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Abstract

Malware is increasingly becoming a significant threat to computing systems, and detecting zero-day (unknown) malware
is crucial to ensure the security of modern systems. These attacks exploit software security vulnerabilities that are not
documented or known in the detection mechanism’s database, making it particularly a pressing challenge to address. In
recent times, there has been a shift in focus by security researchers toward the architecture of underlying processors. They
have suggested implementing hardware-based malware detection (HMD) countermeasures to address the shortcomings of
software-based detection methods. HMD techniques involve applying standard machine learning (ML) algorithms to low-
level events of processors that are gathered from hardware performance counter (HPC) registers. While these techniques
have shown promising results for detecting known malware, accurately recognizing zero-day malware remains an unsolved
issue in the existing HPC-based detection methods. Our comprehensive analysis has revealed that standard ML classifiers
are ineffective in identifying zero-day malware traces using HPC events. In response, we propose Deep-HMD, a multi-level
intelligent and flexible approach based on deep neural network and transfer learning, for accurate zero-day malware detec-
tion using image-based hardware events. Deep-HMD first converts HPC-based malware and benign data into images, and
subsequently employs a lightweight deep transfer learning methodology to obtain a high malware detection performance for
both known and unknown test scenarios. To conduct a thorough analysis, three deep learning-based and nine standard ML
algorithms are implemented and evaluated for hardware-based malware detection. The experimental results indicate that
our proposed image-based malware detection solution achieves superior performance compared to all other methods, with
a 97% detection performance (measured by F-measure and area under the curve) for run-time zero-day malware detection
utilizing soley the top four performance counter events. Specifically, our novel approach outperforms the binarized MLP by
16% and the best classical ML algorithm by 18% in F-measure, while maintaining a minimal false positive rate and without
incurring any hardware redesign overhead.

Keywords Deep learning - Hardware-based malware detection - Transfer learning - Zero-day malware - Explainable
machine learning

1 Introduction bundled with legitimate programs to deceive unwary users

[1, 2]. Malware detection is a critical aspect of cybersecurity

For the past few decades, cybersecurity has been a significant
concern worldwide due to its potential threat to information
technology infrastructures. Malware, also known as mali-
cious software, is a type of cyber-attack that often comes
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that helps organizations protect users’ sensitive data, prevent
system damage, and maintain business continuity. In recent
years, there has been a growing concern regarding the limita-
tions and performance issues associated with traditional soft-
ware-based malware detection methods. Although traditional
detection methods, such as anti-virus software, are capable of
detecting known malware signatures, they are not very effi-
cient in terms of complexity and computational overhead for
the system [3, 4]. Updating these mechanisms with new mal-
ware variants requires a considerable amount of memory and
hardware resources, making them less practical for emerging
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computing platforms such as resource-constrained embed-
ded systems and IoT devices. Additionally, these methods
rely on static signature analysis, making them inadequate for
detecting unknown attacks [5]. As the prevalence of malware
increases, it is increasingly important to develop effective
malware detection strategies as they serve as an early warning
system to safeguard modern computer systems.

In recent studies, hardware-based malware detection
(HMD) techniques have emerged as a promising alternative
to overcome the limitations and performance issues associ-
ated with traditional software-based detection methods [2—4,
6-9]. These techniques utilize low-level hardware events,
which are monitored through hardware performance coun-
ters (HPCs) registers. HPCs are the specialized registers
present in the performance monitoring unit (PMU) of mod-
ern microprocessors that are designed to collect hardware
events of running applications [10, 11]. HMD techniques can
operate independently of the underlying operating system
when it comes to capturing low-level events, making them
more difficult for attackers to bypass detection measures.
These events, such as cache memory hits/missess, branch
mispredictions, TLB hits, etc. are hardware-level features
that reflect the actual performance-related behavior of a
running application on the target processor architecture. In
addition, hardware-based malware detection techniques lev-
erage standard machine learning (ML) algorithms that are
trained on HPC events to create precise classifiers that can
detect signatures of malicious software. Previous research
in HMD has demonstrated the effectiveness of standard ML
techniques in detecting known malware patterns. However,
in this work, we have identified some significant challenges
in existing HPC-based malware detection methods and pro-
pose a deep learning-guided approach to achieve accurate
hardware-based detection of zero-day malware.

Challenge 1: Determining Key Hardware Events To ensure
efficient hardware-based malware detection, it is crucial to
identify the most significant low-level events. With modern
microprocessors, there are a plethora of events, each serv-
ing a distinct function. This makes monitoring all of them
result in high-dimensional data, which leads to increased
computational complexity and delays. As a result, it is less
feasible for effective HMD solutions. Therefore, as differ-
ent HPC events are employed for various purposes, it is
crucial to effectively specify the most appropriate hardware
events to develop accurate ML-based countermeasures for
malware detection.

Challenge 2: Detection of Zero-Day (Unknown) Mal-
ware Zero-day attacks take advantage of software security
vulnerabilities that are potentially severe and undocumented
in the detection mechanism’s database [12]. The absence of
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signature history or a clear remediation strategy has made
zero-day malware detection a persistent challenge for anom-
aly detection in securing modern computer systems in these
works [13, 14]. Therefore, they need to be resolved as soon
as being discovered in order to limit the security threats to
the users. Current machine learning-based detection meth-
ods have overlooked the complex issue of zero-day mal-
ware detection, which makes them inherently inflexible and
unscalable. As a result, incorporating new malware types
would necessitate training new models, resulting in reduced
efficiency and applicability of the solution.

Challenge 3: High False Positive Rate Malware detection
methods based on machine learning, in their conventional
form, have a high false positive rate, where benign appli-
cations are mistakenly classified as malware. This problem
becomes even more critical when it comes to detecting
unknown malware, as ML models often confuse benign soft-
ware with malicious software. Our experiments with various
standard ML algorithms reveal that existing HMDs wrongly
detect benign applications as malware during zero-day tests
with a significantly high false positive rate on average across
different algorithms. Consequently, this challenge disrupts the
accuracy and reliability of security countermeasures against
emerging cyber-attacks that require to be addressed urgently.

In response to these challenges, we propose Deep-HMD,
an accurate and salable deep neural network-based approach
for effective known and unknown (zero-day) malware detec-
tion using processors’ hardware events. In particular, after
analyzing various types of malware and machine learning
algorithms employed in HPC-based malware detection, our
comprehensive examination demonstrates that the standard
machine learning classifiers, which were widely utilized in
previous studies, are ineffective in accurately recognizing
the signature of zero-day malware with high detection per-
formance and low false positive rates. The results demon-
strate a significant performance drop in standard ML classi-
fiers applied for hardware-based zero-day malware detection.

