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ARTICLE INFO ABSTRACT

Keywords: A single bottle of unopened Johnson’s baby powder with a manufacturing date of 1985 was investigated for
Johnson’s baby powder potential geochemical contaminants of concern. Study of 3 replicate samples via basic powder X-ray diffraction
Tale (XRD) indicates talc is the dominant phase present with chlorite + serpentine and no other major impurities are
TEM . - - . .

SEM observed. Scanning electron microscopy (SEM) documented the presence of Ni as a minor component in observed
ICP-MS Fe-sulfides and Cr was detected in chromite and/or chromian magnetite. Transmission electron microscopy

(TEM) documented the presence of Ni within individual platy and fibrous talc particles. Repeat analysis (n = 10)
of pressed powders (n = 5) via handheld X-ray fluorescence (XRF) yielded SiO; contents of 57.40 to 58.28 wt%
and MgO contents of 29.90 to 30.79 wt%. Data also documents the presence of Cr, Ni, Cu, Zn. Cu and Zn are
interpreted to occur in Fe-sulfides. Subsequent duplicate analysis (n = 2) of 3 talc samples via high resolution
inductively coupled plasma mass spectrometry (HR-ICP-MS) detected 4 trace metals present of concern: V, Co,
Cr, and Ni. Across all sample runs (n = 6), V averaged 10.6 ppm (+0.5 ppm at 2¢), Co averaged 55.0 ppm (+4.3
ppm at 20), Cr averaged 400.9 ppm (+11.4 ppm at 20), and Ni averaged 1395.9 ppm (£105 ppm at 26). While a
precise geologic source for the studied talc cannot be unequivocally identified based on the data collected in this
study (and the sample bottle alone), a comparison with global talc deposits indicates a product origin likely
associated with (ultra)mafic-hosted talc deposits based on Ni (ppm) and Cr (ppm) contents, as opposed to car-
bonate metasedimentary-hosted deposits.

From this work, it can therefore be concluded that Ni- and Cr-bearing particles made it into the baby powder
production chain of this manufacturer in 1985. This study provides a foundation for future mineral and
geochemical characterization of past, present, and future consumer talc-related products and may provide
context for health-related studies.

Metal contamination

1. Introduction Information Center, 2022). Talc commonly is, or was, used in many

personal care products, including baby powder. The geological nature of

Talc is a hydrous phyllosilicate mineral with an ideal chemical for-
mula of Mg3Si4O10(OH),, having a crystalline structure with a sheet of
MgO4(OH), octahedra between two sheets of tetrahedral SiO4 layers
resulting in a trioctahedral 2:1 layer (e.g., Gatta et al., 2013). Owing to
the presence of weak van der Waals forces primarily between adjacent
2:1 layers, talc is an extremely soft mineral (Mohs hardness scale = 1)
and has been extensively used in a variety of industries, such as paper,
ceramics, insulation, plastics, and agriculture (National Minerals

talc deposits is usually such that talc mined for personal care products is
dominantly sourced from either altered ultramafic and mafic-hosted
deposits, or carbonate metasedimentary-hosted deposits (e.g.,
Chidester, 1962; Chidester et al., 1964; Greene, 1995; Van Gosen et al.,
2004; Materials Research L3C, 2020).

The association of asbestiform minerals in talc-based products and
materials is well recognized (e.g., Liichtrath and Schmidt, 1959; Cralley
et al., 1968; Rohl et al., 1976; Blount, 1991; Van Gosen et al., 1998;
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Fig. 1. Images of the 1985 Johnson’s baby powder sample showing various states. A.) The sample is taped closed for future investigations. B.) Shows the clean
opening of the bottle, D. shows partial opening of the bottle and E. show the unopened state. C.) and F.) also show the bottle in an unopened state with plastic seal on

top and the front and back of the bottle. The 1985 date is visible in panel C.

IRSST, 2012; Millette, 2015; IWGACP, 2021). It has also been estab-
lished that significant gaps in the approaches to characterizing and
documenting talc materials for potential asbestos have occurred (Rosner
et al.,, 2019; Tran et al., 2019; Bird et al., 2021; IWGACP, 2021).
Accordingly, questions exist regarding the presence of other contami-
nants that are of environmental or human health concern in talc-based
products (and their potential) sources such as metal contamination.
The nature, form, and extent of potential metal contaminants in talc-
based consumer products is a major consumer product safety question
that has received little attention compared to well-documented asbestos
issues (e.g., Cralley et al., 1968; Blount, 1991; Van Gosen et al., 1998;
IWGACP, 2021).

