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Abstract
Malware is increasingly becoming a significant threat to computing systems, and detecting zero-day (unknown) malware 
is crucial to ensure the security of modern systems. These attacks exploit software security vulnerabilities that are not 
documented or known in the detection mechanism’s database, making it particularly a pressing challenge to address. In 
recent times, there has been a shift in focus by security researchers toward the architecture of underlying processors. They 
have suggested implementing hardware-based malware detection (HMD) countermeasures to address the shortcomings of 
software-based detection methods. HMD techniques involve applying standard machine learning (ML) algorithms to low-
level events of processors that are gathered from hardware performance counter (HPC) registers. While these techniques 
have shown promising results for detecting known malware, accurately recognizing zero-day malware remains an unsolved 
issue in the existing HPC-based detection methods. Our comprehensive analysis has revealed that standard ML classifiers 
are ineffective in identifying zero-day malware traces using HPC events. In response, we propose Deep-HMD, a multi-level 
intelligent and flexible approach based on deep neural network and transfer learning, for accurate zero-day malware detec-
tion using image-based hardware events. Deep-HMD first converts HPC-based malware and benign data into images, and 
subsequently employs a lightweight deep transfer learning methodology to obtain a high malware detection performance for 
both known and unknown test scenarios. To conduct a thorough analysis, three deep learning-based and nine standard ML 
algorithms are implemented and evaluated for hardware-based malware detection. The experimental results indicate that 
our proposed image-based malware detection solution achieves superior performance compared to all other methods, with 
a 97% detection performance (measured by F-measure and area under the curve) for run-time zero-day malware detection 
utilizing soley the top four performance counter events. Specifically, our novel approach outperforms the binarized MLP by 
16% and the best classical ML algorithm by 18% in F-measure, while maintaining a minimal false positive rate and without 
incurring any hardware redesign overhead.

Keywords  Deep learning · Hardware-based malware detection · Transfer learning · Zero-day malware · Explainable 
machine learning

1  Introduction

For the past few decades, cybersecurity has been a significant 
concern worldwide due to its potential threat to information 
technology infrastructures. Malware, also known as mali-
cious software, is a type of cyber-attack that often comes 

bundled with legitimate programs to deceive unwary users 
[1, 2]. Malware detection is a critical aspect of cybersecurity 
that helps organizations protect users’ sensitive data, prevent 
system damage, and maintain business continuity. In recent 
years, there has been a growing concern regarding the limita-
tions and performance issues associated with traditional soft-
ware-based malware detection methods. Although traditional 
detection methods, such as anti-virus software, are capable of 
detecting known malware signatures, they are not very effi-
cient in terms of complexity and computational overhead for 
the system [3, 4]. Updating these mechanisms with new mal-
ware variants requires a considerable amount of memory and 
hardware resources, making them less practical for emerging 
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computing platforms such as resource-constrained embed-
ded systems and IoT devices. Additionally, these methods 
rely on static signature analysis, making them inadequate for 
detecting unknown attacks [5]. As the prevalence of malware 
increases, it is increasingly important to develop effective 
malware detection strategies as they serve as an early warning 
system to safeguard modern computer systems.

In recent studies, hardware-based malware detection 
(HMD) techniques have emerged as a promising alternative 
to overcome the limitations and performance issues associ-
ated with traditional software-based detection methods [2–4, 
6–9]. These techniques utilize low-level hardware events, 
which are monitored through hardware performance coun-
ters (HPCs) registers. HPCs are the specialized registers 
present in the performance monitoring unit (PMU) of mod-
ern microprocessors that are designed to collect hardware 
events of running applications [10, 11]. HMD techniques can 
operate independently of the underlying operating system 
when it comes to capturing low-level events, making them 
more difficult for attackers to bypass detection measures. 
These events, such as cache memory hits/missess, branch 
mispredictions, TLB hits, etc. are hardware-level features 
that reflect the actual performance-related behavior of a 
running application on the target processor architecture. In 
addition, hardware-based malware detection techniques lev-
erage standard machine learning (ML) algorithms that are 
trained on HPC events to create precise classifiers that can 
detect signatures of malicious software. Previous research 
in HMD has demonstrated the effectiveness of standard ML 
techniques in detecting known malware patterns. However, 
in this work, we have identified some significant challenges 
in existing HPC-based malware detection methods and pro-
pose a deep learning-guided approach to achieve accurate 
hardware-based detection of zero-day malware.

Challenge 1: Determining Key Hardware Events  To ensure 
efficient hardware-based malware detection, it is crucial to 
identify the most significant low-level events. With modern 
microprocessors, there are a plethora of events, each serv-
ing a distinct function. This makes monitoring all of them 
result in high-dimensional data, which leads to increased 
computational complexity and delays. As a result, it is less 
feasible for effective HMD solutions. Therefore, as differ-
ent HPC events are employed for various purposes, it is 
crucial to effectively specify the most appropriate hardware 
events to develop accurate ML-based countermeasures for 
malware detection.

Challenge 2: Detection of Zero‑Day (Unknown) Mal‑
ware  Zero-day attacks take advantage of software security 
vulnerabilities that are potentially severe and undocumented 
in the detection mechanism’s database [12]. The absence of 

signature history or a clear remediation strategy has made 
zero-day malware detection a persistent challenge for anom-
aly detection in securing modern computer systems in these 
works [13, 14]. Therefore, they need to be resolved as soon 
as being discovered in order to limit the security threats to 
the users. Current machine learning-based detection meth-
ods have overlooked the complex issue of zero-day mal-
ware detection, which makes them inherently inflexible and 
unscalable. As a result, incorporating new malware types 
would necessitate training new models, resulting in reduced 
efficiency and applicability of the solution.

Challenge 3: High False Positive Rate  Malware detection 
methods based on machine learning, in their conventional 
form, have a high false positive rate, where benign appli-
cations are mistakenly classified as malware. This problem 
becomes even more critical when it comes to detecting 
unknown malware, as ML models often confuse benign soft-
ware with malicious software. Our experiments with various 
standard ML algorithms reveal that existing HMDs wrongly 
detect benign applications as malware during zero-day tests 
with a significantly high false positive rate on average across 
different algorithms. Consequently, this challenge disrupts the 
accuracy and reliability of security countermeasures against 
emerging cyber-attacks that require to be addressed urgently.

In response to these challenges, we propose Deep-HMD, 
an accurate and salable deep neural network-based approach 
for effective known and unknown (zero-day) malware detec-
tion using processors’ hardware events. In particular, after 
analyzing various types of malware and machine learning 
algorithms employed in HPC-based malware detection, our 
comprehensive examination demonstrates that the standard 
machine learning classifiers, which were widely utilized in 
previous studies, are ineffective in accurately recognizing 
the signature of zero-day malware with high detection per-
formance and low false positive rates. The results demon-
strate a significant performance drop in standard ML classi-
fiers applied for hardware-based zero-day malware detection.

To address the limitations of existing ML-based malware 
solutions, we first determine the most notable hardware per-
formance counter events for accurate HPC-based malware 
detection using an effective feature selection technique based 
on the mutual information (MI) method. Next, we present a 
novel deep transfer learning approach for hardware image-
based malware detection. By utilizing deep neural network 
(DNN) and transfer learning, we achieve superior detection 
rate and effectiveness in detecting both known and previ-
ously unknown malware patterns. Deep-HMD first trans-
forms HPC-based malware and benign data to images, and 
then leverages a lightweight deep transfer learning approach 
to attain a high malware detection performance for both 
known and unknown tests.
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Contributions  This work presents a substantial extension of 
the recent research [5], incorporating the principal contribu-
tions outlined below.

•	 We demonstrate the limitations (low detection rate 
and high false positive) of existing machine learning 
classifiers in defending against unknown attacks for 
hardware-based malware detection.