To address the limitations of existing ML-based malware
solutions, we first determine the most notable hardware per-
formance counter events for accurate HPC-based malware
detection using an effective feature selection technique based
on the mutual information (MI) method. Next, we present a
novel deep transfer learning approach for hardware image-
based malware detection. By utilizing deep neural network
(DNN) and transfer learning, we achieve superior detection
rate and effectiveness in detecting both known and previ-
ously unknown malware patterns. Deep-HMD first trans-
forms HPC-based malware and benign data to images, and
then leverages a lightweight deep transfer learning approach
to attain a high malware detection performance for both
known and unknown tests.
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Contributions This work presents a substantial extension of
the recent research [5], incorporating the principal contribu-
tions outlined below.

o We demonstrate the limitations (low detection rate
and high false positive) of existing machine learning
classifiers in defending against unknown attacks for
hardware-based malware detection.

e We propose Deep-HMD, a multi-level deep neural
network-based approach with transfer learning aid for
accurate hardware-based known and unknown malware
detection that first converts HPC-based malware and
benign data to images using an effective 2D embedding
image features conversion method.

e Next, Deep-HMD leverages a lightweight deep transfer
learning approach to obtain a high malware detection
performance despite using a small number of hardware
events captured at run-time by existing hardware
performance counter registers.

e To conduct a comprehensive analysis of known and
unknown malware detection using hardware events, we
implemented three deep learning-based and nine classical
ML-based algorithms. In addition to Deep-HMD, we
implemented a binarized neural network with a multi-
layer perceptron (MLP) algorithm for image-based and a
deep learning method for tabular HPC data, respectively,
and compared their performance with Deep-HMD.

e To shed light on the explainability of the model,
activation feature maps from different layers of Deep-
HMD were properly visualized. These maps showcase
the model’s ability to accurately detect zero-day malware
by observing the feature differences between malware
and benign data. Furthermore, a reliability analysis
was conducted to verify Deep-HMD’s robustness for
predicting over medium and high uncertainty test data.

e Deep-HMD stands out as the first DNN-based methodology
for accurate hardware image-based malware (known and
zero-day) detection. It enables a lightweight and efficient
transfer learning strategy on HPC-based data of new
malware types in an image format, making it extensible and
generalizable, reinforcing its effectiveness against emerging
malware attacks.

The remainder of this paper is organized as follows. Section 2
presents an overview of related work and background on the topic
of hardware-based malware detection using ML techniques and
explainable ML. Section 3 introduces the details of the proposed
methodology. Section 4 presents the evaluation metrics and
experimental results analysis. Lastly, Section 5 concludes this
study.

2 Background on Hardware Malware
Detection

Hardware Performance Counters Modern microprocessors
have hierarchical cache subsystems, processor pipelines,
simultaneous multithreading, and out-of-order execution units,
which significantly impact their performance. Modern micro-
processors such as Intel, ARM, and AMD microprocessors
have a performance monitoring module accessible through
programmable hardware performance counters.

HPCs are versatile in their ability to record an array of
low-level events that can have a significant impact on a pro-
cessor’s performance. These events include cache memory
accesses and cache misses, translation lookaside buffer
(TLB) hits and misses, branch mispredictions, and many
more. By monitoring these events, developers can make
informed decisions and fine-tune their software to achieve
optimization goals, whether that be boosting performance,
improving energy efficiency, or enhancing security.

HPCs vary in their availability across different processor
platforms. For example, in Intel Ivy-bridge and Intel Broad-
well CPUs, there are limitations on the number of counter
registers, with only four available per processor core. This
means that only four HPCs can be simultaneously captured
on these architectures. Intel SandyBridge and Haswell archi-
tectures, on the other hand, offer a more generous allocation
of eight general-purpose counters per core, providing greater
flexibility for performance monitoring and optimization.

One of the notable features of HPCs is their ability to
issue interrupts when a counter overflows. Additionally,
these counters can be configured to start counting from a
specific desired value, offering fine-grained control over the
monitoring process. This level of programmability empow-
ers developers to tailor their performance monitoring strate-
gies to the precise needs of their applications, ensuring that
they can extract the most relevant and valuable insights from
the microprocessor’s operation.

Hardware-Based Malware Detection Demme et al. [2]
proposed the suitability of machine learning techniques
applied to performance counter events for malware detec-
tion. The authors presented to use HPC data to detect mali-
cious behavior patterns by developing machine learning
techniques primarily on mobile operating systems such as
Android. Tang et al. [4] discussed the feasibility of unsuper-
vised learning using low-level HPCs features to detect spe-
cific attacks, while Ozsoy et al. [7] used sub-semantic fea-
tures and learning algorithms to detect malware, suggesting
changes in the microprocessor pipeline for real-time detec-
tion, which increased the overhead and complexity. Singh
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et al. [6] developed an HMD method using ML algorithms
trained on synthetic traces of hardware features to detect
kernel rootkits. However, the work only focused on a limited
set of synthetic datasets.

Recent works [3, 8] have highlighted that the number of
HPC registers available is limited due to physical and cost
constraints, which in turn limits the number of events that
can be counted simultaneously. Therefore, they proposed
effective ensemble learning and boosting techniques on
weak standard ML classifiers to improve the performance
of HMD by accounting for the impact of reducing the num-
ber of HPC features on the performance of ML-based mal-
ware detectors. Sayadi et al. [3] developed eight ML models
and two ensemble classifiers (AdaBoost and Bagging), and
compared them across various metrics including accuracy,
robustness, and hardware overhead. Results showed that
the proposed ensemble learning malware detection with
just 2 HPCs outperformed standard classifiers with 8 HPCs
by up to 17%, matching the robustness and performance of
standard detectors with 16 HPCs while using only 4 events,
enabling effective run-time hardware-assisted malware
detection. Furthermore, the work in [8] presented 2SMaRT,
a two-stage ML-based approach for specialized run-time
malware detection. In the first stage, applications are clas-
sified into benign or specific malware classes using a mul-
ticlass technique. In the second stage, the authors optimize
detection by employing tailored machine learning models
for each malware class and enhance overall performance
through effective ensemble learning. Some recent works
[11, 15] addressed challenges of detecting advanced mal-
ware attacks such as modern morphic and stealthy (embed-
ded) malware that is hidden within benign programs and
proposed optimized traditional machine learning and deep
learning-based techniques trained on HPC events to improve
malware detection performance.

Performance Monitoring Tools To monitor application
behavior and gather hardware-related events crucial for
analyzing and optimizing application performance, previous
studies have employed a variety of performance monitoring
tools. These tools include Perf [16, 17], Pin [18], PAPI [19],
Intel VTune [20], and Intel PCM [21]. All these tools are
available for Linux systems while only Intel VTune and Intel
PCM can monitor HPCs in Windows and macOS systems.
Perf, PAPI, and Pin demand some knowledge of command
lines for users due to the lack of a GUI interface. Perf tool is
a Linux-based low-level performance monitoring tool that
can instrument CPU performance counters, tracepoints,
kprobes, and uprobes (dynamic tracing) [17]. Its monitor-
ing granularity can be scaled to as fine as 10ms without the
need for customization. The Pin tool is capable of capturing
a wide range of program-specific ISA-dependent features,
including instruction mix, instruction-level parallelism,
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register traffic, branch predictability, and more, enabling a
thorough examination of application behavior [18].

Some hardware vendors provide their own proprietary
tools or libraries for performance monitoring on different
OSs. These tools are often tailored to their hardware and
can be used to extract hardware events. For instance,
macOS users can employ instruments, and Windows users
have access to performance monitor. Furthermore, the
Performance Application Programming Interface (PAPI)
[19] is a cross-platform interface designed for monitoring
hardware performance counters on processors equipped
with specific registers for hardware events. PAPI is designed
as a cross-platform interface, ensuring that it remains
independent of any particular operating system. PAPI is
intended to work on a variety of operating systems, including
Linux, macOS, and Windows. This compatibility makes it
a valuable tool for performance monitoring and analysis
in diverse computing environments. Users can employ
PAPI on the OS that best suits their specific requirements
and system configuration. Furthermore, for the purpose
of identifying and addressing performance bottlenecks in
running programs, as well as for fine-tuning and debugging,
Intel offers a licensed tool known as Vtune [20]. Vtune
can efficiently record and display performance-related
information, featuring a robust graphical user interface
and comprehensive profiling capabilities, including HPC
monitoring, call graphs, performance bottleneck analysis,
and hotspot detection.