Baby powder has been under scrutiny for asbestos contamination for
over half a century (e.g., Liichtrath and Schmidt, 1959; Cralley et al.,
1968; Rohl, 1974; Rohl et al., 1976; Girion, 2018; NBC News, 2019;
Loftus, 2020; IWGACP, 2021). However, one aspect of talc-based per-
sonal care talc products (such as baby powder) that has not been
investigated extensively is the potential occurrence of metals with links
to human health concerns and/or the presence of other non-talc min-
erals. Due to the protolith of some talc deposits being ultramafic or mafic
igneous rocks (e.g., Chidester et al., 1964; Greene, 1995; Nkoumbou
et al., 2008), several metals of concern such as nickel (Ni) and chromium
(Cr) have the potential to occur within talc-based consumer products.
Historical samples of talc-based baby powder are limited. For this study,
a single bottle of unopened Johnson’s baby powder (Fig. 1) with a
product date of 1985 was acquired from Conard Metcalf (Simmons
Hanley Conroy firm) and a comprehensive geochemical and mineral-
ogical investigation conducted. This sample was specifically selected
owing to its age and the time period that it represents: a time thought to
be when the manufacturer produced talc product using talc ore from
Vermont. However, it is stated here that it is not possible to unequivo-
cally identify the precise provenance of this talc, and/or the associated
talc mine.

In this work we present the first detailed study that aims to constrain
the deposit type which sourced a talc-based product. This study dem-
onstrates the feasibility and effective use of integrating multiple
analytical methods from electron microscopy for particle characteriza-
tion, to bulk chemical composition (e.g., XRF, HR-ICP-MS).

2. Materials and methods

Sample material from the 1985 Johnson’s baby powder bottle was
characterized for its bulk mineralogical and elemental composition by
powder X-ray diffraction (XRD) using a Bruker D8 Advance X-ray
diffractometer in the Department of Geology and Environmental Earth
Science at Miami University, by scanning electron microscopy (SEM)
and energy dispersive spectroscopy (EDS) using a Zeiss Supra 35 VP field
emission scanning electron microscope (FESEM) at Miami University’s
Center for Advanced Microscopy and Imaging (CAMI), by Transmission
Electron Microscopy (TEM) using a JEOL JEM 2100 TEM operated at
200 kV (also housed in CAMI), by X-ray fluorescence (XRF) using a
Bruker Tracer 5 g handheld XRF in the Department of Geosciences at
DePauw University, Indiana, and by High Resolution Inductively
Coupled Plasma Mass Spectrometry (HR-ICP-MS) using a Nu Attom ES in
the Department of Geology and Environmental Earth Science at Miami
University.

Basic powder XRD analysis was used to identify major mineral
phases in samples with the Bruker D8 Advance X-ray diffractometer
using Cu Ko radiation. Three samples were analyzed as rotating pack
mounts from 4° to 70° 26, with a step size of 0.01° 206 at 3 s/step. This
basic method was used to simply confirm the presence or absence of
major phases (e.g., talc, magnesite) and not as a screening for the
occurrence of minor or trace mineral(s) (including asbestos). Regarding
crystallographic notation with respect to the use of Miller indices, by
convention the triclinic systematic would require the longest axis to be
defined as the c-axis. Some researchers follow this convention and thus
designate the stacking direction as being along [0kO] (Gatta et al.,
2013). For traditions followed specifically in the clay mineral and
phyllosilicate literature, the stacking of 2:1 layers is in the [001] direc-
tion and the b-axis (or [0kO]) functionally contains the most crystallo-
graphic complexity as details of the stacking direction are most evident
(Bailey, 1988). For these reasons we elect to follow Bailey convention in
labeling basic XRD data and discussion of TEM data.

For sample investigation via SEM-EDS, sample powder was mounted
onto an aluminum stub of 10 mm diameter with a carbon adhesive tab.
Sample analysis was undertaken using variable pressure with nitrogen
(N3) as the compensating gas. The FESEM is equipped with a backscatter
detector (BSD) and an EDS detector (Bruker Quantax). Both the sample
preparation technique and the instrument have been routinely incor-
porated into a variety of recent mineralogical studies (e.g., Krekeler
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Table 1
Summary of bulk XRF analyses on 5 baby powder samples (average of 10 repeat analyses reported).
Sample Sample Sample Sample Sample
JNJA (n=10) 20 JNJB (n=10) 20 JNJC (n=10) 20 JNJD (n=10) 20 JNJE (n=10) 2o
MgO wt.% 30.09 0.81 29.90 0.61 29.96 0.53 30.18 0.83 30.79 1.28
SiO2 wt.% 57.87 0.37 57.40 0.44 57.95 0.63 58.28 0.52 58.23 0.21
Cl wt.% 0.25 0.01 0.20 0.03 0.21 0.02 0.25 0.01 0.27 0.02
CaO wt.% 0.14 0.01 0.15 0.01 0.14 0.01 0.14 0.01 0.13 0.00
MnO wt.% 0.01 0.00 0.01 0.003 0.01 0.003 0.01 0.002 0.01 0.003
Fe203 wt.% 3.44 0.02 3.38 0.02 3.45 0.02 3.45 0.03 3.42 0.02
Cr ppm 533 43 539 48 541 58 542 33 518 45
Ni ppm 2093 31 2149 37 2066 50 2078 20 2049 a4
Cu ppm 67 3 69 3 68 5 67 4 66 5
Zn ppm 39 3 40 7 40 4 39 2 39 3
Sr ppm 2 1 2 1 2 1 2 1 3 1
MgO/SiO2 0.52 0.52 0.52 0.52 0.53

et al., 2010; LeGalley and Krekeler, 2013; Dietrich et al., 2019; Velaz-
quez Santana et al., 2020; Oglesbee et al., 2020; Lindeman et al., 2020;
Klein and Krekeler, 2020; Flett et al., 2021; O’Shea et al., 2021).

