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Abstract. We develop a simple compiler that generically adds publicly-
verifiable deletion to a variety of cryptosystems. Our compiler only makes
use of one-way functions (or one-way state generators, if we allow the
public verification key to be quantum). Previously, similar compilers
either relied on indistinguishability obfuscation along with any one-way
function (Bartusek et al., ePrint:2023/265), or on almost-regular one-way
functions (Bartusek, Khurana and Poremba, CRYPTO 2023).

1 Introduction

Is it possible to provably delete information by leveraging the laws of quantum
mechanics? An exciting series of recent works [1–6,9–11,18,19] have built a vari-
ety of quantum cryptosystems that support certifiable deletion of plaintext data
and/or certifiable revocation of ciphertexts or keys.

The notion of certified deletion was formally introduced by Broadbent and
Islam [6] for the one-time pad, where once the certificate is successfully veri-
fied, the plaintext remains hidden even if the secret (one-time pad) key is later
revealed. This work has inspired a large body of research, aimed at understand-
ing what kind of cryptographic primitives can be certifiably deleted. Recently, [4]
built a compiler that generically adds the certified deletion property described
above to any computationally secure commitment, encryption, attribute-based
encryption, fully-homomorphic encryption, witness encryption or timed-release
encryption scheme, without making any additional assumptions. Furthermore,
it provides a strong information-theoretic deletion guarantee: Once an adver-
sary generates a valid (classical) certificate of deletion, they cannot recover the
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plaintext that was previously computationally determined by their view even
given unbounded time. However, the compiled schemes satisfy privately verifi-
able deletion – namely, the encryptor generates a ciphertext together with secret
parameters which are necessary for verification and must be kept hidden from
the adversary.

Publicly Verifiable Deletion. The above limitation was recently overcome in [3],
which obtained publicly-verifiable deletion (PVD) for all of the above primitives
as well as new ones, such as CCA encryption, obfuscation, maliciously-secure
blind delegation and functional encryption1. However, the compilation process
proposed in [3] required the strong notion of indistinguishability obfuscation,
regardless of what primitive one starts from. This was later improved in [5], which
built commitments with PVD from injective (or almost-regular) one-way func-
tions, and X encryption with PVD for X ∈ {attribute-based, fully-homomorphic,
witness, timed-release}, assuming X encryption and trapdoored variants of injec-
tive (or almost-regular) one-way functions.

Weakening Assumptions for PVD. Given this state of affairs, it is natural to
ask whether one can further relax the assumptions underlying publicly verifiable
deletion, essentially matching what is known in the private verification setting.
In this work, we show that the injectivity/regularity constraints on the one-way
functions from prior work [5] are not necessary to achieve publicly-verifiable
deletion; any one-way function suffices, or even a quantum weakening called
a one-way state generator (OWSG) [17] if we allow the verification key to be
quantum. Kretschmer [14] showed that, relative to an oracle, pseudorandom
state generators (PRSGs) [12,17] exist even if BQP = QMA (and thus NP ⊆
BQP). Because PRSGs are known to imply OWSGs [17], this allows us to base
our generic compiler for PVD on something potentially even weaker than the
existence of one-way functions.w

In summary, we improve [5] to obtain X with PVD for X ∈ {statistically-
binding commitment, public-key encryption, attribute-based encryption, fully-
homomorphic encryption, witness encryption, timed-release encryption}, assum-
ing only X and any one-way function. We also obtain X with PVD for all the X
above, assuming only X and any one-way state generator [17], but with a quan-
tum verification key. Our primary contribution is conceptual: Our construction
is inspired by a recent work on quantum-key distribution [16], which we combine
with a proof strategy that closely mimics [3,5] (which in turn build on the proof
technique of [4]).

1.1 Technical Outline

Prior Approach. We begin be recalling that prior work [5] observed that, given
an appropriate two-to-one one-way function f , a commitment (with certified
deletion) to a bit b can be
1 A concurrent updated version of [10] also obtained functional encryption with certi-
fied deletion, although in the private-verification settings.
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ComCD(b) ∝ (
y, |x0〉 + (−1)b |x1〉

)

where (0, x0), (1, x1) are the two pre-images of (a randomly sampled) image y.
Given an image y and a quantum state |ψ〉, they showed that any pre-image of
y constitutes a valid certificate of deletion of the bit b. This certificate can be
obtained by measuring the state |ψ〉 in the computational basis.

