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Brain connectome analysis commonly compresses high-resolution brain
scans (typically composed of millions of voxels) down to only hundreds
of regions of interest (ROIs) by averaging within-ROI signals. This signif-
icant dimension reduction improves computational speed and the morpho-
logical properties of anatomical structures; however, it comes at the cost of
substantial losses in spatial specificity and sensitivity, especially when the
signals exhibit high within-ROI heterogeneity. Oftentimes, abnormally ex-
pressed functional connectivity (FC) between a pair of ROIs, caused by a
brain disease, is primarily driven by only small subsets of voxel pairs within
the ROI pair. This article proposes a new network method for the detection
of voxel-pair-level neural dysconnectivity with spatial constraints. Specifi-
cally, focusing on an ROI pair, our model aims to extract dense subareas that
contain aberrant voxel-pair connections while ensuring that the involved vox-
els are spatially contiguous. In addition, we develop subcommunity-detection
algorithms to realize the model, and we justify the consistency of these algo-
rithms. Comprehensive simulation studies demonstrate our method’s effec-
tiveness in reducing the false-positive rate while increasing statistical power,
detection replicability, and spatial specificity. We apply our approach to re-
veal: (i) disrupted voxelwise FC patterns related to nicotine addiction be-
tween the basal ganglia, hippocampus, and insular gyrus in 3269 partici-
pants using UK Biobank data; (ii) voxelwise schizophrenia-altered FC pat-
terns within the salience and temporal-thalamic network in 330 participants
in a schizophrenia study. The detected results align with previous medical
findings but include improved localized information.

1. Introduction. Statistical network analysis and graph theory have been fundamen-
tal in the study of the intricate neural circuits in human brains (the “human connectome’)
(Bullmore and Sporns (2009), Rubinov and Sporns (2010)). A large body of literature has
revealed that the human connectome is a well-organized network, and it exhibits graph prop-
erties of intelligent networks such as social networks and the Internet (Bahrami, Laurienti
and Simpson (2019), Cao et al. (2014)). Built on graph theory, brain network analysis depicts
the brain connectome as a graph in which cortical regions are denoted as nodes and the con-
nections between regions are edges. Under this framework, abundant statistical models have
been developed to study the associations between complex neural connections and exper-
imental/clinical conditions (e.g., Fornito, Zalesky and Bullmore (2016), Simpson, Bowman
and Laurienti (2013)). These models can help to enhance our understanding of the underlying
pathophysiological mechanisms of brain diseases (e.g., Alzheimer’s disease and Parkinson’s
disease) and assist clinical predictions concerning disease diagnosis and treatment selection.
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(a) A demonstration of voxel-level variability within ROls (b) An example of covariate-related sub-area connections

FIG. 1. (a) shows the heterogeneity of functional connectivity (FC) among intra-ROI voxels through a seed—
to-voxel analysis using insula as a seed ROI. While both the cingulate cortex and hippocampus are well-known
ROIs, their interior FC with insular varies substantially. (b) shows a simplified example of covariate-related FC of
voxel-pairs located in subarea pairs (U1, V1), (U1, V2), and (U, V3) within a larger ROI pair (Region A, Region
B).

In brain network studies, regions of interest (ROIs), often considered as basic units of anal-
ysis, are equivalent to nodes/vertices in graph theory. The popularity of region-level brain net-
work (RBN) analysis stems from its high anatomical consistency and computational tractabil-
ity. When a whole-brain connectome is considered, RBN analysis dramatically reduces the
search dimensions from trillions (10 x 10°) to thousands (10? x 10%). However, RBN anal-
ysis relies on the assumption of signal homogeneity among intra-ROI voxels, which is often
violated in reality. When significant intra-ROI heterogeneity is present, RBN analysis can
lead to several analytical flaws:

(i) Variability negligence. Simply averaging the time series of voxels within an ROI can
lead to voxel-level information variability loss (e.g., Figure 1(a)).

(i1) Spatial specificity loss. A clinical covariate may alter the ROI-pair connections by
disrupting only a small proportion of intra-ROI voxel pairs. In such cases RBN analysis fails
to precisely distinguish the localized alteration.

(iii) Power loss. The averaging process mixes both significant and nonsignificant voxel-
level connections, which often attenuates the effect size and statistical power.

Recently, many brain network studies have shifted focus from RBN analysis to voxel-level
network analysis (Loewe et al. (2014), Wu et al. (2013)). Traditional multiple testing methods
(e.g., the false-discovery rate (FDR) and the familywise error rate (FWER) control) are not
applicable to high-dimensional multivariate voxel pairs since they are unable to take into ac-
count anatomical restrictions and inherent systematical patterns of disease-associated voxels
in ROIs. Some other existing methods may also have limitations, such as not utilizing rich
voxel-level information to complement region-level connectivity characterization, or yielding
relatively hard-to-interpret results for various reasons (e.g., underrepresented neurobiologi-
cal structures or biases in the seed-selection process). Several advanced statistical methods
have been proposed to address these limitations. For example, Xia and Li (2017) and Xia and
Li (2019) provided localized statistical inference by accounting for the network properties.
Chen, Bowman and Mayberg (2016) proposed a Bayesian hierarchical model to identify the
voxel-level connectivity patterns associated with clinical covariates and then used the vox-
elwise functional connectivity (VFC) patterns to infer region-level connections. These novel
approaches yield improved inference results and localized specificity. Nonetheless, they are
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not directly applicable to our input data of interest (i.e., an m x n “bi-cluster” rather than
an n x n adjacency matrix), and they do not regulate involved voxels to be spatially con-
tiguous. Unlike RBN analysis, spatial contiguity is crucial for vFC analysis because: (i) it
preserves anatomical homogeneity, and it hence preserves the interpretability of the vFC re-
sults (Thirion et al. (2006)); (ii) it better controls the FDR and FWER since phenotype-related
VvFC is often intrinsically linked with the topological structure of the brain connectome (Fan,
Han and Gu (2012)).

In this study our goal was to identify altered VFC patterns between spatially contiguous
subarea pairs from a larger region pair. More specifically, given a region pair of interest,
we sought to extract interior subarea pairs that could maximally cover spatially adjacent
covariate-related vFC with well-controlled FDR and FWER values (e.g., Figure 1(b)). Our
subarea extraction approach is fundamentally distinct from other commonly used brain par-
cellation methods, such as anatomy-based and data-driven approaches (e.g., gradient- or
similarity-based mappings) (Craddock et al. (2012), Wig, Laumann and Petersen (2014));
these parcellation methods seek to segment an ROl into different subregions, and every single
voxel is assigned to a corresponding subregion. In contrast to parcellation methods in which
every voxel is processed, our subarea extraction approach only selects subsets of voxels that
are covariate-related and are constrained in spatially contiguous spaces. All other nonse-
lected voxels are considered to be covariate-indifferent. Subarea extraction is more suited to
our study because: (i) it is likely that the covariate-related differences across clinical groups
may gather in the vFC between a subarea in Region A and an intersection of multiple sub-
areas grouped by the existing parcellation methods in Region B; (ii) it is often found that
only a small proportion of voxels in regions A and B are disrupted, and thus a comprehensive
parcellation across the entire ROI is not necessary (Cao et al. (2014)).

