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Abstract. We build quantum cryptosystems that support publicly-verifiable
deletion from standard cryptographic assumptions. We introduce target-
collapsing as a weakening of collapsing for hash functions, analogous
to how second preimage resistance weakens collision resistance; that
is, target-collapsing requires indistinguishability between superpositions
and mixtures of preimages of an honestly sampled image.
We show that target-collapsing hashes enable publicly-verifiable deletion
(PVD), proving conjectures from [Poremba, ITCS’23] and demonstrating
that the Dual-Regev encryption (and corresponding fully homomorphic
encryption) schemes support PVD under the LWE assumption. We fur-
ther build on this framework to obtain a variety of primitives support-
ing publicly-verifiable deletion from weak cryptographic assumptions,
including:
– Commitments with PVD assuming the existence of injective one-

way functions, or more generally, almost-regular one-way functions.
Along the way, we demonstrate that (variants of) target-collapsing
hashes can be built from almost-regular one-way functions.

– Public-key encryption with PVD assuming trapdoored variants of in-
jective (or almost-regular) one-way functions. We also demonstrate
that the encryption scheme of [Hhan, Morimae, and Yamakawa, Eu-
rocrypt’23] based on pseudorandom group actions has PVD.

– X with PVD for X ∈ {attribute-based encryption, quantum fully-
homomorphic encryption, witness encryption, time-revocable encryption},
assuming X and trapdoored variants of injective (or almost-regular)
one-way functions.



1 Introduction

Recent research has explored the exciting possibility of combining quantum in-
formation with computational hardness to enable classically infeasible crypto-
graphic tasks. Beginning with proposals such as unforgeable money [28], this list
has recently grown to include the possibility of provably deleting cryptographic
information encoded into quantum states [27, 9, 17, 15, 16, 21, 6, 7, 2, 5].

In this work, we further investigate the task of provable deletion of informa-
tion via destructive measurements. We focus on building primitives that satisfy
publicly-verifiable deletion (PVD). This deletion property allows any participant
in possession of a quantum encoding to publish a publicly-verifiable classical
certificate proving that they deleted4 the underlying plaintext. This is in con-
trast to the weaker privately-verifiable deletion property, where deletion can be
verified only by parties that hold a secret verification key, and this key must
remain hidden from the party holding the ciphertext. Public verification is more
desirable due to its stronger security guarantee: secret verification keys do not
need to be stored in hidden locations, and security continues to hold even when
the verification key is leaked. Furthermore, clients can outsource verification of
deletion by publishing the verification key itself.

Our approach to building publicly verifiable deletion departs from templates
used in prior works on deletion. While most prior works, building on [27, 9], rely
on the combination of a quantum information-theoretic tool such as Wiesner
encodings/BB84 states [28, 8] and a cryptographic object such as an encryption
scheme, our work enables publicly-verifiable deletion by directly using simple
cryptographic properties of many-to-one hash functions.

The Template, in a Nutshell. When illustrating our approach to publicly-verifiable
deletion, it will help to first consider enabling this for a simple cryptographic
primitive: a commitment scheme. That is, we consider building a statistically
binding non-interactive quantum bit commitment scheme where each commit-
ment is accompanied by a classical, public verification key vk. A receiver holding
the commitment may generate a classical proof that they deleted the committed
bit b, and this proof can be publicly verified against vk. We would like to guaran-
tee that as long as verification accepts, the receiver has information-theoretically
removed b from their view and will be unable to recover it given unbounded re-
sources, despite previously having the bit b determined by their view.

To allow verification to be a public operation, it is natural to imagine the
certificate or proof of deletion to be a hard-to-find solution to a public puzzle.
For instance, the public verification key could be an image y of a (one-way)
function, and the certificate of deletion a valid pre-image f−1(y) of this key.
Now, the commitment itself must encode the committed bit b in such a way

4 In this work, we focus on information-theoretic deletion of computationally hidden
secrets, where the guarantee is that after deletion, even an unbounded adversary
cannot recover the plaintext that was previously determined by their view [6].
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that the ability to generate f−1(y) given the commitment implies information-
theoretic deletion of b. This can be enabled by encoding b in the phase of a state
supported on multiple pre-images of y.

Namely, given an appropriate two-to-one function f , a commitment5 to a bit
b can be

Com(b) =
(
y, |0, x0⟩A + (−1)b |1, x1⟩A

)
where (0, x0), (1, x1) are the two pre-images of (a randomly sampled) image y.

Given an image y and a state on register A, a valid certificate of deletion of the
underlying bit could be any pre-image of y, which for a well-formed commitment
will be obtained by measuring the A register in the computational basis. It is
easy to see that an immediate honest measurement of the A register implies
information-theoretic erasure of the phase b. But a malicious adversary holding
the commitment may decide to perform arbitrary operations on this state in an
attempt to find a pre-image y without erasing b.

In this work, we analyze (minimal) requirements on the cryptographic hard-
ness of f in the template above, so that the ability to computationally find any
preimage of y given the commitment necessarily implies information-theoretic
erasure of b. A useful starting point, inspired by recent conjectures in [21], is the
collapsing property of hash functions. This property was first introduced in [26]
as a quantum strengthening of collision-resistance.

Collapsing Functions. The notion of collapsing considers an experiment where
a computationally bounded adversary prepares an arbitrary superposition of
preimages of f on a register A, after which the challenger tosses a random coin
c. If c = 0, the challenger measures register A, otherwise it measures a register
containing the hash y of the value on register A, thus leaving A holding a super-
position of preimages of y. The register A is returned to the adversary, and we
say that f is collapsing if the adversary cannot guess c with better than negli-
gible advantage. Constructions of collapsing hash functions are known based on
LWE [25], low-noise LPN [30], and more generally on special types of collision-
resistant hashes. They have played a key role in the design of post-quantum
protocols, especially in settings where proofs of security of these protocols rely
on rewinding an adversary.

It is easy to see that

Com(b) =
(
y, |0, x0⟩+ (−1)b |1, x1⟩

)
computationally hides the bit b as long as the function f used to build the
commitment above is collapsing. Indeed, collapsing implies that the superpo-
sition |0, x0⟩ + (−1)b |1, x1⟩ is computationally indistinguishable from the re-
sult of measurement in the computational basis, and the latter perfectly erases
the phase b. However, PVD requires something stronger: we must show that
any adversary that generates a valid pre-image of y given the superposition

5 Technically, it is only an appropriate purification of the scheme described here that
will satisfy binding; we ignore this detail for the purposes of this overview.

3



|0, x0⟩+(−1)b |1, x1⟩, must have information-theoretically deleted b from its view,
despite b being information-theoretically present in the adversary’s view before
generating the certificate. We show via a careful proof that this is indeed the
case for collapsing f . Proving this turns out to be non-trivial. Indeed, a similar
construction in [21] based on the Ajtai hash function [3] relied on an unproven
conjecture, which we prove in this work by developing new techniques.

In addition, we show how f in the template above can be replaced with func-
tions that satisfy weaker properties than collapsing, yielding PVD from regular
variants of one-way functions. We discuss these results below.

1.1 Our Results

We introduce new properties of (hash) functions, namely target-collapsing, gen-
eralized target-collision-resistance. We will show that hash functions satisfying
these properties (1) can be based on (regular) variants of one-way functions and
(2) imply publicly-verifiable deletion in many settings. Our results also use an
intermediate notion, a variant of target-collapsing that satisfies certified everlast-
ing security. Before discussing our results, we motivate and discuss these new
definitions informally below.

Definitions

Target-Collapsing and Generalized Target-Collision-Resistant Functions. Towards
better understanding the computational assumptions required for PVD, we ob-
serve that in the deletion experiment for the commitment above, the superposi-
tion |x0⟩+(−1)b |x1⟩ is prepared by an honest committer. This indicates that the
collapsing requirement, where security is required to hold even for an adversarial
choice of superposition over preimages, may be overkill.

Inspired by this, we consider a natural weakening called target-collapsing,
where the challenger (as opposed to the adversary) prepares a superposition of
preimages of a random image y of f on register A. After this, the challenger
tosses a random coin c. If c = 0, it does nothing to A, otherwise it measures A in
the computational basis. The register A is returned to the adversary, and we say
that a hash function is target-collapsing if a computationally bounded adversary
cannot guess c with better than negligible advantage.