For transmission electron microscopy (TEM) analytical work, ~0.05
g of sample powder was suspended in approximately 2 mL of ethanol in
glass vials and shaken. Resulting suspensions were allowed to settle for
30 s. Aliquots of approximately 5 pL were placed onto a 3 mm copper
grid with lacey-carbon film and allowed to air dry. A JEOL JEM-2100
transmission electron microscope that was operated at 200 kV and
equipped with a Bruker EDS detector was used for bright-field imaging
and chemical analysis. Digital images were acquired with a Gatan Orius
SC 200D CCD camera. Selected-area electron diffraction (SAED) patterns
were used to characterize crystallinity and orientation. Similar ap-
proaches using this instrument have been published in previous in-
vestigations of other (geo)materials (e.g., LeGalley and Krekeler, 2013;
Paul et al., 2017; Burke et al., 2017; Cymes et al., 2017, 2020, 2021;
O’Shea et al., 2021).

EDS analysis on fine grained mixed mineral, or mixed phase samples
with multiple chemical components as described above within the
context of both SEM and TEM, requires an understanding of the limi-
tations associated with signal contributions as well as potential peak
overlap. X-ray emission lines used to identify elements provided by
Bruker software include: O K = 0.525 keV; Mg K = 1.254 keV; Al K =
1.487 keV; Si Ky = 1.740 keV, (nominally Ky = 1.837 keV); S Ky = 2.309
keV (nominally Kp = 2.465 keV); Cr Ky = 5.410 keV and Ky = 5.947 keV;
Fe Ky = 6.399 keV and Ky = 7.060 keV; Ni Ky = 7.480 keV and Ky =
8.267 keV; Cu Ky = 8.036 keV and Ky = 8.903 keV. The ubiquitous
nature of oxygen in silicate and oxide phases in substrate (or adjacent
particles), scatter from the copper grid, and the lacey carbon substrate,
collectively contribute O, Cu, and C signal to EDS spectra. For SEM-EDS,
some of the Al signal may originate from the Al-stubs. The detection
limit for EDS is approximately 0.08 wt% (e.g., Kuisma-Kursula, 2020).

The Bruker Tracer 5 g handheld XRF unit is fitted with a rhodium
(Rh) source, a graphen window silicon drift detector (SDD) detector, and

Table 2
Concentration (in ppm) of trace elements analyzed in 3 replicates (A,B,C) of JNJ1985. Each replicate was analyzed twice.
JNJ1985H-A JNJ1985H-B __JNJ1985H-C JNJ1985H-A,B.C

run1  run 2 average 20 run1 run2 average 20 run1 run2 average 20 average 20
Sc 1.1 1.1 11 0.1 12 1.1 1.1 0.1 12 12 12 0.1 1.1 0.1
\' 10.8 10.7 10.7 0.0 10.8 10.2 10.5 0.9 10.5 10.4 10.5 0.1 10.6 0.5
Cr 4029 4058 | 404.3 4.1 394.1 3954 | 394.7 1.8 408.2 399.0 | 403.6 131 400.9 114
Co 531 52.3 52.7 1.0 56.5 54.5 55.5 29 58.0 55.8 56.9 3.0 55.0 4.3
Ni 1367.4 1320.6 [ 1344.0 ©66.1 14151 1377.1 | 1396.1 53.7 14725 14225 | 14475 708 13959 105.0
Cu bd bd - - bd bd - - 14 1.3 1.3 0.2 13 0.2
Zn 215 21.6 21.5 0.1 26.4 249 25.6 20 246 235 241 1.5 23.7 3.9
Ga 04 04 04 0.0 04 0.4 04 0.0 04 0.4 04 0.1 04 0.0
Rb 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.0
Sr 1.2 12 1.2 0.0 11 11 11 0.1 12 1.1 12 0.1 1.1 0.1
Y 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Zr 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.0 04 0.3 0.3 0.1 0.2 0.2
Nb 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Cs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ba 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1
La 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ce 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sm 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Eu 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Gd 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Dy 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ho 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Er 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Tm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Yb 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lu 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Hf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ta 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pb 1.2 1.2 12 0.1 12 12 12 0.0 12 1.2 12 0.1 12 0.1
Th 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0
U 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Fig. 2. A-C Basic powder X-ray diffraction patterns for samples A, B, and C.

