

Contents flfists avafiflabfle at ScfienceDfirect

Soflar Energy

journal homepage: www.elsevier.com/locate/solener

Synergfistfic photothermafl-thermoeflectrfic-photovofltafic energy generatfion vfia a transparent spectrafl moduflatfing soflar modufle

Mengyao Lyu^a, Jou Lfin^a, Yuxfin Wang^a, John Krupczak^b, Dongflu Shfi^{a,*}

- ^a The Materfials Schience and Englineerfing Program, Department of Mechanfical and Materfials Englineerfing, College of Englineerfing and Applied Schience, Unfivershity of Chinchmath, Chinchmath, OH 45221, USA
- ^b Department of Englineerfing, Hope College, Holland, MI 49423 USA

ABSTRACT

The efficiencies of photovofitafic (PV) and thermoeflectrfic (TE) have been flimfied by the fintfinsic materials properties. In soflar applifications, PV utilifizes the shorter waveflength end of the soflar spectrum whifle fits flonger portfion (IR) can be photothermaflify (PT) converted to heat by specifial nano structures for TE eflectricity generation. We have developed spectrall moduflating nano systems made of Fe₃O₄@Cu_{2.x}S nanopartificles and chilorophyfilfin capable of synergistric PT-TE-PV soflar harvesting and energy generation. In this system, soflar flight fis harvested through the transparent photothermafl spectrall moduflator (TPSM) and segregated finto different waveflengths: the IR fis absorbed to photothermaflify heat up the TE hot end for the required thermoeflectrfic temperature span; the UV/visibile fis differented to PV with reduced IR for stignificantily reduced heating, thus enhanced power conversion efficiency (PCE). Upon removal of IR, the PV surface temperature can be flowered from 86.9 °C to 65 °C after 120 mfin soflar firradfiation, resullting fin PCE fincrease from 16.3 % (dropped from 25.1 % at 0 mfin) to 19.4 %. A PT - TE - PV soflar energy modufle (PTPSEM) fis destigned based on TPSM to synergistficalfly generate energy by separatefly utilifizing the fuffl spectrum of soflar flight Usfing the same soflar flight source, whifle generating eflectricity via PV, an additional 2.4 % fis gafined by a series of commercial thermoeflectric generators (TEG), adding up to a total of 21.8 % system efficiency which stignificantly exceeds the average efficiency of the commercial stiflicon PV panell used fin this study. The spectrall moduflation mechanism through TPSM fis fidentifified based on the optical behaviors of chilorophyliflin and Fe₃O₄@Cu_{2.x}S. Aflso discussed fis the desfign concept of PTPSEM.

1. Introduction

The power conversiion efficiencies of PV and TE have been flimfited by the fintrfinsfic propertfies; respectfivefly, ~ 25 % for PV and $\sim 5\text{--}8$ % for TE. The processes drfivfing most photovofltafics utfillize soflar energy at waveflengths beflow about 1000 nm fin the UV/Vfis - NIR range of the soflar spectrum. About 58 percent of the energy densfity of the soflar spectrum flies fin thfis waveflength range wfith the other 42 percent occurrfing at flonger waveflengths. Conventfionafl soflar ceflfls typficaflfly have substantfiafl absorptfion fin the sub - band - gap waveflength range above approxfimatefly 1000 nm [1]. Thfis absorbed flong waveflength soflar energy contrfibutes to heatfing of the PV panells resultting fin sfignfifficant efficiency decrease with temperature [2]. A typficall temperature coefficient for PV output power fis - 0.5 percent per °C [3]. A standard PV modufle, absorbfing IR aflong wfith UV and vfisfibfle soflar radfiatfion can operate 20 to 40 °C above ambfient temperature fleadfing to efficiency flosses of up to 20 % [2-3]. Numerous researchers have finvestfigated active coofling of PV modufles to fimprove efficiency [4-7]. However active cooffing fincreases system compflexfity and fimposes energy costs for active eflements such as pumps and fans.

The potentfiafl of combfing PV and a thermoeflectrfic generator (TEG)

has been previously expflored [8–9]. In many cases the thermoeflectrfic modufle fisattached dfirectfly to the PV panefl. Heat generated by PV fin the IR band fis converted to eflectificafl energy by the thermoeflectrfic. This approach suffers from the compfletefly dfifferent temperature dependence of PV and thermoeflectrfic efficiencies. Thermoeflectrfic device output fincreases whith temperature whifle PV output decreases with temperature. Thus combfined PV and thermoeflectrfic devices have an finherent drawback due to finverse temperature dependence.

Aflthough the photothermafl (PT) effects of nanopartficfles have been extensfivefly studfied for medficafl therapy [10–19], a few studfies on the transparent photothermafl thfin ffiflms and buflk materfiafls have been reported for energy appflications. We have recentfly developed transparent, spectrafl seflectfive, and photothermafl thfin ffiflms based on porphyrfins and firon oxfides [20–26], capabfle of rafisfing temperature up to 76 °C under sfimuflated soflar flight [22]. The opticafl absorptions of the hybriid ffiflms are spectraflfly tuned wfith strong absorptions fin the UV and IR regions but kept fin mfinfimum fin the visfibfle band for hfigh average visfibfle transmittance. In this fashfion, the soflar flight can be harvested through mufl-tripfle flayers and converted to thermafl energy fina 3D cubofid. The thermafl energy generated fin a conffined voflume can be utfiflized to produce effectricity vfia thermoeflectric devices for a varfiety of appflicatfions.

E-mafil address: shfid@ucmafifl.uc.edu (D. Shfi).

https://dofi.org/10.1016/j.soflener.2023.05.001

^{*} Correspondfing author.

Furthermore, the transparent hybrfids can be spectrafifly tuned to seflectivefly absorb soflar flight fin the desfignated frequencies, such as UV and IR as a photonficality optimized flight source for PV applifications.

In thfis study, we report on the development of the transparent photothermafl spectrafl moduflator (TPSM) that fis engineered for mufltipfle functions: (1) sfince the TPSM fis transparent, the sfimuflated soflar flight can pass through fit as the flight source for a commercial stiffficon PV panell; (2) meanwhifile, the soflar flight (mafinfly IR) fis absorbed by TPSM and converted to thermafl energy viia the photothermafl effect; (3) the thermafl heat fis utfifflized for TEGs to produce effectficity through mufltipfle surfaces, and (4) the TPSM can spectrafl seflectfively remove the IR portfion for reducting PV surface heatfing resultifing fin enhanced photon conversion efficiency (PCE). In this fashfion, we combfine the PT, TE, and PV effects for synergisticalfly producting thermafl and effectifical energies by unfique materfialls desfign of TPSM.

The concept of PT Y TE Y PV modufle fis schematficaflfly filfflustrated fin Ffig. 1. As shown fin the flighter, the TPSM fis structurally tafiflored to specified absorptions from UV to IR for the most efficient 3D soflar harvesting and energy generation. As the soflar flight fis harvested by the transparent nano hybrids, most of the IR fis absorbed (~42 %) and photothermaflfly (PT) activated to heat up the hot end of TE (ffigure of merfit of TE fis proportionafl to temperature span). The UV/Vfis portion (~58%) can pass through the TPSM for PV effectificity generation. In this fashfion, the entire spectrum of soflar flight fis fuffly utfilfized for energy generation via combfined effects of PV, PT, and TE. The spectral tunabfiflity of the TPSM flies on structural desfigns for spectral moduflated absorptions. Further, TPSM can be rendered transparent enabfling white flight passfing through multifilayers, prismatfic soflids, or a cube, therefore, transformfing soflar harvestfing from 2D to 3D wfith sfignfifficantfly fincreased energy density.

We developed a unfique TPSM contafinfing efither $Fe_3\,O_4\,@Cu_{2.X}S$ nanopartficfles or chflorophyflflfin which fis hfighfly transparent, spectrafl seflectfive, strongfly photothermafl, and capabfle of absorbfing and convertfing desfignated photon energies for the most efficient energy generation via the PT, TE, and PV effects. Varfious PT – TE – PV soflar energy modufles (PTPSEM) were desfigned based on TPSM as shown fin Ffig. 2. The basfic desfign concept fis depficted fin Ffig. 2a. As shown fin this ffigure, the sfimuflated soflar flight passes through transparent TPSM for two purposes: 1) Photothermaflfly generatfing thermafl energy for heatfing up the hot end of the thermoeflectrfic generator (TEG). Due to the temperature dfifference between the hot and cofld ends of TEG, eflectrficfity fis generated mafinfly by utfilfizing the IR portfion of the soflar flight. 2) Sfince TPSM fis transparent, sfimuflated soflar flight can pass through fit, reachfing the PV panefl beflow for eflectrficfity generatfion. In this fashfion, the same soflar flight source can be spectrafly utfilfized to produce eflectricity

sfimufltaneousfly by TE and PV through PT. Furthermore, the IR portfion fs absorbed by TPSM (converted to heat for TEG), resufltfing fin reduced heatfing on the PV panefl surface.