Furthermore, it was shown in [5] that in fact two-to-one functions are not
needed to instantiate this template, it is possible to use more general types of
one-way functions to obtain a commitment of the form

ComCD(b) ∝
⎛

⎝y,
∑

x:f(x)=y,M(x)=0

|x〉 + (−1)b
∑

x:f(x)=y,M(x)=1

|x〉
⎞

⎠ .

where M denotes some binary predicate applied to the preimages of y. The work
of [5] developed techniques to show that this satisfies certified deletion, as well
as binding as long as the sets

∑

x:f(x)=y,M(x)=0

|x〉 and
∑

x:f(x)=y,M(x)=1

|x〉

are somewhat “balanced”, i.e. for a random image y and the sets S0 = {x :
f(x) = y,M(x) = 0} and S1 = {x : f(x) = y,M(x) = 1}, it holds that |S0|

|S1| is
a fixed constant. Such “balanced” functions can be obtained from injective (or
almost-regular) one-way functions by a previous result of [8].

Using Any One-Way Function. Our first observation is that it is not necessary
to require x0, x1 to be preimages of the same image y. Instead, we can modify the
above template to use randomly sampled x0 �= x1 and compute y0 = F (x0), y1 =
F (x1) to obtain

ComCD(b) ∝ (
(y0, y1), |x0〉 + (−1)b |x1〉

)

Unfortunately, as described so far, the phase b may not be statistically fixed by
the commitment when F is a general one-way function, since if F is not injective,
the y0, y1 do not determine the choice of x0, x1 that were used to encrypt the
phase. To restore binding, we can simply append a commitment to (x0 ⊕ x1) to
the state above, resulting in

ComCD(b) ∝ (
(y0, y1),Com(x0 ⊕ x1), |x0〉 + (−1)b |x1〉

)

Assuming that Com is statistically binding, the bit b is (statistically) determined
by the commitment state above, and in fact, can even be efficiently determined
given x0⊕x1. This is because a measurement of |x0〉+(−1)b |x1〉 in the Hadamard
basis yields a string z such that b = (x0 ⊕ x1) · z.

Relation to [3]. In fact, one can now view this scheme as a particular instantiation
of the subspace coset state based compiler from [3]. To commit to a bit b using
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the compiler of [3], we would sample (i) a random subspace S of Fn
2 , (ii) a random

coset of S represented by a vector v, and (iii) a random coset of S⊥ represented
by a vector w. Then, the commitment would be

ComCD(b) = Com(S), |Sv,w〉 , b ⊕
⊕

i

vi,

where |Sv,w〉 ∝ ∑
s∈S(−1)s·w |s + v〉 is the subspace coset state defined by

S, v, w. A valid deletion certificate would be any vector in S⊥ + w, obtained
by measuring |Sv,w〉 in the Hadamard basis.

However, in order to obtain publicly-verifiable deletion, [3] publish an obfus-
cated membership check program for S⊥ + w, which is general requires post-
quantum indistinguishability obfuscation. Our main observation here is that we
can sample S as an (n−1)-dimensional subspace, which means that S⊥ +w will
only consist of two vectors. Then, to obfuscate a membership check program for
S⊥ + w, it suffices to publish a one-way function evaluated at each of the two
vectors in S⊥ + w, which in our notation are x0 and x1.

To complete the derivation of our commitment scheme, note that to describe
S, it suffices to specify the hyperplane that defines S, which in our notation is
x0 ⊕ x1. Finally, we can directly encode the bit b into the subspace coset state
rather than masking it with the description of a random coset (in our case, there
are only two cosets of S), and if we look at the resulting state in the Hadamard
basis, we obtain ∝ |x0〉 + (−1)b |x1〉.

Proving Security. Naturally, certified deletion security follows by adapting the
proof technique from [3], as we discuss now. Recall that we will consider an
experiment where the adversary is given an encryption of b and outputs a deletion
certificate. If the certificate is valid, the output of the experiment is defined to
be the adversary’s left-over state (which we will show to be independent of b),
otherwise the output of the experiment is set to ⊥.