Additionally, Intel’s Performance Counter Monitor
(PCM) [21, 22] is a powerful performance monitoring
unit implemented in Intel’s processors, such as Xeon,
Atom, and Xeon Phi. PCM enables the monitoring of
performance and energy-related metrics in both Windows
and Linux environments. Notably, PCM sets itself apart by
supporting real-time monitoring of both core and uncore
events, distinguishing it from tools like Perf and PAPI. Such
cross-platform performance monitoring tools aim to work
on multiple OSs often providing a degree of hardware event
extraction on non-Linux operating systems. This highlights
the adaptability and versatility of these tools, ensuring that
performance analysis and optimization can be carried out
effectively across a variety of computing environments.
Additionally, in situations where hardware event monitoring
is critical, virtualization or containerization solutions
may be employed to run a Linux-based environment on
top of the non-Linux OS. This allows the use of Linux-
based performance analysis tools within a contained
environment. Overall, it is important to note that with careful
consideration of system-agnostic features and adaptable
model architectures, hardware malware detection techniques
hold the promise of being generalizable to other systems
and operating systems with minimal modification, thus
enhancing the broader cybersecurity landscape.
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3 Proposed Methodology

This section presents the proposed multilayer deep transfer
learning-based approach for accurate hardware image-based
malware detection.

3.1 Experimental Setup

In our experiments, the benign and malware programs are
profiled on an Intel Xeon X5550 machine. To effectively
address the non-determinism and overcounting issues
of HPC registers in hardware-based security analysis
discussed in recent works [1, 23], we have extracted low-
level CPU events available under Perf tool using a static
performance monitoring approach where we can profile
applications several times measuring different events each
time. HPC events are monitored with a sampling time
of 10ms within Linux Containers (LXC) as an isolated
profiling environment. More than 5000 benign and malware
applications are executed for data acquisition. Benign
applications include real-world applications comprising
MiBench [24] and SPEC2006 [25], Linux system programs,
browsers, and text editors. Malware applications, collected
from and categorized by VirusShare and VirusTotal online
repositories, comprise nine types of malware including
worms, viruses, botnets, ransomware, spyware, adware,
trojan, rootkit, and backdoor. Leveraging Linux containers
in our experimental setup is advantageous because, unlike
typical virtualization platforms like VMWare or VirtualBox,
they offer direct access to real hardware performance

counters data rather than emulating performance counter
events. It is important to note that running malware within
the container can potentially contaminate the environment,
which may impact subsequent data collection. To mitigate
this risk and ensure that collected data is not tainted by
previous runs, the container is destroyed after each run.
In total, we collected 16K samples of malware and 30K
samples of benign applications. Among all malware, there
are 7217 trojans, 2606 viruses, 1821 ransomware, 1787
spyware, 1588 botnets, 748 worms, 591 backdoors, 242
rootkits, and 229 adware samples. Table 1 reports a subset
of sixteen deployed low-level features captured by HPC
registers from the Perf tool under Linux in our experiments
and their descriptions.

3.2 Feature Engineering

As highlighted before, feature analysis and selection (e.g.,
analyzing the importance of the hardware events) is an
important step in developing accurate ML models for hard-
ware-based malware detection. To address the Challenge
1 of existing HMD methods, we first employ the mutual
information (MI) method in information theory to analyze
and rank the importance of the HPC events to the target label
Y (benign/malware). Then, we analyze the top 16 features’
correlations to each other to filter out the redundant features
to reduce training costs and improve model performance. At
last, we select the most prominent four features among the
rest top-ranked features to fit the constraints of the number
of available HPCs during run-time.

Table 1 Top 16 HPC features collected from Perf tool in our experiments and their descriptions

HPC event Description

LLC-loads
L1-dcache-load-misses
node-loads

mem-stores
dTLB-stores
cpu/branch-instructions/
dTLB-loads
cpu/cache-references/
cpu/branch-misses/
cpu/instructions/
cache-references
instructions
branch-instructions
branch-loads
branch-misses

msr/tsc/ Number of time-stamp counter (TSC)

Number of successful memory load operations that accessed the Last-Level Cache (L3 cache)

Number of cache lines brought into the Level 1 data cache due to cache misses

Number of successful load operations to the DRAM, representing main memory access

Number of successful store operations in main memory, indicating data writes to main memory

Number of TLB lookups for data memory store operations, which are address translation requests for data writes
Number of branch instructions executed by the CPU

Number of TLB lookups for data memory load operations, indicating address translation requests for data reads
Number of references made to the CPU’s caches, including cache hits and misses

Number of branch instructions that were mispredicted by the CPU

Number of instructions retired by the CPU, representing the total executed instructions

Number of references made to the last level cache (LLC), which includes both cache hits and misses

Number of instructions retired by the CPU, representing the total executed instructions

Number of branch instructions executed by the processor

Number of successful branch instructions, indicating branches that were taken

Number of all retired mispredicted branches, signifying branch prediction failures
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3.2.1 Feature Importance Analysis

Mutual information (MI) measures the dependency between
two variables. Regarding features X and label Y, the MI
measure I(X, Y) is obtained by estimating the marginal entro-
pies H(X), H(Y), and the joint entropy H(X, Y) as follows:

IX,Y)=HX)+H(Y)-HX.,Y) (1)

For each data point i, the MI method computes /' "based on
its neighboring data points. It first finds the k-closest neigh-
bors falling inside of the distance to point i. Using y(:) as
the digamma function, N is the total samples, Nx; is the data
sample falling within the distance d with k neighbors, and m,
is the total number of neighbors in the dataset. The estimated
MI is defined as below:

I' = w(N) — w(Nx,) + w(k) — w(m,) @

In this work, we use MI to estimate the dependency
between each HPC and the target label Y, which measures
each HPC’s contribution to predict label Y. To this pur-
pose, We use Scikit Learn library’s mutual_info_classif
algorithm [26] to estimate MI from k-nearest neighbor sta-
tistics [27] to obtain the feature importance of each HPC to
target label Y. Its output is the feature importance regard-
ing each HPC to Y. We rank it and output a list of the top
16 features that contribute the most to distinguishing Y
between malware and benign.

3.2.2 Feature Correlations Analysis
Our next step in the Feature Engineering process involves
a thorough analysis of feature correlations, aiming to elu-

cidate the relationships between pairs of hardware perfor-
mance counter features. In instances where redundancy
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Fig.1 Top 16 HPC features’ correlations heatmap
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becomes apparent, we take action to eliminate such features
from consideration within our feature list. Among the top
16 features, we employed Panda’s Pearson’s correlation
coefficient method [28, 29] to conduct a comprehensive
correlation analysis, which measures the linear relation-
ship between each pair of HPC features for all data. We
dropped the less significant HPC features that displayed
a correlation coefficient exceeding a threshold of 0.9 with
another HPC feature. Figure 1 shows the heatmap of the
HPC features and their correlations. Notably, a vivid red
color (excluding the diagonal) on the heatmap signifies the
presence of redundant HPC features. For example, “dTLB-
loads” was identified as redundant with respect to “dTLB-
stores” and given its lesser contribution to the target label
Y in comparison to “dTLB-stores,” we opted to remove
“dTLB-loads.” Similarly, “cache-references” was deemed
redundant in relation to “node-loads” and was considered
less significant, leading to its exclusion from consideration.