To achieve the desired subarea extraction and address the limitations discussed above, we
propose a new statistical network framework to extract Spatially Constrained and Connected
Networks, hereafter referred to as SCCN. SCCN is a two-step method (Figure 2) focusing
between a pair of ROIs, say A and B, that are believed to contain aberrant functional connec-
tions caused by a brain disease. In step 1, SCCN extracts spatially coherent subarea pairs that
maximally contain disease-altered VFC between regions A and B. In step 2, we formally test
each extracted subarea pair to determine whether it is significantly covariate-associated with
multiple testing controls. If no subarea pairs are found to be significant, we then consider
the region-pair connectivity as covariate-unrelated. If significant results are seen, the asso-
ciation between the covariate of interest and the ROI-pair connections can be traced down
to smaller but much more precise subareas consisting of extracted voxels. These vFC re-
sults may provide insights into understanding the latent neurophysiological mechanisms of
diseases.

In this paper we show that SCCN provides a consistent estimate for the true community
structure in the sense that the error of edge assignments is negligible in large region pairs.
We empirically evaluate the performance of SCCN through extensive simulation studies. The
results show that SCCN achieves satisfactory performance in increasing statistical power
and spatial specificity while controlling the false-positive rate. Notably, SCCN is easily scal-
able to both small and large datasets. Besides, we apply SCCN to two real data examples:
a nicotine-addiction research study, using UK Biobank' data with 3269 participants, and a
schizophrenia research study with 330 participants. Through these applications we system-
atically investigate disease-related subnetwork structures using SCCN with rigorously con-
trolled FWER.

1UK Biobank is a large-scale biomedical database and research resource containing in-depth genetic and health
information from half a million U.K. participants.
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FI1G. 2.  The vFC pattern extraction pipeline: (a) Preprocess the fMRI data and transform it into a standard
brain template. (b) Define voxels in ROIs as nodes and bonds between voxels as edges. Extract the time series of
brain signals from each voxel. (c) Calculate the connectivity matrix between voxels from regions A and B for each
subject. (d) Calculate the connectivity inference matrix, where each element is a test statistic per edge between
clinical groups. A brighter point in the heatmap suggests a larger between-group difference. (e¢) Construct the
spatial-contiguity constraint matrices for ROIs A and B (see detailed matrix construction in Section 2.1). In (el),
each dot represents a voxel in 3D coordinates. Voxels connected by lines form a spatially contiguous area. (f)
Detect the disease-related connections contained in subarea pairs based on (d) and (e) jointly. (f) is obtained by
reordering the nodes in (d), with the densely altered subnetworks pushed to the top (i.e., (d) and (f) are isomorphic
graphs). (g) Conduct the proposed MDL-based network-level statistical inference. The subarea pairs that pass the
statistical tests are highlighted.

2. Methods.
2.1. Background.

2.1.1. Data structure. Given two ROIs, A and B, each consisting of n and m voxels, re-
spectively, the vFC association patterns can be represented by a general (n + m) x (n + m)
outcome matrix. Specifically, the (n 4+ m) x (n + m) connectivity matrix can be decomposed
into three submatrices: n x n, m x m, and n x m, which encompass within-A, within-B, and
between-region connections information. Herein, we focus on presenting the new methodol-
ogy for vFC analysis between ROI A and B (i.e., n x m connectivity matrix), which is mo-
tivated by the growing interest in clinical investigations aimed at exploring neuropsychiatric
disorder-related inter-regional vFC changes (Agosta et al. (2013), Rogers et al. (2007), Wu
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et al. (2011)). Due to space limitation, we provide the statistical framework for within-region
VvFC analysis (i.e., the n x n and m X m connectivity matrices) along with the additional
simulations and real data applications in Appendix B (Lu et al. (2024)).

For a subject s € [S]:={1,..., S}, let Z;‘;(ST and Zﬁ’iT represent the matrices of voxel-
level blood-oxygenation-level dependent (BOLD) signals at 7" different time points for ROIs
A and B. The outcome variables are the functional connectivity measures quantified by
similarity matrices between the time series of voxels in A and in B. For example, Yisj,
the connectivity strength between voxel i in A and voxel j in B, can be computed by
Yl:‘j = f(Zlf"s, Zﬁ’s), where Zf’s and Zf’s are the BOLD time series for voxels i and j
and f is a similarity metric (e.g., Fisher’s z-transformed Pearson correlation). Collecting all
er‘j for each voxel pair (i, j) € [n] x [m] gives an interregion connectivity matrix Y, .
Additionally, a covariate vector X7, » is observed for each subject s, and this contains demo-
graphic and clinical information.

Our goal is to identify clinical/behavioral-related functional connectivity (FC) patterns at
the voxel level. This is because voxel-level findings can reveal altered FC with improved
statistical power and enhanced spatial specificity and resolution. To achieve this, multivariate
statistical inference is required for the n x m vFC outcomes (usually in high dimension, e.g.,
millions) with spatial constraints. We first test the associations between each outcome Yisj
and a regressor of primary interest x} € X* (clinical status in our application, e.g., patient or
control),

E(Yimxs) =0 +Xf,3ij + Xslx(p_l)“,

where B;; is the coefficient of x} and a is a coefficient vector for the remaining covariates
Xi, (r—1) (e.g., age, ethnicity, etc). We denote B := {B;;}ic[n],je[m) and aim to systemati-
cally extract vFC whose B # 0 with high accuracy. We further summarize the significance
levels of B by a connectivity inference matrix Wy, «,,. Each entry of W,,,, is computed by
W;; = —log p;j, where p;; is the p-value for B;;. In neuroimaging statistics the selection
of B # 0 is not only determined by the level of statistical significance but also by spatial
constraints. In addition to these two factors, § is also intrinsically linked with an underlying
n x m bipartite graph between ROIs A and B. Therefore, we will require both graphic and
spatial information to assist in identifying vVFC whose 8 # 0. We present the detailed graphic
and spatial constructions as follows.

2.1.2. Graph representation. To decipher the complex voxel-pair connectome, we con-
sider a bipartite graph structure G = {U, V'} underlying the inference matrix W, ,,. The node
sets U and V represent voxels in ROIs A and B, respectively, where |U| =n and |V | = m.
We assume that, after spatial normalization and registration of the fMRI data, all subjects
share a common set of nodes, namely, (U®, V*) = (U, V), Vs € [S].