We will consider a sequence of hybrid experiments to help us prove that the
adversary’s view is statistically independent of b when their certificate verifies.
The first step is to defer the dependence of the experiment on the bit b. In
more detail, we will instead imagine sampling the distribution by guessing a
uniformly random c ← {0, 1}, and initializing the adversary with the following:
((y0, y1),Com(x0 ⊕ x1), |x0〉 + (−1)c |x1〉). The challenger later obtains input b
and aborts the experiment (outputs ⊥) if c �= b. Since c was a uniformly random
guess, the trace distance between the b = 0 and b = 1 outputs of this modified
experiment is at least half the trace distance between the outputs of the original
experiment. Moreover, we can actually consider a purification of this experiment
where a register C is initialized in a superposition |0〉 + |1〉 of two choices for c,
and is later measured to determine the bit c.

Now, we observe that the joint quantum state of the challenger and adversary
can be written as

1
2

∑

c∈{0,1}
|c〉C ⊗ (|x0〉 + (−1)c |x1〉)A =

1√
2

(|+〉C |x0〉A + |−〉C |x1〉A) ,
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where the adversary is initialized with the register A. Intuitively, if the adversary
returns a successful deletion certificate x such that F (x) = yc′ for bit c′, then
they must have done this by measuring in the standard basis and collapsing
the joint state to Zc′ |+〉C |xc′〉A. We can formalize this intuition by introducing
an extra abort condition into the experiment. That is, if the adversary returns
some x such that F (x) = yc′ , the challenger will then measure their register
in the Hadamard basis and abort if the result c′′ �= c′. By the one-wayness
of F , we will be able to show that no adversary can cause the challenger to
abort with greater than negl(λ) probability as a result of this measurement.
This essentially completes the proof of our claim, because at this point the
bit c is always obtained by measuring a Hadamard basis state in the standard
basis, resulting in a uniformly random bit outcome that completely masks the
dependence of the experiment on b.

Applications. Finally, we note that encryption with PVD can be obtained simi-
larly by committing to each bit of the plaintext as

EncCD(b) ∝ (
(y0, y1),Enc(x0 ⊕ x1), |x0〉 + (−1)b |x1〉

)

We also note that, following prior work [4], a variety of encryption schemes
(e.g., ABE, FHE, witness encryption) can be plugged into the template above,
replacing Enc with the encryption algorithm of ABE/FHE/witness encryption,
yielding the respective schemes with publicly-verifiable deletion.

1.2 Concurrent and Independent Work

A concurrent work of Kitagawa, Nishimaki, and Yamakawa [13] obtains simi-
lar results on publicly-verifiable deletion from one-way functions. Similarly to
our work, they propose a generic compiler to obtain X with publicly-verifiable
deletion only assuming X plus one-way functions, for a variety of primitives,
such as commitments, quantum fully-homomorphic encryption, attribute-based
encryption, or witness encryption. One subtle difference, is that they need to
assume the existence of quantum fully-homomorphic encryption (QFHE), even
for building classical FHE with PVD, due to the evaluation algorithm computing
over a quantum state. On the other hand, we obtain FHE with PVD using only
plain FHE. At a technical level, their approach is based on one-time signatures
for BB84 states, whereas our approach can (in retrospect) be thought of as using
one-time signatures on the |+〉 state.

Differently from our work, [13] shows that their compiler can be instanti-
ated from hard quantum planted problems for NP, whose existence is implied by
most cryptographic primitives with PVD. In this sense, their assumptions can
be considered minimal. Although we do not explore this direction in our work,
we believe that a similar implication holds for our compiler as well. On the other
hand, we propose an additional compiler, whose security relies solely on one-way
state generators (OWSG), which is an assumption conjectured to be even weaker
than one-way function.
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2 Preliminaries

Let λ denote the security parameter. We write negl(·) to denote any negligible
function, which is a function f such that for every constant c ∈ N there exists
N ∈ N such that for all n > N , f(n) < n−c.

A finite-dimensional complex Hilbert space is denoted by H, and we use
subscripts to distinguish between different systems (or registers); for example,
we let HA be the Hilbert space corresponding to a system A. The tensor product
of two Hilbert spaces HA and HB is another Hilbert space denoted by HAB =
HA ⊗ HB. We let L(H) denote the set of linear operators over H. A quantum
system over the 2-dimensional Hilbert space H = C

2 is called a qubit. For n ∈ N,
we refer to quantum registers over the Hilbert space H =

(
C

2
)⊗n as n-qubit

states. We use the word quantum state to refer to both pure states (unit vectors
|ψ〉 ∈ H) and density matrices ρ ∈ D(H), where we use the notation D(H) to
refer to the space of positive semidefinite linear operators of unit trace acting on
H. The trace distance of two density matrices ρ, σ ∈ D(H) is given by

TD(ρ, σ) =
1
2
Tr

[√
(ρ − σ)†(ρ − σ)

]
.