3.2.3 Feature Selection

As the last step, among the top prioritized features (with
horizontal and vertical axes showing the same sets of top 16
features) as shown in Fig. 2, we select the top four hardware
events (from the blue-colored features) that show significant
accumulated information gains (regarding label Y) to train
a model, considering that most modern microprocessors’
counters can only monitor a limited number of events at
once during applications execution time [3, 8]. The selected
four hardware events include node — loads, LLC — loads,
L1 — dcache — load — misses, and mem — stores.
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3.3 Embedding Tabular Data

Some previous studies have utilized the embedding tech-
nique to convert non-image data types, such as text and
byte sequences, into image-like representations as a pre-
processing step. This approach is employed to harness the
capabilities of deep neural networks (DNN5) for enhancing
cybersecurity threat detection. The rationale behind this
lies in the well-established performance of DNNs in both
image processing and natural language processing (NLP).
For instance, in the work by Raff et al. [30], a static analy-
sis is conducted directly on byte programs extracted from
Microsoft Windows Portable Executable (PE) files, with-
out executing them. This analysis aims to transform raw
byte sequences into higher-level representations, which are
subsequently fed into an LSTM model. Notably, each raw
byte sequence is treated as a lengthy sequence classification
problem, spanning up to two million time steps. Similarly,
in a study by [31], the authors take malware binaries, trans-
form them into grayscale images, and then convert these
images into sequence embeddings to be used with a recur-
rent neural network (RNN) for stealthy malware detection.

In the study by [32], the transformation of Android appli-
cations’ API call sequences, derived from the structure of
the API call graph, is undertaken. These sequences are
converted into a low-dimensional numeric vector feature
set, commonly referred to as embeddings. These embed-
dings are then utilized as inputs for a deep neural network
(DNN). It is important to note that this approach primarily
focuses on detecting malware that involves the invocation of
malicious API(s) to execute malicious code. However, it’s
worth highlighting that this work adopts a static approach
to extract the API call graph representation from malicious
code, without actually executing the code. This static analy-
sis approach does not capture the dynamic runtime scenario.
Moreover, the research in [33] builds upon prior opcode
sequence embedding work to solve the challenge of long
opcode sequence problem, by converting sequential opcodes
using low-dimensional opcode embeddings to discover the
malicious patterns.

Notably, most of the previous approaches rely on static
analysis without executing the malicious applications.
This static analysis approach has its limitations, as it can
be vulnerable to evasion techniques such as obfuscation
and encryption employed by malicious actors to avoid
detection. In contrast, our research takes a dynamic
analysis approach. We collect hardware performance
counter tracing data directly from running applications
when malicious code is in action. Our unique contribution
lies in the development of a lightweight algorithm to
directly embed HPC data into image-like representations
using only four numerical HPC values as features. This is
a significantly smaller amount of information compared to

PE byte sequences, opcode sequences, or API call graphs,
making it challenging to train an effective DNN model
directly. To address this challenge, we adopt a transfer
learning approach and leverage a transferrable DNN
architecture.

Furthermore, our proposed approach differs from
previous works that often employ RNN and LSTM
architectures, which are larger model architectures and
can introduce substantial overhead due to the existing
large data embeddings. In contrast, our paper explores
the effectiveness of embedding only four numerical HPC
events using our two-staged methodology. This unique
approach is aimed at addressing the limitations of static
analysis and exploring the potential of lightweight,
transferable DNN architectures for hardware-assisted
malware detection. This not only enhances the extensibility
and generalizability of the proposed solution but also
underscores its significance in diverse domains, including
those involving resource-limited devices.

3.4 Machine Learning Classifiers

Standard ML Classifiers We examine the suitability of vari-
ous standard machine learning classifiers for known and
unknown malware detection. These ML models include
RandomPForest (RF), DecisionTree (DT), Gaussian Naive
Bayes (GNB), Logistic Regression (LR), ExtraTreeClassifier
(ExtraTree), RidgeClassifier (Ridge), K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), and BaggedDT.
These ML models cover a diverse range of algorithms and
the final predictor can be a binary classification model which
is aligned with the malware detection task. It is worth notic-
ing that standard MLs are most suitable for structured data
rather than unstructured data.

Deep Neural Network (DNN) Traditional ML classifiers are
primarily used to train on structured data such as tabular
data stored in CSV files or relational databases. On the other
hand, deep neural networks (DNNs) are most commonly
used on unstructured data such as images and natural lan-
guage processing. Computer vision-based DNN models can
recognize hierarchical relationships in analyzing simple to
complex features, and characterize the visual system as a
hierarchical and feedforward system. While the neurons in
the early layers of a DNN have small receptive fields and are
sensitive to local features, they can capture more generalized
patterns in deeper layers. Recent results of very deep neural
networks from the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) have shown that the neural network
can achieve a top 5 error rate of 3.57%. Inspired by com-
puter vision applications, in this work, we leverage DNN
to develop an accurate and intelligent malware detection
framework based on image-based HPC data.
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Transfer Learning Recent studies have reported that a well-
trained DNN could transfer its knowledge of generalized
features and feature extraction ability from one domain to
another. The work in [34] highlights that transfer learning
can also share the architecture-related parameters in a new
field while maintaining a high-performance rate. While
transfer learning has demonstrated its success in computer
vision, its application to tabular-based data remains rela-
tively unexplored. In a survey conducted by [35] on deep
neural networks (DNN) and tabular data, it was observed
that the potential of transfer learning in the context of tabular
data remains an open question. To fill this research gap, our
study in this paper is dedicated to investigating a transfer
learning approach tailored to tabular hardware data, using
only four performance counter-numerical values. Notably,
existing literature suggests that despite its status as a state-
of-the-art technique, deep neural networks may not perform
as effectively as classical machine learning models in the
realm of tabular data [36]. Notably, existing works [34]
present that a CNN architecture can transfer its knowledge
trained on the ImageNet domain to a new problem domain
with high accuracy and stable results. Motivated by such
advances, in this work we develop a transfer learning strat-
egy combined with a DNN model in zero-day hardware-
based malware detection. ImageNet is significantly different
from malware and benign datasets, where ImageNet contains
more generic images in everyday lives. In contrast, malware
and benign datasets have numerical features from the proces-
sor’s HPC events. In this paper, we utilize a tabular-based
HPC-based dataset comprising malware and benign sam-
ples. Our primary objective is to investigate the potential
of transfer learning in combination with DNN to enhance
knowledge transfer and subsequently achieve superior detec-
tion performance compared to traditional machine learning
approaches. Our work is the first in the field that explores the
functionality and effectiveness of leveraging DNN network
transferred from ImageNet to the tabular-like zero-day mal-
ware detection domain based on only a few hardware tracing
events monitored at run-time.

3.5 Overview of Deep-HMD Framework

In this work, we propose Deep-HMD framework to address
the Challenges 1 & 2 of existing HMD methods and to over-
come the limitations of standard ML classifiers in detecting
zero-day malware. To this aim, we first explore the per-
formance of standard ML classifiers trained with the most
prominent HPC events. We train the ML models with default
parameter settings as our base learners. We then examine the
models across various metrics on the known test and zero-
day test datasets. The ML classifiers are implemented using
scikit-learn [26] and are used to analyze how well they can
perform on known and zero-day test datasets. Next, given
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the weak performance of ML models (as we will show in
Section 4), we present the Deep-HMD framework as the
target hardware-based zero-day malware detector.

We investigate state-of-art deep learning model architec-
ture trained over ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). ILSVRC uses the smaller portion of
the ImageNet which consists of 1000 categories with a total
of 1.3 million training images, 50,000 validation images,
and 100,000 testing images. There are several advantages
in using transfer learning. Firstly, the pre-trained model
has already learned to recognize patterns from millions of
images. Secondly, training from scratch requires a larger
dataset, high training time, and trial-and-errors on param-
eter tuning. While using a pre-trained model and transfer
learning can maintain high accuracy when fine-tuned in a
new field. The work in [37] studied that among the many
popular DNN networks, ResNet is an appropriate choice in
network-based deep transfer learning. ResNet is a convo-
lutional neural network that implements residual blocks of
“skip connections” to alleviate the issue of vanishing gradi-
ent by setting up an alternate shortcut for the gradient to
pass through. In addition, they enable the model to learn
an identity function. This ensures that the higher layers of
the model do not perform any worse than the lower layers.
ResNet is also a simple architecture such that residual blocks
do not add any major complexity to the network so that all
the common optimization methods can be used in training
residual networks. Thus, we implemented our proposed
transfer learning scheme based on ResNet18 which has 18
layers in total. It is notable that in our exploration of various
DNN architectures for transfer learning, we indeed consid-
ered more lightweight options like binary neural networks
(BNN) and other convolutional neural networks (CNN).
However, these alternatives did not meet the performance
expectations for unknown malware detection. ResNet18
demonstrated the highest performance among all methods
examined, underscoring its suitability as the preferred choice
for our transfer learning scheme to boost up the performance
of hardware-assisted zero-day malware detection.