2.1.3. Spatial contiguity. Each node in our dataset corresponds to a voxel at a certain
spatial position in 3D brain imaging (e.g., Figure 2(el)). When we map each detected sub-
group of voxels back to the 3D brain space, we desire these voxels to emerge as a spatially
adjacent cluster (i.e., connected components). Such anticipation, translated into formal lan-
guage, is referred to as spatial contiguity. Specifically, we define an “infrastructure graph”
S4 between all nodes within ROI A to accommodate spatial contiguity. Each entry S;;» in Sy
is a spatial-adjacency indicator variable between voxels i and i’ in ROI A, where S;;» = 1 if
d;i» < ¢, and S;;» = 0 otherwise (d;;s is the Euclidean distance between voxels i and i’). For
example, in a 3D grid space, when € is set to be /3, a centroid voxel i in a cube will have 26
surrounding voxels i’ such that S;;; = 1. We define and interpret Sg for nodes within ROI B
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similarly. S4 and Sp will be used to prescribe the spatial-contiguity constraints when im-
plementing SCCN. We provide more rigorous mathematical definitions of spatial contiguity,
S4, and Sp in Appendix A.1 (Lu et al. (2024)).

We propose the SCCN model to systematically select vFC of 8;; # 0 by jointly considering
the information of voxel-pair-level statistical significance, underlying graph structures, and
spatial constraints. We integrate these into a weighted graph G = {W, S4, Sp} as the input of
our method.

2.2. Detecting densely altered subarea pairs from an ROI pair.

2.2.1. Spatial-contiguity-constrained objective function. The node set U, corresponding
to voxels in ROI A, can reportedly be partitioned into mutually nonoverlapping subareas
{U.}, denoted by U = EBCC:1 U, (Eickhoff et al. (2015)). Similarly, we have V = EBdD=1 V4
for ROI B. In this paper we aim to extract subarea pairs {(U., Vy)} that dominantly con-
tain disease-related voxel pairs, and we call these “densely altered” subarea pairs. For-
mally, a subarea pair (U, Vy) is considered densely altered if > jew., v, % >

2. el V) % where U/ and V are the complements of node sets U, and V,;. We
’ e’ clt’d

are, therefore, inspired to devise a regularized objective function to generate a checkerboard-

like network structure underlying the connectivity inference matrix W. This network struc-

ture reshuffles W and reveals densely altered {(U,, V;)} pairs from (U, V). In addition, we

impose spatial contiguity on U, and V; to improve biological interpretability and prohibit

isolated false positive edges. Finally, the objective function is formulated as follows:

C o v ey, Wij - I(Wi; >7)
ieUc,jeVg "ij tj r
e /Zz{log AN
C.D.U=®._, Uc,V=D7;_, Va c=1d=1 ¢
(1) (U, V4 subject to spatial contiguity)

+Mog(|Uc||vd|)}g(r)dr,

where A € [0, 1] is a tuning parameter, r is a threshold below which there is no disease-related
effect on W;;, and g(r) is the distribution function for r. Both g(r) and A can be chosen by
prior knowledge or by a data-driven method proposed in Section 2.2.2.

The tuning parameter A falls in the range [0, 1]: when A = 0, maximizing (1) is equivalent

e Z Uy, i€V, Wij-I(Wij>r) . . .. .
to maximizing f; = =< elg H;;d| Y~ _~ which is a popular definition for connection den-
c

sity; when A = 1, maximizing (1) is simply maximizing f» = ZieUc,jeVd Wij - I(Wij >r),
which quantifies the magnitude of significant voxel pairs contained by the subarea pair
(Ue¢, Vg). Direct optimization of the connection density f] tends to detect a dense subgraph
with a minuscule size, while the optimization of f> can trigger an oversized subgraph. The-
orem 1 shows that function (1) provides a consistent estimate for the targeted topological
structure (collections of edge-induced subarea pairs) in the sense that the error of edge as-
signments is negligible in large region pairs. Extensive simulation studies also show that
function (1) performs well in balancing the size and density when detecting subgraphs.

2.2.2. Optimization of objective function (1) for given g(r) and A. In this section we
focus on optimizing function (1) for a given configuration of g(r) and X, which are the density
function for the threshold r and the tuning parameter in (1). We will then discuss how to
determine g(r) and A in the next section. Unfortunately, even with a given g(r) and A, direct
optimization of (1) is still an NP-hard problem. Therefore, traditional optimization methods,
such as gradient descent, cannot be used due to the nonconvexity of the problem. Here we
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present an alternative strategy for optimizing (1). The essential idea is that we integrate W
with the spatial-contiguity constraints and then estimate the targeted community structure
using modified spectral clustering algorithms via iterative procedures. As presented earlier,
the targeted network structure is {U,., V;} partitioned from (U, V) (i.e., the collection of
edge-induced subarea pairs, or in other words, the voxel memberships of U, and V), where
U=@®_,U.andV =p"_, v,.

According to the spectral clustering algorithm, applying singular value decomposition to
the Laplacian matrix of W = UXV " and then clustering U and V will give partitions of
regions A and B, respectively. Now, since V is the eigenvectors of W' W, spectral clustering
on the Laplacian matrix of WTW will simply give the partitions of Region B. Similarly,
spectral clustering on the Laplacian matrix of WW T will provide the partitions of Region A.
Therefore, our community-detection algorithm can be conducted based on WW T and W' W.
Next, to incorporate the spatial-contiguity constraints into the optimization, we make use of
the two within-region “infrastructure graphs” S4 and Sp introduced earlier. Specifically, we
define

) WAa=WW' ©S4 and Wg=W'W0O Sz,

where O is an elementwise product. As pointed out by Kamvar, Klein and Manning (2003)
and Craddock et al. (2012), S4 and Sp force the similarity between all pairs of nonadjacent
voxels to zero, which breaks edges between isolated voxels in the graph. Based on this, the n
by n matrix W4 (ii") (where i and i” are two voxels in A) is greater if the voxels in A are spa-
tially adjacent and have a similar profile linking to voxels in Region B. The spatial-contiguity
constraints enable our method to produce results that better honor the neurobiological back-
ground regarding the coherence of neighboring neuron populations (Thirion et al. (2006)).

We can now fit a stochastic block model to W, (and another to Wpg), using the spec-
tral clustering algorithm, and then grid search for the optimizer of function (1). We further
examine whether the estimated U, and V; values satisfy the spatial-contiguity constraints,
while empirically we find that the constraints are typically satisfied. There is thus no need to
perform any further modification step for the constraints. We formally present our clustering
procedure in Algorithm 1.