As highlighted above, this definition weakens collapsing to allow the chal-
lenger (instead of the adversary) to prepare the preimage register. The weaken-
ing turns out to be significant because we show that target-collapsing functions
are realizable from relatively weak cryptographic assumptions – namely vari-
ants of one-way functions – which are unlikely to imply (standard) collapsing or
collision-resistant hash functions due to known black-box separations [22].

To enable these instantiations from weaker assumptions, we first further gen-
eralize target-collapsing so that when c = 1, the challenger applies a binary-
outcome measurement M to A (as opposed to performing a computational basis
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measurement resulting in a singleton preimage). Thus, a template commitment
with PVD from generalized target-collapsing hashes has the form:

Com(b) =

y, ∑
x:f(x)=y,M(x)=0

|x⟩+ (−1)b
∑

x:f(x)=y,M(x)=1

|x⟩

 .

We show that this commitment satisfies PVD as long as f is target-collapsing
w.r.t. the measurement M , and satisfies an additional property of “generalized”
target-collision-resistance (TCR), that we discuss next.

Generalized target-collision-resistance is a quantum generalization of the
(standard) cryptographic property of second pre-image resistance/target-collision-
resistance. Very roughly, this considers an experiment where the challenger first
prepares a superposition of preimages of a random image y of f on register A.
After this, the challenger applies a measurement (e.g., a binary-outcome mea-
surement) M on A to obtain outcome µ and sends A to the adversary. We require
that no polynomially-bounded adversary given register A can output any preim-
age x′ of y such that M(x′) ̸= M(µ) (except with negligible probability)6.

Certified Everlasting Target-Collapsing. In order to show PVD, instead of di-
rectly relying on target-collapsing (which only considers computationally bounded
adversaries), we introduce a stronger notion that we call certified everlasting
target-collapsing. This considers the following experiment: as before, the chal-
lenger prepares a superposition of preimages of a random image y of f on register
A. After this, the challenger tosses a random coin c. If c = 0, it does nothing to
A, otherwise it applies measurement M to A. The register A is returned to the
adversary, after which the adversary is required to return a pre-image of y as
its “deletion certificate”. While such a certificate can be obtained via an honest
measurement of the register A, the certified everlasting target-collapsing property
requires that the following everlasting security guarantee hold. As long as the
adversary is computationally bounded at the time of generating a valid deletion
certificate, verification of this certificate implies that the bit c is information-
theoretically erased from the adversary’s view, and cannot be recovered even
given unbounded resources. That is, if the adversary indeed returns a valid pre-
image, they will never be able to guess whether or not the challenger applied
measurement M .

New Constructions and Theorems

Main Theorem. Now, we are ready to state the main theorem of our paper.
In a nutshell, this says that any (hash) function f that satisfies both target-
collapsing and (generalized) target-collision resistance also satisfies certified ev-
erlasting target-collapsing.

6 We remark that this notion can also be seen as a generalization of “conversion
hardness” defined in [14].
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Theorem 1. (Informal). If f satisfies target-collapsing and generalized target-
collision-resistance with respect to measurement M , then f satisfies certified
everlasting target-collapsing with respect to the measurement M .

We also extend recent results from the collapsing literature [12, 30, 11] to
show that for the case of binary-outcome (in fact, polynomial-outcome) measure-
ments M , generalized TCR with respect to M actually implies target-collapsing
with respect to M . Thus, we obtain the following corollary.

Corollary 1. (Informal). If f satisfies generalized target-collision-resistance with
respect to a binary-outcome measurement M , then f satisfies certified everlast-
ing target-collapsing with respect to the measurement M .

Resolving the Strong Gaussian Collapsing Conjecture [21]. We now apply the
main theorem and its corollary to build various cryptographic primitives with
PVD. First, we immediately prove the following “strong Gaussian-collapsing”7

conjecture from [21], which essentially conjectures that the Ajtai hash function
(based on the hardness of SIS) satisfies a certain form of key-leakage security after
deletion. This follows from our main theorem because the Ajtai hash function is
known to be collapsing [19, 21] and collision-resistant (which implies that it is
target-collapsing and target-collision-resistant when preimages are sampled from
the Gaussian distribution).

Conjecture 1 (Strong Gaussian-Collapsing Conjecture, [21]).
There exist parameters n,m, q ∈ N with m ≥ 2 and σ > 0 such that, for every
efficient quantum algorithm A, it holds that∣∣∣Pr

[
StrongGaussCollapseExpA,n,m,q,σ(0) = 1

]
−

Pr
[
StrongGaussCollapseExpA,n,m,q,σ(1) = 1

]∣∣∣ ≤ negl(λ)

with respect to the experiment defined in Figure 1.

This conjecture, from [21] considers a slightly weaker notion of certified col-
lapsing which resembles the notion of certified deletion first proposed by Broad-
bent and Islam [9]. Here, the adversary is not computationally unbounded once a
valid deletion certificate is produced; instead, the challenger simply reveals some
additional secret information (in the case of the strong Gaussian-collapsing ex-
periment, the challenger reveals a short trapdoor vector for the Ajtai hash func-
tion8).

7 Here, “Gaussian” refers to a quantum superposition of Gaussian-weighted vectors,
where the distribution assigns probability proportional to ρσ(x) = exp

(
−π∥x∥2/σ2

)
for vectors x ∈ Zm and parameter σ > 0.

8 In the strong Gaussian-collapsing experiment it is crucial that the trapdoor is only
revealed after a valid certificate is presented; otherwise, the adversary can easily dis-
tinguish the collapsed from the non-collapsed world by applying the Fourier trans-
form and using the trapdoor to distinguish LWE samples from uniformly random
vectors [21].
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StrongGaussCollapseExpA,n,m,q,σ(b):

1. The challenger samples Ā $←−Zn×(m−1)
q and prepares the Gaussian state

|ψ⟩XY =
∑

x∈Zm
q

ρσ(x) |x⟩X ⊗ |A · x (mod q)⟩Y ,

where A = [Ā ∥ Ā · x̄ (mod q)] ∈ Zn×m
q is a matrix with x̄ $←−{0, 1}m−1.

2. The challenger measures Y in the computational basis, resulting in

|ψy⟩XY =
∑

x∈Zm
q :

Ax=y (mod q)

ρσ(x) |x⟩X ⊗ |y⟩Y .

3. If b = 0, the challenger does nothing. Else, if b = 1, the challenger measures
system X in the computational basis. The challenger then sends system
X to A, together with the matrix A ∈ Zn×m

q and the string y ∈ Zn
q .

4. A sends a classical witness w ∈ Zm
q to the challenger.

5. The challenger checks if w satisfies A·w = y (mod q) and ∥w∥ ≤ σ
√
m/2.

If true, the challenger sends the trapdoor vector t = (x̄,−1) ∈ Zm to
A, where A · t = 0 (mod q). Else, the challenger outputs a random bit
b′ ← {0, 1} and the game ends.

6. A returns a bit b′, which is retured as the output of the experiment.

Fig. 1. The strong Gaussian-collapsing experiment [21].

Following results from [21], we obtain the following cryptosystems with PVD,
for the first time from standard cryptographic assumptions.

Theorem 2. (Informal) Assuming the hardness of LWE and SIS with appropri-
ate parameters, there exists public-key encryption and (leveled) fully-homomorphic
encryption with PVD.

Next, we ask whether one necessarily needs to rely on concrete, highly struc-
tured assumptions such as LWE in order to achieve publicly-verifiable deletion,
or whether weaker generic assumptions suffice. We present a more general ap-
proach to building primitives with PVD from weaker, generic assumptions.

Commitments with PVD from Regular One-Way Functions. We first formulate
the notion of a balanced binary-measurement TCR hash, which is any function
that is TCR with respect to some appropriately balanced binary-outcome mea-
surement. By balanced, we mean that the set of preimages of a random image
will have significant weight on preimages that correspond to both measurement
outcomes (this will roughly be required to guarantee the binding property of
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our commitment/correctness properties of our encryption schemes). By roughly
following the template described above, we show that such hashes generically
imply commitments with PVD. Next, we show that such “balanced” functions
can be based on (almost-)regular one-way functions9 By carefully instantiating
this outline, we obtain the following results.

Theorem 3. (Informal). Assuming the existence of almost-regular one-way func-
tions, there exists a balanced binary-outcome TCR hash, and consequently there
exist commitments with PVD.