Based on the concept depficted fin Ffig. 2a, we desfigned dfifferent PTPSEMs for optfimfized soflar harvestfing and energy generatfion (both thermafl and eflectificafl energy). Consfiderfing flfight power attenuatfion through the TPSM due to fits thfickness (Ffig. 2a), we desfigned a 5-sfided box made of TPSM whith a cfircuflar openfing on the top sfide. As shown fin Ffig. 2b, the center beam of the sfimuflated soflar flfight can dfirectfly reach the commerciafl sfifficon PV panefl (Ffig. 2c) through the top cfircfle openfing for generatfing eflectificity whith the specfiffied PV PCE. However, the rfim of flfight fin fact passes the 2 mm thrick top cover (Ffig. 2b) whith portfion of IR removed to reduce the PV surface heating (the so-califled spectrafl moduflatfion). Meanwhfifle, the 4-sfide waffls of TPSM are photothermaflfly activated to heat up the hot ends of 4 PTGs for generatfing eflectificity (Ffig. 2d).

The overalfII structure of PTPSEM fis schematficafIIIy fiffIIustrated fin Ffig. 2d. It can be seen fin this ffigure that the soflar flight fis spectrafIIIy utfillfized viia TPSM for efficient energy harvestfing and generation. The TPSM fis composed of efither Fe $_3$ O $_4$ @Cu $_{2.X}$ S or chflorophylIIIfin, both are strongIIy photothermafI and spectrafI selectfive wfith unfique opticafI characterfistfics. The PTPSEM can synergfistficafIIIy generate energy through the photothermafI, thermoeflectrfic, and photovofltafic effects according to spectrafIIIy moduflated photon frequencfies: IR fis absorbed by TPSM to heat up TEGs; removafI of IR from soflar flight reduces PV panefI heatfing for enhanced PCE, and the same flight source wfith most of UV – Vfis (IR removed) fis utfiflfized for PV.

2. Experimental details

2.1. Materfials synthesfis

The folflowfing chemficafls were used fin thfis research: firon (III) acetyflacetonate (Fe(acac) $_3$, \geq 99.9%), copper (II) acetyflacetonate (Cu (acac) $_2$, \geq 99.9%), ofleyflamfine (70%), sufflur (99.998%), N - methyfl - 2 - pyrroflfidone (NMP, 99.5%), chfloroform (\geq 99.9%), tetrahydrofuran (THF, 99.9%), fisopropyfl aflcohofl (IPA, 99.7%), and poflyethyflene gflycofl (PEG); affl were purchased from Sfigma - Afldrfich Inc. Cycflohexane (99.5%) was purchased from Tedfia Inc.

 ${\rm Fe_3O_4@Cu_{2.X}S}$ nanopartficfles were synthesfized by fofflowfing a previous report[23]. A certafin amount of ofleyflamfine was heated to 300 °C fin nfitrogen gas environment for a perfiod. Meanwhfifle, amount of Fe (acac) $_3$ was dfissoflyed fin the NMP/ofleyflamfine soflutfion (4:3,v/v) whfich was added finto a preheated ofleyflamfine to form Mfixture A. The Mfixture A was stfirred for 10 mfin at 300 °C and then coofled down to 70 °C for 10

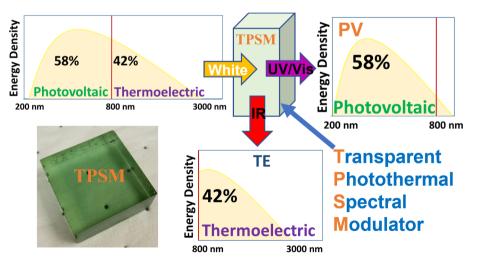


Fig. 1. Schematfic dfiagram showfing the spectrafl tunabfle nano hybrfid as a waveflength segregator and PT heater.

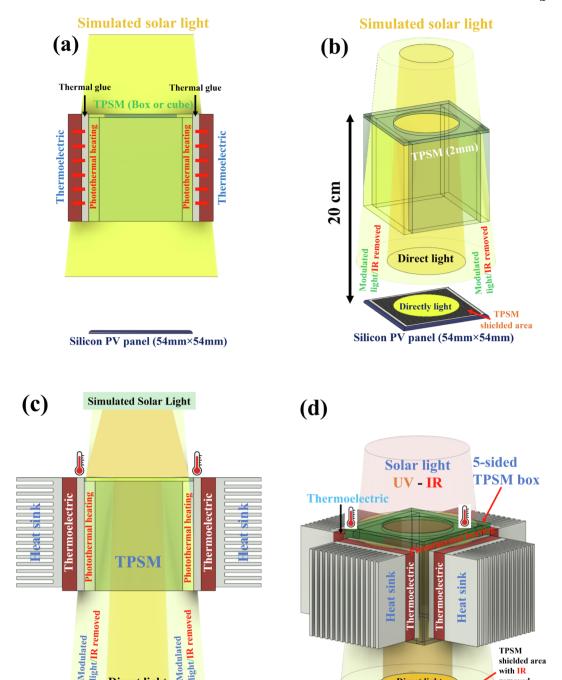


Fig. 2. Schematfic dfiagrams showfing (a) the basfic concept of PT - TE - PV soflar energy modufle (PTPSEM) consfistfing of a transparent photothermafl spectrafl moduflator (TPSM), the thermoeflectrfic generators (TEG) on the sfide waffls of TPSM, and a commerciafl stifficon PV panefl at the bottom which can receive soflar flight that fis spectrafly moduflated by transparent TPSM. The sfimuflated flight ffirst passes the TPSM, generating heat that fistransferred to TEGs, then shfines on the PV panefl; both TEG and PV synergisticaflify generate eflectificity viia utfillizing fulfil soflar spectrum. (b) To enhance flight fintensity on the PV surface, a 5-stided box fis made of TPSM with waffl thickness of 2 mm. A cfircuflar openfing on the top waffl fis to flet soflar flight dfirectfly reach PV with high photon fintensitifies. (c) The rfim of flight wffIlpass through the 2 mm thfink TPSM waffl on the top to remove portion of IR for reducting PV surface heating. (d) 3D overview of the PTPSEM wfith four TEGs on the sfide waffls of the 5-stided TPSM box and a commerciafl PV panefl at the bottom, receiving the fuffil spectrum of the soflar flight fin a spectrafl seflective fashfion.

mfin. Amount of suffur was dfissoflved fin a ofleyflamfine/cycflohexane mfixture (6:5,v/v) to form Mfixture B. Mfixture B was sflowfly finjected finto Mfixture A to form Mfixture C at 70 °C and stfirred for 10 mfin. Cu (acac) $_2$ was dfissoflved fin the ofleyflamfine/chfloroform mfixture (1:4,v/v) to form Mfixture D whfich fis made of Cu (acac) $_2$ fin ofleyflamfine/cycflohexane mfixture (6:5,v/v). Mfixture D was then finjected finto Mfixture C. After stfirrfing at 70 °C for 30 mfin, the Fe₃O₄@Cu₂.xS nanopartficfles were

Direct light

Silicon PV panel

obtafined. The $\operatorname{Fe_3O_4} @\operatorname{Cu_{2.X}} S$ nanopartficfles were coflflected by a strong magnet. The coflflected nanopartficfles were washed wfith methanofl and then drfied by oven under vacuum. Ffinaflfly, $\operatorname{Fe_3} \operatorname{O_4} @\operatorname{Cu_{2.X}} S$ nanopartficfles were dfispersed fin THF for flater use.

Direct light

Silicon PV Panel v

removed

Epoxy resfin and stiffficon moflds were used to deveflop TPSM wfith varfious geometrfies. Fe $_3$ O $_4$ @Cu $_{2.X}$ S and chflorophyflflfin wfith dfifferent ratfios and concentratfions were dfispersed finepoxy resfin and weflf mfixed to

ensure homogenefity. The mfixed soflutfion was then poured finto a stifficon mofld and cured for 24 h. The concentrations of the buflk sampfles were controfliled at 200 $\mu g/cm^3$. Ffig. 3 shows the photographs of cubfic TPSM made of chilorophyfillfin (Ffig. 3a) and Fe $_Q$ @Cu $_{2X}$ (Ffig. 3b). As shown fin this ffigure, the buflk TPSMs of both chilorophyfillfin and Fe $_3$ O $_4$ @Cu $_{2,X}$ S appear to be transparent and homogeneous wfith respectiive flight green (Ffig. 3a) and amber (Ffig. 3b) coflors. Soflar flight can pass through fit depending on the transparency and thickness. Usfing Fe $_3$ O $_4$ @Cu $_{2,X}$ S or chilorophyfillfin, the TPSM was made finto 5-sfided boxes as shown fin Ffig. 2b. As noted above, the concentration of Fe $_3$ O $_4$ @Cu $_{2,X}$ S or chilorophyfillfin fin the TPSM box was controfliled at 200 $\mu g/cm$ 3 .

2.2. Materfials characterfizatfion

The TPSM sampfles were characterfized for fulfl-spectrum absorption and transmfittance. Mafintafinfing hfigh AVT fis critifical to ensure sfignfifficant flight power density on the PV criti surface. In this study, we focused on characterfization of the porphyrfin compounds and firon oxfides, namefly, chilorophyfliffin and ${\rm Fe_3\,O_4\,@Cu_{2.x}S}$. These compounds exhfibrit unfique absorption characterfistics providing a versatifile optical base for making TPSMs fin a wfide range of photon frequency. To observe thefir fintrinsfic optical behaviors, the absorption and transmfittance spectra were obtained from the soflutions of these compounds to avoid the buflk effects. Fig. 4 shows the absorption spectra of chilorophyflifin and Fe $_3$ O $_4$ @Cu $_2$ xS. The concentrations of chilorophyflifin and chilorophyflifin were both fixed at 0.01 mg/mfl.