Consistency for subgraph detection. In Lemma 1 we first establish that, given true subareas
numbers C* and D*, the solution to optimize the objective function (1) provides a consistent
estimate for the topological structure of the target community ({U., V;}) (the collection of
edge-induced subarea pairs) in the sense that false-positive edge assignments are negligible

Algorithm 1 Optimization of objective function (1) with given A

1: procedure ALGORITHM (Input: A and G = {W, S4, Sp})

2: function SCCN.partition (A, G )

3 forC=1,2,...,|U| do

4: Ratio-cut spectral clustering W4 into C networks: U = EBEZI U,
5: for D=1,2,...,|V|do
6:
7

Ratio-cut spectral clustering Wp into D networks: V = @511)21 Vu
Substitute network sets U and V into objective function (1), and obtain the
output values
8: end for
9: end for
10: return C, D, U = EBE: 1Ucand V = @5)21 V4 that yield the maximum output value
11: end function
12: end procedure
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in very large bipartite graphs G = (U, V), |U| — oo, and |V| — oo. Then we establish
the convergence of Algorithm 1 to optimize function (1) based on Theorems 1 and 2. In
Theorem 1 we prove that our algorithm can provide a consistent estimate of the number of
subareas, C and D. In Theorem 2 we prove that the implementation of Algorithm 1 converges
to the optimal solution of the objective function (1).

To present the theoretical results, we consider the following settings. Let {e1 } and {eo }
be the sets of positive (e.g., dlsease related) and negatlve edges, respectively. For a welghted

matrix W, we assume that w;; |e i f1and w;; Ie f 0, where f1 and fy are two probability

density functions with means and variances (|41, 01 2y and (o, 0} 2y, respectively. In addition,
let M* be the true membership of of edges (the community index of edges falling in subarea

pair (U, V;)). Furthermore, let M(c D) be the membership estimated by function (1) with
C subareas in Region A and D subareas in Region B.

LEMMA 1 (Consistency with known subarea numbers C* and D*). Assume that
EWWT) is of rank C* with smallest absolute nonzero eigenvalue of at least A », and
E(WTW) is of rank D* with smallest absolute nonzero eigenvalue of at least A g. Assume
further that max(uo, i1, ag, 012) <d for some d < max(logn/n,logm/m)). Then if there

exists (2 + e4)24<P
AA

<714 and 2+ 83)’"51\# < tp for some T4, Tp, €4, € > 0, the output
B

M (©.D) that maximizes function (1) is consistent to the true membership M ’(kc*’ D%) underly-
ing the latent community structure up to a permutation.

Equivalently, let S., Sy be the estimated node sets for the subgraphs G, G4 (induced by
U, and V), respectively. Then :S'\C N U, represents the nodes in G, whose assignments can be
guaranteed. SiNVy follows the same definition. With probability at least 1 — max(n, m) ™,
up to a permutation, we have

c b e -
SeNU, Sa NV, dCD dCD
Y. 3o[1 - KR BRIl < o e ™ 4 v e ™
cllVd

c=1d=1 A B

where & denotes the edge set that connects two node sets on its left and right sides.
THEOREM 1 (Consistency for grid-searched C, D).  Let the sizes of subgraph pairs |U.| x

[Val(Ye = [C*],d = [D*]) be generated from a multinomial distribution with probabilities
Tt = (my,...,Tcxx p*). Assume 36 > 0 such that

1+56 2.
w1 > Moi(l + [+ — Zomin 5 )

then under conditions in Lemma 1 and tuning parameter A = 0.5, the number of misassigned
edges Nedge satisfies

Nedge =0p(nmin *Mmin) as U, V] — oo,
where Rmin, Mmin are the sizes of the smallest possible subgraphs in U and V , respectively.
THEOREM 2 (Convergence of Algorithm 1). Let U= @f: 1 Ue, V= @cl?=1 Vi be the
partitions yielded by ratio-cut spectral clustering on W 4 and W p that maximizes function

(1) with cluster numbers C, D. Then U, V converge almost surely to the true community
structure where false-positive edge assignments to each subbicluster are negligible.
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PROOF. Proofs of Lemma 1 and Theorems 1 and 2 are provided in Appendix C (Lu et
al. (2024)). O

In summary, the above results provide theoretical evidence that the solution of the proposed
objective function (1) and Algorithm 1 converge to the target community structure ({U., V4}).
Moreover, extensive simulation analyses in multiple settings with a wide range of different
sample sizes demonstrate that SCCN can accurately reveal the true community structure with
low false-positive and false-negative rates.

2.2.3. Determining g(r) and \.

(1) Determining g(r). Following Efron (2010), we can choose g(-) to be a discrete dis-
tribution on thresholds {ry,...,7r,}. A simple example would be as follows. Suppose that
the voxel-pair-level FDRs yielded by preselected thresholds ry, 2, and r3 are 0.20, 0.10, and
0.05, respectively. We can then assign a higher probability mass to r, that yields a lower FDR,
for example, g(r1) = 0.1, g(r2) = 0.3, and g(r3) = 0.6. In addition, r{, r2, and r3 can be cho-
sen from commonly used thresholds in MRI studies, such as —10g(0.005) and —1og(0.001)
(W;j is —log p;; after screening, and r is a threshold for W;;).

(ii) Selecting ). As aforementioned, the tuning parameter A adjusts the balance between
the subgraph size and the connection density; it thus plays a critical role in our method.
A large A encourages large |U.| and |V;|, whereas a small X is stricter on the connection
densities of (U., V) pairs. Essentially, the selection of X is related to the network structure
of B;;. In practice, we have observed from many datasets that the coefficients ;; # 0 usually
exhibit a block model. To reflect this, we assume the following hierarchical model. Suppose
there exists a nonrandom, latent hyperparameter § € R"*” with all nonzero elements. We can
generate a bipartite similarity matrix n € {0, 1}"**™ from a bipartite stochastic block model
with blocks {(U,, V;)} and the corresponding connection probabilities {7;;} such that n;; ~
Bernoulli(r;;) are independent of each other, where

o ncd()‘) l.GUC-,jEVd,
Y mo(A)  otherwise.

We select the A value that maximizes the likelihood for this block model. In practice, the
nij values are not directly observable, and we replace them by n;;(ro) := I (w;; > ro). The
log-likelihood function for X is

Iy (weq, Ve € [Cl,d € [D1In;j(ro))

=> > wijro)logmea + (1 — nij(ro)) log(l — mea).
c.d (i,j)eU:xVy

To eliminate the arbitrariness in choosing the threshold rg, we integrate the likelihood
function with respect to ry over a prior distribution go(rg) determined by the method above.
This yields the following criterion:

Aoptimal = argmax{ max [} (meq(M), Ve =[C1,d =[D]In;;(ro))go(ro) dro}-
A Ue,Va,med

We formally present the procedure to select the tuning parameter A in Algorithm 2. The
overall complexity of the algorithm is O (Knm), where K is a sufficient searching range for
A,n=|U|,and m = |V]|.