A quantum channel Φ : L(HA) → L(HB) is a linear map between linear oper-
ators over the Hilbert spaces HA and HB. We say that a channel Φ is completely
positive if, for a reference system R of arbitrary size, the induced map IR ⊗ Φ is
positive, and we call it trace-preserving if Tr[Φ(X)] = Tr[X], for all X ∈ L(H). A
quantum channel that is both completely positive and trace-preserving is called
a quantum CPTP channel.

A unitary U : L(HA) → L(HA) is a special case of a quantum channel that
satisfies U†U = UU† = IA. A projector Π is a Hermitian operator such that
Π2 = Π, and a projective measurement is a collection of projectors {Πi}i such
that

∑
i Πi = I.

A quantum polynomial-time (QPT) machine is a polynomial-time family of
quantum circuits given by {Aλ}λ∈N, where each circuit Aλ is described by a
sequence of unitary gates and measurements; moreover, for each λ ∈ N, there
exists a deterministic polynomial-time Turing machine that, on input 1λ, outputs
a circuit description of Aλ.

Imported Theorem 1 (Gentle Measurement [20]). Let ρX be a quantum
state and let (Π, I−Π) be a projective measurement on X such that Tr(Πρ) ≥ 1−δ.
Let

ρ′ =
ΠρΠ
Tr(Πρ)

be the state after applying (Π, I−Π) to ρ and post-selecting on obtaining the first
outcome. Then, TD(ρ, ρ′) ≤ 2

√
δ.

Imported Theorem 2 (Distinguishing implies Mapping [7]). Let D be a
projector, Π0,Π1 be orthogonal projectors, and |ψ〉 ∈ Im (Π0 + Π1). Then,

‖Π1DΠ0 |ψ〉 ‖2+‖Π0DΠ1 |ψ〉 ‖2 ≥ 1
2

(‖D |ψ〉 ‖2 − (‖DΠ0 |ψ〉 ‖2 + ‖DΠ1 |ψ〉 ‖2))2 .
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3 Main Theorem

Theorem 3. Let F : {0, 1}n(λ) → {0, 1}m(λ) be a one-way function secure
against QPT adversaries. Let {Zλ(·, ·, ·, ·)}λ∈N be a quantum operation with
four arguments: an n(λ)-bit string z, two m(λ)-bit strings y0, y1, and an n(λ)-
qubit quantum state |ψ〉. Suppose that for any QPT adversary {Aλ}λ∈N, z ∈
{0, 1}n(λ), y0, y1 ∈ {0, 1}m(λ), and n(λ)-qubit state |ψ〉,
∣
∣
∣
∣ Pr [Aλ(Zλ(z, y0, y1, |ψ〉)) = 1] − Pr

[Aλ(Zλ(0λ, y0, y1, |ψ〉)) = 1
]
∣
∣
∣
∣ = negl(λ).

That is, Zλ is semantically-secure with respect to its first input.2
Now, for any QPT adversary {Aλ}λ∈N, consider the following distribution{

Z̃Aλ

λ (b)
}

λ∈N,b∈{0,1}
over quantum states, obtained by running Aλ as follows.

– Sample x0, x1 ← {0, 1}n(λ) conditioned on x0 �= x1, define y0 = F (x0), y1 =
F (x1) and initialize Aλ with

Zλ

(
x0 ⊕ x1, y0, y1,

1√
2

(|x0〉 + (−1)b |x1〉
)
)

.

– Aλ’s output is parsed as a string x′ ∈ {0, 1}n(λ) and a residual state on
register A′.

– If F (x′) ∈ {y0, y1}, then output A′, and otherwise output ⊥.

Then,

TD
(
Z̃Aλ

λ (0), Z̃Aλ

λ (1)
)

= negl(λ).

Proof. We define a sequence of hybrids.

– Hyb0(b): This is the distribution
{

Z̃Aλ

λ (b)
}

λ∈N,b∈{0,1}
described above.