As shown fin Ffig. 4a, chflorophyflflfin has an fintensfive absorptfion peak at 404 nm and a smaffl one at 630 nm formfing a so-caffled "saddfle-flfike" spectrum. This fis the typficafl absorptfion characterfistfic of the porphyrfin compound which fis partficuflarfly usefufl for spectrafl seflectfive soflar harvestfing and generatfing photothermafl energy, whifile remainfing high AVT. As shown fin Ffig. 4a, the strong peaks at 404 nm and 630 nm findficate considerabile absorptions fin the UV and NIR regions for conversion of photons to thermafl energies. Low absorptions fin the visibile region render the porphyrfin highfly transparent for makfing TPSM (Ffig. 3) fin the PT – TE – PV soflar energy modufle (Ffig. 2).

The Fe $_3$ O $_4$ @Cu $_{2.X}$ S nanopartficfles are known for thefir IR absorptions. Ffig. 4b shows the absorption spectra of both Fe $_3$ O $_4$ and Fe $_3$ O $_4$ @Cu $_{2.X}$ S nanopartficfles finsoflutfions for comparfison. As shown finthfis ffigure, Fe $_3$ O $_4$ typficalfly exhfibfits a strong absorption fin the UV region and qufite rapfidfly subsfides over the vfisfibfle and IR regions. By coatfing a thfin flayer of Cu $_{2.X}$ S on the Fe $_3$ O $_4$ nanopartficfles, the Fe $_3$ O $_4$ @Cu $_{2.X}$ S soflutfion exhfibfits a broad absorption peak extendfing to 1400 nm. Thfis strong IR absorption can be used to reduce the PV surface heatfing from the soflar flfight. The IR

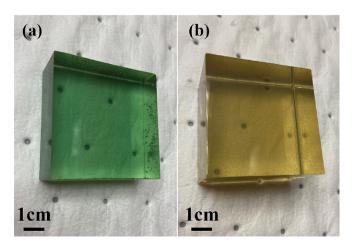


Fig. 3. Photograph of a transparent photothermall spectrall moduflator (TPSM) whith (a) chilorophyfliflin and (b) Fe $_3$ O $_4$ @Cu $_2$. $_X$ S nanopartificles fin epoxy resfin. The concentration of Fe $_3$ O $_4$ @Cu $_2$. $_X$ S or chilorophyfliflin fin the TPSM box was controllfled at 200 µg/cm 3 .

absorption of Fe $_3$ O $_4$ @Cu $_{2.X}$ S has been attributed to the flocaflized surface pflasmon resonance (LSPR) of Cu $_{2.X}$ S fin the IR region [27]. The TPSM made with the Fe $_3$ O $_4$ @Cu $_{2.X}$ S nanoparticeles can spectralify moduflate the soflar flight by absorbling most of IR which contributes to PV surface heating.

2.3. Photothermal, Thermoelectrfic, and photovoltafic characterfization experimental details

An AOSHIKE Mficro Soflar Ceffl wfith 54 mm \times 54 mm (bought from amazon) was used fin thfis study. The measurement setup for I – V characterfizatfion fis schematficaflfly shown fin Ffig. 5a. A soflar sfimuflator (Newport) was used as a flfight source for a duratfion of 120 mfin for each experfiment so that the heatfing effect was recorded. The soflar ceffl surface temperature was monfitored by usfing a thermafl camera (FLIR, Inc.). The I – V curve measurement was performed by usfing Kefithfley 2400 finstrument. Afideepen thermoeflectrfic generators (sfize: 40 mm \times 40 mm \times 3.6 mm wfith Bfi Se $_3$ as thermoeflectrfic eflements, bought from amazon) were used to convert heat generated by the 5-sfided TPSM box (Ffig. 2d) finto eflectrficity. TEGs were attached onto the 4 sfide surfaces of the TPSM box (Ffig. 2d) after 120 mfin heatfing. Δ T was caflcuflated by usfing the temperature dfifference between the hot and cofld ends of TGE whfich was measured by thermafl coupfles.

The effficiency of soflar efffl can be caflcuflated using the folflowfing equation:

$$\eta_{PV} = \frac{P_{out}}{P_{in}} = \frac{I_{SC}V_{OC}FF}{P_{in}} \tag{1}$$

where P_{out} fis output power, P_{fin} fis output power, I_{SC} fis short – cfircufit current, V_{OC} fis open – cfircufit Vofltage, I_{MP} fis current densfity at maxfimum power, V_{MP} fis vofltage at maxfimum power, P_{max} fis the maxfimum output power, and FF fis ffIf factor. It should be noted that P_{fin} used to determfine PCE fis the flfight power densfity on the PV panefl wfithout passfing through the TPSM (Ffig. 2). Due to varfied flfight transmittances of the TPSM, the flfight power densfity on the PV surface aflso varfies

The thermoeflectrfic measurement setup fis schematficaflfly shown fin Ffig. 5b. The efficiency of thermoeflectrfic generator fis caflcuflated by

$$\eta = \frac{P_{TE}}{Q_{tr}} \tag{2}$$

where P_{TE} (W) fis power of TE generator, Q_{fi} (J) fis the power finput of the soflar sfimuflator.

 P_{TE} fis caflcuflated based on the output on a 10 Ω resfistor, the current I (amp), and vofltage V (voflt) of the cfircufit (Ffig. 5b). The output of TEG can be wrfitten as:

$$P_{TE} = I \times V \tag{3}$$

Seebeck coefficient of the combfined TEGs can be caflcuflated as:

$$S = \frac{E}{\Delta T} = -\frac{V}{T_H - T_C} \tag{4}$$

where E fis the vofltage generated and ΔT fis the temperature dfifference between the hot and cofld ends of the TEG.

Ffigure of merfit (ZT) can be caflcuflaated by the expressfion:

$$ZT = \frac{S^2 \sigma}{\kappa} T \tag{5}$$

where κ fis thermall conductfivfity of TEG, σ fis eflectificall conductfivfity, and T fis the absolute temperature.

Power Factor (PF):

$$PF = S^2 \sigma \tag{6}$$

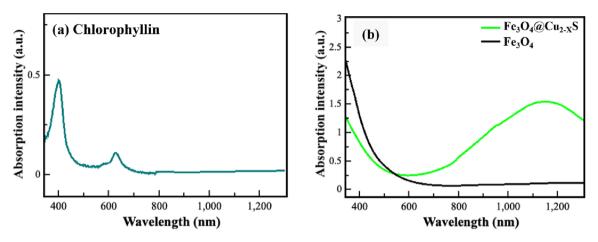


Fig. 4. Absorption spectra of (a) chflorophyflflfin, and (b) Fe₃O₄ and Fe₃O₄@Cu_{2-X}S.

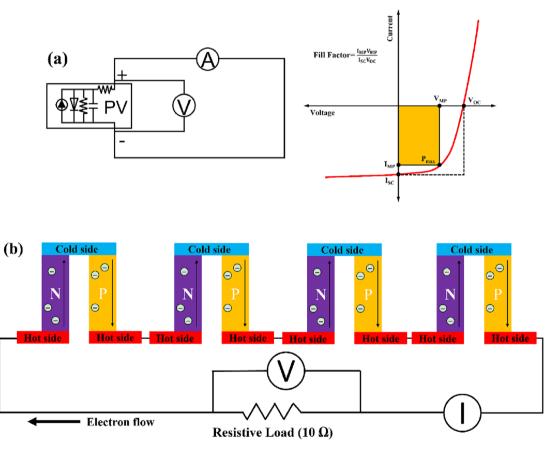


Fig. 5. Schematfic dfiagrams showfing (a) I - V curve measurement set up, (b) TEG measurement set up.

2.4. Charaterzatfion of the TPSM cube wfith Fe $_3O_4$ @Cu $_{2.X}\!S$ and chlorophyllfin

Ffig. 6a shows the PTPSEM experfimentafl set up wfith four commerciafl TEGs on the four faces of a TPSM cube (dfimensfions: 5 cm \times 5 cm \times 5 cm). The TPSM cube fis composed of Fe $_3$ O $_4$ @Cu $_2$ XS or chflorophyflflfin dfispersed fin the matrfix of epoxy resfin wfith a concentration of 0.01 mg/mfl. Upon sfimuflated soflar flight finadfiatfion (1.58 W), the TPSM fis photothermaflfly actifixed to convert fincomfing photons to thermafl energy. As shown fin Ffig. 6b, the hfighest temperatures of the sfide waflfs can reach 66.6 °C and 64.9 °C, respectfivefly for the Fe $_3$ Q $_4$ Cu $_2$ XS and chflorophyflflfin TPSM cube. As shown fin this ffigure, due to the photothermafl effects of Fe $_3$ O $_4$ @Cu $_2$ XS and chflorophyflflfin fin the TPSM cubes, the

temperatures rfise qufite rapfidfly upon soflar flfight finadfiatfion (1.58 W). The soflar flfight fixturned off at 120 mfin; therefore, the temperatures start to drop off thereafter. Wfith these sfignfifficant temperatures, the four TEGs on the 4 – sfide waffls of TPSM cube generated TE vofltages of 1.864 V and 1.845 V (Ffig. 6c), and TE powers of 0.189 W and 0.187 W (Ffig. 6d), respectfivefly, for Fe $_3$ O $_4$ @Cu $_2$, XS and chflorophyflflfin TPSM cubes. However, due to heat transfer between the hot and cofld ends of TEGs, the temperature dfifferences, ΔT , are reducfing from above 43.6 °C to 16.8 °C as shown fin Ffig. 6e. Consequentfly, both vofltages and powers are aflso reduced. Notfice that the drops fin vofltage and power become much fless rapfid after 3 mfin (Ffig. 6c and 6d). The TE efficiencies wfith 4 TEGs are 11.9% and 11.8% respectfivefly for the Fe $_3$ O $_4$ @Cu $_2$, XS and chflorophyflflfin TPSM cubes when ΔT fis at the maximum as shown fin Ffig. 6f.