Since the inference results between clinical groups across S subjects are captured in W, the
algorithm complexity no longer involves sample size S, indicating the scalability of SCCN
for large datasets. In addition, clustering algorithms typically involve computing the first K
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Algorithm 2 Grid search for A
1: procedure ALGORITHM
2: forO0<i<1ldo
3: return U = @le Usand V = @fl):l V4 from SCCN.partition function in Algo-
rithm 1
4 for ro = (r9)1 to (r())q do
5 Compute the log-likelihood: I, (FMLE, Ve = [C1,d = [D]n;;(r0))
6: end for
7
8
9

Integrate the log-likelihood w.r.t. rg:
b= 30 Lu@EF Ye = [C1.d = [D|nij (r)g((ro):)
end for
10 return A that yields maximized [,
11: end procedure

eigenvectors of a potentially high-throughput similarity matrix. Our input similarity matrix W
is sparse after applying screening and the spatial-contiguity constraints (usually only 0.2%—
5.0% of edges are nonzero entries after processing), which notably reduces computational
expense. It is, however, worth noting that since our algorithm is based on a single region pair,
the computational burden may become heavy when investigating multiple different pairs,
especially when a whole-brain analysis is needed.

2.3. Statistical inference of {(U;, V4)} pairs. Recall that our ultimate goal is to extract
a few most-densely connected subgraph pairs from {(U,, V;)} based on the block partition
{U., Vg :c e[Cl],d € [D]} that we have already obtained at this point. A natural idea is to in-
spect each (U,, V) pair and perform a statistical test on them with the alternative hypothesis
that the subgraph U, ® V; is unusually dense. Here we devise a clusterwise permutation test
(Nichols and Holmes (2002)) with FWER control. The hypotheses are

Hp : Subgraph U, ® V; is not unusually dense,
H, : Subgraph U, ® V; is unusually dense.

More specifically, under Hy, the connection density of U, ® V; should be close to the density
of subarea pairs obtained by randomly shuffling edges in the bipartite graph. Built upon the
minimum description length (MDL) principle proposed by Griinwald (2007), we derive the
following MDL-based test statistic:

2
n m 1—pu
MDL(U., V) = log, [(IUCI) <|Vd|):| + (Wzl — L;>|Uc| x | Val,

where 11 is the mean value of edgewise test statistics ¢;; for edges within U, x Vg4, and
Ly =— [¢(&ij)logy(¢(gij))diij + C is an information entropy measure based on the stan-
dard normal distribution ¢ for ¢;;. Detailed derivations for the MDL-based test statistic and
its connections to our inference goal are provided in Appendix C.4 (Lu et al. (2024)). We
formally present the clusterwise permutation test for each observed subarea pair (U, V) in
Algorithm 3. The number of permutations H in this algorithm can be determined based on
the sample size, the targeted computational expense, and the precision of the test. For ex-
ample, H = 1000. Compared to conventional multiple testing correction methods (e.g., FDR
and FWER), the MDL-based clusterwise permutation test returns suppressed false-positive
findings and shows improved statistical power in real-data examples and simulations.
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Algorithm 3 MDL-based clusterwise permutation test for each (U, V,;) pair
1: procedure ALGORITHM
2: Compute Tg 4 = MDL(U,, V) for each (U, V) pair yielded with true covariate
labels

3: forh=1,..., Hdo

4: Permute covariate labels and obtain the new inference connectivity matrix Wh

5: Obtain U" = @<, U" and V" = @L_, V! by substituting W" in Algorithms 1
and 2

6: return 7" = max(MDL(U", V1))

7: end for o

8: Compute p-value for each observed (U, V) pair: P, g4 = w

9: return the significance of each observed (U, V) pair based on P, 4 at a predeter-

mined a-level
10: end procedure

3. Experiments. In this section we apply SCCN to two real datasets to investigate the
voxel-level altered connections under different clinical settings. Dataset 1 contains 3269 par-
ticipants from a nicotine-addiction study using fMRI data collected from the UK Biobank
database. Dataset 2 includes 330 participants from a schizophrenia (SZ) research study using
fMRI data collected in Baltimore, MD.

3.1. Nicotine-addiction research study.

Sample characteristic. Our primary dataset consists of 3269 individuals from the UK
Biobank database, including 1353 current smokers (M/F: 737/616, age: 48.6 & 15.3) and
1916 previous light smokers (M/F: 1187/729, age: 32.9 £ 18.1). Detailed information on the
selection of these 3269 subjects is provided in Appendix E.1 (Lu et al. (2024)). Specifically,
we define current smokers as participants who currently smoke more than 10 cigarettes per
day, indicating nicotine addiction.” Conversely, we define previous light smokers as individ-
uals who had tried only a few cigarettes in the past but are not currently addicted to nicotine
products, serving as controls.> For detailed information on fMRI imaging acquisition and
preprocessing procedures, please refer to Appendix E.2 (Lu et al. (2024)).

Clinical background. Abundant literature shows that the basal ganglia (BG), hippocam-
pus (Hippo), and insular gyrus (Ins) play important roles in nicotine addiction (Ersche et al.
(2011), McClernon et al. (2016), Gaznick et al. (2014)). We, therefore, intend to look into
the disrupted connectivity patterns between these three bilateral ROISs, resulting in a total of
12 pairs. To maintain conciseness, we present the results for the (left BG, left Ins) pair in the
main text, while the remaining 11 cases are provided in Appendix E.4 (Lu et al. (2024)). By
investigating the altered vFC patterns across different clinical groups, we aim to gain insights
into the underlying neurological mechanisms of nicotine dependence and ultimately assist
smokers in resisting nicotine cravings.

We labeled the left BG and left Ins using the Brainnetome Atlas (Fan et al. (2016)) (left
BG: 2345 voxels; left Ins: 1762 voxels). For each subject we calculated the vFC matrix be-
tween the left BG and left Ins, with each entry representing a Fisher’s z-transformed Pear-
son correlation coefficient. Next, we calculated the population-level statistical inference ma-

2 ACE touchscreen question, “About how many cigarettes do you smoke on average each day?”.
3 ACE touchscreen question, “In the past, how often have you smoked tobacco?”.
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trix across all subjects while adjusting for: (i) demographic variables: age, sex, site, educa-
tional level, and body mass index (BMI); (ii) imaging confounds: head motion (quantified
through the mean displacement (in mm) between consecutive time points in rs-fMRI) and
four confounding factors pertain to the position of the head and the radio-frequency receiver
coil in the scanner. More details regarding the selection and description of these covariates
can be found in Appendix E.3 (Lu et al. (2024)). Following this, we applied SCCN and the
MDL-based test to identify anomalous subarea pairs from W®GkeiInsef)  taking into account
spatial-contiguity constraints. Lastly, we juxtaposed these findings against outcomes obtained
through comparative methods.

Network-level results. Each entry in the inference matrix W(BGefInsiefd) j5 endowed with a
— log p value testing the vFC difference between current smokers and previous light smokers
(Figure 3(1)). Implementing Algorithm 2 returned the MLE A =0.75. Given the estimated A,
Algorithm 1 returned the number of clusters C =307, D = 212 for W®BGker-Insier) The MDL-
based test returned six abnormal subarea pairs, which are marked in red in Figure 3(2). A 3D
demonstration of the detected subarea pairs from WBGketInsier) i shown in Figure 3(a)—(e)
(with a significance level of 0.05 selected for the MDL-based permutation test). All extracted
subarea pairs show well-organized topological structures. Results indicate that the majority
of aberrant vFC patterns from W®CketInsiei) are gathered between the medial inferior part of
the left basal ganglia and the left insula.