– Hyb1(b): This distribution is sampled as follows.
• Sample x0, x1, y0 = F (x0), y1 = F (x1), prepare the state

1
2

∑

c∈{0,1}
|c〉C ⊗ (|x0〉 + (−1)c |x1〉)A ,

and initialize Aλ with

Zλ (x0 ⊕ x1, y0, y1,A) .

2 One can usually think of Zλ as just encrypting its first input and leaving the remain-
ing in the clear. However, we need to formulate the more general definition of Zλ

that operates on all inputs to handle certain applications, such as attribute-based
encryption. See [4] for details.
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• Aλ’s output is parsed as a string x′ ∈ {0, 1}n(λ) and a residual state on
register A′.

• If F (x′) /∈ {y0, y1}, then output ⊥. Next, measure register C in the com-
putational basis and output ⊥ if the result is 1 − b. Otherwise, output
A′.

– Hyb2(b): This distribution is sampled as follows.
• Sample x0, x1, y0 = F (x0), y1 = F (x1), prepare the state

1
2

∑

c∈{0,1}
|c〉C ⊗ (|x0〉 + (−1)c |x1〉)A ,

and initialize Aλ with

Zλ (x0 ⊕ x1, y0, y1,A) .

• Aλ’s output is parsed as a string x′ ∈ {0, 1}n(λ) and a residual state on
register A′.

• If F (x′) /∈ {y0, y1}, then output ⊥. Next, let c′ ∈ {0, 1} be such that
F (x′) = yc′ , measure register C in the Hadamard basis, and output ⊥ if
the result is 1 − c′. Next, measure register C in the computational basis
and output ⊥ if the result is 1 − b. Otherwise, output A′.

We define Advt(Hybi) := TD (Hybi(0),Hybi(1)) . To complete the proof, we
show the following sequence of claims.

Claim. Advt(Hyb2) = 0.

Proof. This follows by definition. Observe that Hyb2 only depends on the bit b
when it decides whether to abort after measuring register C in the computational
basis. But at this point, it is guaranteed that register C is in a Hadamard basis
state, so this will result in an abort with probability 1/2 regardless of the value
of b.

Claim. Advt(Hyb1) = negl(λ).

Proof. Given Sect. 3, it suffices to show that for each b ∈ {0, 1},
TD(Hyb1(b),Hyb2(b)) = negl(λ). The only difference between these hybrids is
the introduction of a measurement of C in the Hadamard basis. By Gentle Mea-
surement (Theorem 1), it suffices to show that this measurement results in an
abort with probability negl(λ).

So suppose otherwise. That is, the following experiment outputs 1 with prob-
ability non-negl(λ).

– Sample x0, x1, y0 = F (x0), y1 = F (x1), prepare the state

1
2

∑

c∈{0,1}
|c〉C ⊗ (|x0〉 + (−1)c |x1〉)A ,

and initialize Aλ with
Zλ (x0 ⊕ x1, y0, y1,A) .
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– Aλ’s output is parsed as a string x′ ∈ {0, 1}n(λ) and a residual state on
register A′.

– If F (x′) /∈ {y0, y1}, then output ⊥. Next, let c′ ∈ {0, 1} be such that F (x′) =
yc′ , measure register C in the Hadamard basis, and output 1 if the result is
1 − c′.

Next, observe that we can commute the measurement of C in the Hadamard
basis to before the adversary is initialized, without affecting the outcome of the
experiment:

– Sample x0, x1, y0 = F (x0), y1 = F (x1), prepare the state

1
2

∑

c∈{0,1}
|c〉C ⊗ (|x0〉 + (−1)c |x1〉)A =

1√
2

(|+〉C |x0〉A + |−〉C |x1〉A) ,

measure C in the Hadamard basis to obtain c′′ ∈ {0, 1} and initialize Aλ with
the resulting information

Zλ (x0 ⊕ x1, y0, y1, |xc′′〉A) .

– Aλ’s output is parsed as a string x′ ∈ {0, 1}n(λ) and a residual state on
register A′.

– If F (x′) /∈ {y0, y1}, then output ⊥. Next, let c′ ∈ {0, 1} be such that F (x′) =
yc′ , and output 1 if c′′ = 1 − c′.