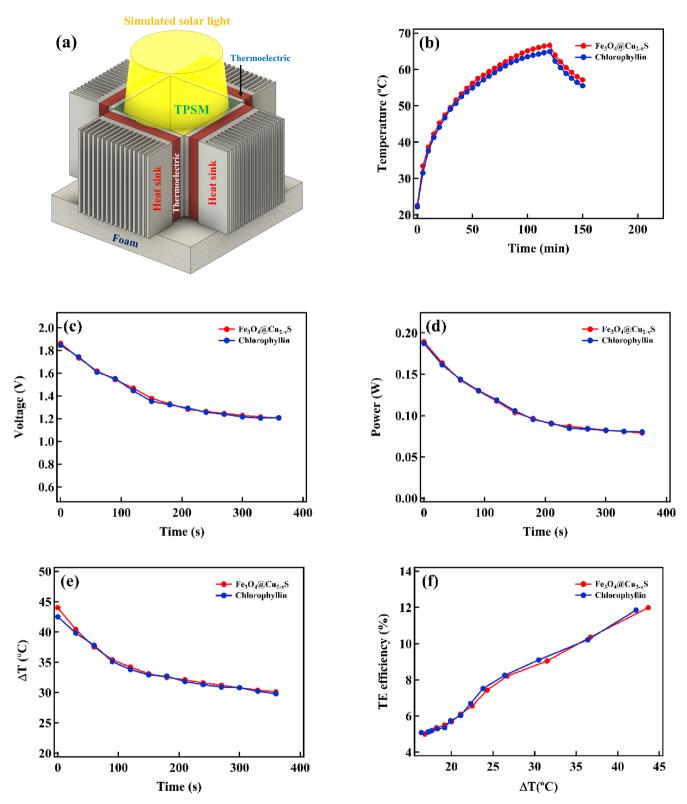


Fig. 6. (a) Schematfic dfiagram showfing the PTPSEM experfimentafl set up wfith four commerciafl TEGs on the four faces of the TPSM cube. (b) The cube sfide waffl surface temperature vs tfime (heatfing cruves) for the TPSM wfith $Fe_3O_4@Cu_{2.X}S$ or chflorophyflflin dfispersed fin the epoxy resfin matrfices (Ffig. 3); (c) The TE vofltages generated by TEGs on the 4-sfide waflfs of the TPSM cube (fin serfies) wfith $Fe_3O_4@Cu_{2.X}S$ or chflorophyflflin dfispersed fin the epoxy resfin matrfix (Ffig. 3); (d) TE power outputs generated by TEGs on 4-sfide waflfs of the TPSM cube (fin serfies) wfith $Fe_3O_4@Cu_{2.X}S$ or chflorophyflflin dfispersed fin the epoxy resfin matrfix (Ffig. 3); (e) the temperature dfifferences, (Δ T), between the hot and cofld ends of TEGs, and (f) TE efficiencies as function of temperature dfifferences, (Δ T), for the TPSM cubes wfith $Fe_3O_4@Cu_{2.X}S$ or chflorophyflflin dfispersed fin the epoxy resfin matrfix.

2.5. TE output power & efficiency of patterned PT box

Ffig. 7 shows photothermafl and thermoeflectrfic characterfizatfion of the 5-sfided TPSM boxes (Ffig. 2b). As shown fin Ffig. 7a, the hfighest temperatures of the sfide waffl surfaces are 41.4 °C and 41.3 °C, respectivefly for the TPSM made of Fe $_3$ O $_4$ @Cu $_{2-X}$ S and chflorophyflflfin. These vaflues are consfiderabfly flower than those of the TPSM cube due to

smaflfler thfickness and overafifl voflume (photothermafl energy fs an extensfive property). The vofltages generated by the TEGs are 0.828 V and 0.816 V, respectfivefly for the Fe $_3$ O $_4$ @Cu $_{2.X}$ S and chflorophyflflfin TPSM boxes, whfich are aflso flower than those generated by the TPSM cube. The TE powers are 0.038 W and 0.037 W, respectfivefly for the Fe $_3$ O $_4$ @Cu $_{2.X}$ S and chflorophyflflfin TPSM boxes as shown fin Ffig. 7c. Consfistentfly, both vofltage and power decrease wfith the decreasfing of temperature

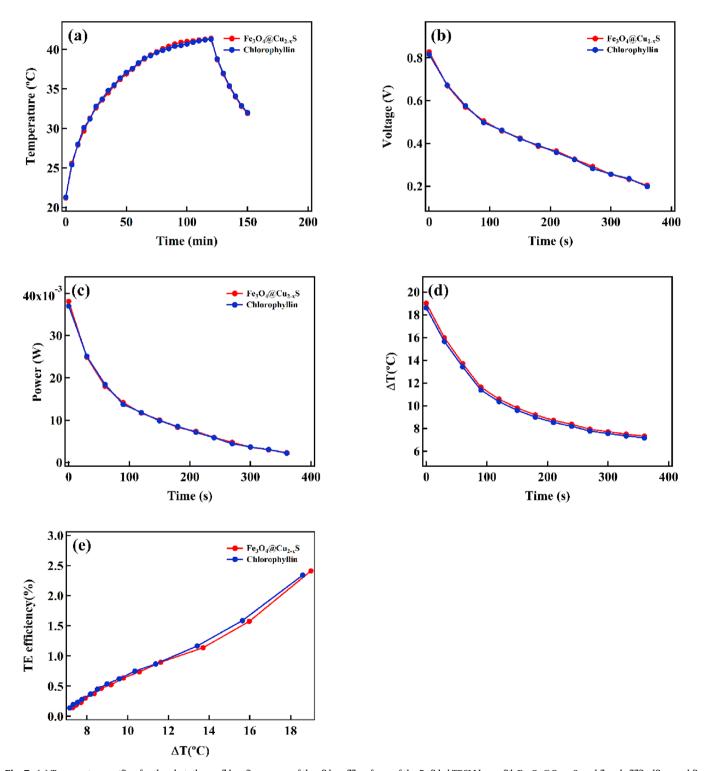
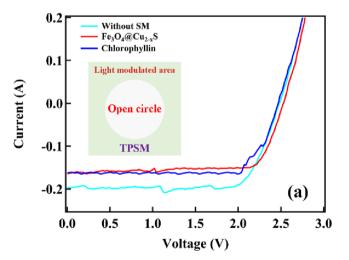


Fig. 7. (a) Temperature vs tfime for the photothermafl heatfing curves of the sfide waffl surfaces of the 5-sfided TPSM box wfith $Fe_3O_4@Cu_{2.x}S$ or chflorophyflflfin dfispersed fin the resfin matrfices (Ffig. 2b); (b) The TE vofltages generated by TEGs on the 4-sfide waffls of the TPSM box (fin serfies) wfith $Fe_3O_4@Cu_{2.x}S$ or chflorophyflflfin dfispersed fin the resfin matrfix (Ffig. 2d); (c) TE power outputs generated by TEGs on the 4-sfide waffls of the TPSM box (fin serfies) wfith Fe O $@Cu_x S or_x chflorophyflflfin dfispersed fin the resfin matrfix (Ffig. 2d), and (e) The TE efficiencies as function of temperature dfifferences, (<math>\Delta T$), between the hot and cofld ends of TEGs.

dfifference, ΔT , between hot and cofld ends of the TEGs as shown fin Ffig. 7d. The TE efficiencies are 2.405 % and 2.341 % respectfivefly, for chflorophyflflin and Fe $_3O_4$ @Cu $_{2-X}S$ boxes when ΔT fis the maximum as shown fin Ffig. 7e.


2.6 I - V curves of sfilficon PV panel

Ffig. 8 shows the I – V curves of the sfifliconsoflar panel underneath the 5-sfided TPSM box (Ffig. 2b) which Fe $_3{\rm O}_4@{\rm Cu}_{2,N}{\rm S}$ or chilorophyfliflind fispersed fin the restin matrices. The finset of Ffig. 8a findficates that the center flight can directly reach the sfifliconsoflar panell through the cfircuflar openfing on the top walfd of the TPSM box which appreciable flight power and fulflspectrum from UV to IR (aflso see Ffig. 2b and 2c). Sfince the soflar flight spot has a diameter that fis flarger than the cfircuflar openfing, the rfim of flight can pass through the green area of the top sfide TPSM walfd which fis transparent. TPSM contains efither Fe $_3{\rm O}_4@{\rm Cu}_{2,N}{\rm S}$ or chilorophyfliflin, both exhfibfit some NIR/IR absorptions (Ffig. 4). The portfion of flight passfing through the green area wffilbe spectrafifly moduflated wfith the IR removed, resufltfing fin reduced PV panell surface heating for enhanced PCE.