3.5.1 Threat Model

Recent ML-assisted malware detection methods using HPC
events have mainly considered two major validation meth-
ods including cross-validation and percentage split to exam-
ine the effectiveness of their models. The cross-validation
method splits the dataset into K(1, ..., n) folds and selects
one of them as a target testing dataset while the rest of the
folds are used for the training dataset. And in the percentage
split method, the dataset is divided into two sections based
on the percentage setting allocated to training and the other
to the testing set. However, the major issue with these valida-
tion techniques is that the testing data is split from the large
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Fig.3 Overview of Deep-HMD, the proposed zero-day malware detection framework using 4 selected hardware events

dataset and is part of the same data type used in the training
dataset. Hence, such validation methods could not imitate
the zero-day or unknown testing scenarios occurring in real-
world applications in which the trained machine learning
classifiers should have never seen the testing dataset.
According to our experiments, malware applications
within the same family typically do not exhibit identical
performance counter values. This variation arises because
the values collected from HPC registers reflect the unique
signature left by each application on the underlying processor
and can differ between different applications. To streamline
our analysis, we categorize all malware collectively into one
category, encompassing all nine types, while designating a
separate category for the HPCs of benign applications. This
binary classification approach distinguishes between benign
(0) and malware (1), aligning with our primary focus on
binary classification (malware detection). We use the top four
HPCs in Section 3.2.1 to form sub-datasets across the work.
To model the zero-day malware threat type in our experi-
ments, among all nine malware types, we held out all four
types of malware from rootkit, backdoor, virus, and ran-
somware as the target zero-day test data. These four types
of malware are not presented in the training and known test
datasets, thus, the zero-day malware set is totally unknown
from the training dataset. For benign, we held out 30% of
all benign data aside as a zero-day test benign dataset. We
kept both malware and benign aside to imitate the zero-day
testing in real-world scenarios where the malware is undoc-
umented in the training database of the detection mecha-
nism. The rest of the five types of malware including trojan,
spyware, botnet, worm, and adware as well as the rest of
the benign samples are considered for training and known
test purposes, and we randomly split them into 70% for
training and 30% for known testing. The difference between
the known-test and zero-day-test in our experiments is that
the known-test data contains the same malware types as
the training dataset but with different unseen data and the
zero-day-test data contains different malware types from
the training dataset that are considered as new unknown

attacks. After data are split, we relabel all types of malware
as malware and leave benign as benign. Notably, our Deep-
HMD framework uses the same datasets during training,
known-test, and zero-day test same as all classifiers. Also,
classical ML models use the tabular format data, and Deep-
HMD employs the image data converted from correspond-
ing tabular data.

3.5.2 Architecture of Deep-HMD

Deep-HMD is a multi-layer intelligent and salable frame-
work that achieves an accurate and robust zero-day mal-
ware detection performance. The general overview of the
Deep-HMD is depicted in Fig. 3. As seen, during the first
level the Deep-HMD converts tabular malware and benign
hardware events data (that are monitored from the under-
lying processor) to image formatted data using an effec-
tive 2D embedding image features conversion method
(detailed algorithm and visual effects are introduced in
the following section). A deep neural network can train on
both tabular and image data. However, DNN-based archi-
tectures training on visual recognition tasks have achieved
far-reaching performance with high top 1/top 5 accuracy
and low top 5 error rates. Next, Deep-HMD leverages a
high-performance ResNet architecture and transfer learn-
ing technique to recognize the zero-day malicious images
at run-time. The work in [38] presented a method that
projects features in tabular format into two-dimensional
images before feeding images to fine-tune CNN mod-
els. However, there exist no similar experiments on the
application of such methods in detecting the signatures of
unknown malware and in particular with the emphasis on
developing effective security countermeasures at the pro-
cessors’ hardware level. Our Deep-HMD method explores
this space by employing a novel deep neural network and
transfer learning training strategy on image-based hard-
ware events data to achieve state-of-the-art performance
for zero-day malware detection using a limited number
of HPC events.
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Fig.4 Nine sample structured tabular data projected to nine two-
dimensional images using 2D embedding image features conversion
from hardware events

Stage 1in Deep-HMD Our proposed Deep-HMD framework
employs the encoding method described in Algorithm 1 to
convert each row of 4 HPC tabular data to one image data
represented by a two-dimensional Numpy array with the size
of 256 X 256 and three color channels of RGB (red, green,
and blue). The four HPC values represent the top four hard-
ware events that are highly impactful to the target label of
malware or benign. Mapping the same sequence of hardware
events to an image uncovers potential hidden relationships
and discrepancies within the four HPC events concerning
malware or benign classification. Meanwhile, malware and
benign follow discrepant patterns reflected by the four HPC
values. These hidden features can be extracted by different
convolutional layers of Deep-HMD to assist in training effec-
tive malware detection model. We normalized all rows of
tabular HPC data using the standard scalar in Scikit Learn,
which removes the mean and scales the data to unit variance.
Next, we use OpenCV [39] library to evenly project the four
numeric data to a 256 X 256 X 3 resolution image with equal
spacing and no-overlapping as shown in Fig. 4.

Algorithm 1 Converting tabular data to 2D images

Input: HPC features in tabular format X = {x1,x2,x3,x4}
Output: image data equivalent to X
repeat
forall for each row of X={z1, z2, z3, =4} do
normalize HPCs
set font size as 50, resolution as 256 x 256 x3
set 2 columns 2 rows per image
apply OpenCV’s cv2.putText() to draw HPC
number on image
save converted image to folder
end

until all rows of fitted tabular data are converted to images

The left image in Fig. 4 depicts nine rows of the 4 top
HPCs in tabular format. We normalize them first according
to all features’ mean and standard deviation. Each row of
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the top 4 HPCs is projected to one image as described in
Algorithm 1. The example on the right side shows that nine
rows of tabular data are converted to 9 two-dimensional
image data. Each image on the right side is associated with
a target label of either malware or benign, and each result-
ing image is employed independently for training or infer-
ence purposes. Overall, in this stage, we draw the four fea-
tures with equal sizes on the image with even spacing and
ensure that they are not overlapped. Such images contain
spatial relationships and hidden features among malware
and benign applications resulted from a limited number of
performance counter data (only 4 HPCs).

Stage 2 in Deep-HMD The second stage includes using the
generated image data as inputs to train and test an accurate
and effective DNN-based model for zero-day malware detec-
tion. We implement Deep-HMD with a customized transfer
learning training strategy based on the ResNet18 architec-
ture [40] during training. To further explain the work done
in Deep-HMD, we describe stage 2 in several steps in the
following subsection.

3.6 Training and Testing in Deep-HMD

Figure 5 demonstrates the overall training and testing pro-
cess of Deep-HMD in four steps. Steps 1 and 2 are dedi-
cated to the training process and steps 3 and 4 are for the
testing phase.