Probable or possible major peaks for chlorite + serpentine are also labelled.

an 8 mm collimator. Staged in a laboratory configuration, bulk samples
were analyzed under atmospheric conditions for 90 s using a Funda-
mental Parameters (FP) three phrase GeoExploration calibration (30 s at
30 kV; 30 s at 50 kV; 30 s at 15 kV). The data is presented in Table 1.
Accuracy and precision of the analytical session was monitored by
analyzing 14 replicates of reference talc sample BCS-RM No. 203a
(British Ceramic Research Ltd. and Bureau of Analyzed Samples Ltd,
2018). Unknown samples (baby powder) and BCS-RM No. 203a were
prepared by placing approximately 4-5 g of material into a Chemplex
XRF sample container and analyzed through a 4.0 pm thick Prolene thin-
film (Laperche and Lemiere, 2021). Unknowns (n = 5) were analyzed in
replicates of 10. The FP GeoExploration calibration has the following
limits of detection, as reported by the manufacturer: SiO, (0.001 wt%),
TiO5 (0.004 wt%), Al,03 (0.14 wt%), FeoO3 (0.003 wt%), MnO (0.001

Major reflections are labelled using the conventional phyllosilicate designations.

wt%), MgO (0.5 wt%), CaO (0.003 wt%), K20 (0.006 wt%), P205 (0.004
wt%), and Cl (0.01 wt%). The limit of detection for Ni and Cu is 5 ppm,
Zn and Cr is 10 ppm, and Sr is 1 ppm. These trace elements are specif-
ically noted here as they represent those that were detected during
sample analysis (see later). It is however also noted here that while
major element data for talc reference material BCS-RM No. 203a are
available (see Table 1), trace element data are not. Within this context,
the XRF was utilized as a screening tool to evaluate the potential pres-
ence of trace metals of concern.

Trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba,
La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, Pb, Th, U)
were subsequently determined by solution High Resolution Inductively
Coupled Plasma Mass Spectrometry (HR-ICP-MS; Table 2 using a Nu
Instruments Attom ES in the Department of Geology and Environmental
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Fig. 3. SEM images in BSD with paired EDS spectra showing mineralogical impurities in talc. Panel A shows a low magnification image which captures the general
texture and particle size of sample material with B being an EDS spectra taken over the field of view. Si, Mg, and O dominate the spectrum with minor Fe and trace
amounts of Ni also present. Panels C and D show examples of Fe-Cr oxide, interpreted as chromite. C shows a single crystal of chromite with an inset panel where
(111) faces are identified. Panel E shows an image of a Fe-sulfide with minor nickel contents. Panel F shows a Fe-oxide with trace Ni content. Mg and Si are

interpreted to originate from the talc substrate.

Earth Science at Miami University. ~0.05 g of the unknown baby
powder sample was dissolved in triplicate (n = 3; samples A, B, and C,
see Table 2) using HNO3 and HF digestion following the methods of
Kelley et al. (2003) and Anderson et al. (2021). Raw HR-ICP-MS data
were corrected for instrumental drift using an internal drift correction of
1 ppb In in the NuQuant data analysis program. Five standards (BHVO-2,
DNC-1, GSP-2, SCo-1, SGR-1) were used to produce calibration curves
that were linear to R > 0.999. A standard (BCR-2) was run as an un-
known throughout the run. Samples were analyzed in duplicate, with
each run consisting of 5 individual sweeps of data and an overall
reproducibility of <2% RSD. A summary of standard data acquired
during this work (reported as an average) is presented in Supplementary
Table 1 alongside accepted values for each element, for each standard.
Collectively this dataset is summarized in Supplementary Fig. 1.

3. Results
3.1. Powder X-ray diffraction

Basic powder XRD patterns for sample materials show talc as the
dominant phase (e.g., JCPDS 29-1493) with lesser amounts of chlorite
+ serpentine (see Fig. 2). Using Bailey conventions, talc has pronounced
(001), (002) and (003) reflections. Chlorite has minor (001) reflections,
and the chlorite (002), or potentially serpentine (00l) or combined
overlapping chlorite (002) or serpentine (00 1) were slightly more
intense than the chlorite (001). All chlorite and potential serpentine
reflections were far less intense than talc diffraction peaks. No major
peaks of other phases were reliably identified. This is consistent with
powder XRD having a detection limit of a few weight percent (Bish and
Post, 1989) as well as the observations of phases be electron microscopy
(see below).
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Fig. 4. Examples of Ni-bearing talc particles. Left data set shows talc fiber having a > 3:1 aspect ratio having an electron diffraction pattern indicative of high
crystallinity (along [hkO] conforming to Bailey convention) with appreciable Fe and minor Ni present. Cu is derived from the grid. Right data set shows an example of
talc particle approximately 3 pm in diameter with an electron diffraction pattern indicative of high crystallinity (along [hkO] conforming to Bailey stacking
convention for phyllosilicates) with appreciable Fe and minor Ni present. Accompanying EDS spectral range for both particles shown from 0 to 20 keV.

3.2. Scanning electron microscopy (SEM)

SEM data indicate that non-talc minerals occur in the product
(Fig. 3). Equant subhedral individual crystals of an Fe-Cr-rich oxide are
observed. These crystals are approximately 1 to 2 pm in diameter and
examples occur showing them as distinct from talc particles in addition
to being inclusions in talc particles. Based on the occurrence of (111)
faces observed, and their Fe-Cr chemistry, these minerals are interpreted
either as chromite or chromian magnetite (Fig. 3C, D). Chromite or
chromian magnetite particles are present in trace amounts and esti-
mated to constitute <0.1% of the volume of sample examined in BSD.
This is based on visual estimations. Fe-sulfide minerals are also
observed, and these minerals have minor to trace amounts of Ni
(Fig. 3E). Fe-sulfide particles are subhedral in texture and are approxi-
mately 3 to 25 pm in diameter. Fe-sulfide particles are also present in
trace amounts and estimated to constitute <0.2% of the volume of
sample examined in BSD. This is based on visual estimations. Fe-oxides
with trace amounts of Ni are also observed (Fig. 3F) although not
commonly.