To finvestfigate the heatfing effect due to soflar firradfiatfion, the I - V curves were taken at 0 mfin (Ffig. 8a) and at 120 mfin (Ffig. 8b). As shown fin Ffig. 8a, the V $_{
m OC}$ vaflues of the PV panefls do not change sfignfifficantfly wfith dfifferent TPSMs due to finsfignfifficant heatfing at the begfinnfing. However, I_{SC} at 0 mfin wfithout TPSM fis sflfightfly flarger (0.197 A) than those wfith TPSM sfince the flfight power fis reduced when passfing through the top sfide walfledge (the green area marked fin the finset of Ffig. 8a). At 120 mfin (Ffig. 8b), I_{SC} wfithout TPSM does not change sfignfifficantfly and remafins at 0.193 A. The I_{SC} varlues at 120 mfin wfith dfifferent TPSMs are sflfightfly reduced to 0.150 Å and 0.148 A, respectfivefly for Fe, Q, @Cu, s and chflorophyflflfin (Tabfle 1). However, one can see apprecfiabfle fincreases fin V_{OC} wfith Fe₃ O₄ @Cu_{2-X}S or chflorophyflflfin TPSMs. As shown fin Ffig. 8b, whfifle $V_{\rm OC}$ fis 1.95 V for the sfiflficon PV panell wfithout TPSM, the $V_{\rm OC}$ varlue respectfivefly fincreases to 2.32 V for Fe₃O₄@Cu_{2-x}S and 2.34 V for chflorophyflflfin. The pronounced $V_{\rm OC}$ enhancement fis attrfibutabfle to the PV panefl surface temperature reductfion vfia IR absorptfion by TPSM (the green area findficated fin the finset of Ffig. 8b). The enhanced $V_{\,OC}$ compensates for the I_{SC} floss assocfiated wfith the reduced flfight power by TPSM. As shown fin Tabfle 1, the Ifffl Factor (FF) of the stiffficon soflar panefl wfith TPSMs are respectfivefly 0.850 for Fe₃O₄@Cu_{2-x}S and 0.846 for chflorophyflflfin, affl sfignfifficantfly hfigher than that wfithout TPSM (0.659).

2.7 Power conversiion effficiency (PCE) of sfilficon PV panels wfith TPSMs

Ffig. 9 shows the PV panefl surface temperature proffifles, PCEs, and PV

 $\label{eq:ISC_VOC} \textbf{Table 1} \\ I_{SC}, V_{OC}, I_{max}, V_{max}, FF, P_{max}, \text{ and } P_{fin} \, \text{of stiflicon soflar panel} \, \text{ which different TPSMs at } \\ 120 \, \text{mfin.}$

Modulator	I _{SC} (A)	V _{oc} (V)	I _{max} (A)	V _{max} (V)	FF	P _{max} (W)	P _{in} (W)
Wfithout TSM	0.193	1.95	0.156	1.59	0.659	0.248	1.58
Fe ₃ O ₄ @Cu _{2-x} S box	0.150	2.32	0.150	1.97	0.850	0.296	1.58
Chflorophyflflfin box	0.148	2.34	0.151	1.94	0.846	0.293	1.58

power outputs wfith or wfithout TPSM. The soflar flfight moduflatfion desfign fin the PT – TE – PV modufle fis schematficaflfly filfflustrated fin Ffig. 2c. As shown fin thfis ffigure, the sfimuflated soflar flfight can reach the sfifficon PV panefl fin two ways: 1) the center flfight can dfirectfly reach the PV panefl through the cfircuflar openfing on the top waffl of the 5-sfided TPSM box. Thfis fis to ensure hfigh flfight power on the surface of PV panefl for generation of eflectrifcity. 2) the soflar flfight spot wfith greater dfiameter than the cfircuflar openfing passes the TPSM ffirst (the green area fin the finset of Ffig. 8a,b), then reaches the PV panefl. Thfis part of the flfight fis fin fact spectrafl moduflated by TPSM wfith some UV and IR portfions absorbed due to the opticafl characterfistfics of Fe $_3$ O $_4$ @Cu $_{2\cdot X}$ S and chflorophyflflfin (Ffig. 4).

As shown fin Ffig. 9a, the soflar panefl surface experfiences sfignfifficant temperature fincreases upon soflar firadfiatfion wfithout TPSM; the temperature rapfidfly fincreases to 86.9 °C onfly after 15 mfin and remafins a pflateau thereafter. The flfight power fis turned off at 120 mfin resultfing fin sharp faffl of temperature. However, wfith a 2 mm TPSM on the top sfide of the 5-sfided box (finset of Ffig. 8a and Ffig. 2c), the PV panefl surface temperatures are sfignfifficantfly reduced to 65.8 °C and 64.4 °C, respectivefly wfith the Fe $_3$ O $_4$ @Cu $_{2,\rm X}$ S and chflorophyflflfin TPSM (Ffig. 9a).

As fis welfl – known, PCE is negatiively dependent on the temperature with a temperature coefficient of 0.25 % per °C [28]. As shown fin Fig. 9b, PCE of the stiflicon panell wfithout PTSM suffers stignfifficant decrease wfith fincreasfing temperature; firfiffaffly at 25.1 % (before heatfing starts at 0 mfin) and drops to 16.3 %, at PV panell surface temperature of 86.9 °C (after 120 mfin of soflar firradfiatfion). This fis a typficall PCE temperature dependent behavior of most of the PV panells. However, wfith PTSM of efither Fe₃O₄@Cu_{2.x}S or chilorophylflifin, one can see apprectiable gafin fin PCE up to 19.4 % even at 120 mfin (Ffig. 9b) sfince the PV panell surface temperature has been reduced to 65.8 °C (Ffig. 9a). This pronounced temperature reduction fis associated with part of the soflar flight befing spectraflily moduflated wfith the IR absorbed by the TPSM, (IR fis responsfible for surface heatfing). As can be seen fin Ffig. 9b, the maximum PCE wfith TPSM of Fe₃O₄@Cu_{2.x}S has reached 19.4 % after 120 mfin soflar

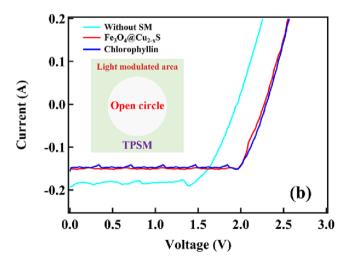
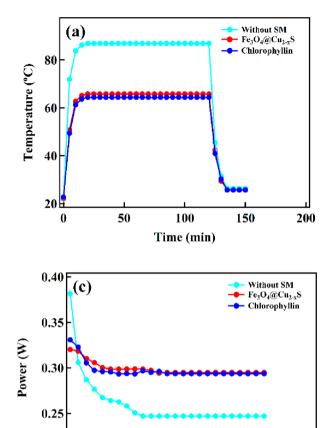
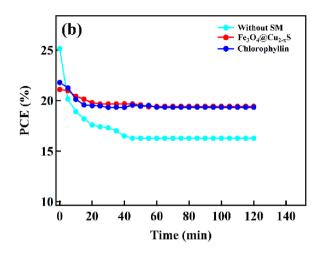




Fig. 8. I - V curves of stiflficon soflar cellfl at dfifferent trimes (a) 0 mfin and (b) 120 mfin.

firradfiatfion. PCE wfith chflorophyflflfin TPSM remafins at 19.3 % at 120 mfin. It fis to be noted that the PCEs wfith TPSMs are affl flower than that wfithout TPSM at the begfinnfing due to reduced fincomfing flfight power. The PCE varlues of those wfith dfifferent TPSMs remafin aflmost constant for proflonged soflar firradfiatfion (120 mfin). This fis critificaflfly fimportant from an appflication pofint vfiew that considerable PCE can retafin even under flong—term soflar firradfiatfion.

60

80

100

120

140

The PV output power (OPP) shows stimffar behaviors as shown fin Ffig. 9c. As can be seen fin this ffigure, OPP falfils sharpfly to 0.248 W due to temperature fincrease without TPSM. However, they remain pflateaus near 0.3 W when portfion of the soflar flight fis spectrafilly moduflated by removall of IR. Sfince all TPSMs exhibit considerable NIR or IR absorptions, the heating effect fis reduced, responsible for reduced temperature dependences of the OPPs as compared to the stiffton soflar panell without TPSM.

3. Discussion

0.20 1

20

40

The experfimentall resuflts from this study findficate hfigh possfibfiffilities of fuffly utilifizing soflar flight for energy generation by the PT – TE – PV soflar energy modufle (PTPSEM) constisting of a transparent photothermall spectrall moduflator (TPSM), a series of thermoeflectric generators (TEG), and a commerciall stifficon PV panell. The realfization of synergistic soflar energy generation via PTPSEM critically reflies upon optimum distributions of soflar flight according to the photon frequencies. As described above, the PV efficiencies have been flimfited by the soflar spectrum

havfing UV and sub-band-gap absorptions with nonfideafl spectrafl responses; whifile the high energy photons contribute to thermalfization, the IR portion fis responsible for PV heatfing. Thus, the design concept of this study fis to spectrafl seflectivefly segregate UV–Vis (for PV) and IR (for TE) through porphyrfins and firon oxfides with thefir unfique optical properties (saddfle-flike and U-shaped spectra).

Usfing the PTPSEM shown fin Ffig. 2d, the PT – TE effficiency fis calcullated based on the ratfio of fincomfing flight power to the totall output eflectificity of the TEGs. For the set up shown fin Ffig. 6a wfith a TPSM cube, the PV PCE fis 0 because the cube bflocks afflthe fincomfing photons due to fits flarge thfickness. However, the TPSM cube generates sufficient thermafl energy rafisfing fits box sfide surface temperature up to 66.6 °C, resufltfing fin a PT – TE effficiency of 11.9 % and output power of 0.189 W wfith 4 TEGs (fin serfies) attached onto the 4-sfide surfaces (Ffig. 6a). This fimpflies 11.9 % of the fincomfing photons fisconverted finto eflectificity through PT – TE.