In Step 1, we first examine how the baseline model of
the Deep-HMD performs on our known and zero-day test
datasets. To this aim, we load the ImageNet parameter
of Deep-HMD in fast.ai, run two tests, and calculate
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various metrics. Fast.ai [41] is a deep learning wrapper
library with PyTorch as its underlined backbone that
can quickly train high-performance deep learning mod-
els and supports application domains in computer vision,
natural language processing, and tabular models. The
baseline of Deep-HMD tests how much knowledge it
learns from ImageNet on generic features such as lines
and strokes. We found it can detect 92% of benign appli-
cations but only 6% of actual malware. This experiment
indicates that the front layers of the pre-trained trans-
ferrable model trained on a sizeable ImageNet can be
used as a feature extractor, and the extracted features are
versatile according to Tan et al.’s study on transfer learn-
ing [37]. Notice we mention “transferrable’’ because
there is a relationship between model architecture and
transferability [42]. The front layers of such pre-trained
models learn the morphology of images in general and
the morphology knowledge can be transferred to other
visual recognition tasks with or without labeled data
[43]. As shown in our baseline experiment where there
is no training occurred, the model can detect 92% of
benign as benign that further supports the understand-
ing that a well-trained CNN can be an efficient feature
extractor for unknown context. With fine-tuning model
parameters on malware datasets, it continues to learn
domain knowledge, particularly the pattern of malware
from benign. In particular, we examine the possibility
of transferring the knowledge of pattern recognition to
a new domain with a limited number of training samples
and fast training time.
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During Step 2, we load the transferable pre-trained base-
line model with the ImageNet parameter, remove the last
layer of the network, replace it with a Softmax function that
outputs binary classification as shown in Fig. 6, and train
the model.

Algorithm 2 Training Process in Deep-HMD

Input: HPC features in tabular format X, and target label y
Output: Deep-HMD DNN Model for Binary Classification

Feature Selection:
forall tabular HPC-based dataset do

calculate MI by applying scikitlearn mutual_info_classif
on all HPC features
select top 4 features and fit to the whole dataset
train/known test/zero-day test split on the fitted
dataset

end

Image Conversion: - see Algorithm 1

while training do
load batch data, resize images to 224 x 224 x3 and
initialize ImageNet parameters
while validation loss >training loss do
for every 7 to 20 epochs:
apply cyclical learning rate (clr) to find optimized
learning rate (Ir)
apply found Ir to the next training steps (7-20
epochs)
end
save model

end

Algorithm 2 describes the training process in Deep-
HMD. In this stage, the generated two-dimensional images
are resized to 224 X 224 x 3 and fed into the Deep-HMD
network initialized with the ImageNet pre-trained weights.
Firstly, we train it for five steps with a batch size of 64 to find

2 erPath conv5_x
aversge
identity blocks ‘ identity block2 e softmax

Hm Moo o ot @@ ! -

Transfer | l

/2 repeated conv3_x

( identity blocks

4 repeated conv2_x

identity blocks

convi

average - goftmax

Rilglils

/ 2 repeated conv4_x 2 repeated convs_x
identity blocks identity block2
[| D N [| D N D [|

e

Fig.6 Deep-HMD architecture to classify the HPC-based images into
benign or malware. This figure shows how knowledge is transferred
from a pre-trained transferrable CNN model (top) to Deep-HMD
(bottom). It uses the backbone of ResNet 18 with a customized soft-
max layer and retrained on malware dataset. It inputs 224 x 224 x 3
ImageNet standard size and outputs binary classifications of malware

or benign. In the middle of the hidden layers, it contains shortcut con-
nections skipping one or more layers to avoid saddle points. Among
these layers, 1 X 1 convolutions are utilized to reduce matrix multipli-
cation, which directly reduces the number of parameters. The archi-
tecture is retrained on malware/benign data
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an optimized learning rate for the next training cycle. In this
step, generic features learned from ImageNet are transferred to
the Deep-HMD network. In the customized training, we apply
cyclical learning rates, oversampling, and weight decay tech-
niques. We did not apply augmentation to the images. We use
batch normalization right after each convolution and before
activation. We use the cross-entropy loss function with a mini-
batch size of 64. The learning rate starts from 0.0001, and we
use fast.ai’s learning rate finder for every 7 to 20 epochs to
find the optimized learning rate to apply to the next training
steps. We apply a weight decay of 0.01 and a momentum of
[0.95, 0.85, 0.95] across the whole training process. We train
the models up to 30 to 80 iterations. We monitor training loss
and validation loss decreasing until the validation loss is close
to the training loss. We save checkpoints periodically and use
the best model for the testing phase.

3.6.1 Cyclical Learning Rates

DNN model learns from data and updates its weights from
a gradient descent function. Gradient descents are often
stuck at saddle points, which are the points in the gradient
descent graph where some dimensions observe a local mini-
mum, and others observe a local maximum. In general, an
increased learning rate will allow the network to jump out of
the saddle points to possibly enable the model to converge.
However, it is also known that a larger learning rate might
make the DNN diverge. Therefore, the learning rate strategy
could have a significant impact on the effectiveness of model
training. Various learning rate-finding strategies have been
experimented with to solve this problem, such as Adaptive
Learning Rate, SGDR, and CLR.

In our experiments, we employ a cyclical learning rate
(CLR) technique [44] during the training process. For this
purpose, we use the fast.ai wrapper library [41] with the
plain PyTorch backbone and apply the cyclical learning rate
technique to find the most optimal learning rate for every
several training steps. The CLR algorithm is shown in Algo-
rithm 3. We apply fast.ai’s learning rate finder and set the
minimum and maximum learning rates for 10 epochs. Then,
we apply the best learning rate in the next training cycle. We
set each training cycle with seven to twenty epochs depend-
ing on how soon we observe it stops learning by monitoring
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Fig.7 Applied cyclical learning rate (CLR) during training. The left
figure shows the training loss and validation loss, and the right figure
depicts the validation accuracy during training
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the validation loss and validation accuracy as depicted in
Fig. 7. The validation accuracy starts to grow and stabilize
from epoch 4, as shown in Fig. 7. As a result, the best-per-
forming model is selected for the testing phase.

Algorithm 3 Applying cyclical learning rate

- Specify minimum (min_lr) and maximum (max_Ir)
boundaries;
for a specified number of epochs do
- increase Ir linearly from min_lr to max_lIr;
- monitor validation loss to decrease, stops Ir finding
when the validation loss start to increase;
- record validation loss and corresponding Ir.

end

- Plot learning rate and validation loss in fastai [41];

- Select a fixed Ir value that is before the minimum validation
loss;

- Use the Ir to train for several epochs (1lcycle policy [44]).

3.6.2 Over Sampling for Imbalanced Datasets

To overcome the challenges associated with the imbalanced
dataset samples and remove the potential bias towards the
majority class (benign in our case), we apply the oversampling
technique during the training process. The oversampling tech-
nique involves duplicating examples from the minority class
and adding them to the whole training dataset to create a more
balanced training dataset. During each epoch, samples from
the minority class are selected randomly with replacements.
Once the training epoch completes, they are released back to
the original dataset to be chosen again in the following training
epochs. Doing so over the minority class dataset creates a more
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Fig.8 MLP (top) and binarized MLP (bottom) illustrated weight gra-
dients in the forward pass are replaced by 1-bit binary and backpropa-
gated during training
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balanced training dataset for all classes and helps with model
convergence in Deep-HMD.

In Steps 3 and 4, we convert the same sets of HPC data
stored in tabular format to images and store the images into
sub-folders of malware or benign. In fast.ai, we load the pre-
trained Deep-HMD model, resize the input image to 224 X
224 x 3, and then run in the batch size of 64 images to process
the prediction. Algorithm 4 describes testing Deep-HMD on
the zero-day dataset. Lastly, we accumulate the predictions,
calculate the zero-day test metrics, and report the zero-day test
results in the experimental results section.