•	 We propose Deep-HMD, a multi-level deep neural 
network-based approach with transfer learning aid for 
accurate hardware-based known and unknown malware 
detection that first converts HPC-based malware and 
benign data to images using an effective 2D embedding 
image features conversion method.

•	 Next, Deep-HMD leverages a lightweight deep transfer 
learning approach to obtain a high malware detection 
performance despite using a small number of hardware 
events captured at run-time by existing hardware 
performance counter registers.

•	 To conduct a comprehensive analysis of known and 
unknown malware detection using hardware events, we 
implemented three deep learning-based and nine classical 
ML-based algorithms. In addition to Deep-HMD, we 
implemented a binarized neural network with a multi-
layer perceptron (MLP) algorithm for image-based and a 
deep learning method for tabular HPC data, respectively, 
and compared their performance with Deep-HMD.

•	 To shed light on the explainability of the model, 
activation feature maps from different layers of Deep-
HMD were properly visualized. These maps showcase 
the model’s ability to accurately detect zero-day malware 
by observing the feature differences between malware 
and benign data. Furthermore, a reliability analysis 
was conducted to verify Deep-HMD’s robustness for 
predicting over medium and high uncertainty test data.

•	 Deep-HMD stands out as the first DNN-based methodology 
for accurate hardware image-based malware (known and 
zero-day) detection. It enables a lightweight and efficient 
transfer learning strategy on HPC-based data of new 
malware types in an image format, making it extensible and 
generalizable, reinforcing its effectiveness against emerging 
malware attacks.

The remainder of this paper is organized as follows. Section 2 
presents an overview of related work and background on the topic 
of hardware-based malware detection using ML techniques and 
explainable ML. Section 3 introduces the details of the proposed 
methodology. Section 4 presents the evaluation metrics and 
experimental results analysis. Lastly, Section 5 concludes this 
study.

2 � Background on Hardware Malware 
Detection

Hardware Performance Counters  Modern microprocessors 
have hierarchical cache subsystems, processor pipelines, 
simultaneous multithreading, and out-of-order execution units, 
which significantly impact their performance. Modern micro-
processors such as Intel, ARM, and AMD microprocessors 
have a performance monitoring module accessible through 
programmable hardware performance counters.

HPCs are versatile in their ability to record an array of 
low-level events that can have a significant impact on a pro-
cessor’s performance. These events include cache memory 
accesses and cache misses, translation lookaside buffer 
(TLB) hits and misses, branch mispredictions, and many 
more. By monitoring these events, developers can make 
informed decisions and fine-tune their software to achieve 
optimization goals, whether that be boosting performance, 
improving energy efficiency, or enhancing security.

HPCs vary in their availability across different processor 
platforms. For example, in Intel Ivy-bridge and Intel Broad-
well CPUs, there are limitations on the number of counter 
registers, with only four available per processor core. This 
means that only four HPCs can be simultaneously captured 
on these architectures. Intel SandyBridge and Haswell archi-
tectures, on the other hand, offer a more generous allocation 
of eight general-purpose counters per core, providing greater 
flexibility for performance monitoring and optimization.

One of the notable features of HPCs is their ability to 
issue interrupts when a counter overflows. Additionally, 
these counters can be configured to start counting from a 
specific desired value, offering fine-grained control over the 
monitoring process. This level of programmability empow-
ers developers to tailor their performance monitoring strate-
gies to the precise needs of their applications, ensuring that 
they can extract the most relevant and valuable insights from 
the microprocessor’s operation.

Hardware‑Based Malware Detection  Demme et  al. [2] 
proposed the suitability of machine learning techniques 
applied to performance counter events for malware detec-
tion. The authors presented to use HPC data to detect mali-
cious behavior patterns by developing machine learning 
techniques primarily on mobile operating systems such as 
Android. Tang et al. [4] discussed the feasibility of unsuper-
vised learning using low-level HPCs features to detect spe-
cific attacks, while Ozsoy et al. [7] used sub-semantic fea-
tures and learning algorithms to detect malware, suggesting 
changes in the microprocessor pipeline for real-time detec-
tion, which increased the overhead and complexity. Singh 
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et al. [6] developed an HMD method using ML algorithms 
trained on synthetic traces of hardware features to detect 
kernel rootkits. However, the work only focused on a limited 
set of synthetic datasets.

Recent works [3, 8] have highlighted that the number of 
HPC registers available is limited due to physical and cost 
constraints, which in turn limits the number of events that 
can be counted simultaneously. Therefore, they proposed 
effective ensemble learning and boosting techniques on 
weak standard ML classifiers to improve the performance 
of HMD by accounting for the impact of reducing the num-
ber of HPC features on the performance of ML-based mal-
ware detectors. Sayadi et al. [3] developed eight ML models 
and two ensemble classifiers (AdaBoost and Bagging), and 
compared them across various metrics including accuracy, 
robustness, and hardware overhead. Results showed that 
the proposed ensemble learning malware detection with 
just 2 HPCs outperformed standard classifiers with 8 HPCs 
by up to 17%, matching the robustness and performance of 
standard detectors with 16 HPCs while using only 4 events, 
enabling effective run-time hardware-assisted malware 
detection. Furthermore, the work in [8] presented 2SMaRT, 
a two-stage ML-based approach for specialized run-time 
malware detection. In the first stage, applications are clas-
sified into benign or specific malware classes using a mul-
ticlass technique. In the second stage, the authors optimize 
detection by employing tailored machine learning models 
for each malware class and enhance overall performance 
through effective ensemble learning. Some recent works 
[11, 15] addressed challenges of detecting advanced mal-
ware attacks such as modern morphic and stealthy (embed-
ded) malware that is hidden within benign programs and 
proposed optimized traditional machine learning and deep 
learning-based techniques trained on HPC events to improve 
malware detection performance.

Performance Monitoring Tools  To monitor application 
behavior and gather hardware-related events crucial for 
analyzing and optimizing application performance, previous 
studies have employed a variety of performance monitoring 
tools. These tools include Perf [16, 17], Pin [18], PAPI [19], 
Intel VTune [20], and Intel PCM [21]. All these tools are 
available for Linux systems while only Intel VTune and Intel 
PCM can monitor HPCs in Windows and macOS systems. 
Perf, PAPI, and Pin demand some knowledge of command 
lines for users due to the lack of a GUI interface. Perf tool is 
a Linux-based low-level performance monitoring tool that 
can instrument CPU performance counters, tracepoints, 
kprobes, and uprobes (dynamic tracing) [17]. Its monitor-
ing granularity can be scaled to as fine as 10ms without the 
need for customization. The Pin tool is capable of capturing 
a wide range of program-specific ISA-dependent features, 
including instruction mix, instruction-level parallelism, 

register traffic, branch predictability, and more, enabling a 
thorough examination of application behavior [18].

Some hardware vendors provide their own proprietary 
tools or libraries for performance monitoring on different 
OSs. These tools are often tailored to their hardware and 
can be used to extract hardware events. For instance, 
macOS users can employ instruments, and Windows users 
have access to performance monitor. Furthermore, the 
Performance Application Programming Interface (PAPI) 
[19] is a cross-platform interface designed for monitoring 
hardware performance counters on processors equipped 
with specific registers for hardware events. PAPI is designed 
as a cross-platform interface, ensuring that it remains 
independent of any particular operating system. PAPI is 
intended to work on a variety of operating systems, including 
Linux, macOS, and Windows. This compatibility makes it 
a valuable tool for performance monitoring and analysis 
in diverse computing environments. Users can employ 
PAPI on the OS that best suits their specific requirements 
and system configuration. Furthermore, for the purpose 
of identifying and addressing performance bottlenecks in 
running programs, as well as for fine-tuning and debugging, 
Intel offers a licensed tool known as Vtune [20]. Vtune 
can efficiently record and display performance-related 
information, featuring a robust graphical user interface 
and comprehensive profiling capabilities, including HPC 
monitoring, call graphs, performance bottleneck analysis, 
and hotspot detection.