Public-Key Encryption with PVD from Regular Trapdoor Functions. Next, we
take this framework to the public-key setting, showing that any balanced binary-
outcome TCR hash with an additional “trapdoor” property generically implies
a public-key encryption scheme with PVD. The additional property roughly
requires the existence of a trapdoor for f that enables recovering the phase
term from the quantum commitments discussed above: we call this trapdoor
phase-recoverability. We show that balanced binary-outcome TCR, with trap-
door phase-recoverability, can be based on injective trapdoor one-way functions
or pseudorandom group actions (the latter builds on [14]).

Theorem 4. (Informal). Assuming the existence of injective trapdoor one-way
functions or pseudorandom group actions, there exists a balanced binary-outcome
TCR hash with trapdoor phase-recoverability, and consequently there exists public-
key encryption with PVD.

We also show that injectivity requirement on the trapdoor function can be
further relaxed to a notion of “superposition-invertible” trapdoor regular one-
way function for the results above. Informally, this is a regular one-way function,
where a trapdoor allows one to obtain a uniform superposition over all preimages
of a given image. This is an example of a generic assumption that is not known
to, and perhaps is unlikely to, imply classical public-key encryption – but does
imply PKE with quantum ciphertexts, and in fact even one that supports PVD.
The only other assumption in this category is the concrete assumption that
pseudorandom group actions exist [14].

Theorem 5. (Informal). Assuming the existence of superposition-invertiable
regular trapdoor functions, there exists a balanced binary-outcome TCR hash
with trapdoor phase-recoverability and consequently, there exists public-key en-
cryption with PVD.

Advanced Encryption with PVD from Weak Assumptions Finally, we show that
hybrid encryption gives rise to a generic compiler for encryption with PVD,
obtaining the following results.

9 This is a generalization of regular one-way functions where preimage sets for different
images should be polynomially related in size.
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Theorem 6. (Informal). Assuming the existence of injective trapdoor one-way
functions or pseudorandom group actions, and X ∈ {attribute-based encryp-
tion, quantum fully-homomorphic encryption, witness encryption, timed-release
encryption}, there exists X with PVD.

Prior to this work, while there existed encryption schemes with PVD from
non-standard assumptions such as one-shot signatures [17], conjectured strong
collapsing [21] or post-quantum indistinguishability obfuscation [7], no basic or
advanced cryptosystems supporting PVD were known from standard assump-
tions. We provide a more detailed overview of prior work below.

1.2 Prior work

The first notion resembling certified deletion was introduced by Unruh [27] who
proposed a (private-key) quantum timed-release encryption scheme that is re-
vocable, i.e. it allows a user to return the ciphertext of a quantum timed-release
encryption scheme, thereby losing all access to the data. Unruh’s scheme uses
conjugate coding [28, 8] and relies on the monogamy of entanglement in order
to guarantee that revocation necessarily erases information about the plain-
text. Broadbent and Islam [9] introduced the notion of certified deletion and
constructed a private-key quantum encryption scheme with the aforementioned
feature which is inspired by the quantum key distribution protocol [8, 24]. In
contrast with Unruh’s [27] notion of revocable quantum ciphertexts which are
eventually returned and verified, Broadbent and Islam [9] consider certificates
which are entirely classical. Moreover, the security definition requires that, once
the certificate is successfully verified, the plaintext remains hidden even if the se-
cret key is later revealed. Inspired by the notion of quantum copy-protection [1],
Ananth and La Placa [4] defined a form of quantum software protection called
secure software leasing whose anti-piracy notion requires that the encoded pro-
gram is returned and verified.

Using a hybrid encryption scheme, Hiroka, Morimae, Nishimaki and Ya-
makawa [17] extended the scheme in [9] to both public-key and attribute-based
encryption with privately-verifiable certified deletion via receiver non-committing
encryption [18, 10]. Hiroka, Morimae, Nishimaki and Yamakawa [16] considered
certified everlasting zero-knowledge proofs for QMA via the notion of everlasting
security which was first formalized by Müller-Quade and Unruh [20]. Bartusek
and Khurana [6] revisited the notion of certified deletion and presented a uni-
fied approach for how to generically convert any public-key, attribute-based,
fully-homomorphic, timed-release or witness encryption scheme into an equiv-
alent quantum encryption scheme with certified deletion. In particular, they
considered a stronger notion called certified everlasting security which allows
the adversary to be computationally unbounded once a valid deletion certificate
is submitted. This is also the definition we consider in this work. In the same
spirit, Hiroka, Morimae, Nishimaki and Yamakawa [15] gave a certified everlast-
ing functional encryption scheme which allows the receiver of the ciphertext to
obtain the outcome specific function applied the plaintext, but nothing else. In
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other very recent work, Ananth, Poremba and Vaikuntanathan [5] used Gaussian
superpositions to construct (key)-revocable cryptosystems, such as public-key
encryption, fully homomorphic encryption and pseudorandom functions assum-
ing the hardness of LWE, and Agarwal et al. [2] introduced a generic compiler
for adding key-revocability to a variety of cryptosystems. In these systems, the
cryptographic key consists of a quantum state which can later be certifiably re-
voked via a quantum channel – in contrast with the classical deletion certificates
for ciphertexts considered in this work.

Cryptosystems with Publicly Verifiable Deletion. First, in addition to their re-
sults in the setting of private verification, [17] also gave a public-key encryp-
tion scheme with certified deletion which is publicly verifiable assuming the ex-
istence of one-shot signatures (which rely on strong black-box notions of ob-
fucation) and extractable witness encryption. Using Gaussian superpositions,
Poremba [21] proposed Dual-Regev -based public-key and fully homomorphic en-
cryption schemes with certified deletion which are publicly verifiable and proven
secure assuming the (then unproven) strong Gaussian-collapsing conjecture —
a strengthening of the collapsing property of the Ajtai hash. Finally, a recent
work [7] relies on post-quantum indistinguishability obfuscation (iO) to obtain
both publicly verifiable deletion and publicly verifiable key revocation. This is a
strong assumption for which we have candidates, but no constructions based on
standard (post-quantum) assumptions at this time.

2 Technical Overview

In this overview, we begin by discussing the key ideas involved in proving our
main theorem. We show how to prove publicly verifiable deletion for a toy pro-
tocol that relies on stronger assumptions than the ones that we actually rely on
in our actual technical sections.

Next, we progressively relax these assumptions to instantiate broader frame-
works, including the one from [21], obtaining public-key encryption and fully-
homomorphic encryption with PVD from LWE/SIS.

Finally, we further generalize this to enable constructions from weak crypto-
graphic assumptions – including commitments with PVD from variants of one-
way functions and PKE with PVD from trapdoored variants of the same as-
sumption. We also discuss a hybrid approach that enables a variety of advanced
encryption schemes supporting PVD.

2.1 Proving Our Main Theorem

Consider the toy commitment

Com(b) =
(
y, |0, x0⟩+ (−1)b |1, x1⟩

)
where (0, x0), (1, x1) are preimages of y under a structured two-to-one function
f , where every image has a preimage that begins with a 0 and another that
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begins with a 1. We note that this commitment can be efficiently prepared by
first preparing a superposition over all preimages∑

b∈{0,1},x∈{0,1}λ

|b, x⟩

on a register X, then writing the output of f applied on X to register Y, and
finally measuring the contents of register Y to obtain image y. The register X
contains |0, x0⟩ + |1, x1⟩, which can be converted to |0, x0⟩ + (−1)b |1, x1⟩ via
(standard) phase kickback.

To show that the commitment satisfies publicly-verifiable deletion, we con-
sider an adversary A = (A1,A2) where A1 is (quantum) polynomial time and
A2 is unbounded, participating in the following experiment.

– The challenger samples b← {0, 1} and runs Expmt0(b), described below.
Exmpt0(b) :

1. Prepare
(
|0, x0⟩+ (−1)b |1, x1⟩ , y

)
on registers A,B and send them to

A1.
2. A1 outputs a (classical) deletion certificate γ,10 and left-over state ρ.
3. If f(γ) ̸= y, output a uniformly random bit b′ ← {0, 1}, otherwise output
b′ = A2(ρ).

– The advantage of A is defined to be Adv
Expmt0
A =

∣∣Pr[b′ = b]− 1
2

∣∣.
We discuss how to prove the following.

Claim. (Informal). For every A = (A1,A2) where A1 is (quantum) computa-
tionally bounded,

Adv
Expmt0
A = negl(λ),

as long as f is target collapsing and target collision-resistant w.r.t. a computa-
tional basis measurement of the pre-image register.

Overview of the Proof of Claim 2.1. To prove this claim, we must show that b
is information-theoretically removed from the leftover state of any A1 that gen-
erates a valid pre-image of y, despite the fact that the adversary’s view contains
b at the beginning of the experiment.