Algorithm 4 Zero-day testing process in Deep-HMD

Input: HPC features in image format saved in zero-day
dataset, and target label y for each image
Output: Detect every image associated application as
malware or benign
repeat
forall zero-day data do
load Deep-HMD model
resize images to 224 x 224 x3
predict each image for either malware or benign
calculate F-measure, AUC, TPR, FPR, TNR,
FNR, Precision, Recall
calculate unit latency for inference
end

until testing done on all zero-day test data

3.7 Binary MLP

Our implementation of a binary MLP model follows the
method proposed by Wang et al. [45], utilizing TensorFlow
Keras with five layers, including the input and output layers.
Similar to Deep-HMD we first convert each row of the top four
HPC tabular data into a 32 X 32 X 3 image. We then train the
binary MLP model in Keras with the converted image data on
the training dataset. Figure 8 illustrates the architecture of the
MLP, including the application of 1-bit binary to the weight
gradients during the forward pass. It uses a binarized Sigmoid
activation function in the last layer. After training, we evaluate
the model’s performance on an unknown zero-day test dataset.
In addition, to regularize the model learning and reduce the
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Fig.9 Evaluation of standard ML classifiers for known and unknown
(zero-day) malware detection

impact of the weight scale, we apply L1 batch normalization
and batch norm momentum in each hidden layer. We use the
Adam optimizer and apply a learning rate scheduler with an
initial value of 0.025. The learning rate scheduler automati-
cally reduces the learning rate by a factor of 0.5 once the learn-
ing stagnates during training.

4 Experimental Results

In this section, we evaluate the experimental results and
analyze the effectiveness of the proposed malware detec-
tion approach as compared to state-of-the-arts.

4.1 Classical MLs Performance

To further highlight the challenge of unknown malware
detection, we have evaluated the standard ML classifiers
that are widely used in state-of-the-art HMD methods
considering both known and unknown conditions. The
F-measure (Fl-score) results for known and zero-day
malware detection (with 4 HPC events) are shown in
Fig. 9. As observed, the performance of standard ML
models on zero-day attack detection substantially drops
by more than 40% in GNB, logistic regression, ridge, and
SVM classifiers. When examined by the unknown (zero-
day) test data, the trained machine learning classifiers
have never seen the testing malware types. Even for the
most robust ML model, Random Forest, the F-measure
for zero-day malware drops by 14% as compared with the
scenario of detecting known malware. The results confirm
the limitation of standard ML algorithms in recognizing
the signatures of unknown malware using HPC events and
further highlight the importance of proposing an effective
mechanism to enhance the detection rate of the hardware-
based zero-day malware detection.

4.2 Deep-HMD Performance

Table 2 reports the performance results of Deep-HMD ver-
sus binary MLP, a deep neural network model (tabular DNN)
trained on HPC malware data (same data with Deep-HMD
but in tabular format), and different ML-based detectors for
zero-day and known malware detection using 4 HPC events.
Note that both Deep-HMD and binary MLP are trained on
image-based HPC data, while the tabular DNN and classical
MLs are trained on HPC tabular data format. We selected
various ML-based detectors that have widely been adopted
in existing HMD techniques [2, 3, 6-8]. As the results indi-
cate, our proposed Deep-HMD achieves 97% in F-measure,
97% in area under the curve (AUC), and 98% accuracy for
unknown malware detection. In addition, it obtains 96% in
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Table 2 Performance results

) Model Acc F1 AUC TPR FNR TNR P R

of Deep-HMD, binary MLP,

and tabular DNN, and various Zero-day test

ML-based detectors for zero- Deep-HMD 098 097 097 0.99 0.01 0.97 096 099

day malware detection and

known-test malware detection Binary MLP 0.82 0.81 091 0.76 0.24 0.52 0.86 0.80
Tabuar DNN 0.66 0.16 0.65 0.08 0.92 0.99 0.88 0.09
RF 0.87 0.79 0.87 0.68 0.32 0.98 0.94 0.68
DT 0.81 0.69 0.79 0.58 0.42 0.94 0.86 0.58
GNB 0.62 0.14 0.40 0.09 091 0.92 0.38 0.09
LR 0.62 0.14 0.40 0.09 091 0.92 0.39 0.09
ExtraTree 0.74 0.54 0.70 0.41 0.59 0.93 0.78 0.41
Ridge 0.63 0.18 0.46 0.11 0.89 0.93 0.48 0.11
KNN 0.83 0.72 0.81 0.61 0.39 0.95 0.87 0.61
SVM 0.64 0.15 0.49 0.09 0.91 0.96 0.56 0.09
BaggedDT 0.82 0.69 0.82 0.56 0.44 0.97 0.92 0.56
Known test
Deep-HMD 0.99 0.99 0.99 0.99 0.01 0.99 0.99 0.99
Binary MLP 0.86 0.82 0.83 0.84 0.16 0.87 0.8 0.88
Tabular DNN 0.82 0.68 0.83 0.52 0.48 0.99 0.97 0.52
RF 0.95 0.93 0.95 091 0.09 0.98 0.96 091
DT 0.93 0.90 091 0.90 0.10 0.94 0.89 0.90
GNB 0.75 0.55 0.69 0.44 0.56 0.92 0.74 0.44
LR 0.78 0.63 0.74 0.53 0.47 0.92 0.78 0.53
ExtraTree 0.92 0.88 0.90 0.89 0.11 0.93 0.87 0.89
Ridge 0.78 0.63 0.74 0.52 0.48 0.92 0.79 0.52
KNN 0.93 0.90 0.92 0.89 0.11 0.95 091 0.89
SVM 0.81 0.65 0.78 0.52 0.48 0.96 0.88 0.52
BaggedDT 0.95 0.93 0.94 0.90 0.10 0.98 0.96 0.90

precision and 99% in recall. Whereas, the best-performing
standard ML classifier, Random Forest, can only achieve
79% in F-measure, 87% in AUC and accuracy, and 68% in
recall when used for detecting unknown malware.

As illustrated by the results in Table 2 for known mal-
ware detection, our proposed Deep-HMD approach exhibits
exceptional performance metrics, achieving an impressive
99% in F-measure, area under the curve (AUC), and accu-
racy, as well as a 99% true positive rate (TPR) and True
Negative Rate (TNR). Notably, among all the traditional
machine learning methods, Random Forest stands out with
commendable results, boasting a 93% F-measure, 95%
AUC, 95% accuracy, and a well-balanced TPR and TNR
of 91% and 98%, respectively, in the known test dataset.
However, a noteworthy observation is the significant decline
in the detection performance of Random Forest (as well as
other conventional ML models) when transitioning from
known malware detection to unknown malware detection,
as discussed in the preceding section. This discrepancy
highlights a fundamental weakness of classical ML models
when confronted with the task of identifying diverse and
previously unseen zero-day malware samples. In essence,
while these models excel at recognizing known malware
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patterns, they struggle to cope with the inherent unpredict-
ability and diversity presented by unknown malware, mak-
ing them less effective in real-world scenarios where novel
threats continually emerge.
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Fig. 10 ROC curves of Deep-HMD as compared with standard ML
models for zero-day malware detection
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Table 3 Performance and overhead results: Deep-HMD and binary
MLP for zero-day malware detection

Model F1 AUC Latency (ms)  Model size(MB)
Deep-HMD 97.1% 974% 322 44.8
Binary MLP  81.3% 91.3% 2.85 13.8

Furthermore, when comparing Deep-HMD and tabular
DNN, we notice that deep neural networks applied to tabular
formatted data perform worse than classical machine learn-
ing methods. The results presented in Table 2 demonstrate
that while tabular DNN is able to accurately detect benign
data with a high true negative rate (99% TNR), it also mis-
takenly classifies benign data as malware with a very low
true positive rate (8% TPR). Hence, the overall recall of the
model to detect malware from all malware samples correctly
is very low, at only 9%. A significant number of instances of
malware are being falsely classified as benign. This raises
concerns about the model’s effectiveness in defending
against cyberattacks.