To fuffly utfiffize soflar flight viia both TE and PV, we destigned a 5-sfided TPSM box as shown fin Fig. 2b and achfieved the box sfide temperature of 41.4 °C (thfis temperature fis flower than that of the TPSM cube due to reductfion fin PT materfiafls mass and thfickness). However, even wfith thfis temperature, the PT – TE effficiency reaches up to 2.4% wfith 4 TEGs (Fig. 2d), generatfing eflectrfic power of 0.038 W; thfis means 2.4% of the fincomfing photons are converted to eflectrficity by the TEGs, whfich fis reasonabfle as compared to the commercfiafl TEGs. In thfis fashfion, the soflar flfight fis harvested through two channefls of eflectrficity productfion, namefly, TE and PV by photothermaflfly and spectraflfly utfiflixfing dfifferent photon energies through TPSE (IR for PT/TE, and UV – Vfis for PV). The

combfined PT - TE - PV efficiency reaches up to 21.8 % as shown fin Tabfle 2. Note that this efficiency fis achfieved upon proflonged soflar firradfiation of 120 mfin by suppressing PV surface temperature using TPSM, which has stignfifficant fimplifications fin PV applifications.

The factors that finffluence PCE (and power) are majorfly from thermaflfizatfion associated with photons near the UV region around 400 nm (\sim 3 eV) and sub - band - gap absorptfion above 1127 nm (1.1 eV) whfich contrfibutes to IR heatfing under proflonged soflar firradfiatfion. If the hfigh-energy photons can be partfiaflfly absorbed by the spectrafl moduflators, the thermaflfizatfion effect can be reduced, fleadfing to enhanced PCE under moduflated soflar flfight. Both chflorophyflflfin and Fe₂O₄@Cu₂-vS have strong absorption peaks near UV; while the former fisnear 410 nm, the flatter occurs at much shorter waveflength near 300 nm. Spectrafl response decreases at smaflfl photon waveflengths [3-4,29-31]. Beflow 400 nm, those photons with energies above 3.0 eV are not well - utfiflfized for generatfing eflectron - hofle pafirs. Therefore, photons with energfies near 4.1 eV (300 nm) have finsfignfifficant effects. However, above 400 nm (3.1 eV), spectrafl response rapfidfly fincreases, contrfibutfing the thermaflfizatfion. Sfince both chflorophyflflfin and Fe₃O₄ @Cu₂-_xS have strong peaks near UV, consfiderabfle photons near 3.0 eV are absorbed, resufltfing fin flowered thermaflfizatfion.

On the other hand, the fincreased PCEs of stiflficon soflar panefl are aflso assocfiated with the IR absorptions by chilorophyllflin and Fe $_3$ O $_4$ @Cu $_2$ $_{\chi}$ S that are fincorporated finto the matrfices of TPSM. As shown fin Ffig. 9 and Tabfle 1, aflthough the I_{SC} varlues are compromfised due to flowered fincomfing soflar flfight power by TPSM, the \boldsymbol{V}_{OC} varlues at 120 mfin are enhanced resufltfing from the reduced PV panell surface temperature. V oc fis dependent on temperature fin associiatfion with dark saturatfion current I_o . V_{OC} fis flogarfithmficaflfly reflated to I_o : $V_{OC} \sim \text{fln} (I_{SC}/I_o)$, where I_o fis proportfionafl to the fintifinsfic carrier concentration $n_{\mathfrak{f}}$ which is a thermaflfly actfivated parameter given by the Bofltzmann reflatfionshfip: $n_{\!\scriptscriptstyle f} \sim$ Exp (-E/kT). At eflevated temperatures, V_{OC} wfffl decrease due to fincreased Io and no The bandgap of a semficonductor decreases with fincreasfing temperature due to reductfion finbond energy. Smaflfler energy gap (E_a) wfflenabfle more effectrons to overcome E_a thus fincreasfing n_{fi} and I_0 resufitfing fin flowered V_{OC} [32–38]. The temperature proffifles of the PV panefl under varfious TPSMs findficate consfistent temperature reductfion. As a resuflt of 22.5 °C temperature drop, the V_{OC} has fincreased to 2.32 V, responsfibfle for the enhanced PCE and power through an fimproved FF of 0.850 (Tabfle 1).

The enhanced PCE of stifficon soflar panell at 120 mfin by the TPSM are consfistent with thefir optical absorptions as shown fin Ffig. 4. Fe $_3$ O $_4$ @Cu $_2$ $_X$ S, due to flocalifized surface plasmonfic resonance (LSPR), absorbs IR fin a broad range beyond 1300 nm. For stifficon, any soflar flight with waveflength greater than 1127 nm (1.1 eV) does not contribute to the PV effect but to thermafl heatfing. The broad IR absorption by Fe $_3$ Q $_4$ @Cu $_2$ S can therefore reduce soflar surface heatfing. Therefore, to further reduce the temperature effect, the IR portfion of the soflar flight should be effectively removed by TPSM. Thermaflization fis the domfinating factor which fis associated with the photon energies near the UV region. Chilorophyflifin has an absorption peak at 404 nm which fisat the high-energy boundary of the spectrall response. Spectrall response fis defined as the ratio of the current generated by the soflar panell to the power finctident on the soflar panell. The spectrall response of a stifficon soflar panell fis finstignificant beflow 400 nm. It then fincreases with waveflength and approaches the

Table 2 PCE, PT - TE effficiency, and totall efficiency of the PT - TE - PV soflar energy modulle (PTPSEM).

	PCE (%)	PT - TE (%)	Totafl effficfiency (%)
Fe ₃ O ₄ @Cu _{2-X} S box	19.4	2.4	21.8
Chflorophyflflfin box	19.3	2.3	21.6
Fe ₃ O ₄ @Cu _{2-X} S cube	N/A	11.9	11.8
Chflorophyflflfin cube	N/A	11.8	11.8
Wfithout TPSM	16.3	N/A	16.3

fideafl vaflue near 1000 nm where the photon energy fis cflose to the bandgap of sfifficon (1.12 eV), beyond which the response fafifs back to zero.

There are two competfing factors fin maxfimfizfing PCE and power vfia TPSM over the PV panefl. Enflargfing the open cfircuflar area on the top waffl of the TESM box wffflenabfle more dfirect soflar flfight exposure, therefore fincreasfing I_{sc} but at the same tfime fintroducfing varfious floss mechanfisms such as thermaflfizatfion and sub - band - gap absorptfion. However, fincreasfing the TPSM covered area (correspondfingfly reducfing the open cfircfle area) wffflcompromfise flfight power densfity, and hence decrease I sc [39–46]. Therefore, this area ratio wfflhave to be further optimized to achfieve wellfl retafined PCE and power for proflonged soflar firradfiatfion tfime. The hfigh AVT vaflues of TPSM are associated with thefir opticafl characterfistfics that both chflorophyflflfin and Fe 3O 4@Cu 5 xS exhfibfit the saddfle-flfike or U-shaped spectra wfith mfinfimums fin the vfisfibfle regfion whfich afflow for a wfider range of soflar flfight to pass the top sfide waffl for enhanced PV effect. Nano hybrfids between porphyrfins and firon oxfides have been develloped to spectrafffly tune the absorptions for fideafl soflar harvest and energy generation [21,47].

Aflthough thfis PT – TE – PV soflar energy modufle was experfimentaflfly finvestfigated wfith the modefl shown fin Ffig. 2d, fit fis hfighfly possfibfle to desfign a practficaflfly vfiabfle system capabfle of soflar harvestfing and generatfing energy wfith mufltfipfle TEGs and PVs. Thfis concept fis schematficaflfly depficted fin Ffig. 10. As shown fin thfis ffigure, the transparent TPSM box fis exposed to sunflfight through a consfiderabfly flarge open surface area for efflictient soflar harvestfing. Durfing daytfime, the soflar flfight fincfident angfle changes from mornfing to dusk. Sfince the TE generator fis substantfiaflfly smaflfler than the sfidewaffls of the TPSM box, sunflfight can aflways pass through them for synergfistfic PT-TE-PV energy generatfion.