Proof techniques for this type of experiment were recently introduced in [6]
in the context of privately verifiable deletion via BB84 states. Inspired by their
method, our first step is to defer the dependence of the experiment on the
bit b. In more detail, we will instead imagine sampling the distribution by
guessing a uniformly random c ← {0, 1}, and initializing the adversary with
(|x0⟩+ (−1)c |x1⟩ , y). The challenger later obtains input b and aborts the ex-
periment (outputs ⊥) if c ̸= b. Since c was a uniformly random guess, the trace
distance between the b = 0 and b = 1 outputs of this modified experiment is
at least half the trace distance between the outputs of the original experiment.

10 If the A1 outputs a quantum state as their certificate, the state is measured in the
computational basis to obtain a classical certificate γ.
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Moreover, we can further delay the process of obtaining input b, and then abort
or not until after the adversary outputs a certificate of deletion. That is, we can
consider a purification where a register C contains a superposition |0⟩ + |1⟩ of
two choices for c, and is later measured to determine bit c. This experiment is
discussed in detail below.

Expmt1(b) : The experiment proceeds as follows.

1. Prepare the |+⟩ state on an ancilla register C, and a superposition of preim-
ages |x0⟩+ |x1⟩ of a random y on register A.

2. Then, controlled on the contents of register C, do the following: if the control
bit is 0, do nothing, and otherwise flip the phase on x1 (via phase kickback),
changing the contents of A to |x0⟩ − |x1⟩. This means that the overall state
is

1√
2

∑
c∈{0,1}

|c⟩C ⊗ |0, x0⟩A + (−1)c |1, x1⟩A

Send A to A1.
3. Obtain from A1 a purported certificate of deletion γ.
4. If f(γ) ̸= y, abort, and otherwise measure register C to obtain output c,

and abort if c ̸= b. In the case of abort, output a uniformly random bit
b′ ← {0, 1}.

5. If no aborts occurred, output b′ = A2(ρ).

We note that the event c = b occurs with probability exactly 1
2 , and since

measurements on separate subsystems commute, we have that

Adv
Expmt1
A ≥ 1

2
Adv

Expmt0
A . (1)

where Adv
Expmt1
A =

∣∣Pr[Expmt1(b) = b]− 1
2

∣∣ for b← {0, 1}.
Once the dependence of the experiment on b has been deferred, as above, we

can consider another experiment (described below) where the challenger mea-
sures the contents of register A before sending it to A1. Intuitively, performing
this measurement removes information about b from A1’s view in a manner that
is computationally undetectable by A1 (due to the target-collapsing property of
f).

Expmt2(b) : The experiment proceeds as follows.

– Prepare the |+⟩ state on an ancilla register C, and a superposition of preim-
ages |x0⟩+ |x1⟩ of a random y on register A. Next, measure register A in the
computational basis.
Then, controlled on the contents of register C, do the following: if the control
bit is 0, do nothing, and otherwise flip the phase on x1. This means that the
overall state is a uniform mixture of the states

1√
2

∑
c∈{0,1}

|c⟩C ⊗ |0, x0⟩A and
1√
2

∑
c∈{0,1}

(−1)c |c⟩C ⊗ |1, x1⟩A
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Finally, send A to A1.
– Obtain from A1 a purported certificate of deletion γ.
– If f(γ) ̸= y, abort, otherwise measure register C to obtain output c, and abort

if c ̸= b. In the case of abort, output a uniformly random bit b′ ← {0, 1}.
– If no aborts occurred, output b′ = A2(ρ).

As described above, the target-collapsing property of f implies that A1 can-
not (computationally) distinguish the register A obtained in Expmt2(b) from the
one obtained in Expmt1(b). However, this is not immediately helpful: informa-
tion about which experiment A1 participated in could potentially be encoded
into A1’s left-over state ρ, so that it remains computationally hidden from A1

but can be extracted by (unbounded) A2. And it is after all the output of A2

that determines the advantage of A. Because of A2 being unbounded and the
experiments only being computationally indistinguishable, even if we could show

that Adv
Expmt2
A = negl(λ), it is unclear how to use this to show our desired claim,

i.e., Adv
Expmt0
A = negl(λ). It may appear that the proof is stuck.

To overcome this issue, we will aim to identify an efficiently computable pred-
icate of the challenger’s system, which will imply the following (inefficient) prop-
erty: when A1 outputs a valid deletion certificate, even an unbounded A2 cannot
determine whether it participated in Expmt1(b) or Expmt2(b), i.e., A1’s left-over
state is information-theoretically independent of b.

Identifying an Efficiently Computable Predicate. Observe that in Expmt2(b), the
ancilla register C is unentangled with the rest of the experiment. In fact, the
ancilla register is exactly |+⟩ when we give the adversary |0, x0⟩ on register A,
and |−⟩ when we give the adversary |1, x1⟩ on register A. Moreover, in Expmt2(b),
the target-collision-resistance of f implies that the computationally-bounded A1

given x0 cannot output x1 as their deletion certificate (and vice-versa).
This, along with the fact that the certificate must be a pre-image of y

means that the following guarantee holds (except with negligible probability)
in Expmt2(b):

When the adversary outputs a valid certificate γ, a projection of the pre-image
register onto |+⟩ succeeds if γ = (0, x0) and a projection of the pre-image

register onto |−⟩ succeeds if γ = (1, x1).

At this point, we can rely on the target-collapsing property of f to prove
the following claim: the efficient projection described above also succeeds except
with negligible probability in Expmt1(b), when the adversary generates a valid
deletion certificate. If this claim is not true, then since the experiments (in-
cluding A1) run in quantum polynomial time until the point that the deletion
certificate is generated, and the projection is efficient, one can build a reduction
that contradicts target-collapsing of f . This reduction obtains a challenge (which
is either a superposition when the challenger did not measure, or a mixture if
the challenger did measure) on register A, prepares ancilla C as in Expmt1(b),
then follows steps 2, 3 identically to Expmt1(b). Next, given a deletion certifi-
cate (β, xβ), the reduction projects C onto |0⟩ + (−1)β |1⟩, outputting 1 if the
projection succeeds and 0 otherwise.
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Introducing an Alternative Experiment. Having established that the projection
above must succeed in Expmt1(b) except with negligible probability, we can now
consider an alternative experiment Expmtalt(b). This is identical to Expmt1(b),
except that the challenger additionally projects register C onto |0⟩ + (−1)β |1⟩
when the adversary generates a valid certificate (β, xβ). We established above
that the projection is successful in Expmt1(b) except with negligible probability,
and this implies that

Adv
Expmtalt
A ≥ Adv

Expmt1
A − negl(λ) (2)

where as before, Adv
Expmtalt
A =

∣∣Pr[Expmtalt(b) = b]− 1
2

∣∣ for b← {0, 1}.
Crucially, in Expmtalt(b), the bit c is determined by a measurement on reg-

ister C which is unentangled with the system and in either the |+⟩ or |−⟩ state
(due to the projective measurement that we just applied). Thus, measuring C
in the computational basis results in a uniformly random and independent c.
By definition of the experiment (abort when b ̸= c, continue otherwise) – this
implies that the bit b is set in a way that is uniformly random and independent
of the adversary’s view, and thus

Adv
Expmtalt
A = 0 (3)

Now, equations (1, 2, 3) together yield the desired claim, that is, Adv
Expmt0
A =

negl(λ).
This completes a simplified overview of our key ideas, assuming the ex-

istence of a perfectly 2-to-1 function f where every image y has preimages
((0, x0), (1, x1)), and where f satisfies both target-collapsing and target-collision-
resistance. Unfortunately, we do not know how to build functions satisfying these
clean properties from simple generic assumptions. Instead, we will generalize the
template above, where the first generalization will no longer require f be 2-to-1.

Generalizing the Template. First, note that we can replace |0, x0⟩ and |1, x1⟩
with superpositions over two disjoint sets of preimages of y separated via an
efficient binary-outcome measurement, namely

Com(b) =
∑

x:f(x)=y,M(x)=0

|x⟩+ (−1)b
∑

x:f(x)=y,M(x)=1

|x⟩

We can even consider measurements M that have arbitrarily many outcomes.
Proof ideas described above also generalize almost immediately to show that for
any M , Com satisfies PVD as long as f is target-collapsing and target-collision
resistant w.r.t. M . In fact, we can generalize this even further (see our main
results in the full version) to consider arbitrary (as opposed to uniform) distri-
butions over pre-images, as well as to account for any auxiliary information that
may be sampled together with the description of the hash function.