Overall, the results demonstrate that our suggested intel-
ligent hardware-based technique for detecting zero-day mal-
ware, known as Deep-HMD, is the most precise model out
of all the classifiers tested. Deep-HMD not only achieves an
F-measure of 97% on the unknown zero-day test but also
provides a true positive rate of 99% and a false positive rate
of only 1%. This is a significant improvement compared to
the results obtained by the best standard ML (RF classifier
in Table 2, zero-day test), which only delivers a true positive
rate of 68% and a false positive rate of 32% (Fig. 10).

4.3 Deep-HMD vs. Binary MLP

Table 3 summarizes the evaluation results of Deep-HMD
and binary MLP models for zero-day malware detection
using 4 HPC events, including their performance and over-
head (latency and memory footprint). The results demon-
strate that Deep-HMD is a more robust malware detector
with a higher detection rate, achieving 97.1% F-measure and
97.4% AUC in recognizing unseen zero-day malware. How-
ever, it has a larger model size to achieve such high accuracy.
In contrast, the binary MLP has a much lower detection rate
of 81.3% F-measure. However, it offers the advantage of
being a lightweight DNN detector with a small model size
of only 14 MB, and it still achieves a high AUC of 91.3%
making it a potentially attractive option for resource-limited
embedded systems.

4.4 Explainability Analysis

In this subsection, we explore the explainability of Deep-
HMD methodology, uncovering how it learns distinctive
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Fig. 11 Deep-HMD feature map during model training process. a origi-
nal tabular data’s feature distribution, b Deep-HMD’s first convolu-
tional layer’s feature map, ¢ 8" convolutional layer, d 12 convolutional
layer, e 16" convolutional layer, f linear layer’s feature distribution

features of malware and benign through a multi-layer
image-based deep neural network than a one-stage-only tab-
ular-based method. To achieve this, we randomly collected
approximately 200 images each of benign and malware (gen-
erated from the corresponding tabular data with the same top
4 HPC features used across all experiments in this work) and
utilized these to evaluate our Deep-HMD model. By plot-
ting the feature maps at each layer of the model, we can gain
insight into how the model distinguishes between malware
and benign software. We extracted the feature maps for each
convolutional and linear layer, allowing us to explore the
unique features detected by the model at different stages of
the learning process. The model produced 64 channels of
feature maps at each convolutional layer, from which we
selected a subset to illustrate and explain the differences in
features detected between malware and benign software.
Figure 11 shows the distribution of the feature from the
original four HPC tabular data feature space, to the model
intermediate layers’ feature map in Deep-HMD, until the
very last linear layer before applying the SoftMax activation
layer in the model. Sub-figures (a) and (f) are the features’
data points that are projected in a two-dimensional feature
space using the method of t-SNE [46]. t-SNE is an effec-
tive method to display feature spaces of various classes that
visualizes high-dimensional data by giving each data point
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Table 4 Uncertainty analysis of Deep-HMD

Test set Uncertainty AUROC AUPRC
score

Known test 48% 0.99 0.981

Zero-day test 96% 0.97 0.948

a location in a two or three-dimensional map. The rest sub-
figures are feature maps extracted directly from selected
convolutional layers. As shown, originally, the malware and
the benign data are entangled altogether and could not be
separated clearly, indicating that there is a non-linear hidden
relationship between malware and benign data points (as
shown in Fig. 11a). After the HPC tabular data are converted
to image data and are fed to Deep-HMD neural network, the
model applies non-linear convolutional functions and slides
the feature space to multi-dimensional channels, and this
computation continues in several convolution layers.

In Fig. 11b showing the first convolution layer, one can
only observe the HPC tabular data value between malware
and benign. The early layers in sub-figure-(c) focus on local
features of the HPC-based images in different channels,
making it difficult for humans to interpret the differences. In
the convolution layer 12 as depicted in Fig. 11d, we observe
a more abstract feature difference between malware and
benign begin unfolding. In convolution layer 16 which is
the last convolutional layer before applying linear layers and
activation functions, as seen in Fig. 11e clear pattern dif-
ferences between malware and benign are observed by the
model. Finally, as shown in sub-figure (f), the linear layer
demonstrates the t-distribution of the feature map, clearly
distinguishing between malware and benign samples.

4.5 Reliability Analysis

To understand the robustness and generalization of the pro-
posed method, we conduct a thorough reliability analysis
and evaluate Deep-HMD'’s predictive quality and its perfor-
mance consistency involving uncertainty and robust gen-
eralization on unseen events. Tran et al. [47] suggested the
reliability analysis of a model regarding uncertainty, robust
generalization, and adaptation across a full range of datasets
that have various contexts and characteristics such as open
datasets, in and out-of-distribution datasets. In this paper, we
focus on analyzing robust generalization on the unseen event
that has a covariance shift (zero-day test) and subpopulation
shift (known test). In our threat model, a zero-day test data-
set has new malware types that the training dataset doesn’t
have; a known test is a subset with a similar feature space
to the training dataset and is drawn from a larger population
distribution. We implemented Mahalanobis distance [48]
in scikit-learn [26] to measure the uncertainty score of the
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known test and zero-day test, which shows the similarities of
two evaluated datasets. The score is the normalized distance
of the feature spaces between the test dataset and the train-
ing dataset. Notice the training dataset itself has an uncer-
tainty score of 4%. The Mahalanobis distance is calculated
as below, where x is the data point to be evaluated, y is the
mean vector, and X is the covariance matrix:

DP=(x-w'Z - p 3

We assess the detection performance of Deep-HMD
by evaluating its prediction quality in terms of accuracy,
F1, AUROC, and AUPRC (average precision). In Table 4,
we present the results for AUROC and average precision.
AUROC measures the model’s ability to distinguish between
malware (positive examples) and benign (negative examples)
and is used to evaluate the discrimination performance. On the
other hand, AUPRC indicates whether the model can correctly
identify all the malware without mistakenly labeling too
many benign samples as malware. We conducted a reliability
analysis of our Deep-HMD model, considering both known
and unknown test scenarios. The results indicate that as the
uncertainty score increases from 48% in the known test to
96% in the zero-day test, the model’s AUROC and AUPRC
decrease by 4% and 7%, respectively. Despite the slight
decrease in performance, the results highlight the robustness
and reliability of our proposed multi-level deep transfer
learning approach for HPC-based zero-day malware detection.

5 Concluding Remarks

In this paper, we investigated the efficacy of widely used
machine learning classifiers for hardware-based zero-day
malware detection. Our findings reveal that they are not
effective in recognizing unknown malware patterns with
high accuracy and low false positive rates. This challenge
arises from the fact that the zero-day malware HPC data does
not match any known attack applications’ signatures in the
existing database, making it a challenging problem to tackle.
To address this issue, we proposed Deep-HMD, a multi-level
DNN-based approach that utilizes a flexible transfer training
strategy to detect both known and unknown (zero-day) mal-
ware at run-time with a small number of hardware events.
Our experimental results demonstrated that Deep-HMD out-
performs existing ML-based detection methods, achieving
97% in both F-measure and AUC metrics for recognizing
unknown malware signatures with only 1% false positive
rate. Moreover, Deep-HMD excels in known malware detec-
tion, obtaining 99% in both F-measure and AUC metrics.
Our proposed intelligent solution is the first DNN-based
method for accurate hardware-based known and zero-day
malware detection, employing a lightweight and efficient
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transfer learning strategy on HPC-based data presented in
image format. It is extensible and generalizable, making it a
well-suited solution for securing modern computing systems
against emerging malware attacks.
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