Additionally, Intel’s Performance Counter Monitor 
(PCM) [21, 22] is a powerful performance monitoring 
unit implemented in Intel’s processors, such as Xeon, 
Atom, and Xeon Phi. PCM enables the monitoring of 
performance and energy-related metrics in both Windows 
and Linux environments. Notably, PCM sets itself apart by 
supporting real-time monitoring of both core and uncore 
events, distinguishing it from tools like Perf and PAPI. Such 
cross-platform performance monitoring tools aim to work 
on multiple OSs often providing a degree of hardware event 
extraction on non-Linux operating systems. This highlights 
the adaptability and versatility of these tools, ensuring that 
performance analysis and optimization can be carried out 
effectively across a variety of computing environments. 
Additionally, in situations where hardware event monitoring 
is critical, virtualization or containerization solutions 
may be employed to run a Linux-based environment on 
top of the non-Linux OS. This allows the use of Linux-
based performance analysis tools within a contained 
environment. Overall, it is important to note that with careful 
consideration of system-agnostic features and adaptable 
model architectures, hardware malware detection techniques 
hold the promise of being generalizable to other systems 
and operating systems with minimal modification, thus 
enhancing the broader cybersecurity landscape.
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3 �  Proposed Methodology

This section presents the proposed multilayer deep transfer 
learning-based approach for accurate hardware image-based 
malware detection.

3.1 � Experimental Setup

In our experiments, the benign and malware programs are 
profiled on an Intel Xeon X5550 machine. To effectively 
address the non-determinism and overcounting issues 
of HPC registers in hardware-based security analysis 
discussed in recent works [1, 23], we have extracted low-
level CPU events available under Perf tool using a static 
performance monitoring approach where we can profile 
applications several times measuring different events each 
time. HPC events are monitored with a sampling time 
of 10ms within Linux Containers (LXC) as an isolated 
profiling environment. More than 5000 benign and malware 
applications are executed for data acquisition. Benign 
applications include real-world applications comprising 
MiBench [24] and SPEC2006 [25], Linux system programs, 
browsers, and text editors. Malware applications, collected 
from and categorized by VirusShare and VirusTotal online 
repositories, comprise nine types of malware including 
worms, viruses, botnets, ransomware, spyware, adware, 
trojan, rootkit, and backdoor. Leveraging Linux containers 
in our experimental setup is advantageous because, unlike 
typical virtualization platforms like VMWare or VirtualBox, 
they offer direct access to real hardware performance 

counters data rather than emulating performance counter 
events. It is important to note that running malware within 
the container can potentially contaminate the environment, 
which may impact subsequent data collection. To mitigate 
this risk and ensure that collected data is not tainted by 
previous runs, the container is destroyed after each run. 
In total, we collected 16K samples of malware and 30K 
samples of benign applications. Among all malware, there 
are 7217 trojans, 2606 viruses, 1821 ransomware, 1787 
spyware, 1588 botnets, 748 worms, 591 backdoors, 242 
rootkits, and 229 adware samples. Table 1 reports a subset 
of sixteen deployed low-level features captured by HPC 
registers from the Perf tool under Linux in our experiments 
and their descriptions.

3.2 � Feature Engineering

As highlighted before, feature analysis and selection (e.g., 
analyzing the importance of the hardware events) is an 
important step in developing accurate ML models for hard-
ware-based malware detection. To address the Challenge 
1 of existing HMD methods, we first employ the mutual 
information (MI) method in information theory to analyze 
and rank the importance of the HPC events to the target label 
Y (benign/malware). Then, we analyze the top 16 features’ 
correlations to each other to filter out the redundant features 
to reduce training costs and improve model performance. At 
last, we select the most prominent four features among the 
rest top-ranked features to fit the constraints of the number 
of available HPCs during run-time.

Table 1   Top 16 HPC features collected from Perf tool in our experiments and their descriptions

 HPC event Description

LLC-loads Number of successful memory load operations that accessed the Last-Level Cache (L3 cache)
L1-dcache-load-misses Number of cache lines brought into the Level 1 data cache due to cache misses
node-loads Number of successful load operations to the DRAM, representing main memory access
mem-stores Number of successful store operations in main memory, indicating data writes to main memory
dTLB-stores Number of TLB lookups for data memory store operations, which are address translation requests for data writes
cpu/branch-instructions/ Number of branch instructions executed by the CPU
dTLB-loads Number of TLB lookups for data memory load operations, indicating address translation requests for data reads
cpu/cache-references/ Number of references made to the CPU’s caches, including cache hits and misses
cpu/branch-misses/ Number of branch instructions that were mispredicted by the CPU
cpu/instructions/ Number of instructions retired by the CPU, representing the total executed instructions
cache-references Number of references made to the last level cache (LLC), which includes both cache hits and misses
instructions Number of instructions retired by the CPU, representing the total executed instructions
branch-instructions Number of branch instructions executed by the processor
branch-loads Number of successful branch instructions, indicating branches that were taken
branch-misses Number of all retired mispredicted branches, signifying branch prediction failures
msr/tsc/ Number of time-stamp counter (TSC)
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3.2.1 � Feature Importance Analysis

Mutual information (MI) measures the dependency between 
two variables. Regarding features X and label Y, the MI 
measure I(X, Y) is obtained by estimating the marginal entro-
pies H(X), H(Y), and the joint entropy H(X, Y) as follows:

For each data point i, the MI method computes Ii based on 
its neighboring data points. It first finds the k-closest neigh-
bors falling inside of the distance to point i. Using �(⋅) as 
the digamma function, N is the total samples, Nxi is the data 
sample falling within the distance d with k neighbors, and mi 
is the total number of neighbors in the dataset. The estimated 
MI is defined as below:

In this work, we use MI to estimate the dependency 
between each HPC and the target label Y, which measures 
each HPC’s contribution to predict label Y. To this pur-
pose, We use Scikit Learn library’s mutual_info_classif  
algorithm [26] to estimate MI from k-nearest neighbor sta-
tistics [27] to obtain the feature importance of each HPC to 
target label Y. Its output is the feature importance regard-
ing each HPC to Y. We rank it and output a list of the top 
16 features that contribute the most to distinguishing Y 
between malware and benign.

3.2.2 � Feature Correlations Analysis

Our next step in the Feature Engineering process involves 
a thorough analysis of feature correlations, aiming to elu-
cidate the relationships between pairs of hardware perfor-
mance counter features. In instances where redundancy 

(1)I(X, Y) = H(X) + H(Y) − H(X, Y)

(2)Ii = �(N) − �(Nxi) + �(k) − �(mi)

becomes apparent, we take action to eliminate such features 
from consideration within our feature list. Among the top 
16 features, we employed Panda’s Pearson’s correlation 
coefficient method [28, 29] to conduct a comprehensive 
correlation analysis, which measures the linear relation-
ship between each pair of HPC features for all data. We 
dropped the less significant HPC features that displayed 
a correlation coefficient exceeding a threshold of 0.9 with 
another HPC feature. Figure 1 shows the heatmap of the 
HPC features and their correlations. Notably, a vivid red 
color (excluding the diagonal) on the heatmap signifies the 
presence of redundant HPC features. For example, “dTLB-
loads” was identified as redundant with respect to “dTLB-
stores” and given its lesser contribution to the target label 
Y in comparison to “dTLB-stores,” we opted to remove 
“dTLB-loads.” Similarly, “cache-references” was deemed 
redundant in relation to “node-loads” and was considered 
less significant, leading to its exclusion from consideration.