Certified Everlasting Target-Collapsing. As discussed in the results section, our
actual technical proofs proceed in two parts. (1) Show that for any M , a func-
tion f that is target-collapsing and target-collision resistant w.r.t. M is also
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certified everlasting target-collapsing w.r.t. M , and (2) show that f being cer-
tified everlasting target-collapsing implies that Com satisfies publicly verifiable
deletion.

Recall that certified everlasting target collapsing requires that an adversary
that outputs a valid deletion certificate information-theoretically loses the bit b
determining whether they received a superposition or a mixture of preimages.
Our proof of certified everlasting target-collapsing follows analogously to the
proof sketched above. In short, we defer measurement of a bit b which decides
whether the adversary is given a superposition or a mixture, and then rely on
target-collapsing and target-collision-resistance to argue that an efficient pro-
jection on the challenger’s state (almost) always succeeds when the adversary
outputs a valid certificate. We finally show that success of this projection implies
that the adversary’s state is information-theoretically independent of b.

The certified everlasting target-collapsing property almost immediately im-
plies certified deletion security of Com via a hybrid argument:

– In Hyb0, the adversary obtains register A containing

Com(0) =
∑

x:f(x)=y,M(x)=0

|x⟩+
∑

x:f(x)=y,M(x)=1

|x⟩

– In Hyb1, the measurement M is applied to A before sending it to the adver-
sary.

– In Hyb2, the adversary obtains register A containing

Com(1) =
∑

x:f(x)=y,M(x)=0

|x⟩ −
∑

x:f(x)=y,M(x)=1

|x⟩

The certified everlasting hiding property of f guarantees that all hybrids are
statistically close when the adversary outputs a valid deletion certificate. More-
over, these experiments abort and output a random bit when the adversary
does not output a valid certificate, and it is easy to show (by computational in-
distinguishability) that the probability of generating a valid certificate remains
negligibly close between experiments.

TCR Implies Target-Collapsing for Polynomial-Outcome Measurements We also
show that when M has polynomially many possible outcomes, then TCR im-
plies target-collapsing with respect to M . This follows from techniques that were
recently developed in the literature on collapsing versus collision resistant hash
functions [12, 30, 11]. In a nutshell, these works showed that any distinguisher
that distinguishes mixtures from superpositions over preimages for an adversar-
ially chosen image y, can be used to swap between pre-images, and therefore
find a collision for y. We observe that their technique is agnostic to whether
the image y is chosen randomly (in the targeted setting) or adversarially. Fur-
thermore, it also extends to swapping superpositions over sets of pre-images to
superpositions over other sets. These allow us to prove that TCR with respect to
any polynomial-outcome measurement M implies target-collapsing with respect
to M .
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2.2 Publicly-Verifiable Deletion via Gaussian Superpositions

We revisit the Dual-Regev public-key and (leveled) fully homomorphic encryp-
tion schemes with publicly-verifiable deletion proposed by Poremba [21] and
conjectured to be secure under the strong Gaussian-collapsing property. By ap-
plying our main theorem to the Ajtai hash function, we obtain a proof of the
conjecture, which allows us to show the certified everlasting security of the afore-
mentioned schemes assuming the hardness of the LWE assumption.

The constructions introduced in [21] exploit the the duality between LWE
and SIS [23], and rely on the fact that one encode Dual-Regev ciphertexts via
Gaussian superpositions. Below, we give a high-level sketch of the basic public-
key construction.

– To generate a pair of keys (sk, pk), sample a random A ∈ Zn×(m+1)
q together

with a particular short trapdoor vector t ∈ Zm+1 such that A·t = 0 (mod q).
Let pk = A and sk = t.

– To encrypt a single bit b ∈ {0, 1} using pk = A, generate the following pair
for a random y ∈ Zn

q :

vk← (A,y)

|CT⟩ ←
∑
s∈Zn

q

∑
e∈Zm+1

q

ρq/σ(e)ω−⟨s,y⟩
q |s⊺A + e⊺ + b · (0, . . . , 0, ⌊q

2
⌋)⟩ ,

where vk is a public verification key and |CT⟩ is the ciphertext for σ > 0.
– To decrypt |CT⟩ using sk, measure in the computational basis to obtain

c ∈ Zm+1
q , and output 0, if c⊺ · sk ∈ Zq is closer to 0 than to ⌊ q2⌋, and output

1, otherwise. Here sk = t is chosen such that c⊺ · sk yields an approximation
of b · ⌊ q2⌋ from which we can recover b.

To delete the ciphertext |CT⟩, perform a measurement in the Fourier basis.
Poremba [21] showed that the Fourier transform of |CT⟩ results in the dual
quantum state given by

|ĈT⟩ =
∑

x∈Zm+1
q :

Ax=y (mod q)

ρσ(x)ω
⟨x,b·(0,...,0,⌊ q

2 ⌋)⟩
q |x⟩ .

In other words, a Fourier basis measurement of |CT⟩ will necessarily erase all
information about the plaintext b ∈ {0, 1} and results in a short vector π ∈ Zm+1

q

such that A·π = y (mod q). To publicly verify a deletion certificate, simply check
whether a certificate π is a solution to the (inhomogenous) SIS problem specified
by vk = (A,y). Due to the hardness of the SIS problem, it is computationally
difficult to produce a valid deletion certificate from (A,y) alone.

Our approach to proving certified everlasting security of the Dual-Regev
public-key and fully-homomorphic encryption schemes with publicly-verifiable
deletion in [21] is as follows. First, we observe that the Ajtai hash function is both
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target-collapsing and target-collision-resistant with respect to the discrete Gaus-
sian distribution. Here, the former follows from LWE as a simple consequence of
the Gaussian-collapsing property previously shown by Poremba [19, 21], whereas
the latter follows immediately from the quantum hardness of SIS. Thus, our
main theorem implies that the Ajtai hash function is certified-everlasting target-
collapsing. Finally, as a simple corollary of our theorem, we obtain a proof of
the strong Gaussian-collapsing conjecture in [21], which we stated in Conjecture
1. We also note that the aforementioned conjecture considers a weaker notion
of certified collapsing which resembles the notion of certified deletion first pro-
posed by Broadbent and Islam [9]. Here, the adversary is not computationally
unbounded once a valid deletion certificate is produced; instead, the challenger
simply reveals additional secret information (in the case of the strong Gaussian-
collapsing experiment, this is a short trapdoor vector for the Ajtai hash function).
Our notion of certified everlasting target-collapsing is significantly stronger; in
particular, it implies the weaker collapsing scenario considered by Poremba [21].
This follows from the fact that the security reduction can simply brute-force
search for a short trapdoor solution for the Ajtai hash once it enters the phase
in which it is allowed to be computationally unbounded. We exploit this fact in
the proof of Conjecture 1.

2.3 Weakening Assumptions for Publicly-Verifiable Deletion

Next, we look for instantiations of the above template from generic crypto-
graphic assumptions, as opposed to structured specific assumptions such as
LWE. Here, all of our instantiations only require us to consider functions that
are target-collision-resistant and target-collapsing w.r.t. binary-outcome mea-
surements (and as discussed above, TCR implies certified-everlasting target-
collapsing in this setting). In addition, for the case of commitments, in order for
the commitment to satisfy binding11, we require that there is a measurement
that can distinguish ∑

x:f(x)=y,M(x)=0

|x⟩+
∑

x:f(x)=y,M(x)=1

|x⟩

from ∑
x:f(x)=y,M(x)=0

|x⟩ −
∑

x:f(x)=y,M(x)=1

|x⟩

with probability δ for any constant 0 < δ ≤ 1. For the case of public-key en-
cryption, we similarly require that a trapdoor be able to recover the phase with

11 We actually prove that a purification of the template commitment described above
satisfies honest-binding [29]. Namely, the committer generates the state above but
leaves registers containing the image y (and the key, if f is a keyed function) un-
measured, and holds on to these registers for the opening phase. It can later either
open the commitment by sending these registers to a receiver, or request deletion,
by measuring them and publishing y (and any keys for the function).
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constant probability. We then resort to standard amplification techniques to
boost correctness error from constant to (negligibly close to) 0. We note that
this amplification would also work if the phase was recoverable with inverse-
polynomial δ (as opposed to constant); however, we focus on constant δ because
of simplicity, and because it suffices for our instantiations.