Biological interpretation of detected subareas. The detected subareas consist of several
locations that are believed to be frequently associated with nicotine addiction, including the
medial inferior part of the basal ganglia and the posterior insula. We also observed decreased
connectivity within these regions in current smokers, which aligns with the previous medi-
cal discovery that decreased resting-state functional connectivity is correlated with increased
nicotine-addiction severity (Fedota and Stein (2015), Sutherland and Stein (2018)). The in-
corporated spatial-contiguity constraints help unfold the subareas within the BG, Hippo, and
Ins, which maximally cover addiction-related vFC. These novel findings improve the spatial
specificity of addiction-related locations in the three brain regions and may lead to future
guidance for resisting the urge to use nicotine products.

Comparisons with existing methods. For comparison purposes, we again performed the
BH-FDR correction edgewisely and BSGP clusterwisely on W(BGetInsiei) By first conduct-
ing an initial edgewise significance test across the current and previously light smoker groups,
only 7.31% of the edges were found to be significant (p < 0.005). However, no edges showed
significance after applying BH-FDR correction with g = 0.01 (Figure 3(3)). When applying
BSGP to WBGeit-Insier) only one abnormal subarea pair was detected (Figure 3(4)), with
49.7% edges of p > 0.005 included in the detected pair, compared to 3.12% yielded by
SCCN. In comparison to the two existing methods, SCCN yields much more densely altered
vFC contained in spatially contiguous subarea pairs with strong topological structures.

3.2. Schizophrenia research study.

Sample characteristics. Our primary dataset contains 330 individuals, including 148 SZ
patients (M/F 84/64, age 37.5 4+ 14.4) and 182 healthy controls (M/F 80/102, age 37.0 &+
16.1). The participants were required for a large ongoing study of the effects of cognitive
deficits in SZ. Specifically, the study probed how cognitive deficits contributed to functional
disability in SZ patients and how they were related to altered functional networks that serve
cognition. All subjects were assessed at local research centers in the greater Baltimore area
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F1G. 3. Detected subarea pairs from a nicotine-addition study: (1) A heatmap of WEBGett.ns1e0) - Rows and
columns correspond to voxels from the left basal ganglia and the left insular, respectively. (2) Results yielded by
SCCN: Altered subarea pairs that pass the MDL-based permutation test are highlighted in bold boxes. (3) Results
vielded by BH-FDR: The hypothesis testing error measure was set to be g = 0.05 as a cut-off. No subarea pairs
were detected. (4) Results yielded by BSGP: Only one positive yet much less dense subarea pair was detected.
The detected subarea pair also lack spatial contiguity and specificity. (a)—(d) shows the 3D demonstration of the
six detected altered subareas from W BGier Insier) (a)—(e) show a 3D demonstration of the detected results from
WEBGCket.Insiet)  Based on the p-values from the MDL-based permutation test shown in (e), most positive subarea
pairs are located in the medial inferior part of the left basal ganglia and left insular.

between 2004 and 2016 using uniform recruitment criteria as well as neurological and clinical
assessments. Detailed information about participant demographics, the recruitment process,
imaging acquisition, and fMRI preprocessing procedures can be found in Appendix D.1 (Lu
et al. (2024)).

3.2.1. Salience network disrupted connectivity.
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Clinical background. The salience network, which is mainly composed of the bilateral in-
sula and cingulate cortices, is related to several core SZ symptoms. A vast amount of lit-
erature in neuroimaging research suggests that the connectivity in the salience network is
disturbed during information processing in SZ patients (Palaniyappan, White and Liddle
(2012)). We, therefore, intend to focus on the bilateral insula and cingulate cortices and
study the schizophrenic-altered vFC patterns between them. Specifically, we want to extract
schizophrenic-impacted edges that connect voxels from spatially coherent subareas within
the insula to those within the cingulate cortex. This data-driven extraction of subareas caused
by vFC abnormality in SZ may provide insights for more effective clinical treatments (e.g.,
by transcranial magnetic stimulation or deep-brain-stimulation therapies). We labeled the bi-
lateral insula and cingulate cortices based on the Brainnetome Atlas (Fan et al. (2016)) (left
insula: 1762 voxels; right insula: 1577 voxels; cingulate cortex: 5768 voxels). We applied
SCCN and the MDL-based test to the edgewise connectivity inference matrices W1L762x 5768
and Wf577X5768 for the (left Ins, cingulate) and (right Ins, cingulate) ROI pairs, respectively,
while adjusting for age, sex, head motion (quantified through the mean displacement (in mm)
between consecutive time points in rs-fMRI), and four imaging variables describing various
aspects of the positioning (scanner lateral, transverse, and longitudinal brain position and
scanner table position). WX and WX were obtained by the same computational procedures as
in Dataset 1. Lastly, we compared the detection results with those obtained by comparative
methods.

Network-level results. Bach element in the vFC inference matrix W* is W}; = —log(p/;),
where piLj is the p-value testing the case-control vFC difference for the (i, j) pair between

the left insula and cingulate cortex (Figure 4(L.1)). We then perform screening on W us-
ing a preselected threshold (e.g., p = 0.05): Ws = (WL)ij . I((WL),-j < —1o0g(0.05)). The
postscreened inference matrix W can effectively exclude most noninformative false-positive
edges while maintaining a high proportion of true-positive edges (Fan and Lv (2008), Li,
Zhong and Zhu (2012)). Similar settings apply to WX (Figure 4(R1)) Implementing Al-
gorlthm 2 returned a maximum-likelihood estimation (MLE) of x . = 0.625 for WL and
P AR = 0.85 for WR. Given the estimated A, Algorithm 1 returned the number of clusters
C 1. = 135 in the left insular, DL = 103 in the cingulate for WL, For WK, C R = 223 in the
left insular, and Dg = 220 in the cingulate. The MDL-based test returned nine abnormal sub-
area pairs for WX and 10 abnormal subarea pairs for WX (marked in red in Figure 4(L.2) and
(R2)). A 3D demonstration of the detected results from WZ is shown in Figure 5 (using a
significance level of 0.05 from the MDL-based permutation test). Information regarding the
precise sizes, p-values, and locations is also specified in Figure 5. All extracted subarea pairs
show well-organized topological structures. Overall, the aberrant VFC patterns from W’ are
gathered between the dorsal insula and anterior cingulate cortex (ACC). Detailed detection
results for WX are provided in Appendix D.2 (Lu et al. (2024)).

