Errors of VQE results, as defined by Eq. (12), for Case (II): (a) Different
optimizer choices with entanglement pattern CZ and depth 1. Note that, at
N =11 and 13, the errors by SLSQP shoot up to the level of 130%, which is out
of the range of the plot. (b) Different entanglement patterns with optimizer L-
BFGS-B and entanglement depth 1. (c¢) Different entanglement depths with
optimizer L-BFGS-B and entanglement pattern CZ. Note that, at N = 13, the
error by depth = 2 shoots up to the level of 12%, which is out of the range of
the plot.

9, or 10. Overall, we think an average error of 5% can be expected when
applying the VQE algorithm to similar 2D truss problems.

Case (II) - As illustrated in Fig. 4(a), optimizers COBYLA and L-BFGS-
B deliver error-free outcomes, while SPSA and SLSQP show inferior
performance. In this case, we employ the Hamiltonian derived from the
lumped-mass-matrix formulation. This simplifies constraints and facili-
tates smoother navigation of parameter space when using L-BFGS-B. The
energy landscape is convex, conducive to rapid convergence using quasi-
Newton methods. Gradient-based approaches are particularly adept at
seeking minima within such well-conditioned landscapes. Additionally,
L-BFGS-B leverages gradient information to construct a quadratic model
of the cost function, enhancing the accuracy of its convergence. While
both SLSQP and L-BFGS-B incorporate bound constraints, L-BFGS-B
demonstrates greater robustness in managing parameter constraints.
Fig. 4(b) also shows error-free outcomes for all three entanglement
patterns, and the largest error observed is only at the level of 0.035%.
We think this is primarily due to both the lumped-mass-matrix formu-
lation and the high sparsity of the problem-specific Hamiltonian. Fig. 4
(c) displays that, except for depth = 2, the errors remain under 2% for
all. Overall, This case study shows that VQE tends to be much more
accurate in dealing with similar quasi-1D beam problems.

Case (III) - Fig. 5(a) shows that, among all four optimizer types, only
optimizer L-BFGS-B produces errors consistently below 5%. Moreover,
in contrast to data of Cases (I) and (II), Fig. 5(b) seems to show an
advantage for using the entanglement pattern CX, which keeps the error
under 5%. This may be due to the lumped formulation in the setup,
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Fig. 5. Errors of VQE results, as defined by Eq. (12), for Case (III): (a) Different
optimizer choices with entanglement pattern CX and depth 1. (b) Different
entanglement patterns with optimizer L-BFGS-B and entanglement depth 1. (c)
Different entanglement depths with optimizer L-BFGS-B and entanglement
pattern CX.

which results in a Hamiltonian characterized by independent quantum
states and can fully leverage the entanglement. Here, the CX gate en-
hances correlations by introducing an additional rotation around the X-
axis of the Bloch sphere, complementing the single-qubit gates with
rotations around the Y- and Z-axes in the ansatz. Although we also adopt
the lumped formulation in Case (II), the results among all entanglement
types are all negligible there, as shown in Fig. 4(b). Hence, no similar
advantage of CX is detectable in data from Case (II). In addition, Fig. 5(c)
supports a definite advantage of shallow circuits, in which the depth =1
choice keeps the error consistently below 5% in Case (III). Overall,
similar to the results in Case (I), we can expect that, through careful
choices of the optimizer, entanglement pattern, and entanglement
depth, we can expect an average error around 5% of VQE when it is used
on plain-strain problems.

Furthermore, we also assess the mean of errors (ME) and the stan-
dard deviation of errors (SDE) across the different degree-of-freedom
(DOF) data points shown in Figs. 3, 4, and 5. For instance, in Fig. 3
(a), employing different types of optimizers results in four sets of errors
(data illustrated as four different colors), and we calculate the ME and
SDE for each optimizer. The assessment of MEs and SDEs in all cases is
presented in Supplemental Material [28].

4.2. Quantum processing units

IBM QPUs are hardware designed to execute quantum computations.
Employing qubits as their fundamental units of information, they
harness the principles of quantum mechanics, which allow them to
perform complex calculations far beyond the capability of traditional,
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binary-bit-based CPUs.