Finally, note that any such Aλ can be used to break the one-wayness of
F . To see this, we can first appeal to the semantic security of Zλ and replace
x0 ⊕ x1 with 0n(λ). Then, note that the only information Aλ receives is two
images and one preimage F , and Aλ is tasked with finding the other preimage
of F . Succeeding at this task with probability non-negl(λ) clearly violates the
one-wayness of F .

Claim. Advt(Hyb0) = negl(λ).

Proof. This follows because Hyb1(b) is identically distributed to the distribu-
tion that outputs ⊥ with probability 1/2 and otherwise outputs Hyb0(b), so the
advantage of Hyb0 is at most double the advantage of Hyb1.

4 Cryptography with Publicly-Verifiable Deletion

Let us now introduce some formal definitions. A public-key encryption (PKE)
scheme with publicly-verifiable deletion (PVD) has the following syntax.

– PVGen(1λ) → (pk, sk): the key generation algorithm takes as input the secu-
rity parameter λ and outputs a public key pk and secret key sk.

– PVEnc(pk, b) → (vk, |ct〉): the encryption algorithm takes as input the public
key pk and a plaintext b, and outputs a (public) verification key vk and a
ciphertext |ct〉.
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– PVDec(sk, |ct〉) → b: the decryption algorithm takes as input the secret key
sk and a ciphertext |ct〉 and outputs a plaintext b.

– PVDel(|ct〉) → π: the deletion algorithm takes as input a ciphertext |ct〉 and
outputs a deletion certificate π.

– PVVrfy(vk, π) → {�,⊥}: the verify algorithm takes as input a (public) veri-
fication key vk and a proof π, and outputs � or ⊥.

Definition 1 (Correctness of deletion). A PKE scheme with PVD satis-
fies correctness of deletion if for any b, it holds with 1 − negl(λ) probability
over (pk, sk) ← PVGen(1λ), (vk, |ct〉) ← PVEnc(pk, b), π ← PVDel(|ct〉), μ ←
PVVrfy(vk, π) that μ = �.

Definition 2 (Certified deletion security). A PKE scheme with PVD sat-
isfies certified deletion security if it satisfies standard semantic security, and
moreover, for any QPT adversary {Aλ}λ∈N, it holds that

TD (EvPKEA,λ(0),EvPKEA,λ(1)) = negl(λ),

where the experiment EvPKEA,λ(b) is defined as follows.

– Sample (pk, sk) ← PVGen(1λ) and (vk, |ct〉) ← PVEnc(pk, b).
– Run Aλ(pk, vk, |ct〉), and parse their output as a deletion certificate π and a

state on register A′.
– If PVVrfy(vk, π) = �, output A′, and otherwise output ⊥.

Construction via OWF. We now present our generic compiler that augments
any (post-quantum secure) PKE scheme with the PVD property, assuming the
existence of one-way functions.

Construction 4. [PKE with PVD from OWF] Let λ ∈ N, let

F : {0, 1}n(λ) → {0, 1}m(λ)

be a one-way function, and let (Gen,Enc,Dec) be a standard (post-quantum)
public-key encryption scheme. Consider the PKE scheme with PVD consisting
of the following efficient algorithms:

– PVGen(1λ): Same as Gen(1λ).
– PVEnc(pk, b): Sample x0, x1 ← {0, 1}n(λ), define y0 = F (x0), y1 = F (x1),

and output

vk := (y0, y1), |ct〉 :=
(
Enc(pk, x0 ⊕ x1),

1√
2

(|x0〉 + (−1)b |x1〉
)
)

.

– PVDec(sk, |ct〉): Parse |ct〉 as a classical ciphertext ct′ and a quantum state
|ψ〉. Compute z ← Dec(sk, ct′), measure |ψ〉 in the Hadamard basis to obtain
w ∈ {0, 1}n(λ), and output the bit b = z · w.
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– PVDel(|ct〉): Parse |ct〉 as a classical ciphertext ct′ and a quantum state |ψ〉.
Measure |ψ〉 in the computational basis to obtain x′ ∈ {0, 1}n(λ), and output
π := x′.

– PVVrfy(vk, π): Parse vk as (y0, y1) and output � if and only if F (π) ∈
{y0, y1}.

Theorem 5. If one-way functions exist, then Theorem 4 instantiated with any
(post-quantum) public-key encryption scheme satisfies correctness of deletion
(according to Definition 1) as well as (everlasting) certified deletion security
according to Definition 2.