3.2.3 � Feature Selection

As the last step, among the top prioritized features (with 
horizontal and vertical axes showing the same sets of top 16 
features) as shown in Fig. 2, we select the top four hardware 
events (from the blue-colored features) that show significant 
accumulated information gains (regarding label Y) to train 
a model, considering that most modern microprocessors’ 
counters can only monitor a limited number of events at 
once during applications execution time [3, 8]. The selected 
four hardware events include node − loads , LLC − loads , 
L1 − dcache − load − misses , and mem − stores.

Fig. 1   Top 16 HPC features’ correlations heatmap

Fig. 2   Top HPC features’ accumulated mutual information gain to Y. 
The more blue highlight, the more contribution of the feature to the 
label Y
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3.3 � Embedding Tabular Data

Some previous studies have utilized the embedding tech-
nique to convert non-image data types, such as text and 
byte sequences, into image-like representations as a pre-
processing step. This approach is employed to harness the 
capabilities of deep neural networks (DNNs) for enhancing 
cybersecurity threat detection. The rationale behind this 
lies in the well-established performance of DNNs in both 
image processing and natural language processing (NLP). 
For instance, in the work by Raff et al. [30], a static analy-
sis is conducted directly on byte programs extracted from 
Microsoft Windows Portable Executable (PE) files, with-
out executing them. This analysis aims to transform raw 
byte sequences into higher-level representations, which are 
subsequently fed into an LSTM model. Notably, each raw 
byte sequence is treated as a lengthy sequence classification 
problem, spanning up to two million time steps. Similarly, 
in a study by [31], the authors take malware binaries, trans-
form them into grayscale images, and then convert these 
images into sequence embeddings to be used with a recur-
rent neural network (RNN) for stealthy malware detection.

In the study by [32], the transformation of Android appli-
cations’ API call sequences, derived from the structure of 
the API call graph, is undertaken. These sequences are 
converted into a low-dimensional numeric vector feature 
set, commonly referred to as embeddings. These embed-
dings are then utilized as inputs for a deep neural network 
(DNN). It is important to note that this approach primarily 
focuses on detecting malware that involves the invocation of 
malicious API(s) to execute malicious code. However, it’s 
worth highlighting that this work adopts a static approach 
to extract the API call graph representation from malicious 
code, without actually executing the code. This static analy-
sis approach does not capture the dynamic runtime scenario. 
Moreover, the research in [33] builds upon prior opcode 
sequence embedding work to solve the challenge of long 
opcode sequence problem, by converting sequential opcodes 
using low-dimensional opcode embeddings to discover the 
malicious patterns.

Notably, most of the previous approaches rely on static 
analysis without executing the malicious applications. 
This static analysis approach has its limitations, as it can 
be vulnerable to evasion techniques such as obfuscation 
and encryption employed by malicious actors to avoid 
detection. In contrast, our research takes a dynamic 
analysis approach. We collect hardware performance 
counter tracing data directly from running applications 
when malicious code is in action. Our unique contribution 
lies in the development of a lightweight algorithm to 
directly embed HPC data into image-like representations 
using only four numerical HPC values as features. This is 
a significantly smaller amount of information compared to 

PE byte sequences, opcode sequences, or API call graphs, 
making it challenging to train an effective DNN model 
directly. To address this challenge, we adopt a transfer 
learning approach and leverage a transferrable DNN 
architecture.

Furthermore, our proposed approach differs from 
previous works that often employ RNN and LSTM 
architectures, which are larger model architectures and 
can introduce substantial overhead due to the existing 
large data embeddings. In contrast, our paper explores 
the effectiveness of embedding only four numerical HPC 
events using our two-staged methodology. This unique 
approach is aimed at addressing the limitations of static 
analysis and exploring the potential of lightweight, 
transferable DNN architectures for hardware-assisted 
malware detection. This not only enhances the extensibility 
and generalizability of the proposed solution but also 
underscores its significance in diverse domains, including 
those involving resource-limited devices.

3.4 � Machine Learning Classifiers

Standard ML Classifiers  We examine the suitability of vari-
ous standard machine learning classifiers for known and 
unknown malware detection. These ML models include 
RandomForest (RF), DecisionTree (DT), Gaussian Naive 
Bayes (GNB), Logistic Regression (LR), ExtraTreeClassifier 
(ExtraTree), RidgeClassifier (Ridge), K-Nearest Neighbor 
(KNN), Support Vector Machine (SVM), and BaggedDT. 
These ML models cover a diverse range of algorithms and 
the final predictor can be a binary classification model which 
is aligned with the malware detection task. It is worth notic-
ing that standard MLs are most suitable for structured data 
rather than unstructured data.

Deep Neural Network (DNN)  Traditional ML classifiers are 
primarily used to train on structured data such as tabular 
data stored in CSV files or relational databases. On the other 
hand, deep neural networks (DNNs) are most commonly 
used on unstructured data such as images and natural lan-
guage processing. Computer vision-based DNN models can 
recognize hierarchical relationships in analyzing simple to 
complex features, and characterize the visual system as a 
hierarchical and feedforward system. While the neurons in 
the early layers of a DNN have small receptive fields and are 
sensitive to local features, they can capture more generalized 
patterns in deeper layers. Recent results of very deep neural 
networks from the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) have shown that the neural network 
can achieve a top 5 error rate of 3.57%. Inspired by com-
puter vision applications, in this work, we leverage DNN 
to develop an accurate and intelligent malware detection 
framework based on image-based HPC data.
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Transfer Learning  Recent studies have reported that a well-
trained DNN could transfer its knowledge of generalized 
features and feature extraction ability from one domain to 
another. The work in [34] highlights that transfer learning 
can also share the architecture-related parameters in a new 
field while maintaining a high-performance rate. While 
transfer learning has demonstrated its success in computer 
vision, its application to tabular-based data remains rela-
tively unexplored. In a survey conducted by [35] on deep 
neural networks (DNN) and tabular data, it was observed 
that the potential of transfer learning in the context of tabular 
data remains an open question. To fill this research gap, our 
study in this paper is dedicated to investigating a transfer 
learning approach tailored to tabular hardware data, using 
only four performance counter-numerical values. Notably, 
existing literature suggests that despite its status as a state-
of-the-art technique, deep neural networks may not perform 
as effectively as classical machine learning models in the 
realm of tabular data [36]. Notably, existing works [34] 
present that a CNN architecture can transfer its knowledge 
trained on the ImageNet domain to a new problem domain 
with high accuracy and stable results. Motivated by such 
advances, in this work we develop a transfer learning strat-
egy combined with a DNN model in zero-day hardware-
based malware detection. ImageNet is significantly different 
from malware and benign datasets, where ImageNet contains 
more generic images in everyday lives. In contrast, malware 
and benign datasets have numerical features from the proces-
sor’s HPC events. In this paper, we utilize a tabular-based 
HPC-based dataset comprising malware and benign sam-
ples. Our primary objective is to investigate the potential 
of transfer learning in combination with DNN to enhance 
knowledge transfer and subsequently achieve superior detec-
tion performance compared to traditional machine learning 
approaches. Our work is the first in the field that explores the 
functionality and effectiveness of leveraging DNN network 
transferred from ImageNet to the tabular-like zero-day mal-
ware detection domain based on only a few hardware tracing 
events monitored at run-time.

3.5 � Overview of Deep‑HMD Framework

In this work, we propose Deep-HMD framework to address 
the Challenges 1 & 2 of existing HMD methods and to over-
come the limitations of standard ML classifiers in detecting 
zero-day malware. To this aim, we first explore the per-
formance of standard ML classifiers trained with the most 
prominent HPC events. We train the ML models with default 
parameter settings as our base learners. We then examine the 
models across various metrics on the known test and zero-
day test datasets. The ML classifiers are implemented using 
scikit-learn [26] and are used to analyze how well they can 
perform on known and zero-day test datasets. Next, given 

the weak performance of ML models (as we will show in 
Section 4), we present the Deep-HMD framework as the 
target hardware-based zero-day malware detector.