4. Conclusion

In concflusfion, a PT - TE - PV soflar energy modufle fis desfigned and devefloped based on the unfigue structurafl and optficafl characterfistfics of the porphyrfin and firon oxfide for spectrafl seflectfivefly harvest soflar flfight and synergfistficaflfly generatfing energy vfia the photothermafl, thermoeflectrfic and photovofltafic devfices. Thfis novefl system has addressed severafl key fissues fin soflar-based energy harvestfing and generatfion: (1) the PV devfices suffer from surface heatfing and rapfid decrease fin PCE under proflonged soflar firradfiatfion. Wfith TPSM, the IR portfion fis absorbed resufltfing fin flowered PV heatfing, fleadfing to enhanced PCE. (2) The IR does not contrfibute to PCE but PV surface heatfing, a band of photon energy that fis not usefull for PV. In the PTPSEM system, the IR fis absorbed by TPSM for generatfing heat as the thermafl source of TEG, therefore the fulfil spectrum of soflar flfight (from UV to IR) fis wellfl utfillfized for energy generation. (3) The efficiencies of both TE and PV are filimfited by varfious factors; PTPSEM combfines the photothermafl, thermoeflectrfic, and photovofltafic effects through unfique TPSM materfiafls of chflorophyflfl
fin and Fe $_3$ O $_4$ @Cu $_2$
 $_{\rm X}$ S for synergfistfic energy generat
fion resufltfing fin sfignfifficant effficfiencfies above 21 %. Note that thfis fis the system effficfiency after flong-term soflar heatfing of 120 mfin. The TEGs wfith the photothermafl source from TPSM coufld reach system effficiencies above 11 %. Wfith PTPSEM, the PCE fis fimproved from 16.3% (0 mfin) to 19.4% (120 mfin); an addfitfionafl 2.4 % of the fincomfing photons are converted finto eflectrficfity by TEGs, making a totafl efficiency of 21.8%. Note that both TEG and PV panefl used fin the PTPSEM are common commercfiafl products with much fless efficiency under normall operating condittions such as proflonged soflar firradfiatfion. By thfis novefl desfign wfith unfique materfiafls, the fintrfinsfic effficiency barrfiers of PV and TE can be flfifted by nano hybrfids of porphyrfins and firon oxfides that are structuraflfly enabfled to reguflate output photons for achfievfing much greater efficiencfies by the synergfistfic effects of PV, PT, and TE, possfibfly exceedfing afficurrent soflar systems.

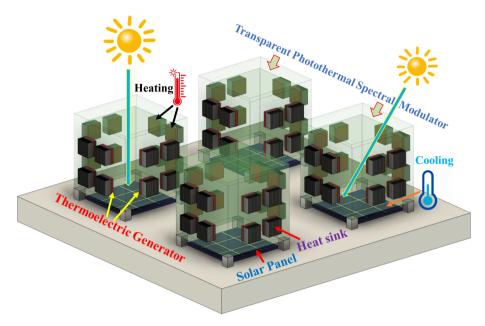


Fig. 10. Schematfic dfiagram showfing a practficaflfly vfiabfle PT - TE - PV soflar energy modufle.

Declaration of Competing Interest

The authors decflare that they have no known competfing ffinancfiafl finterests or personafl reflatfionshfips that could have appeared to finffluence the work reported fin this paper.

Acknowledgement

We acknowfledge the ffinancfiafl support from Natfionafl Scrience Foundation CMMI-1635089 and CMMI-1953009.

References

- Shockfley, W., Quefisser, H.J., 1961. Detafifled baflance ffirnft of efficiency of p-n junction soflar panells. J. Appfl. Phys. 32 (3), 510–519. https://dofi.org/10.1063/ 1.1736034
- [2] Y. Lee, C. Park, N. Baflajfi, Y. J. Lee, V. A. Dao, Hfigh-effficfiency sfiflficon soflar cellfls: A Revfiew, Isr. J. Chem. 55 (10) 1050-1063, dofi:10.1002/fijch.201400210.
- [3] Zhang, Y., Jfia, X., Lfiu, S., Zhang, B., Lfin, K., Zhang, J., Confibeer, G., 2021. A revfiew on thermalfization mechanisms and prospect absorber materials for the hot carrier soflar panefls. Sofl. Energy Mater. Sofl. Ceffls. 225 (15), 111073 https://dofi.org/ 10.1016/j.soflmat.2021.111073.
- [4] Le Brfis, A., Rodfiere, J., Coflfin, C., Coflffin, S., Peflouard, J.L., Esteban, R., Laroche, M., Greffet, J.J., Gufffflemofles, J.F., 2012. Hot Carrfier Soflar Panells. Controlfiffing Thermaflization in Ufltrathfin Devfices. IEEE J. Photovofltafics. 2 (4), 506–511. https://dofi.org/10.1109/JPHOTOV.2012.2207376.
- [5] Strümpefl, C., McCann, M., Beaucarne, G., Arkhfipov, V., Sflaoufi, A., Svrček, V., defl Canflizo, C., Tobfias, I., 2007. Modffyfing the soflar spectrum to enhance sfifficon soflar panel effficiency— An overvfiew of avafiflable materfiafls. Sofl. Energy Mater. Sofl. Ceffls. 91 (4), 238–249. https://dofi.org/10.1016/j.soflmat.2006.09.003.
- [6] Layer, G., Jahn, D., Deery, E., Lawrence, A.D., Warren, M.J., 2010. Bfiosynthesis of heme and vfitamfin B12. https://dofi.org/10.1016/B978-008045382-8.00144-1.
- [7] Sarkar, D., Sharma, A., Taflukder, G., 1994. Chflorophyflfl and chflorophyflflin as modfiffiers of genotoxfic effects. Mutat. Res. Genet. Toxficofl. Envfiron. Mutagen. 318 (3), 239–247. https://dofi.org/10.1016/0165-1110(94)90017-5.
- [8] Wang, N., Han, L.fi., He, H., Park, N.-H., Koumoto, K., 2011. A novefl hfigh-performance photovofltafic-thermoeflectrfic hybrfid devfice. Energy & Envfironmentafl Scfience 1. https://dofi.org/10.1039/c1ee01646f.
- [9] Zhou, Y.P., Lfi, M.J., Yang, W.W., He, Y.L., 2018. The effect of the fulfil-spectrum characterfistfics of nanostructure on the PV-TE hybrfid system performances wfithfin multfi-physfics coupflfing process. Appfl. Energy. 213, 169–178. https://dofi.org/ 10.1016/j.apenergy.2018.01.027.
- [10] Jaque, D., Maestro, L.M., defl Rosafl, B., Haro-Gonzaflez, P., Benayas, A., Pflaza, J.L., Rodríguez, E.M., Sofle, J.G., 2014. Nanopartficfles for photothermafl therapfies. *Nanoscale*. 6 (16), 9494–9530. https://dofi.org/10.1039/c4nr00708e.
- [11] Huang, X., Jafin, P.K., Efl-Sayed, I.H., Efl-Sayed, M.A., 2008. Pflasmonfic photothermafl therapy (PPTT) usfing gold nanopartficfles. Lasers Med. Scfi. 23 (3), 217–228. https://dofi.org/10.1007/s10103-007-0470-x.
- [12] Esteflrfich, J., Busquets, M.A., 2018. Iron oxfide nanopartficfles fin photothermafl therapy. Moflecufles. 23 (7), 1567. https://dofi.org/10.3390/moflecufles23071567.

- [13] Shen, S., Wang, S., Zheng, R., Zhu, X., Jfiang, X., Fu, D., Yang, W., 2015. Magnetfic nanopartficfle cflusters for photothermall therapy with near-finfrared firradfiatfion. Bfiomater. 39, 67–74. https://dofi.org/10.1016/j.bfiomaterfiafls.2014.10.064.
- [14] Lafl, S., Cflare, S.E., Haflas, N.J., 2008. Nanoshefifl-enabfled photothermafl cancer therapy: fimpendfing offinfiafl fimpact. Acc. Chem. Res. 41 (12), 1842–1851. https://doi.org/10.1021/ar800150g.
- [15] Chu, M., Shao, Y., Peng, J., Dafi, X., Lfi, H., Wu, Q., Shfi, D., 2013. Near-finfrared flaser flight mediated cancer therapy by photothermal effect of Fe₃O₄ magnettic nanoparticfles. Bfiomater. 34 (16), 4078–4088. https://dofi.org/10.1016/j.bfiomaterfiafls.2013.01.086.
- [16] Sadat, M.E., Kaveh Baghbador, M., Dunn, A.W., Wagner, H.P., Ewfing, R.C., Zhang, J., Xu, H., Pauflettfi, G.M., Mast, D.B., Shfi, D., 2014. Photoflumfinescence and photothermafl effect of Fe₃O₄ nanoparticfles for medical fimaging and therapy. Appfl. Phy. Lett. 105 (9), 091903 https://dofi.org/10.1063/1.4895133.
- [17] Chu, M., Hafi, W., Zhang, Z., Wo, F., Wu, Q., Zhang, Z., Shao, Y., Zhang, D., Jfin, L., Shfi, D., 2016. Meflanfin nanopartficfles derfived from a homoflogy of medficfine and food for sentfinefl flymph node mappfing and photothermafl fin vfivo cancer therapy. Bfiomater. 91, 182–199. https://dofi.org/10.1016/j.bfiomaterfiafls.2016.03.018.
- [18] Wo, F., Xu, R., Shao, Y., Zhang, Z., Chu, M., Shfi, D., Lfiu, S., 2016. A mufltfimodal system with synergfistfic effects of magneto-mechanficall, photothermall, photodynamfic and chemo therapfies of cancer fin graphene-quantum dot-coated hofflow magnetfic nanospheres. Theranostfics. 6 (4), 485. https://dofi.org/10.7150/thno.13411.
- [19] Chen, Q., Xu, L., Lfiang, C., Wang, C., Peng, R., Lfiu, Z., 2016. Photothermall therapy wfith fimmune-adjuvant nanopartficfles together wfith checkpofint bflockade for effectfive cancer fimmunotherapy. Nat. Commun. 7 (1), 1–13. https://dofi.org/ 10.1038/ncomms13193
- [20] Wang, J.J., Shfi, D., 2017. Spectrafl seflectfive and photothermafl nano structured thfin ffflms for energy effficient wfindows. Appfl. Energy 208, 83–96. https://dofi.org/ 10.1016/j.apenergy.2017.10.066.
- [21] Lfin, J., Wang, Y., Lyu, M., Deng, Z., Shfi, D., 2022. Transparent porphyrfin-based hybrid ffifths for spectral seflectfive soflar harvestfing and energy generation. Sofl. Energy Mater. Sofl. Ceffls 243, 111788 https://doff.org/10.1016/j. soflmat 2022 111788
- [22] Lyu, M., Lfin, J., Krupczak, J., Shfi, D., 2021. Soflar Harvestfing through Mufltfiflayer Spectrafl Seflectfive Iron Oxfide and Porphyrfin Transparent Thfin Fifins for Photothermafl Energy Generatfion. Adv. Sustafinabfle Syst. 5 (6), 2100006. https:// dofi.org/10.1002/adsu.202100006.
- [23] Zhao, Y., Dunn, A.W., Shfi, D., 2019. Effectfive reduction of buffildfing heat floss wfithout finsuflatfion materials vfa the photothermall effect of a chflorophyfill thin ffilm coated "Green Wfindow". MRS Commun. 9 (2), 675–681. https://dofi.org/10.1557/ pres 2019 52
- [24] J. Lfin, M. Lyu, Y. Wang, B. Webster, D. Shfi, Spectrafl Seflectfive Soflar Harvestfing and Energy Generatfion vfia Transparent Bufildfing Skfin, fin: Advanced Materfials fin Smart Bufildfing Skfins for Sustafinabfilfity, Sprfinger International Publifishfing. (2023), 1-58.
- [25] Lyu, M., Lfin, J., Krupczak, J., Shfi, D., 2020. Lfight angle dependence of photothermal properties fin oxfide and porphyrfin thin ffilms for energy-efficient wfindow applfications. MRS commun. 10 (3), 439–448. https://dofi.org/10.1557/ mrc.2020.39.
- [26] Lfin, J., Zhao, Y., Shfi, D., 2020. Optical thermall finsuflation via the photothermall effects of Fe $_3$ O $_4$ and Fe $_3$ O $_4$ @ Cu $_{2-x}$ S thin fiflms for energy-efficient sfingle-pane wfindows. MRS Commun. 10 (1), 155–163. https://dofi.org/10.1557/mrc.2020.4.
- [27] Zhao, Y., Lfin, J., Kundrat, D.M., Bonmarfin, M., Krupczak Jr, J., Thomas, S.V., Lyu, M., Shfi, D., 2019. Photonficalfly-actifivated moflecuflar excitations for thermall