In the template above, we observe that a measurement can find the phase
with inverse polynomial probability whenever the sets∑

x:f(x)=y,M(x)=0

|x⟩ and
∑

x:f(x)=y,M(x)=1

|x⟩

are somewhat “balanced”, i.e. for a random image y, for sets S0 = {x : f(x) =

y,M(x) = 0} and S1 = {x : f(x) = y,M(x) = 1}, we have that |S0|
|S1| is a fixed

constant. We show in ?? and ?? that commitments and PKE with PVD can be
obtained from appropriate variants of TCR functions following this template.

Now, our goal is to build such TCR functions from generic assumptions. A
natural idea would be to start with any one-way function f and compose it with
a random two-to-one hash h defined on its range12. Then, any output y of the
composed function (h ◦ f) is associated with two elements {z0, z1} = h−1(y) in
the range of f , and the binary-outcome measurement would measure one of z0
or z1. Recalling that we eventually want to prove target-collision-resistance, the
hope would be that just given a superposition over the preimages of, say, z0, the
one-wayness of f would imply the difficulty of finding a preimage of z1

13. This
could give the type of TCR property we need.

Technical Bottlenecks, and a Resolution. Unfortunately, there are two issues
with the approach proposed above. First, f may be extremely unbalanced, so
that the relative sizes of the sets of preimages of two random points y1, y2, i.e.
|{x : f(x) = y1}| and |{x : f(x) = y2}| in its image may have very different sizes,
that are not polynomially related with each other. There may even be many
points in the co-domain/range that have zero preimages (for a general OWF,
we cannot guarantee that its image is equal to its range). A second related
issue is that the above sketched reduction to one-wayness may not work. Let’s
say we choose h to be a two-to-one function defined by a random shift ∆, i.e.
h(x) = h(x ⊕ ∆). Then we are essentially asking that it be hard to invert a
random range element of f , as opposed to f(x) for a random domain element
x, which is the standard one-wayness assumption.

We don’t know how to make this approach work from arbitrary one-way
functions, which we leave as an open question. Instead, we appeal to a result

12 The co-domain of a function f : {0, 1}n → {0, 1}m is {0, 1}m, and we will also refer
to this as the range of the function in this paper. The image is the set of all actual
output values of f , i.e. the set {y : ∃x such that f(x) = y}. The co-domain/range
may in general be a superset of the image of a function.

13 More concretely, a purported reduction to one-wayness when given challenge image
z1, can sample a random image z0 with its preimages, then find h s.t. h(z0) = h(z1),
thereby using a TCR adversary to find a preimage of the given challenge z1.

18



of [13], who in the classical context of building statistically hiding commitments,
show the following result. By appropriately combining an (almost)-regular14 one-
way function with universal hash functions, it is possible to obtain a function
f with exactly the required properties: sufficiently balanced, and one-way over
its range. The former property means that an overwhelming fraction of range
elements have similar-sized preimage sets, while the latter property says that an
element y sampled randomly from the range of the function cannot be inverted
except with negligible probability. This resolves both the difficulties above.

Given such a balanced function f , we apply a random two-to-one hash h
defined by a shift ∆ to the range of this f . We prove that this implies the flavor
of target-collision-restistant hash that we need to construct commitments with
PVD.

Public-Key Encryption with PVD. Next, we note that the construction above
also yields a public-key encryption scheme, as long as there is a trapdoor that
allows recovery of the phase b given the state

y,
∑

x:f(x)=y,M(x)=0

|x⟩+ (−1)b
∑

x:f(x)=y,M(x)=1

|x⟩

We call this property “trapdoor phase-recoverability”. We show that this prop-
erty is achievable from generic assumptions, even those that are not known to
imply classical PKE.

– Specifically, trapdoor phase-recoverability is implied by a trapdoored variant
of (almost) regular one-way functions, for which a trapdoor to the function
allows recovery of a uniform superposition over all preimages of any given
image y. This then allows efficient projection onto

∑
x:f(x)=y,M(x)=0 |x⟩ +

(−1)b
∑

x:f(x)=y,M(x)=1 |x⟩ for any efficient M . We also note that this prop-

erty is satisfied by any (standard) trapdoored injective function. But it is also
satisfied by functions such as the Ajtai function that are not necessarily injec-
tive. Indeed, it is unclear how to build classical public-key encryption, or even
PKE with classical ciphertexts, given a general trapdoor phase-recoverable
function. Nevertheless, we formalize the above ideas in the full version of
this article in order to build PKE schemes with quantum ciphertexts, that
also support PVD.

– Additionally, we show that a recent public-key encryption scheme of [14] from
pseudorandom group actions also satisfies trapdoor phase-recoverability: in
fact, the decryption algorithm in [14] relies on recovering the phase from a
similar superposition, given a trapdoor.

14 An almost regular one-way function generalizes regular one-way functions to require
only that for any two images y1, y2 of the function, the sizes of preimage sets of y1, y2
are polynomially related. In particular, injective functions, and (standard) regular
functions also satisfy almost-regularity.
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Hybrid Encryption with PVD. Finally, we observe that we can use any encryp-
tion scheme Enc to encrypt the trapdoor td associated with the above construc-
tion, and security will still hold. That is, if Enc is semantically-secure, then our
techniques extend to show that a ciphertext of the form

y,
∑

x:f(x)=y,M(x)=0

|x⟩+ (−1)b
∑

x:f(x)=y,M(x)=1

|x⟩ ,Enc(td)

where td is the trapdoor for f , still supports publicly-verifiable deletion of the
bit b. Thus, our approach can be seen as a way to upgrade cryptographic schemes
Enc with special properties to satisfy PVD. In particular, we prove that instan-
tiating Enc appropriately with attribute-based encryption, fully-homomorphic
encryption, witness encryption, or timed-release encryption gives us the same
scheme supporting PVD.

2.4 Discussion and Directions for Future Work

Our work demonstrates a strong relationship between weak security proper-
ties of (trapdoored) one-way functions and publicly-verifiable deletion. In par-
ticular, previous work [21] conjectured that collapsing functions, which are a
quantum strengthening of collision-resistant hashes, lead to cryptosystems with
publicly-verifiable deletion. Besides proving this conjecture, we also show that
collapsing/collision-resistance, which are considered stronger assumptions than
one-wayness, are actually not necessary for PVD.

Indeed, weakenings called target-collapsing and generalized-target-collision-
resistance, that can be obtained from (regular) variants of one-way functions,
suffice for publicly-verifiable deletion. Analogously to their classical counterparts,
we believe that these primitives will be of independent interest. Indeed, a natural
question that this work leaves open is whether variants of these primitives that
suffice for publicly-verifiable deletion can be based on one-way functions without
the regularity constraint. It is also interesting to further understand relation-
ships and implications between target-collision-resistance and target-collapsing,
including when these properties may or may not imply each other. It may also
be useful to understand if these weaker properties can suffice in place of stronger
properties such as collapsing and collision-resistance in other contexts, including
the design of post-quantum protocols.

Finally, note that we rely on trapdoored variants of these primitives to build
public-key encryption schemes. Here too, in addition to obtaining PKE with
PVD from any injective trapdoor one-way function (TDF), it becomes possible
to relax assumptions to only require (almost)-regularity and trapdoor phase-
recoverability – properties that can plausibly be achieved from weaker concrete
assumptions than injective TDFs. These are new examples of complexity as-
sumptions that yield public-key encryption with quantum ciphertexts, but may
be too weak to obtain PKE with classical ciphertexts. It is an interesting ques-
tion to further investigate the weakest complexity assumptions that may imply
public-key encryption, with or without PVD.
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3 Main Theorem: Certified Everlasting Target-Collapsing

In this section, we prove our main theorem.

3.1 Definitions

First, we present our definitions of target-collapsing and (generalized) target-
collision-resistance. We parameterize our definitions by a distribution D over
preimages and a measurement function M. Note that when M is the identity
function, the notion of (D,M)-target-collapsing corresponds to a notion where
the entire preimage register is measured in the computational basis. In this case
we drop parameterization by M and just say D-target-collapsing. Also, when
D is the uniform distribution, we drop parameterization by D and just say M-
target-collapsing.