We investigate state-of-art deep learning model architec-
ture trained over ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC). ILSVRC uses the smaller portion of 
the ImageNet which consists of 1000 categories with a total 
of 1.3 million training images, 50,000 validation images, 
and 100,000 testing images. There are several advantages 
in using transfer learning. Firstly, the pre-trained model 
has already learned to recognize patterns from millions of 
images. Secondly, training from scratch requires a larger 
dataset, high training time, and trial-and-errors on param-
eter tuning. While using a pre-trained model and transfer 
learning can maintain high accuracy when fine-tuned in a 
new field. The work in [37] studied that among the many 
popular DNN networks, ResNet is an appropriate choice in 
network-based deep transfer learning. ResNet is a convo-
lutional neural network that implements residual blocks of 
“skip connections” to alleviate the issue of vanishing gradi-
ent by setting up an alternate shortcut for the gradient to 
pass through. In addition, they enable the model to learn 
an identity function. This ensures that the higher layers of 
the model do not perform any worse than the lower layers. 
ResNet is also a simple architecture such that residual blocks 
do not add any major complexity to the network so that all 
the common optimization methods can be used in training 
residual networks. Thus, we implemented our proposed 
transfer learning scheme based on ResNet18 which has 18 
layers in total. It is notable that in our exploration of various 
DNN architectures for transfer learning, we indeed consid-
ered more lightweight options like binary neural networks 
(BNN) and other convolutional neural networks (CNN). 
However, these alternatives did not meet the performance 
expectations for unknown malware detection. ResNet18 
demonstrated the highest performance among all methods 
examined, underscoring its suitability as the preferred choice 
for our transfer learning scheme to boost up the performance 
of hardware-assisted zero-day malware detection.

3.5.1 � Threat Model

Recent ML-assisted malware detection methods using HPC 
events have mainly considered two major validation meth-
ods including cross-validation and percentage split to exam-
ine the effectiveness of their models. The cross-validation 
method splits the dataset into K(1, ..., n) folds and selects 
one of them as a target testing dataset while the rest of the 
folds are used for the training dataset. And in the percentage 
split method, the dataset is divided into two sections based 
on the percentage setting allocated to training and the other 
to the testing set. However, the major issue with these valida-
tion techniques is that the testing data is split from the large 
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dataset and is part of the same data type used in the training 
dataset. Hence, such validation methods could not imitate 
the zero-day or unknown testing scenarios occurring in real-
world applications in which the trained machine learning 
classifiers should have never seen the testing dataset.

According to our experiments, malware applications 
within the same family typically do not exhibit identical 
performance counter values. This variation arises because 
the values collected from HPC registers reflect the unique 
signature left by each application on the underlying processor 
and can differ between different applications. To streamline 
our analysis, we categorize all malware collectively into one 
category, encompassing all nine types, while designating a 
separate category for the HPCs of benign applications. This 
binary classification approach distinguishes between benign 
(0) and malware (1), aligning with our primary focus on 
binary classification (malware detection). We use the top four 
HPCs in Section 3.2.1 to form sub-datasets across the work.

To model the zero-day malware threat type in our experi-
ments, among all nine malware types, we held out all four 
types of malware from rootkit, backdoor, virus, and ran-
somware as the target zero-day test data. These four types 
of malware are not presented in the training and known test 
datasets, thus, the zero-day malware set is totally unknown 
from the training dataset. For benign, we held out 30% of 
all benign data aside as a zero-day test benign dataset. We 
kept both malware and benign aside to imitate the zero-day 
testing in real-world scenarios where the malware is undoc-
umented in the training database of the detection mecha-
nism. The rest of the five types of malware including trojan, 
spyware, botnet, worm, and adware as well as the rest of 
the benign samples are considered for training and known 
test purposes, and we randomly split them into 70% for 
training and 30% for known testing. The difference between 
the known-test and zero-day-test in our experiments is that 
the known-test data contains the same malware types as 
the training dataset but with different unseen data and the 
zero-day-test data contains different malware types from 
the training dataset that are considered as new unknown 

attacks. After data are split, we relabel all types of malware 
as malware and leave benign as benign. Notably, our Deep-
HMD framework uses the same datasets during training, 
known-test, and zero-day test same as all classifiers. Also, 
classical ML models use the tabular format data, and Deep-
HMD employs the image data converted from correspond-
ing tabular data.

3.5.2 � Architecture of Deep‑HMD

Deep-HMD is a multi-layer intelligent and salable frame-
work that achieves an accurate and robust zero-day mal-
ware detection performance. The general overview of the 
Deep-HMD is depicted in Fig. 3. As seen, during the first 
level the Deep-HMD converts tabular malware and benign 
hardware events data (that are monitored from the under-
lying processor) to image formatted data using an effec-
tive 2D embedding image features conversion method 
(detailed algorithm and visual effects are introduced in 
the following section). A deep neural network can train on 
both tabular and image data. However, DNN-based archi-
tectures training on visual recognition tasks have achieved 
far-reaching performance with high top 1/top 5 accuracy 
and low top 5 error rates. Next, Deep-HMD leverages a 
high-performance ResNet architecture and transfer learn-
ing technique to recognize the zero-day malicious images 
at run-time. The work in [38] presented a method that 
projects features in tabular format into two-dimensional 
images before feeding images to fine-tune CNN mod-
els. However, there exist no similar experiments on the 
application of such methods in detecting the signatures of 
unknown malware and in particular with the emphasis on 
developing effective security countermeasures at the pro-
cessors’ hardware level. Our Deep-HMD method explores 
this space by employing a novel deep neural network and 
transfer learning training strategy on image-based hard-
ware events data to achieve state-of-the-art performance 
for zero-day malware detection using a limited number 
of HPC events.

Unknown (Zero-day) HPC data

HPC-based Tabular Training
Data (Benign vs. Malware)

2D Embedded Image Data 
Source Deep Learning Model

Benign

Malware

Transferring
Features

Efficient Zero-day 
A ack Detector

Target Detec on Model 

Benign

Malware

2D Embedding Image Features Conversion from Hardware Events Intelligent Hardware-Based Zero-DayMalware Detector Implementa on

Tes

Training

Deep Neural Network (DNN) Top hardware events [HPC1..HPC4] 
monitored by Perf tool

…

Fig. 3   Overview of Deep-HMD, the proposed zero-day malware detection framework using 4 selected hardware events
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Stage 1 in Deep‑HMD  Our proposed Deep-HMD framework 
employs the encoding method described in Algorithm 1 to 
convert each row of 4 HPC tabular data to one image data 
represented by a two-dimensional Numpy array with the size 
of 256 × 256 and three color channels of RGB (red, green, 
and blue). The four HPC values represent the top four hard-
ware events that are highly impactful to the target label of 
malware or benign. Mapping the same sequence of hardware 
events to an image uncovers potential hidden relationships 
and discrepancies within the four HPC events concerning 
malware or benign classification. Meanwhile, malware and 
benign follow discrepant patterns reflected by the four HPC 
values. These hidden features can be extracted by different 
convolutional layers of Deep-HMD to assist in training effec-
tive malware detection model. We normalized all rows of 
tabular HPC data using the standard scalar in Scikit Learn, 
which removes the mean and scales the data to unit variance. 
Next, we use OpenCV [39] library to evenly project the four 
numeric data to a 256 × 256 × 3 resolution image with equal 
spacing and no-overlapping as shown in Fig. 4.

Algorithm 1   Converting tabular data to 2D images

The left image in Fig. 4 depicts nine rows of the 4 top 
HPCs in tabular format. We normalize them first according 
to all features’ mean and standard deviation. Each row of 

the top 4 HPCs is projected to one image as described in 
Algorithm 1. The example on the right side shows that nine 
rows of tabular data are converted to 9 two-dimensional 
image data. Each image on the right side is associated with 
a target label of either malware or benign, and each result-
ing image is employed independently for training or infer-
ence purposes. Overall, in this stage, we draw the four fea-
tures with equal sizes on the image with even spacing and 
ensure that they are not overlapped. Such images contain 
spatial relationships and hidden features among malware 
and benign applications resulted from a limited number of 
performance counter data (only 4 HPCs).