Proof. Let (Gen,Enc,Dec) be a standard (post-quantum) public-key encryp-
tion scheme. Then, correctness of deletion follows from the fact that measuring
1√
2
(|x0〉 + |x1〉) in the Hadamard basis produces a vector orthogonal to x0 ⊕ x1,

whereas measuring the state 1√
2
(|x0〉 − |x1〉) in the Hadamard basis produces a

vector that is not orthogonal to x0 ⊕ x1.
Next, we note that semantic security follows from a sequence of hybrids.

First, we appeal to the semantic security of the public-key encryption scheme
(Gen,Enc,Dec) to replace Enc(pk, x0⊕x1) with Enc(pk, 0n(λ)). Next, we introduce
a measurement of 1√

2
(|x0〉 + (−1)b |x1〉) in the standard basis before initializing

the adversary. By a straightforward application of Theorem 2, a QPT adversary
that can distinguish whether or not this measurement was applied can be used
to break the one-wayness of F . Finally, note that the ciphertext now contains
no information about b, completing the proof.

Finally, the remaining part of certified deletion security follows from Theorem
3, by setting Zλ(x0 ⊕ x1, y0, y1, |ψ〉) = Enc(pk, x0 ⊕ x1), y0, y1, |ψ〉 and invoking
the semantic security of the public-key encryption scheme (Gen,Enc,Dec).

Remark 1. Following [4], we can plug various primitives into the above com-
piler to obtain X with PVD for X ∈ {commitment, attribute-based encryption,
fully-homomormphic encryption,witness encryption, timed-release encryption}.

5 Publicly-Verifiable Deletion from One-Way State
Generators

In this section, we show how to relax the assumptions behind our generic com-
piler for PVD to something potentially even weaker than one-way functions,
namely the existence of so-called one-way state generators (if we allow for quan-
tum verification keys). Morimae and Yamakawa [17] introduced one-way state
generator (OWSG) as a quantum analogue of a one-way function.

Definition 3 (One-Way State Generator). Let n ∈ N be the security
parameter. A one-way state generator (OWSG) is a tuple (KeyGen,StateGen,Ver)
consisting of QPT algorithms:

KeyGen(1n) → k: given as input 1n, it outputs a uniformly random key k ←
{0, 1}n.
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StateGen(k) → φk: given as input a key k ∈ {0, 1}n, it outputs an m-qubit
quantum state φk.

Ver(k′, φk) → �/⊥: given as input a supposed key k′ and state φk, it outputs �
or ⊥.

We require that the following property holds:

Correctness: For any n ∈ N, the scheme (KeyGen,StateGen,Ver) satisfies

Pr[� ← Ver(k, φk) : k ← KeyGen(1n), φk ← StateGen(k)] ≥ 1 − negl(n).

Security: For any computationally bounded quantum algorithm A and any t =
poly(λ):

Pr[� ← Ver(k′, φk) : k ← KeyGen(1n), φk ← StateGen(k), k′ ← A(φ⊗t
k )] ≤ negl(n).

Morimae and Yamakawa [17] showed that if pseudorandom quantum state
generators with m ≥ c · n for some constant c > 1 exist, then so do one-
way state generators. Informally, a pseudorandom state generator [12] is a QPT
algorithm that, on input k ∈ {0, 1}n, outputs an m-qubit state |φk〉 such that
|φk〉⊗t over uniformly random k is computationally indistinguishable from a Haar
random states of the same number of copies, for any polynomial t(n). Recent
works [14,15] have shown oracle separations between pseudorandom state gen-
erators and one-way functions, indicating that these quantum primitives are
potentially weaker than one-way functions.

Publicly Verifiable Deletion from OWSG. To prove that our generic compiler
yields PVD even when instantiated with a OWSG, it suffices to extend Theorem
3 as follows.

Theorem 6. Let (KeyGen,StateGen,Ver) be a OSWG from n(λ) bits to m(λ)
qubits. Let {Zλ(·, ·, ·, ·)}λ∈N be a quantum operation with four arguments: an
n(λ)-bit string z, two m(λ)-qubit quantum states φ0, φ1, and an n(λ)-qubit quan-
tum state |ψ〉. Suppose that for any QPT adversary {Aλ}λ∈N, z ∈ {0, 1}n(λ),
m(λ)-qubit states φ0, φ1, and n(λ)-qubit state |ψ〉,

∣
∣
∣
∣
Pr[Aλ (Zλ (z, φ0, φ1, |ψ〉)) = 1] − Pr[Aλ

(

Zλ

(

0n(λ), φ0, φ1, |ψ〉
))

= 1]

∣
∣
∣
∣
= negl(λ).