Definition 1 ((D,M)-Target-Collapsing Hash Function). Let λ ∈ N be
the security parameter. A hash function family given by H = {Hλ : {0, 1}m(λ) →
{0, 1}n(λ)}λ∈N is (D,M)-target-collapsing for some distribution D = {Dλ}λ∈N
over {{0, 1}m(λ)}λ∈N and family of functions M = {{M [h] : {0, 1}m(λ) →
{0, 1}k(λ)}h∈Hλ

}λ∈N if, for every QPT adversary A = {Aλ}λ∈N,

|Pr
[
TargetCollapseExpH,A,D,M,λ(0) = 1

]
−

Pr
[
TargetCollapseExpH,A,D,M,λ(1) = 1

]
| ≤ negl(λ).

Here, the experiment TargetCollapseExpH,A,D,M,λ(b) is defined as follows:

1. The challenger prepares the state∑
x∈{0,1}m(λ)

√
Dλ(x) |x⟩

on register X, and samples a random hash function h $←−Hλ. Then, it coher-
ently computes h on X (into a fresh n(λ)-qubit register Y ) and measures sys-
tem Y in the computational basis, which results in an outcome y ∈ {0, 1}n(λ).
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2. If b = 0, the challenger does nothing. Else, if b = 1, the challenger coher-
ently computes M [h] on X (into a fresh k(λ)-qubit register V ) and measures
system V in the computational basis. Finally, the challenger sends the out-
come state in system X to Aλ, together with the string y ∈ {0, 1}n(λ) and a
description of the hash function h.

3. Aλ returns a bit b′, which we define as the output of the experiment.

We also define an analogous notion of (D,M)-target-collision-resistance, as
follows. Similarly to above, we drop the parameterization byM in the case that it
is the identity function, and we drop the parameterization by D in the case that
it is the uniform distribution. Notice that target-collision-resistance (without
parameterization) then coincides with the classical notion where a uniformly
random input is sampled, and the adversary must find a collision with respect
to this input (this is also sometimes called second-preimage resistance, or weak
collision-resistance).

Definition 2 ((D,M)-Target-Collision-Resistant Hash Function). A hash
function family H = {Hλ : {0, 1}m(λ) → {0, 1}n(λ)}λ∈N is (D,M)-target-collision-
resistant for some distribution D = {Dλ}λ∈N over {{0, 1}m(λ)}λ∈N and family
of functionsM = {{M [h] : {0, 1}m(λ) → {0, 1}k(λ)}h∈Hλ

}λ∈N if, for every QPT
adversary A = {Aλ}λ∈N,

|Pr
[
TargetCollResH,A,D,M,λ = 1

]
| ≤ negl(λ).

Here, the experiment TargetCollResH,A,D,M,λ is defined as follows:

1. The challenger prepares the state∑
x∈{0,1}m(λ)

√
Dλ(x) |x⟩

on register X, and samples a random hash function h $←−Hλ. Next, it coher-
ently computes h on X (into a fresh n(λ)-qubit system Y ) and measures sys-
tem Y in the computational basis, which results in an outcome y ∈ {0, 1}n(λ).
Next, it coherently computes M [h] on X (into a fresh k(λ)-qubit register V )
and measures system V in the computational basis, which results in an out-
come v. Finally, its sends the outcome state in system X to Aλ, together
with the string y ∈ {0, 1}n(λ) and a description of the hash function h.

2. Aλ responds with a string x ∈ {0, 1}m(λ).
3. The experiment outputs 1 if h(x) = y and M [h](x) ̸= v.

Finally, we define the notion of a certified everlasting target-collapsing hash.

Definition 3. A hash function family H = {Hλ : {0, 1}m(λ) → {0, 1}n(λ)}λ∈N is
certified everlasting (D,M)-target-collapsing for some distribution D = {Dλ}λ∈N
over {{0, 1}m(λ)}λ∈N and family of functions M = {{M [h] : {0, 1}m(λ) →
{0, 1}k(λ)}h∈Hλ

}λ∈N if for every two-part adversary A = {A0,λ,A1,λ}λ∈N, where
{A0,λ}λ∈N is QPT and {A1,λ}λ∈N is unbounded, it holds that

22



|Pr
[
EvTargetCollapseExpH,A,D,M,λ(0) = 1

]
−

Pr
[
EvTargetCollapseExpH,A,D,M,λ(1) = 1

]
| ≤ negl(λ).

Here, the experiment EvTargetCollapseExpH,A,D,M,λ(b) is defined as follows:

1. The challenger prepares the state∑
x∈{0,1}m(λ)

√
Dλ(x) |x⟩

on register X, and samples a random hash function h $←−Hλ. Then, it coher-
ently computes h on X (into a fresh n(λ)-qubit system Y ) and measures sys-
tem Y in the computational basis, which results in an outcome y ∈ {0, 1}n(λ).

2. If b = 0, the challenger does nothing. Else, if b = 1, the challenger coherently
computes M [h] on X (into an auxiliary k(λ)-qubit system V ) and measures
system V in the computational basis. Finally, the challenger sends the out-
come state in system X to A0,λ, together with the string y ∈ {0, 1}n(λ) and
a description of the hash function h.

3. A0,λ sends a classical certificate π ∈ {0, 1}m(λ) to the challenger and initial-
izes A1,λ with its residual state.

4. The challenger checks if h(π) = y. If true, A1,λ is run until it outputs a bit
b′. Otherwise, b′ ← {0, 1} is sampled uniformly at random. The output of
the experiment is b′.

3.2 Main Theorem

Our main theorem is the following.

Theorem 7. Let H = {Hλ}λ∈N be a hash function family that is both (D,M)-
target-collapsing and (D,M)-target-collision-resistant, for some distribution D
and efficiently computable family of functionsM. Then, H is certified everlasting
(D,M)-target-collapsing.

Proof. Throughout the proof, we will leave the security parameter implicit, defin-
ing H := Hλ, D := Dλ,m := m(λ), n := n(λ), k := k(λ), A0 := A0,λ, and
A1 := A1,λ. Next, we define

|ψ⟩X :=
∑

x∈{0,1}m

√
D(x) |x⟩ .

For h ∈ H, y ∈ {0, 1}m, we define a unit vector

|ψh,y⟩X ∝
∑

x∈{0,1}m:h(x)=y

√
D(x) |x⟩ .
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Finally, for h ∈ H, y ∈ {0, 1}m, v ∈ {0, 1}k we define a unit vector

|ψh,y,v⟩X ∝
∑

x∈{0,1}m:h(x)=y,M [h](x)=v

√
D(x) |x⟩ .

We consider the following hybrids.

– Exp0(b):

1. The challenger prepares |ψ⟩X , samples a random hash function h $←−Hλ,
coherently computes h onX into a fresh n-qubit register Y , and measures
Y in the computational basis to obtain y ∈ {0, 1}n and a left-over state
|ψh,y⟩X .

2. If b = 0, the challenger does nothing. Else, if b = 1, the challenger
computes M [h] on X into a fresh k-qubit register V , and measures V in
the computational basis. Finally, the challenger sends the left-over state
in system X to A0, together with the string y ∈ {0, 1}n and a classical
description of h.

3. A0 sends a classical certificate π ∈ {0, 1}m to the challenger and initial-
izes A1 with its residual state.

4. The challenger checks if h(π) = y. If true, A1 is run until it outputs a bit
b′. Otherwise, b′ ← {0, 1} is sampled uniformly at random. The output
of the experiment is b′.

– Exp1(b):

1. The challenger prepares |ψ⟩X , samples a random hash function h $←−Hλ,
coherently computes h onX into a fresh n-qubit register Y , and measures
Y in the computational basis to obtain y ∈ {0, 1}n and a left-over state
|ψh,y⟩X .

2. The challenger computes M [h] on X into a fresh k-qubit register V to
obtain a state

∝
∑

x∈{0,1}m:h(x)=y

√
D(x) |x⟩X |M [h](x)⟩V .

Then, the challenger samples a random string z $←−{0, 1}k, prepares a
|+⟩ state in system C, and applies a controlled-Zz operation from C to
V , which results in a state

∝
∑

c∈{0,1}

|c⟩C ⊗
∑

x∈{0,1}m:h(x)=y

√
D(x) |x⟩X Zc·z |M [h](x)⟩V

=
∑

c∈{0,1}

|c⟩C ⊗
∑

x∈{0,1}m:h(x)=y

√
D(x)(−1)c·⟨M [h](x),z⟩ |x⟩X |M [h](x)⟩V .

Finally, the challenger uncomputes the V register by again computing
M [h] from X to V , and sends system X to A0, together with y ∈ {0, 1}n
and a classical description of h.
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3. A0 sends a classical certificate π ∈ {0, 1}m to the challenger and initial-
izes A1 with its residual state.