Stage 2 in Deep‑HMD  The second stage includes using the 
generated image data as inputs to train and test an accurate 
and effective DNN-based model for zero-day malware detec-
tion. We implement Deep-HMD with a customized transfer 
learning training strategy based on the ResNet18 architec-
ture [40] during training. To further explain the work done 
in Deep-HMD, we describe stage 2 in several steps in the 
following subsection.

3.6 � Training and Testing in Deep‑HMD

Figure 5 demonstrates the overall training and testing pro-
cess of Deep-HMD in four steps. Steps 1 and 2 are dedi-
cated to the training process and steps 3 and 4 are for the 
testing phase.

In Step 1, we first examine how the baseline model of 
the Deep-HMD performs on our known and zero-day test 
datasets. To this aim, we load the ImageNet parameter 
of Deep-HMD in fast.ai, run two tests, and calculate 

Fig. 4   Nine sample structured tabular data projected to nine two-
dimensional images using 2D embedding image features conversion 
from hardware events

Fig. 5   Overview of training and testing in Deep-HMD 
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various metrics. Fast.ai [41] is a deep learning wrapper 
library with PyTorch as its underlined backbone that 
can quickly train high-performance deep learning mod-
els and supports application domains in computer vision, 
natural language processing, and tabular models. The 
baseline of Deep-HMD tests how much knowledge it 
learns from ImageNet on generic features such as lines 
and strokes. We found it can detect 92% of benign appli-
cations but only 6% of actual malware. This experiment 
indicates that the front layers of the pre-trained trans-
ferrable model trained on a sizeable ImageNet can be 
used as a feature extractor, and the extracted features are 
versatile according to Tan et al.’s study on transfer learn-
ing [37]. Notice we mention “transferrable’’ because 
there is a relationship between model architecture and 
transferability [42]. The front layers of such pre-trained 
models learn the morphology of images in general and 
the morphology knowledge can be transferred to other 
visual recognition tasks with or without labeled data 
[43]. As shown in our baseline experiment where there 
is no training occurred, the model can detect 92% of 
benign as benign that further supports the understand-
ing that a well-trained CNN can be an efficient feature 
extractor for unknown context. With fine-tuning model 
parameters on malware datasets, it continues to learn 
domain knowledge, particularly the pattern of malware 
from benign. In particular, we examine the possibility 
of transferring the knowledge of pattern recognition to 
a new domain with a limited number of training samples 
and fast training time.

During Step 2, we load the transferable pre-trained base-
line model with the ImageNet parameter, remove the last 
layer of the network, replace it with a Softmax function that 
outputs binary classification as shown in Fig. 6, and train 
the model.

Algorithm 2   Training Process in Deep-HMD 

Algorithm 2 describes the training process in Deep-
HMD. In this stage, the generated two-dimensional images 
are resized to 224 × 224 × 3 and fed into the Deep-HMD 
network initialized with the ImageNet pre-trained weights. 
Firstly, we train it for five steps with a batch size of 64 to find 

Fig. 6   Deep-HMD architecture to classify the HPC-based images into 
benign or malware. This figure shows how knowledge is transferred 
from a pre-trained transferrable CNN model (top) to Deep-HMD 
(bottom). It uses the backbone of ResNet 18 with a customized soft-
max layer and retrained on malware dataset. It inputs 224 × 224 × 3 
ImageNet standard size and outputs binary classifications of malware 

or benign. In the middle of the hidden layers, it contains shortcut con-
nections skipping one or more layers to avoid saddle points. Among 
these layers, 1 × 1 convolutions are utilized to reduce matrix multipli-
cation, which directly reduces the number of parameters. The archi-
tecture is retrained on malware/benign data
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an optimized learning rate for the next training cycle. In this 
step, generic features learned from ImageNet are transferred to 
the Deep-HMD network. In the customized training, we apply 
cyclical learning rates, oversampling, and weight decay tech-
niques. We did not apply augmentation to the images. We use 
batch normalization right after each convolution and before 
activation. We use the cross-entropy loss function with a mini-
batch size of 64. The learning rate starts from 0.0001, and we 
use fast.ai’s learning rate finder for every 7 to 20 epochs to 
find the optimized learning rate to apply to the next training 
steps. We apply a weight decay of 0.01 and a momentum of 
[0.95, 0.85, 0.95] across the whole training process. We train 
the models up to 30 to 80 iterations. We monitor training loss 
and validation loss decreasing until the validation loss is close 
to the training loss. We save checkpoints periodically and use 
the best model for the testing phase.

3.6.1 � Cyclical Learning Rates

DNN model learns from data and updates its weights from 
a gradient descent function. Gradient descents are often 
stuck at saddle points, which are the points in the gradient 
descent graph where some dimensions observe a local mini-
mum, and others observe a local maximum. In general, an 
increased learning rate will allow the network to jump out of 
the saddle points to possibly enable the model to converge. 
However, it is also known that a larger learning rate might 
make the DNN diverge. Therefore, the learning rate strategy 
could have a significant impact on the effectiveness of model 
training. Various learning rate-finding strategies have been 
experimented with to solve this problem, such as Adaptive 
Learning Rate, SGDR, and CLR.

In our experiments, we employ a cyclical learning rate 
(CLR) technique [44] during the training process. For this 
purpose, we use the fast.ai wrapper library [41] with the 
plain PyTorch backbone and apply the cyclical learning rate 
technique to find the most optimal learning rate for every 
several training steps. The CLR algorithm is shown in Algo-
rithm 3. We apply fast.ai’s learning rate finder and set the 
minimum and maximum learning rates for 10 epochs. Then, 
we apply the best learning rate in the next training cycle. We 
set each training cycle with seven to twenty epochs depend-
ing on how soon we observe it stops learning by monitoring 

the validation loss and validation accuracy as depicted in 
Fig. 7. The validation accuracy starts to grow and stabilize 
from epoch 4, as shown in Fig. 7. As a result, the best-per-
forming model is selected for the testing phase.

Algorithm 3   Applying cyclical learning rate

3.6.2 � Over Sampling for Imbalanced Datasets

To overcome the challenges associated with the imbalanced 
dataset samples and remove the potential bias towards the 
majority class (benign in our case), we apply the oversampling 
technique during the training process. The oversampling tech-
nique involves duplicating examples from the minority class 
and adding them to the whole training dataset to create a more 
balanced training dataset. During each epoch, samples from 
the minority class are selected randomly with replacements. 
Once the training epoch completes, they are released back to 
the original dataset to be chosen again in the following training 
epochs. Doing so over the minority class dataset creates a more 

Fig. 7   Applied cyclical learning rate (CLR) during training. The left 
figure shows the training loss and validation loss, and the right figure 
depicts the validation accuracy during training

Fig. 8   MLP (top) and binarized MLP (bottom) illustrated weight gra-
dients in the forward pass are replaced by 1-bit binary and backpropa-
gated during training
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balanced training dataset for all classes and helps with model 
convergence in Deep-HMD.

In Steps 3 and 4, we convert the same sets of HPC data 
stored in tabular format to images and store the images into 
sub-folders of malware or benign. In fast.ai, we load the pre-
trained Deep-HMD model, resize the input image to 224 × 
224 × 3, and then run in the batch size of 64 images to process 
the prediction. Algorithm 4 describes testing Deep-HMD on 
the zero-day dataset. Lastly, we accumulate the predictions, 
calculate the zero-day test metrics, and report the zero-day test 
results in the experimental results section.