3.3. Transmission electron microscopy (TEM)

TEM data for studied talc particles are presented in Fig. 4. Talc
particles exhibit two morphologies. Platy morphology talc constitutes
~99% of the population (right panel, Fig. 4) and fibrous talc constitutes
~1% of the population (left panel, Fig. 4). In TEM samples, platy par-
ticles are commonly 3 to 7 pm in diameter whereas fibrous particles are
commonly >4 pm in length and have aspect ratios >3:1. SAED for both
particle types yield single, or near single, crystal patterns of high quality
with well-formed discrete spots for [hkO] (see Fig. 4). Spot EDS spectra
on talc particles show Mg, Si, and O, minor amounts of Fe (approxi-
mately 0.5 to 2.0 wt% Fey03), and minor NiO concentrations of
approximately 0.1 to 0.2 wt% (see Fig. 4). Distinct EDS peaks in spot
analysis for Ni are small and/or near detection limits.

3.4. X-ray fluorescence (XRF)

Averages of ten replicate XRF analyses on five subsamples of talc
from the studied talc product bottle are provided in Table 1, alongside
reported reference material values for the major oxides (see Section 2
earlier). Select major oxides and trace elements are summarized in
Fig. 5. The abundance of SiO5 (57.40 to 58.28 wt%) and MgO (29.90 to
30.79 wt%), in addition to MgO/SiO, ratios (0.52 and 0.53), varied
minimally and are consistent with the product being dominated by talc

based on mineral stoichiometry. Cr concentrations averaged 535 ppm
(+58 ppm, 20) and varied from 518 to 542 ppm; Ni concentrations
averaged 2087 ppm (+50 ppm, 26) and varied from 2049 to 2149 ppm;
Cu concentrations varied minimally from 66 to 69 ppm; Zn concentra-
tion varied minimally from 39 to 40 ppm; and Sr concentrations are 2 to
3 ppm.

3.5. High resolution inductively coupled plasma mass spectrometry (HR-
ICP-MS)

Element abundances from each analytical run (1 and 2) of each
subsample (A, B, C) are presented in Table 2 alongside their respective
20 values. Average abundances for each element (and the 20) are also
reported in the last two columns of Table 2 (n = 6). The majority of trace
elements analyzed for were below detection limit (e.g., the rare earth
elements: La to Lu). The only elements detected at >10 ppm were (in
order of increasing concentration) V, Co, Cr, and Ni. Across all 6 sample
runs, V averaged 10.6 ppm (+0.5 at 26), Co averaged 55.0 ppm (+4.3 at
20), Cr averaged 400.9 (£11.4 at 20), and Ni averaged 1395.9 ppm
(£105 at 20). This data is summarized in Fig. 6 alongside the averages
for each subsample (A, B, C) and the associated 2c.

4. Discussion

Powder XRD was conducted solely for the purpose of confirming
major phase relationships and established that the sample material was
dominantly talc and chlorite + serpentine. Major issues exist with
powder X-ray diffraction study of talc and baby powder, particularly in
the context of studies of asbestos (e.g., Rosner et al., 2019). Powder XRD
was not executed in this study as a means to screen for asbestos,
although the possibility of chrysotile exists as indicated by the ~7 A
peaks observed. XRD data indicates there was no unusual or unexpected
mineral (e.g., large amounts of olivine, pyroxene, carbonate, chromate
minerals) or metal, alloy, or unexpected chemical (Ni or Cr, steel, or
synthetic chemical) in the baby powder. XRD data supports the argu-
ment that Ni and Cr is in large part from talc particles, with contribution
of minor phases observed in electron microscopy data. The baby powder
does not appear to be aberrantly manufactured, having unusual or un-
common minerals or production metals from equipment accidentally
incorporated, or synthetic chemicals accidentally incorporated.

Bulk chemical analysis of talc-based baby powder via XRF and HR-
ICP-MS are interpreted to reflect the mixture of talc, Fe-sulfides, and
chromite or chromian magnetite. This is consistent with observations via
SEM and TEM (see Figs. 3 and 4). The occurrence of Ni and Cr is
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Fig. 5. Results of replicate handheld XRF analyses (A-E). The average composition of each oxide or element for samples A-E are summarized alongside the associated

2 standard deviation for that analyte.

primarily interpreted to be inherent to the products’ geologic source (i.
e., its protolith). Specifically, Ni is interpreted to be inherent in the talc
and in the Fe-sulfides while Cr is inherent to the chromite or chromian
magnetite. In the discussion that follows below, the trace element data
collected via HR-ICP-MS in this study is considered. The trace element
data acquired via handheld XRF is not considered any further.