That is, Zλ is semantically-secure with respect to its first input.
Now, for any QPT adversary {Aλ}λ∈N, consider the following distribution{

Z̃Aλ

λ (b)
}

λ∈N,b∈{0,1}
over quantum states, obtained by running Aλ as follows.

– Sample x0, x1 ← {0, 1}n(λ), generate quantum states φx0 and φx1 by running
the procedure StateGen on input x0 and x1, respectfully, and initialize Aλ with

Zλ

(
x0 ⊕ x1, φx0 , φx1 ,

1√
2

(|x0〉 + (−1)b |x1〉
)
)

.
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– Aλ’s output is parsed as a string x′ ∈ {0, 1}n(λ) and a residual state on
register A′.

– If Ver(x′, ψxi
) outputs � for some i ∈ {0, 1}, then output A′, and otherwise

output ⊥.

Then,

TD
(
Z̃Aλ

λ (0), Z̃Aλ

λ (1)
)

= negl(λ).

Proof. The proof is analogus to Theorem 3, except that we invoke the security
of the OWSG, rather than the one-wayness of the underlying one-way function.

Construction from OWSG. We now consider the following PKE scheme with
PVD. The construction is virtually identical to Theorem4, except that we replace
one-way functions with one-way state generators. This means that the verifica-
tion key is now quantum.

Construction 7 (PKE with PVD from OWSG). Let λ ∈ N and let
(KeyGen,StateGen,Ver) be a OSWG, and let (Gen,Enc,Dec) be a standard (post-
quantum) public-key encryption scheme. Consider the following PKE scheme
with PVD:

– PVGen(1λ): Same as Gen(1λ).
– PVEnc(pk, b): Sample x0, x1 ← {0, 1}n(λ) and generate quantum states φx0

and φx1 by running the procedure StateGen on input x0 and x1, respectfully.
Then, output

vk := (φx0 , φx1), |ct〉 :=
(
Enc(pk, x0 ⊕ x1),

1√
2

(|x0〉 + (−1)b |x1〉
)
)

.

– PVDec(sk, |ct〉): Parse |ct〉 as a classical ciphertext ct′ and a quantum state
|ψ〉. Compute z ← Dec(sk, ct), measure |ψ〉 in the Hadamard basis to obtain
w ∈ {0, 1}n(λ), and output the bit b = z · w.

– PVDel(|ct〉): Parse |ct〉 as a classical ciphertext ct′ and a quantum state |ψ〉.
Measure |ψ〉 in the computational basis to obtain x′ ∈ {0, 1}n(λ), and output
π := x′.

– PVVrfy(vk, π): Parse vk as (φx0 , φx1) and output � if and only if Ver(π, φxi
)

outputs �, for some i ∈ {0, 1}. Otherwise, output ⊥.

Remark 2. Unlike in Theorem 4, the verification key vk in Theorem 7 is quan-
tum. Hence, the procedure PVVrfy(vk, π) in Theorem 7 may potentially consume
the public verification key (φx0 , φx1) when verifying a dishonest deletion certifi-
cate π. However, by the security of the OWSG scheme, we can simply hand
out (φ⊗t

x0
, φ⊗t

x1
) for any number of t = poly(λ) many copies without compromis-

ing security. This would allow multiple users to verify whether a (potentially
dishonest) deletion certificate is valid. We focus on the case t = 1 for simplicity.
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Theorem 8. If one-way state generators exist, then Theroem 7 instantiated with
any (post-quantum) public-key encryption scheme satisfies correctness of deletion
(according to Definition 1) as well as (everlasting) certified deletion security
according to Definition 2.

Proof. The proof is analogous to Theroem 5, except that we again invoke security
of the OWSG, rather than the one-wayness of the underlying one-way function.

Following [4], we also immediately obtain:

Theorem 9. If one-way state generators exist, then there exists a generic com-
piler that adds PVD to any (post-quantum) public-key encryption scheme. More-
over, plugging X into the compiler yields X with PVD for

X ∈
{

commitment, attribute-based encryption, fully-homomormphic
encryption,witness encryption, timed-release encryption

}
.
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