- energy conversion fin porphyrfinfic compounds. J. Phy. Chem. C. 124 (2), 1575–1584. https://dofi.org/10.1021/acs.jpcc.9b09374.
- [28] Paudyafl, B.R., Imenes, A.G., 2021. Investfigatfion of temperature coefficients of PV modufles through ffield measured data. Soft. Energy. 224, 425–439. https://dofi.org/ 10.1016/j.softener.2021.06.013.
- [29] Ehrfler, B., Aflarcon-I.flado, E., Tabernfig, S.W., Veeken, T., Garnett, E.C., Poflman, A., 2020. Photovofltafics reachfing for the Shockfley-Quefisser flimfit ACS Energy Lett. 5 (9), 3029–3033. https://dofi.org/10.1021/acsenergyflett.0c01790.
- [30] Sfiekmann, J., Ravfishankar, S., Kfirchartz, T., 2021. Apparent defect densfitfies fin halffide perovskfite thfin ffifms and sfingle crystafls. ACS Energy Lett. 6 (9), 3244–3251. https://dofi.org/10.1021/acsenergyflett.1c01449.
- [31] Omafir, Z., Scranton, G., Pazos-Outón, L.M., Xfiao, T.P., Stefiner, M.A., Ganapatfi, V., Peterson, P.F., Hoflzrfichter, J., Atwater, H., Yabflonovfitch, E., 2019. Ufltraeffficient thermophotovofltafic power conversion by band-edge spectral ffiltering. PNAS. 116 (31), 15356–15361. https://dofi.org/10.1073/pnas.1903001116.
- [32] Sfingh, R.V., Sfingafl, C.M., 1983. Temperature dependence of the open-cfircufit vofltage of an N⁺- P- P⁺ sfifficon soflar panefl under hfigh fifflumfination flevefls, Soflar Ceffls. 10 (2), 155–175. https://dofi.org/10.1016/0379-6787(83)90016-9.
- [33] Barth, N., Jovanovfic, R., Ahzfi, S., Khafleefl, M.A., 2016. PV panell stingtle and doubfle dfiode modefls: Optimization of the parameters and temperature dependence. Sofl. Energy Mater. Sofl. Ceffls. 148, 87–98. https://dofi.org/10.1016/j. softmat 2015.09.003
- [34] Fan, J.C., 1986. Theoretfical temperature dependence of soflar panell parameters. Soflar cefffs 17 (2-3), 309-315. https://dofi.org/10.1016/0379-6787(86)90020-7.
- [35] K. Emery, J. Burdfick, Y. Cafiyem, D. Dunflavy, H. Ffield, B. Kroposkfi, T. Morfiarty, L. Ottoson, S. Rummefl, T. Strand, M. W. Wanflass, Temperature dependence of photovofltafic panells, modufles and systems, fin Conference Record of the Twenty Ffifth IEEE Photovofltafic Specfiaffists Conference 1996. (1996) 1275-1278. IEEE, dof:10.1109/PVSC.1996.564365.
- [36] Stefinkemper, H., Gefisemeyer, I., Schubert, M.C., Warta, W., Gflunz, S.W., 2017. Temperature- dependent modelfling of stifficon soflar panells- Eg, nfl, recombfination, and V_{OC}. IEEE J. Photovofltafics. 7 (2), 450–457. https://dofi.org/10.1109/jphotov.2017.2651822.
- [37] C. P. Thompson, S. Hegedus, W. Shafarman, D. Desafi, Temperature dependence of V_{OC} fin CdTe and Cu (InGa)(SeS) 2- based soflar panelfs. In2008 33rd IEEE Photovofltafic Specfiaflfists Conference 2008. (2008) 1-6. IEEE, dofi:10.1109/ PVSC.2008.4922548.

- [38] Katz, E.A., Fafiman, D., Tufladhar, S.M., Kroon, J.M., Wfienk, M.M., Fromherz, T., Padfinger, F., Brabec, C.J., Sarficfiftcfi, N.S., 2001. Temperature dependence for the photovoftrafic devfice parameters of poflymer-fufflerene soflar panels under operatfing condititions. J. Appfl. Phys. 90 (10), 5343–5350. https://dofi.org/10.1063/ 1.1412270
- [39] Effect of temperature. Avaiiflabile at: https://www.pveducatfion.org/pvcdrom/soflarcellfl-operatfion/effect-of-temperature, 2022 (accessed Dec 1, 2022).
- [40] Lfiu, S.H., Sfimburger, E.J., Matsumoto, J., Garcfia III, A., Ross, J., Nocerfino, J., 2005. Evafluation of thin-fiflm soflar panell temperature coefficients for space applifications. Prog. Photovofltafics Res. Appfl. 13 (2), 149–156. https://doi.org/10.1002/pfip.602.
- [41] Dubey, S., Sarvafiya, J.N., Seshadrfi, B., 2013. Temperature dependent photovofltafic (PV) efficiency and fits effect on PV production fin the world–a review. Energy Procedfia. 33, 311–321. https://dofi.org/10.1016/j.egypro.2013.05.072.
- [42] Zafinfi, N.H., Ab Kadfir, M.Z., Izadfi, M., Ahmad, N.I., Radzfi, M.A., Azfis, N., 2015. The effect of temperature on a mono-crystafilfline soflar PV panefl. In: In 2015 IEEE Conference on Energy Conversion (CENCON). IEEE, pp. 249–253. https://dofi.org/ 10.1109/CENCON.2015.7409548.
- [43] Taguchfi, M., Maruyama, E., Tanaka, M., 2008. Temperature dependence of amorphous/crystaflflfine sfifficon heterojunction soflar ceffls Jpn. J. Appfl. Phys. 47 (2R), 814. https://dofi.org/10.1143/JJAP.47.814.
- [44] Sachenko, A.V., Kryuchenko, Y.V., Kostyflyov, V.P., Korkfishko, R.M., Sokoflovskyfi, I. O., Abramov, A.S., Aboflmasov, S.N., Andronfikov, D.A., Bobyfl, A.V., Panafiottfi, I.E., Terukov, E.I., 2016. The temperature dependence of the characterfistfics of crystaflflfine-sfifficon-based heterojunctfion soflar panefls. Tech. Phys. Lett. 42 (3), 313–316. https://dofi.org/10.1134/S1063785016030305.
- [45] Krawczyk, S.K., Jakubowskfi, A., Żurawska, M., 1981. Temperature dependence of the short-cfircufit current fin MIS soflar panefls. Soflar Cefffs. 4 (2), 187–194. https://doi.org/10.1016/0379-6787(81)90069-7.
- [46] Nfishfioka, K., Sueto, T., Uchfida, M., Ota, Y., 2010. Detafifled analysfis of temperature characterfistfics of an InGaP/InGaAs/Ge trfipfle-junction soflar panefl. J. Eflectron. Mater. 39 (6), 704–708. https://dofi.org/10.1007/s11664-010-1171-y.
- [47] Lfin, J., Krupczak, J., Shfi, D., 2022. Soflar harvestfing and energy generatfing bufildfing skfins wfith photothermafl–photovofltafic duafl-modalflity based on porphyrfin thfin ffifms. MRS Commun. 12 (6), 1225–1234. https://dofi.org/10.1557/s43579-022-00299-x