Biological interpretation of detected subareas. The detected subareas consist of several
well-known brain regions that are believed to be frequently associated with SZ disorder, in-
cluding, most remarkably, the anterior insula (AI) and ACC. Emotions that most strongly en-
gage the Al, such as anger and fear, are those that SZ patients tend to have the most difficulty
recognizing (Wylie and Tregellas (2010)). Furthermore, the densities of neurons, axons, and
synapses are found to be abnormal in the ACCs of people with SZ (Arnold and Trojanowski
(1996)). All of the aberrant edges detected showed decreased or equivalent connections in
SZ patients. This aligns with medical findings that SZ is a “dysconnectivity” disorder with
primarily reduced FC across the salience network (Lynall et al. (2010)), although medication
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FIG. 4. Detected subarea pairs in salience network from a schizophrenia study (2D): (1) A heatmap of wi.
rows and columns correspond to the voxels from the left insula and the cingulate cortex, respectively. A brighter
entry indicates a more differentially expressed voxel pair between clinical groups adjusted for other covariates.
(2) Results yielded by SCCN: positive subarea pairs that pass the MDL-based permutation test are highlighted
in bold boxes. There are many edges with small p-values outside the bold boxes (e.g., in the bottom left corner)
because they are not spatially contiguous to those inside the boxes and are automatically excluded by SCCN. (3)
Results yielded by BH-FDR: with g = 0.05, no subarea pairs were detected. (4) Results yielded by BSGP: only
one informative yet much less dense subarea pair was detected. The detected subarea pair was also lack of spatial
contiguity and specificity.

effects cannot be completely ruled out. The imposed spatial-contiguity constraints help un-
fold brain subareas of the bilateral insula and cingulate cortices that maximally cover disease-
related vFC. These novel findings improve the spatial specificity of SZ-related dysconnectiv-
ity in the well-known salience network and may lead to guidance for future treatments.

Comparisons with existing methods. For comparison purposes, we performed the Benja-
mini—-Hochberg FDR (BH-FDR) correction edgewisely and a commonly used biclustering
algorithm, bipartite spectral graph partitioning (BSGP), clusterwisely. By first conducting an
initial correlation analysis between VFC and schizophrenic status, 17.83% of the edges in
WL were found to have p < 0.005 significance, where p = 0.005 is a commonly used yet
uncorrected threshold in neuroimaging studies (Derado, Bowman and Kilts (2010)). After
applying BH-FDR correction, 9.45% of the edges were found to be significant using the
threshold of ¢ = 0.01 (Figure 4(L3)), and no community structure was revealed. For WK
13.51% of edges had p-values less than 0.005, and only 3.60% significant edges were found
after BH-FDR correction with ¢ = 0.01 (Figure 4(R3)); again, no community structure was
found in WX, When applying BSGP to both WX and WX, only one abnormal subarea pair
was detected (Figure 4(1L4) and (R4)), with more than 36.80% edges of p > 0.005 included
compared to SCCN. In comparison to the existing methods, SCCN yields much more densely
schizophrenia-associated VFC contained in spatially contiguous subarea pairs with stronger
topological structures.

3.2.2. Temporal-thalamic disrupted connectivity. In contrast to the reduced salience net-
work connections in SZ patients, many studies have shown that SZ patients have greater
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FIG. 5. Detected subarea pairs in salience network from a schizophrenia study (3D). Let L1; be the ith dyscon-
nected subarea detected from the left insula that is connected to the jth subarea from the cingulate cortex, CL .
Let Ny j; denote the number of voxels in subarea LI; and, similarly, Nc L; Jor CL . (a) (c) show the images of the
original left insular and cingulate cortex; (b) shows the SZ-affected subareas in the left insular that are connected
to those in the cingulate cortex highlighted in (d); (e) shows the architecture of interconnections between the de-
tected subareas from WL and the associated p-values from the MDL-based permutation test. A 3D demonstration
of the detected results from WX is provided in Appendix D.2 (Lu et al. (2024)).

thalamic connectivity with multiple sensory-motor regions, including, most remarkably, the
temporal gyrus (Ferri et al. (2018), Cetin et al. (2014)). More specifically, thalamus to middle
temporal gyrus connectivity was positively correlated with many core SZ features, such as
hallucinations and delusions. We, therefore, aim to use SCCN to identify some novel find-
ings between the middle temporal gyrus on the right hemisphere and the bilateral thalamus
in SZ patients. Based on the Brainnetome Atlas, there are 3566 voxels in the right middle
temporal gyrus (labeled 82, 84, 86, and 88) and 3275 voxels in the bilateral thalamus (la-

e . Temyigh, Th
beled 231-246). We computed the vFC connectivity inference matrices Wgszrgigf;” ) and
(Temyight, Tharight)

Waseox 1548 between clinical groups and then implemented SCCN. Due to limited space
here, we provide the results of all estimated parameters and densely altered subarea pairs in
Appendix D.3 (Lu et al. (2024)).

4. Simulations. In the simulation study, we probed whether SCCN can extract densely
altered subarea pairs with better performance, compared to common existing methods.
Specifically, we evaluated the performance from two perspectives: (i) Multivariate edge-level
inference: whether extracted voxel pairs have a high true-positive rate (TPR) and low false-
positive rate (FPR); (ii) network-level inference: whether the extracted subareas contain max-
imal true-positive voxels, compared to other unextracted subareas.

4.1. Primary analysis. We first generated a bipartite graph G = {U, V} to represent the
brain connectome between two brain regions A and B for S subjects, where U corresponds to
the voxel set in Region A, and V corresponds to that in Region B. We assume all S subjects
share a common set of nodes after spatial normalization and registration, that is, (U*, V°) =
(U, V), Vs € [S]. Next, we simulated covariates of interest {X', ..., X5} that contain clinical
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information of all S subjects. Lastly, we simulated the Fisher’s z-transformation connectivity
matrices {Z', ..., Z5} between regions A and B for all subjects, where Z* € R**™ n = |U]|,
m = |V|. Specifically, each element z}, in Z* was set to follow N (h (zfj), o2), where h(zfj) =
X*B;; is location-specific within regions A and B.

In the following we show the numerical settings under the above simulation framework:

(i) For the two predefined brain regions of interest, we simulated |U| = 900 voxels
in Region A and |V| = 1600 voxels in Region B. Within [U| and |V, we also randomly
simulated three disease-related subarea pairs (Ug, Vi), (U1, V2), and (U, V3). The true
spatial locations of these five subareas in the simulated 2D grid spaces are presented in
Figure 6(al). Not every possible pair {(U., V3),c = [2],d = [3]} was associated with the
disease; only regions with the same brightness exhibited dysconnectivity from A to B. The
sizes of these subarea pairs were |U1||V1| = 84 x 70 = 5880, |U;|| V2| = 84 x 64 = 5376,
and |Uz||V3] =96 x 117 = 11,232. In addition, we included spatially isolated abnormal
voxels as well as noise within regions A and B to mimic more realistic neural connectiv-
ity (Figure 6(a2)).