Algorithm 4   Zero-day testing process in Deep-HMD 

3.7 � Binary MLP

Our implementation of a binary MLP model follows the 
method proposed by Wang et al. [45], utilizing TensorFlow 
Keras with five layers, including the input and output layers. 
Similar to Deep-HMD we first convert each row of the top four 
HPC tabular data into a 32 × 32 × 3 image. We then train the 
binary MLP model in Keras with the converted image data on 
the training dataset. Figure 8 illustrates the architecture of the 
MLP, including the application of 1-bit binary to the weight 
gradients during the forward pass. It uses a binarized Sigmoid 
activation function in the last layer. After training, we evaluate 
the model’s performance on an unknown zero-day test dataset. 
In addition, to regularize the model learning and reduce the 

impact of the weight scale, we apply L1 batch normalization 
and batch norm momentum in each hidden layer. We use the 
Adam optimizer and apply a learning rate scheduler with an 
initial value of 0.025. The learning rate scheduler automati-
cally reduces the learning rate by a factor of 0.5 once the learn-
ing stagnates during training.

4 � Experimental Results

In this section, we evaluate the experimental results and 
analyze the effectiveness of the proposed malware detec-
tion approach as compared to state-of-the-arts.

4.1 � Classical MLs Performance

To further highlight the challenge of unknown malware 
detection, we have evaluated the standard ML classifiers 
that are widely used in state-of-the-art HMD methods 
considering both known and unknown conditions. The 
F-measure (F1-score) results for known and zero-day 
malware detection (with 4 HPC events) are shown in 
Fig. 9. As observed, the performance of standard ML 
models on zero-day attack detection substantially drops 
by more than 40% in GNB, logistic regression, ridge, and 
SVM classifiers. When examined by the unknown (zero-
day) test data, the trained machine learning classifiers 
have never seen the testing malware types. Even for the 
most robust ML model, Random Forest, the F-measure 
for zero-day malware drops by 14% as compared with the 
scenario of detecting known malware. The results confirm 
the limitation of standard ML algorithms in recognizing 
the signatures of unknown malware using HPC events and 
further highlight the importance of proposing an effective 
mechanism to enhance the detection rate of the hardware-
based zero-day malware detection.

4.2 � Deep‑HMD Performance

Table 2 reports the performance results of Deep-HMD ver-
sus binary MLP, a deep neural network model (tabular DNN) 
trained on HPC malware data (same data with Deep-HMD 
but in tabular format), and different ML-based detectors for 
zero-day and known malware detection using 4 HPC events. 
Note that both Deep-HMD and binary MLP are trained on 
image-based HPC data, while the tabular DNN and classical 
MLs are trained on HPC tabular data format. We selected 
various ML-based detectors that have widely been adopted 
in existing HMD techniques [2, 3, 6–8]. As the results indi-
cate, our proposed Deep-HMD achieves 97% in F-measure, 
97% in area under the curve (AUC), and 98% accuracy for 
unknown malware detection. In addition, it obtains 96% in 

Fig. 9   Evaluation of standard ML classifiers for known and unknown 
(zero-day) malware detection
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precision and 99% in recall. Whereas, the best-performing 
standard ML classifier, Random Forest, can only achieve 
79% in F-measure, 87% in AUC and accuracy, and 68% in 
recall when used for detecting unknown malware.

As illustrated by the results in Table 2 for known mal-
ware detection, our proposed Deep-HMD approach exhibits 
exceptional performance metrics, achieving an impressive 
99% in F-measure, area under the curve (AUC), and accu-
racy, as well as a 99% true positive rate (TPR) and True 
Negative Rate (TNR). Notably, among all the traditional 
machine learning methods, Random Forest stands out with 
commendable results, boasting a 93% F-measure, 95% 
AUC, 95% accuracy, and a well-balanced TPR and TNR 
of 91% and 98%, respectively, in the known test dataset. 
However, a noteworthy observation is the significant decline 
in the detection performance of Random Forest (as well as 
other conventional ML models) when transitioning from 
known malware detection to unknown malware detection, 
as discussed in the preceding section. This discrepancy 
highlights a fundamental weakness of classical ML models 
when confronted with the task of identifying diverse and 
previously unseen zero-day malware samples. In essence, 
while these models excel at recognizing known malware 

patterns, they struggle to cope with the inherent unpredict-
ability and diversity presented by unknown malware, mak-
ing them less effective in real-world scenarios where novel 
threats continually emerge.

Table 2   Performance results 
of Deep-HMD, binary MLP, 
and tabular DNN, and various 
ML-based detectors for zero-
day malware detection and 
known-test malware detection

Model Acc F1 AUC​ TPR FNR TNR P R

Zero-day test
Deep-HMD 0.98 0.97 0.97 0.99 0.01 0.97 0.96 0.99
Binary MLP 0.82 0.81 0.91 0.76 0.24 0.52 0.86 0.80
Tabuar DNN 0.66 0.16 0.65 0.08 0.92 0.99 0.88 0.09
RF 0.87 0.79 0.87 0.68 0.32 0.98 0.94 0.68
DT 0.81 0.69 0.79 0.58 0.42 0.94 0.86 0.58
GNB 0.62 0.14 0.40 0.09 0.91 0.92 0.38 0.09
LR 0.62 0.14 0.40 0.09 0.91 0.92 0.39 0.09
ExtraTree 0.74 0.54 0.70 0.41 0.59 0.93 0.78 0.41
Ridge 0.63 0.18 0.46 0.11 0.89 0.93 0.48 0.11
KNN 0.83 0.72 0.81 0.61 0.39 0.95 0.87 0.61
SVM 0.64 0.15 0.49 0.09 0.91 0.96 0.56 0.09
BaggedDT 0.82 0.69 0.82 0.56 0.44 0.97 0.92 0.56
Known test
Deep-HMD 0.99 0.99 0.99 0.99 0.01 0.99 0.99 0.99
Binary MLP 0.86 0.82 0.83 0.84 0.16 0.87 0.8 0.88
Tabular DNN 0.82 0.68 0.83 0.52 0.48 0.99 0.97 0.52
RF 0.95 0.93 0.95 0.91 0.09 0.98 0.96 0.91
DT 0.93 0.90 0.91 0.90 0.10 0.94 0.89 0.90
GNB 0.75 0.55 0.69 0.44 0.56 0.92 0.74 0.44
LR 0.78 0.63 0.74 0.53 0.47 0.92 0.78 0.53
ExtraTree 0.92 0.88 0.90 0.89 0.11 0.93 0.87 0.89
Ridge 0.78 0.63 0.74 0.52 0.48 0.92 0.79 0.52
KNN 0.93 0.90 0.92 0.89 0.11 0.95 0.91 0.89
SVM 0.81 0.65 0.78 0.52 0.48 0.96 0.88 0.52
BaggedDT 0.95 0.93 0.94 0.90 0.10 0.98 0.96 0.90

Fig. 10   ROC curves of Deep-HMD as compared with standard ML 
models for zero-day malware detection
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Furthermore, when comparing Deep-HMD and tabular 
DNN, we notice that deep neural networks applied to tabular 
formatted data perform worse than classical machine learn-
ing methods. The results presented in Table 2 demonstrate 
that while tabular DNN is able to accurately detect benign 
data with a high true negative rate (99% TNR), it also mis-
takenly classifies benign data as malware with a very low 
true positive rate (8% TPR). Hence, the overall recall of the 
model to detect malware from all malware samples correctly 
is very low, at only 9%. A significant number of instances of 
malware are being falsely classified as benign. This raises 
concerns about the model’s effectiveness in defending 
against cyberattacks.

Overall, the results demonstrate that our suggested intel-
ligent hardware-based technique for detecting zero-day mal-
ware, known as Deep-HMD, is the most precise model out 
of all the classifiers tested. Deep-HMD not only achieves an 
F-measure of 97% on the unknown zero-day test but also 
provides a true positive rate of 99% and a false positive rate 
of only 1%. This is a significant improvement compared to 
the results obtained by the best standard ML (RF classifier 
in Table 2, zero-day test), which only delivers a true positive 
rate of 68% and a false positive rate of 32% (Fig. 10).