While a precise geologic source cannot be identified based on the
data collected during this study and the bottle alone, it is known that
Johnson & Johnson obtained talc from Vermont (Girion, 2018; Landen,
2018; Vermont Business Magazine, 2018). From Van Gosen et al. (2004),
Vermont talc deposits are associated with ultramafic rocks (as opposed
to carbonate-hosted deposits) and are described as being “typical of
‘black wall’ deposits”. Briefly, these “black wall” deposits are associated
with regional metamorphic and related metasomatic processes which
result in the generation of zoned “alteration rinds” and the development
of; talc-carbonate zones, high purity talc zones, Ca-amphibole-chlorite

zones, and a transitional zone near the protolith (Van Gosen et al.,
2004).

While a direct source for the consumer talc in this study cannot
unequivocally be identified, the bulk geochemical signatures of talc
associated with (ultra)mafic- and carbonate-hosted deposits can estab-
lish a broad geological framework. Table 3 summarizes the concentra-
tions of V, Cr, Co, and Ni in talc deposits from across the globe, in both
(ultra)mafic- and carbonate-hosted settings. The (ultra)mafic deposits
summarized include the talc schists from the Boumnyebel area of
Cameroon (Nkoumbou et al., 2008), talc from the Rod Umm El-Farag
region in Egypt (El-Sharkawy, 2000), talc from the Oaxaca and Puebla
ore deposits in Mexico (Pi-Puig et al., 2020), talc-carbonate ore from the
Altermark talc province in Norway (Karlsen et al., 2000), talcose rocks
from the Giléw deposit in Poland (Gil et al., 2022), and talc samples
from the Emirdag talc deposit in Turkey (Ersoy et al., 2013). The
carbonate-hosted deposits summarized include talc ore from the
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Table 3
Compilation of V, Cr, Co, and Ni concentrations in ultramafic and carbonate hosted talc deposits. All values in ppm.
ULTRAMAFIC \4 Cr Co Ni CARBONATE \'4 Cr Co Ni
Cameroon - 3606 89.2 1994 Afghanistan 6.3 9.3 12 28
Nkoumbou et al. (2008) 13.3 1722 51.2 1040 Tahir et al. (2018) 29 10.5 71 11.5
10.3 1296 727 1846 54 228 22 1.9
311 2392 93.2 1919 79 15.1 25 36
221 1900 729 1685 37 74 11.9 13.6
19.7 2075 68.9 1668 - 94 10.4 3.1
Egypt 20 616 43.0 1022 46 125 0.8 2.1
El-Sharkawy (2010) 5.0 4858 37.0 550 - 15 14 0.5
15.0 1916 51.0 1729 0.6 8.3 0.2 11
6.0 1505 52.0 1650 240 134 29 36
7.0 2053 56.0 1807 9.0 9.3 15 0.7
9.0 1163 54.0 1650 31 9.9 45 22
8.0 1163 54.0 1493 0.9 11.5 12 0.6
Mexico 37.0 1360 40.0 1440 24 141 1.0 3.1
Pi-Puig et al. (2020) 26.0 2280 46.0 1480 35 101 1.0 12
Norway 40.0 1735 63.0 3644 3.1 10.5 0.1 1.5
Karlsen et al. (2000) 58.0 3634 74.0 3766 52 121 24 9.8
33.0 1860 55.0 2612 17 114 15 5.0
35.0 2085 51.0 2297 33 173 1.5 97
220 1054 41.0 1927 0.0 14.9 2.0 5.8
240 1450 62.0 2771 Egypt - 3.0 1.0 3.0
31.0 1733 52.0 3337 Schandl et al. (1999) - 3.0 1.0 9.0
Poland - 821 825 1650 - 20 1.0 210
Gil et al. (2022) - 1368 82.8 - - 4.0 1.0 20.0
- 1916 83.6 1650 - 3.0 1.0 220
- 2395 84.0 2043 - 4.0 20 7.0
- 41.0 46.0 104.0
- 63.0 29.0 37.0
- 7.0 20 50.0
- 3.0 3.0 15.0
- 8.0 20 14.0
- 250 6.0 210
- 4.0 20 250
- 27.0 36.7 -
- 61.0 411 -
- 14.0 346 -
44.0 17.6 -
India 97.3 25 1.0 3.1
Joshi and Sharma (2014) 114.2 6.0 1.3 4.4
South Korea - 11.6 58 12.8
Shin and Lee (2002) - 15.7 46 10.2
- 12.8 5.1 9.0
USA 11.0 18.0 - 250
Buzon and Gunter (2017) 4.0 20 - 16.0
3.0 10.0 - 19.0
4.0 4.0 - 9.0
5.0 10.0 - 12.0
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Nangarhar Province in Afghanistan (Tahir et al., 2018), talc ore bodies
from the Atshan Talc deposit in Egypt (Schandl et al., 1999), talc from
the Lesser Himalaya, Kumaun, India (Joshi and Sharma, 2015), talc ore
from the Hwanggangri Mineralized Zone in South Korea (Shin and Lee,
2002), and “commercial grade” talc from the southwest Montana talc
deposits in the USA (Buzon and Gunter, 2017). As shown (see Table 3),
the abundances of Ni and Cr are distinct between these two types of
deposits with abundances often two orders of magnitude greater in
(ultra)mafic-related deposits. The data summarized in Table 3 is pre-
sented in Figs. 7 and 8 alongside the average abundance of Ni and Cr (in
ppm) in the studied Johnson & Johnson 1985 talc product. As shown in
Fig. 7A, Ni contents in talc are typically <100 ppm for carbonate-hosted
deposits and often <40 ppm. For carbonate-associated talc hosted in
ultramafic deposits, Ni contents are typically >1000 ppm and show
more variability (e.g., Altermark talc, Norway, which ranges from 1927
ppm to 3766 ppm; Karlsen et al., 2000). In Fig. 7B and C, the deposit