Leveraging free and open quantum hardware resources, we execute
our FEM-VQE pipeline on 5-qubit (e.g. ibmq manila) and 7-qubit (e.g.
ibm nairobi) QPUs (e.g. Falcon r5.11H processors) via the IBM Qiskit
Runtime platform. Guided by the error assessments presented in
Figs. 3-5, as well as the allowable time and space limits on quantum
devices, we choose optimizer COBYLA and entanglement depth 1 in all
cases. Furthermore, we apply the entanglement pattern CZ for Case (I)
and (II), and CX for Case (III).

Unlike noise-free simulators, QPUs may suffer statistical deviations
since random noise could alter the outcome. After conducting multiple
(roughly ~ 10) trials of each calculation on QPUs, we summarize the
mean VQE estimate 14 and ME of each case in Table 1. The data indicate
that the algorithm accumulates much more error on QPUs than it does
on the noise-free simulator. Even for Case (II), which is the best
performer on the simulator, our results show the errors can jump up to
more than 30% when N > 5. Here, the reliability of the FEM-VQE
pipeline can be impeded by three principal factors:

First, the QPU capabilities are severely limited by the “quantum
volume” (V) metric [59-61] available on the IBM Qiskit Runtime
platform. The quantum volume of N qubits is defined by the formula V,
= gmintN, pathN)} ' \where path(N) denotes the longest path of gate oper-
ations from start to end in each iteration. This directly influences the
QPU performance. In the cases presented in this paper, we have path(N)
= 10 for the entanglement depth 1. This results in Vo = 2N where N = 3,
5,6,7,ie., Vo=8, 32, 64, 128. However, The current IBM QPUs have
only the capability to handle up to Vo = 32 with a high degree of quality
[62]. This presents a challenge, as it results in greater errors in contrast
to outcomes from a noise-free simulator, which can support up to 5000
qubits without quantum volume limitations.

Second, transpilation [63,64] poses additional challenges which
inflate circuit metrics including gates, depths, V,, and error rates,
further exacerbating the computational efficacy. This worsens the QPUs
performance since the actual circuit depth can be increased by the
transpilation, and deeper circuits produce more errors. In the end, the
accumulative error may hinder the update of parameters in the cost
function landscape.

Third, the thermal noise and electromagnetic interference on QPUs
corrupt the preparation and measurement of quantum state |y(0)),
resulting in low-quality of VQE estimates.

Lastly, error accumulation deriving from the variational form of the
ansatz and the classical optimizer can impair the accuracy of eigenvalue
prediction. The ideal condition would be achieving a fault-tolerant
result from an aptly parameterized quantum circuit U(f) without clas-
sical computers, due to the risk of a sub-optimal solution caused by a
barren plateau problem [65,66]. These considerations are inherent and
unavoidable aspects of the current technological landscape. Although
this also occurs on simulators, the effects are more pronounced with
QPUs.

4.3. Complexity
The space complexity of the proposed hybrid algorithm depends on

the amount of quantum memory. For example, N qubits can store the
same amount of information that requires 2V conventional bits on

Table 1
Errors in QPU computations.
Je A ME (%)

Case (D (N =6) 0.0771 0.0855 10.895
Case M (N=7) 0.0572 0.0688 20.280
Case (II) (N = 3) 0.0343 0.0343 0.000
Case (I) (N =5) 0.0604 0.0606 0.331
Case M) (N=7) 0.0354 0.0483 36.441
Case (III) (N = 6) 0.0457 0.0535 17.068
Case (III) (N =7) 0.0317 0.0380 19.874
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classical computers. This results in O(log(n)) space complexity on the
quantum computer for a problem with n x n mass/stiffness matrices,
even if they are non-sparse. In comparison, it requires the space
complexity O(n?) in the classical computer to store a dense n x n matrix.
In the case of dealing with sparse matrices, the scale of space-saving, as
compared to the cases of dense matrices, is similar for both quantum and
classical computers, thus maintaining the quantum advantage in terms
of space complexity.

The time complexity of the hybrid algorithm depends on quantum
circuit complexity (quantum), measurement complexity (quantum-to-
classical), and optimization complexity (classical). Take Fig. 1 with four
qubits, two layers of pre-rotations, and one depth of entanglement as an
example.

First, the time complexity is O((log(n))?) on a simulator. Considering
the hardware with different qubit connectivity constraints and coher-
ence times, the transpilation may increase the number of gates and lead
to a higher time complexity than that on simulators.