4.3 � Deep‑HMD vs. Binary MLP

Table 3 summarizes the evaluation results of Deep-HMD 
and binary MLP models for zero-day malware detection 
using 4 HPC events, including their performance and over-
head (latency and memory footprint). The results demon-
strate that Deep-HMD is a more robust malware detector 
with a higher detection rate, achieving 97.1% F-measure and 
97.4% AUC in recognizing unseen zero-day malware. How-
ever, it has a larger model size to achieve such high accuracy. 
In contrast, the binary MLP has a much lower detection rate 
of 81.3% F-measure. However, it offers the advantage of 
being a lightweight DNN detector with a small model size 
of only 14 MB, and it still achieves a high AUC of 91.3% 
making it a potentially attractive option for resource-limited 
embedded systems.

4.4 � Explainability Analysis

In this subsection, we explore the explainability of Deep-
HMD methodology, uncovering how it learns distinctive 

features of malware and benign through a multi-layer 
image-based deep neural network than a one-stage-only tab-
ular-based method. To achieve this, we randomly collected 
approximately 200 images each of benign and malware (gen-
erated from the corresponding tabular data with the same top 
4 HPC features used across all experiments in this work) and 
utilized these to evaluate our Deep-HMD model. By plot-
ting the feature maps at each layer of the model, we can gain 
insight into how the model distinguishes between malware 
and benign software. We extracted the feature maps for each 
convolutional and linear layer, allowing us to explore the 
unique features detected by the model at different stages of 
the learning process. The model produced 64 channels of 
feature maps at each convolutional layer, from which we 
selected a subset to illustrate and explain the differences in 
features detected between malware and benign software.

Figure 11 shows the distribution of the feature from the 
original four HPC tabular data feature space, to the model 
intermediate layers’ feature map in Deep-HMD, until the 
very last linear layer before applying the SoftMax activation 
layer in the model. Sub-figures (a) and (f) are the features’ 
data points that are projected in a two-dimensional feature 
space using the method of t-SNE [46]. t-SNE is an effec-
tive method to display feature spaces of various classes that 
visualizes high-dimensional data by giving each data point 

Table 3   Performance and overhead results: Deep-HMD and binary 
MLP for zero-day malware detection

Model F1 AUC​ Latency (ms) Model size(MB)

Deep-HMD 97.1% 97.4% 3.22 44.8
Binary MLP 81.3% 91.3% 2.85 13.8

Fig. 11   Deep-HMD feature map during model training process. a origi-
nal tabular data’s feature distribution, b Deep-HMD’s first convolu-
tional layer’s feature map, c 8th convolutional layer, d 12th convolutional 
layer, e 16th convolutional layer, f linear layer’s feature distribution
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a location in a two or three-dimensional map. The rest sub-
figures are feature maps extracted directly from selected 
convolutional layers. As shown, originally, the malware and 
the benign data are entangled altogether and could not be 
separated clearly, indicating that there is a non-linear hidden 
relationship between malware and benign data points (as 
shown in Fig. 11a). After the HPC tabular data are converted 
to image data and are fed to Deep-HMD neural network, the 
model applies non-linear convolutional functions and slides 
the feature space to multi-dimensional channels, and this 
computation continues in several convolution layers.

In Fig. 11b showing the first convolution layer, one can 
only observe the HPC tabular data value between malware 
and benign. The early layers in sub-figure-(c) focus on local 
features of the HPC-based images in different channels, 
making it difficult for humans to interpret the differences. In 
the convolution layer 12 as depicted in Fig. 11d, we observe 
a more abstract feature difference between malware and 
benign begin unfolding. In convolution layer 16 which is 
the last convolutional layer before applying linear layers and 
activation functions, as seen in Fig. 11e clear pattern dif-
ferences between malware and benign are observed by the 
model. Finally, as shown in sub-figure (f), the linear layer 
demonstrates the t-distribution of the feature map, clearly 
distinguishing between malware and benign samples.

4.5 � Reliability Analysis

To understand the robustness and generalization of the pro-
posed method, we conduct a thorough reliability analysis 
and evaluate Deep-HMD’s predictive quality and its perfor-
mance consistency involving uncertainty and robust gen-
eralization on unseen events. Tran et al. [47] suggested the 
reliability analysis of a model regarding uncertainty, robust 
generalization, and adaptation across a full range of datasets 
that have various contexts and characteristics such as open 
datasets, in and out-of-distribution datasets. In this paper, we 
focus on analyzing robust generalization on the unseen event 
that has a covariance shift (zero-day test) and subpopulation 
shift (known test). In our threat model, a zero-day test data-
set has new malware types that the training dataset doesn’t 
have; a known test is a subset with a similar feature space 
to the training dataset and is drawn from a larger population 
distribution. We implemented Mahalanobis distance [48] 
in scikit-learn [26] to measure the uncertainty score of the 

known test and zero-day test, which shows the similarities of 
two evaluated datasets. The score is the normalized distance 
of the feature spaces between the test dataset and the train-
ing dataset. Notice the training dataset itself has an uncer-
tainty score of 4%. The Mahalanobis distance is calculated 
as below, where x is the data point to be evaluated, � is the 
mean vector, and Σ is the covariance matrix:

We assess the detection performance of Deep-HMD 
by evaluating its prediction quality in terms of accuracy, 
F1, AUROC, and AUPRC (average precision). In Table 4, 
we present the results for AUROC and average precision. 
AUROC measures the model’s ability to distinguish between 
malware (positive examples) and benign (negative examples) 
and is used to evaluate the discrimination performance. On the 
other hand, AUPRC indicates whether the model can correctly 
identify all the malware without mistakenly labeling too 
many benign samples as malware. We conducted a reliability 
analysis of our Deep-HMD model, considering both known 
and unknown test scenarios. The results indicate that as the 
uncertainty score increases from 48% in the known test to 
96% in the zero-day test, the model’s AUROC and AUPRC 
decrease by 4% and 7%, respectively. Despite the slight 
decrease in performance, the results highlight the robustness 
and reliability of our proposed multi-level deep transfer 
learning approach for HPC-based zero-day malware detection.

5 � Concluding Remarks

In this paper, we investigated the efficacy of widely used 
machine learning classifiers for hardware-based zero-day 
malware detection. Our findings reveal that they are not 
effective in recognizing unknown malware patterns with 
high accuracy and low false positive rates. This challenge 
arises from the fact that the zero-day malware HPC data does 
not match any known attack applications’ signatures in the 
existing database, making it a challenging problem to tackle. 
To address this issue, we proposed Deep-HMD, a multi-level 
DNN-based approach that utilizes a flexible transfer training 
strategy to detect both known and unknown (zero-day) mal-
ware at run-time with a small number of hardware events. 
Our experimental results demonstrated that Deep-HMD out-
performs existing ML-based detection methods, achieving 
97% in both F-measure and AUC metrics for recognizing 
unknown malware signatures with only 1% false positive 
rate. Moreover, Deep-HMD excels in known malware detec-
tion, obtaining 99% in both F-measure and AUC metrics. 
Our proposed intelligent solution is the first DNN-based 
method for accurate hardware-based known and zero-day 
malware detection, employing a lightweight and efficient 

(3)D2 = (x − �)TΣ−1(x − �)

Table 4   Uncertainty analysis of Deep-HMD 

Test set Uncertainty 
score

AUROC AUPRC

Known test 48% 0.99 0.981
Zero-day test 96% 0.97 0.948
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transfer learning strategy on HPC-based data presented in 
image format. It is extensible and generalizable, making it a 
well-suited solution for securing modern computing systems 
against emerging malware attacks.
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