types are shown individually. The maximum variation in Ni concen-
tration at a single location for a carbonate-hosted deposit is 101 ppm (3
ppm to 104 ppm from the Atshan Talc deposit in Egypt; Schandl et al.,
1999). For ultramafic deposits, Cr contents are typically >500 ppm
(often up to ~2000 ppm) and show more variability than Cr in
carbonate-related deposits (see Fig. 8A). In Fig. 8B and C, the locations
are shown individually with the maximum variation of Cr at a single
location for a ultramafic deposit 2310 ppm (1296 ppm to 3606 ppm
from the Boumnyebel area of Cameroon; Nkoumbou et al., 2008). Also
shown in Figs. 7A and 8A is the average concentration of Ni and Cr
respectively from the 1985 Johnson & Johnson talc consumer product of
this study. As shown, the average Ni (ppm) concentration of 1395.9 is
geochemically akin to that of ultramafic-hosted talc deposits and distinct
from that expected from carbonate-hosted talc deposits. For Cr, the
average concentration in the 1985 Johnson & Johnson talc of 400.9 ppm
is the most akin to the Cr abundances associated with several of the
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ultramafic-hosted talc deposits, albeit at the lower end of the range
summarized. This value is however still an order of magnitude greater
than the range in Cr associated with carbonate-hosted deposits (see
Fig. 7). In summary, the Ni and Cr signatures of the studied 1985
Johnson & Johnson consumer talc are more consistent with an origin
from an ultramafic talc source that a carbonate-hosted deposit. (See
Table 4.)

It is known that Johnson & Johnson obtained talc from Vermont
although there is limited data for direct comparison. For example,
Chidester (1962) investigated talc-bearing rocks in Vermont and indi-
cated that Cr and Ni were present in talc from the region. Specifically,
Chidester (1962) states “Chromium occurs in the serpentine and talc-
carbonate rock chiefly in chromian magnetite, but in a few places oc-
curs in translucent grains of chromite; both talc and serpentine also
contain small amounts of Cr.” Chidester (1962) interpreted chromite as
a relict mineral that had persisted through both the alteration of peri-
dotite to the serpentinite lithology, and then persisted through serpen-
tinite to the talc-carbonate rock transition. Chidester (1962) also
indicated that serpentinite, talc carbonate rock, and steatite commonly

10

have concentrations of NiO on the order of a tenth of a weight percent
(0.1 wt%, or 786 ppm Ni). The chemical formula for talc associated with
two talc-producing mines are also provided. Talc from the Waterbury
mine: (Mg> s6Fed12,Nio.01Fed 01)2.99(Alo.015i3.09)4010(0H)1.97 has 0.13
wt% NiO (1022 ppm Ni) while talc from the Johnson Mine:
(Mg2.73Feg 53, Nig o1Fed h1)2.97(Alo.015i3.09)4010(0H)1.01 has 0.18 wt%
NiO (1415 ppm Ni). While Ni is recognized in other talc deposits glob-
ally (see Figs. 7 and 8), based on currently available information and for
the time frame in question, Vermont would be the only viable source
Johnson & Johnson had access to that appears to match the chemical
compositions observed in the present study. Discussion in July 2022
with Jon Kim at the Vermont Geological Survey indicates that the state
survey has no historic samples from any Vermont talc mines.

Medical predictions or causes of disease associated with talc use are
beyond the scope of this work however it is well established that Ni and
Cr are metals which are of concern to human health. Specifically, Cr (III)
is recognized as a micronutrient and is not of as significant concern
while Cr (VI) is classified as a group 1 carcinogen (IARC, 2012). How-
ever, the fate and transport of Cr, and the potential oxidation in body
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Table 4

Summary of talc deposit characteristics.

Applied Clay Science 250 (2024) 107252

Ultramafic and mafic-hosted talc deposits

Location
Rod Umm El-Farag,
Egypt

Altermark talc province,
Norway

The Boumnyebel area,
Cameroon

Emirdag talc deposit,
Turkey

Puebla and Oaxaca complexes,
Mexico

Geologic context of talc data in Figs. 7 and 8
Pure talc (>90% talc) from talc lenses hosted within
ultramafic rocks

Ophiolite complex, zoned talcified ultramafic lenses,
The talc carbonate zone is one of these three zones

Talc ore deposits are composed of talc schists
(and hornblendites)

Five alteration zones associated with altered
gabbro including actibolite zone and a "talc-level"

Talc ore deposits (currently non-productive)
associated with serpentinite bodies

Reference
El-Sharkawy (2000)

Karlsen et al. (2008)

Nkoumbou et al. (2008)