Second, the measurement complexity, determined by the necessary
number of quantum measurements for precise eigenvalue estimation,
typically scales with O(1/¢?), where e denotes the tolerance in numerical
precision. For the three examples in our work, we choose a constant
number of quantum measurements (shots) on the simulator and quan-
tum devices to minimize the effect of measurement. Assuming all
measurements can be done concurrently as fully parallel processes in
quantum hardware, the measurement complexity would be fixed since it
no longer scales with the size of Hamiltonian.

Third, the optimization complexity is primarily determined by the
type of optimizer and the maximum number of iterations an optimizer is
allowed to go through (maxiter). In this work, the maxiter is capped at a
constant value. Thus, for a fixed-depth ansatz, the optimization
complexity depends on the complexity of each iteration regarding a
specific optimizer [45,67-70]:

e SPSA: O(1), as it requires two evaluations of cost function regardless
of the number of parameters [71].

e COBYLA: O(p?), as it requires p linearization of cost function and
constraints respectively [72].

e SLSQP: 0@3), as it requires an approximation of the inverse Hessian
matrix [73].

e L-BFGS-B: O(p), as above, but it uses a limited memory approach to
approximate the inverse Hessian matrix [74].

where p is the number of parameters with the same polynomial order as
log(n).

The theoretical bound of time complexity for each optimizer is
established under ideal conditions. However, in practical scenarios,
specific optimization and quantum hardware constraints present ob-
stacles in accurately determining time complexity. For example, the
optimization landscape has barren plateaus that the gradients vanish
exponentially with the increasing number of qubits, making it hard to
estimate reliable energy states [75]. Additional explanations are pre-
sented in Supplementary Material [28].

In theory, compared with O(n®) for purely classical algorithms, the
time complexity of the hybrid VQE approach scales with O((log(n))*) by
using the ansatz depicted in Fig. 1 and the COBYLA optimizer. However,
in the current implementation on readily accessible hardware devices,
the time complexity of the VQE does not consistently offer an advantage
over classical algorithms. Its efficiency is largely contingent upon spe-
cific factors such as the nature of the problem, the choice of optimizer,
and the hardware used. This subject is currently a focal point of interest
and remains an active area of research.

5. Conclusion

The successful implementation of a FEM-VQE pipeline presented in
this Letter is the first step towards harnessing quantum computing to
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solve problems in solid mechanics and structural engineering. This
computational framework could be particularly useful to researchers
who wish to take advantage of the noisy intermediate-scale quantum
(NISQ) computing devices that are rapidly becoming available now. Our
parametric studies on (I) 2D truss, (II) 1D beam, and (III) plane-strain
continuum cases provide direct evidence supporting the validity of
this quantum-classical hybrid algorithm. On a noise-free simulator, our
data prescribe the following set of optimal parameters: (I) COBYLA with
CZ and depth = 4; (II) L-BFGS-B with CZ and depth = 1; (III) L-BFGS-B
with CX and depth = 1.

The VQE algorithm requires O(log(n)) space complexity compared to
0(n?) in classical computers to store an x n dense matrix. Theoretically,
the time complexity of this hybrid method, employing the ansatz from

Fig. 1 and the COBYLA optimizer, scales at O((log(n))*), compared to O
(n®) for purely classical algorithms.

While the demonstration detailed in this letter does not manifest
quantum supremacy over classical computers in terms of accuracy or
efficiency, it does validate the integrative methodology that couples
ABAQUS with Qiskit VQE Implementation. This methodology holds the
potential to address problems encompassing significantly more degrees
of freedom as quantum computers continue to become more capable and
more widely available. The large error values in our results are not a
reflection of the shortcomings of the algorithm. Rather, they are indic-
ative of the current state of quantum computing technology [76-79].
The prospect of enhanced quantum processors, fortified with advanced
error mitigation techniques and designed to operate at a utility-scale
with improved quality, is an anticipated advancement that warrants
keen attention [80,81]. For example, quantum hardware manufacturers
are now making devices with up to 27, 65, 127, and 433 qubits available
to the general research community [42]. This could potentially enable
our FEM-VQE pipeline to solve complex mechanics problems with 108,
10'°, 10%8, and 10™° DOFs like dispersion bands and
optimization-based inverse design of architected materials.
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