4. The challenger checks if h(π) = y. Then, the challenger measures system
C to obtain c′ ∈ {0, 1} and checks that c′ = b. If both checks are true,
A1 is run until it outputs a bit b′. Otherwise, b′ ← {0, 1} is sampled
uniformly at random. The output of the experiment is b′.

– Exp2(b):

1. The challenger prepares |ψ⟩X , samples a random hash function h $←−Hλ,
coherently computes h onX into a fresh n-qubit register Y , and measures
Y in the computational basis to obtain y ∈ {0, 1}n and a left-over state
|ψh,y⟩X .

2. The challenger computes M [h] on X into a fresh k-qubit register V .
Then, the challenger samples a random string z $←−{0, 1}k, prepares a
|+⟩ state in system C, applies a controlled-Zz operation from C to V ,
and finally uncomputes the V register by again computing M [h] from X
to V . Note that this results in a state

∝
∑

c∈{0,1}

|c⟩C ⊗
∑

x∈{0,1}m:h(x)=y

(−1)c·⟨M [h](x),z⟩ |x⟩X .

Finally, it sends system X toA0, together with y ∈ {0, 1}n and a classical
description of h.

3. A0 sends a classical certificate π ∈ {0, 1}m and initializes A1 with its
residual state.

4. The challenger checks if h(π) = y. Then, the challenger applies the fol-
lowing projective measurement to system C:{
|ϕzπ⟩⟨ϕzπ|, I−|ϕzπ⟩⟨ϕzπ|

}
where |ϕzπ⟩ :=

1√
2

(
|0⟩+ (−1)⟨M [h](π),z⟩ |1⟩

)
,

and checks that the first outcome is observed. Finally, the challenger
measures system C to obtain c′ ∈ {0, 1} and checks that c′ = b. If all
three checks are true, A1 is run until it outputs a bit b′. Otherwise, b′ ←
{0, 1} is sampled uniformly at random. The output of the experiment is
b′.

Finally, we also use the following hybrid which is convenient for the sake of
the proof.

– Exp3(b):

1. The challenger prepares |ψ⟩X , samples a random hash function h $←−Hλ,
coherently computes h onX into a fresh n-qubit register Y , and measures
Y in the computational basis to obtain y ∈ {0, 1}n and a left-over state
|ψh,y⟩X .

2. The challenger computes M [h] on X into a fresh k-qubit register V .
Then, the challenger measures V in the computational basis to obtain
v ∈ {0, 1}k. Next, the challenger samples a random string z $←−{0, 1}k,
prepares a |+⟩ state in system C, applies a controlled-Zz operation from
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C to V , and finally uncomputes the V register by again computing M [h]
from X to V . Note that this results in the state

1√
2

(
|0⟩C + (−1)⟨v,z⟩ |1⟩C

)
⊗ |ψh,y,v⟩X .

Finally, the challenger sends system X to A0, together with y ∈ {0, 1}n
and a classical description of h.

3. A0 sends a classical certificate π ∈ {0, 1}m to the challenger and initial-
izes A1 with its residual state.

4. The challenger checks if h(π) = y. Then, the challenger applies the fol-
lowing projective measurement to system C:{
|ϕzπ⟩⟨ϕzπ|, I−|ϕzπ⟩⟨ϕzπ|

}
where |ϕzπ⟩ :=

1√
2

(
|0⟩+ (−1)⟨M [h](π),z⟩ |1⟩

)
,

and checks that the first outcome is observed. Finally, the challenger
measures system C to obtain c′ ∈ {0, 1} and checks that c′ = b. If all
three checks are true, A1 is run until it outputs a bit b′. Otherwise, b′ ←
{0, 1} is sampled uniformly at random. The output of the experiment is
b′.

Before we analyze the probability of distinguishing between the consecutive
hybrids, we first show that the following statements hold for the final experiment
Exp3(b).

Claim. The probability that the challenger accepts the deletion certificate π in
Step 4 of Exp3(b) and M [h](π) ̸= v is negligible. That is,

Pr
h,y,v

[h(π) = y ∧ M [h](π) ̸= v : π ← A0(h, y, |ψh,y,v⟩)] ≤ negl(λ),

where the probability is over the challenger preparing |ψ⟩, sampling h, and mea-
suring y and v as described in Exp3(b) to produce the left-over state |ψh,y,v⟩.

Proof. This follows directly from the assumed (D,M)-target-collision resistance
of H, since the above probability is exactly Pr

[
TargetCollResH,A,D,M,λ = 1

]
.

Claim. The probability that the challenger accepts the deletion certificate π in
Step 4 of Exp3(b) and the subsequent projective measurement on system C fails
(returns the second outcome) is negligible.

Proof. This follows directly from Section 3.2, which implies that except with
negligible probability, the register C is in the state

1√
2

(
|0⟩+ (−1)⟨v,z⟩ |1⟩

)
at the time the challenger applies the projective measurement.
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For any experiment Expi(b), we define the advantage

Adv(Expi) := |Pr [Expi(0) = 1]− Pr [Expi(1) = 1] |.

Claim.
Adv(Exp2) = 0.

Proof. First note that in the case that the challenger rejects because either the
deletion certificate is invalid or their projection fails, the experiment does not
involve b, and thus the advantage of the adversary is 0. Second, in the case that
the challenger’s projection succeeds, the register C is either in the state

1√
2

(|0⟩+ (−1)⟨π,z⟩ |1⟩) or
1√
2

(|0⟩ − (−1)⟨π,z⟩ |1⟩)

for some z ∈ {0, 1}k, and thereby completely unentangled from the rest of the
system. Notice that the challenger’s measurement of system C with outcome
c′ results in a uniformly random bit, which completely masks b. Therefore, the
experiment is also independent of b in this case, and thus the adversary’s overall
advantage in Exp2 is 0.

Next, we argue the following.

Claim.
|Adv(Exp2)− Adv(Exp1)| ≤ negl(λ).

Proof. Recall that Section 3.2 shows that the projective measurement performed
by the challenger in Step 4 of Exp3 succeeds with overwhelming probability. We
now argue that the same is also true in Exp2. Suppose for the sake of contra-
diction that there is a non-negligible difference between the success probabilities
of the measurement. We now show that this implies the existence of an efficient
distinguisher A′ that breaks the (D,M)-target-collapsing property of the hash
family H = {Hλ}λ∈N.
A′ receives (y, h) and a state on register X from its challenger. Next, it

computes M [h] on X into a fresh k-qubit register V , samples a random string
z $←−{0, 1}k, prepares a |+⟩ state in system C, applies a controlled-Zz operation
from C to V , and then uncomputes register V by again applying M [h] from X
to V . Then, it runs A on (y, h,X), which outputs a certificate π.

Finally, A′ applies the following projective measurement to system C:{
|ϕzπ⟩⟨ϕzπ|, I − |ϕzπ⟩⟨ϕzπ|

}
where |ϕzπ⟩ :=

1√
2

(
|0⟩+ (−1)⟨π,z⟩ |1⟩

)
,

and outputs 1 if the measurement succeeds and 0 otherwise. If there is a non-
negligible difference in success probabilities of this measurement between Exp3(b)
and Exp2(b) (for any b ∈ {0, 1}), then A′ breaks (D,M)-target-collapsing of H.

Now, recall that Exp2(b) is identical to Exp1(b), except that the challenger
applies an additional a measurement in Step 4. Because the measurement suc-
ceeds with overwhelming probability, it follows from Gentle Measurement that
the advantage of the adversary must remain the same up to a negligible amount.
This proves the claim.
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Claim.
Adv(Exp1) = Adv(Exp0)/2.

Proof. First note that in Exp1(b), we can imagine measuring register C to obtain
c′ and aborting if c′ ̸= b before the challenger sends any information to the ad-
versary. This follows because register C is disjoint from the adversary’s registers.
Next, by the random Pauli-Z twirl property, we have the following guarantees
about the state on system X given to the adversary in Exp1(b).

– In the case c′ = b = 0, the reduced state on register X is |ψh,y⟩.
– In the case that c′ = b = 1, the reduced state on register X is a mixture over
|ψh,y,v⟩ where v is the result of measuring register V in the computational
basis.

Thus, this experiment is identical to Exp0(b), except that we decide to abort
and output a uniformly random bit b′ with probability 1/2 at the beginning of
the experiment.

Putting everything together, we have that Adv(Exp0) ≤ negl(λ), which com-
pletes the proof.
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