Ersoy et al. (2013)

Pi-Puig et al. (2020)

Carbonate metasedimentary-hoted deposits

Location
Atshan talc deposit, Hamata,
Egypt

Poongjeon talc deposit,
South Korea

Talc deposit, Deoban Fm.
Lesser Himalaya, India

Commercial grade talc-rich

Geologic context of talc data in Figs. 7 and 8
Talc orebodies protoliths were "impure dolomitic
limestones locally intercalated with clastic sediments"

Metamorphic contact aureole. Talc ore bodies are
surrounded by calc-silicate rocks in dolomitic marbles

Talc occurs with interlayered dolomite and magnesite,
varies from "schistose to compact massive in nature"

Talc exists in dolomitized marbles: "Hydrothermally

Reference
Schandl et al. (1999)

Shin and Lee (2002)

Joshi and Sharma (2014)

Buzon and Gunter (2016)

rocks, Montana, USA

Talc deposit, Nangarhar
Province, Afghanistan

fluids of Cr from chromite, chromian magnetite, or talc is unclear. Cr
(VD) is directly linked to several health problems including asthma, ul-
cers, lung inflammation, renal damage, kidney disease, cancer of the
lung, and negative impacts on reproduction (e.g., IARC, 2012;
Tchounwou et al., 2012; Teklay, 2016). The oxidation state of Cr and
form as ionic substitution in talc, should therefore be investigated in the
future, as should geochemical reactions in human fluid analogs.

IARC classified Ni as a group 2B metal and thus is a possible
carcinogen (IARC, 2012b). The primary health effect of Ni in humans is
an allergic reaction with 10-20% of the U.S. population being sensitive
(ATSDR, 2005). Lung cancer was also found to develop in rats exposed to
Ni compounds that have a low solubility in water (ATSDR, 2005).
Although the 2+ oxidation state of Ni should be dominant in silicate and
oxide materials, the form of Ni in talc, should be investigated in the
future as should geochemical reactions in human fluid analogs.

Cu and Zn are recognized to substitute into pyrite and Abraitis et al.
(2004) reports a range of concentrations for Cu in pyrite of ~1 ppm to
~7 wt% and for Zn, 10 to 10,000 ppm. Cu and Zn are commonly
observed in other Fe-sulfides at concentrations of ~1 ppm to a few
thousand ppm (e.g., Rottier et al., 2016; Mansur et al., 2021). The
minerals controlling the concentrations of Cu and Zn in the 1985
Johnson’s baby powder sample are unclear, however it is postulated
here that these metals are in the Fe-sulfides observed.

Although this study is not a medical exposure study it should be
noted that the particles interpreted as chromite or chromian magnetite
are observed at size fractions PM; to PMj s. If suspended in air, particles
of this size have the potential to be inhaled and make it into the upper
respiratory track or deep into the lungs of humans (e.g., Plumlee et al.,
2006). Similarly, some of the Fe-sulfide particles observed were < PM;o
and thus if suspended in air could also be inhaled and make it into the
upper respiratory track (Plumlee et al., 2006). Talc particles could also

Talc ore bodies are interlayered with carbonate
host rocks; magnesite, dolomite, tremolite replaced

11

altered carbonate talc deposits"

Tahir et al. (2018)

be inhaled if they were to be suspended in air and were to subsequently
enter the upper respiratory track as some are associated with the PM;
fraction (Plumlee et al., 2006). This study may therefore provide some
mineralogical and geochemical context for future medical exposure
studies.

5. Summary

This investigation has shown unequivocally that Ni and Cr made it
into the baby powder production chain of this manufacturer in 1985.
Repeat analysis of sample powders via XRD document the dominance of
talc in the studied product (as expected). Minor reflection peaks in XRD
patterns could potentially also be interpreted as representing the pres-
ence of chlorite and/or serpentine, and chrysotile is possible. Sample
analysis via SEM and TEM documented the occurrence of Fe-sulfides
(which are associated with Ni), and chromite and chromian magnetite
both of which are associated with the presence of Cr. Bulk Ni and Cr
contents determined via HR-ICP-MS from triplicate sample analysis
averaged 1395.9 ppm (+105 ppm at 26) and 400.9 ppm (£+11.4 ppm at
20) respectively.

While a geologic source for this talc-based consumer product cannot
be unequivocally traced, the bulk trace element contents of Ni and Cr
can be used to evaluate a potential origin within the content of (ultra)
mafic and carbonate-hosted talc ore deposits. From comparison with a
global talc dataset, the magnitude of Ni (ppm) and Cr (ppm) contents are
more consistent with derivation from an (ultra)mafic-hosted talc deposit
where Ni contents are typically >1000 ppm. This study therefore opens
questions regarding the nature of contamination of talc-based consumer
and industrial products not only from this manufacturer but potentially
from other manufacturers who have used the same (or similar) talc-
dominated geologic sources. Detailed mineralogical and geochemical
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studies that incorporate evaluation of oxidation state should be carried
out on other historical product samples as well as geologic source ma-
terials (if available). This work also provides potential mineralogical and
geochemical context and justification for future medical related studies
on diseases associated with talc exposure.
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