(ii) For the Fisher’s z-transformation connectivity matrices {Z*, s € S}, we set h(zfj) =
Bo+Bij1x] + Bij2x5 + Bij 3x3, where x| and x; store the age and sex information for subject
s, and x5 represents their clinical status (x3 = 1 if patient s has a mental disorder and O for a
healthy control.). In addition, while B;; 1 and B;; » are typically not spatially variant, B;; 3 is
considered brain-region specific,

Bij3=10.13, if (i, j) € (U2, V3),
0, if (i, j) e U/{(U1, V) U (U1, Vo) U (Ua, V3)}.

(iii) To control standardized effect sizes, we set 02 = 0.5, 1.0,2.0 in Z* ~ N'(h (zfj), o).
Additionally, four sample sizes, S = 100, 200, 2000, and 20,000, were used, each with bal-
anced healthy controls and patients. All settings with different (o, S) were simulated 1000
times to assess the variability of the TPR and FPR.

We implemented Algorithm 1 and 2 of SCCN to identify subarea pairs from each sim-
ulated dataset, and we then applied Algorithm 3 to conduct clusterwise inference on the
subarea pairs detected. To assess the performance of the multivariate edgewise inference, we
considered two conventional multiple-testing controls (FDR and FWER). Specifically, we
used the voxelwise permutation test (with 1000 permutations) to control the FWER and the
Benjamini—Hochberg procedure (with g = 0.05 as a cut-off) to control the FDR (Benjamini
and Hochberg (1995)). To assess the accuracy of the clusterwise performance, our goal was to
compare true disease-related subgraphs {(U., V;)} with the estimated subgraphs {(ﬁc, Vd)}
produced by five commonly used biclustering algorithms (i.e., Cheng and Church, Plaid,
OPSM, xMOTIEF, and Spectral Biclustering (Gupta, Singh and Verma (2013))).

The edgewise inference results are presented in Table 1, and a graph illustration of the re-
sults is shown in Figure 6. For the edgewise inference performance with all different (o, S),
SCCN outperforms the two traditional multiple testing correction methods (i.e., FDR and
FWER control) in terms of TPR, while its ability to control the FPR falls in between the two.
SCCN’s relatively inferior performance in controlling the FPR (compared to sensitivity) can
sometimes be impacted by the following disadvantage: in traditional multiple testing methods
with universal thresholds, one false-positive finding corresponds to exactly one false-positive
edge. However, SCCN detects altered edges by partitioning voxels within each ROI; there-
fore, one false-positive finding by SCCN corresponds to one false-positive voxel, say v; € U,
which will lead to n false positive edges when V; (| V4| = n) is found to connect to |U,|. The
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(al) Ground Truth (b) FDR-control (c) FWER-control (d) BSGP (e) SCCN

ROI A, |U|=900 50 cases vs. 50 controls 50 cases vs. 50 controls 50 cases vs. 50 controls 50 cases vs. 50 controls
10 0=0.5 o=1 0=0.5 o=1
B 10 20 30

CIE D
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(a2) Noise Added

ROI A |U| 900 1000 cases vs. 1000 controls 1000 cases vs. 1000 controls 1000 cases vs. 1000 controls 1000 cases vs. 1000 controls
0=0.5 o=1 o0=2 7=0.5 g=1  o0=2 =0.5 o=1 o0=2 0=0.5 0=1  0=2
i H . . - . - — — —
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e e - -
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ROI B, |V|=1600
o = 10000 cases vs. 10000 controls 10000 cases vs. 10000 controls 10000 cases vs. 10000 controls 10000 cases vs. 10000 controls
=05 o0=1 o0=2 =05  o=1 =05  o=1

ROIA

ROIAE E ROIAEEE
ROIBE E @ ROIBEEE

BSGP (W) SCCN (W)

ROI B

(a3) W of (a2)

Input: W

(f) Cheng and Church: No biclusters found (g) Plaid: No biclusters found (h) OPSM: No biclusters found
(i) xMOTIF: No biclusters found (i) Spectral Biclustering: No biclusters found

FI1G. 6. A 2D visualization of performance by different methods. In (al), the true spatial locations of subareas
Uy and Uy are displayed in a simulated 30 x 30 grid space while Vi, V;, and V3 are displayed in a simulated
40 x 40 grid space. Subareas with the same brightness contain disease-related edges from A to B, that is, (U1, V1),
(U1, V), and (U, V3) are the positive subarea pairs. (a2) shows the scenario with false negative and false pos-
itive noises added to mimic the real vFC patterns in the brain connectome. (a3) shows the connectivity inference
matrix W obtained based on (a2). (b)—(e) show the detected disease-related voxel pairs (again only regions with
the same brightness form a pair) under different variances o and sample sizes S. The last row shows the iso-
morphic graphs of (a3) with the extracted subarea pairs pushed to the top when o = 1. We highlight the voxels
from the suprathreshold voxel pairs that were yielded by the FDR-control and FWER-control along with voxels
in subarea pairs that were extracted by BSGP and SCCN. Multiple testing with FDR-control and FWER-control
tend to extract an excess of voxels with high false-positive error rates. BSGP better controls the error rates, but
it extracts voxel pairs without differentiating the correct areawise connections, that is, (U1, V1), (U1, V3), and
(Us, V3). In contrast, SCCN can simultaneously recover the spatially contiguous subareas, respectively, in A and
B, and reveal the correct disease-related vFC patterns. (f)—(j) show that no single differentially expressed subarea
pair was extracted by the biclustering algorithms listed.

greater the size of V;, the more false-positive edges will be yielded. Nonetheless, even with
such a heavy penalty for detecting one false-positive voxel, SCCN still controls the FPR and
shows better performance when jointly considering the TPR and FPR. More importantly,
false-positive edges discovered by the traditional FDR and FWER correction approaches al-
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TABLE 1
Simulation results. The four subtables show the inference results given different sample sizes and variances,
where TPR and FPR correspond to the edgewise true positive rate and false positive rate. Network detection
results indicate whether the algorithm can successfully extract the correct connection patterns between
disease-related subarea pairs

Sample Size: 50 cases vs. 50 controls Sample Size: 100 cases vs. 100 controls
Methods c 0.5 1 2 Methods 4 0.5 1 2
TPR 0.918 (0.229)  0.832(0.314) 0.637 (0. 328) TPR 0.958 (0.215)  0.892 (0.249) 0.746 (0. 427)
FPR 0.060 (0.007) ~ 0.065 (0.053) 0.073 (0.158) FPR 0.065 (0.069)  0.069 (0.048) 0.070 (0.164)
EDRcortrol Network No No No FOR:control Network No No No
Detection Detection
TPR 0.994 (0.169) ~ 0.893 (0.177) 0.842 (0. 179) TPR 0.994 (0.157)  0.989 (0.182) 0.842 (0. 163)
FPR 0.762 (0.142)  0.764 (0.152) 0.771(0.193) FPR 0.767 (0.139)  0.762 (0.140) 0.761 (0.187)
FWER-control Network No No No FWER-control Network No No No
Detection Detection
TPR 1(0) 1(0) 1(0) TPR 1(0) 1(0) 1(0)
FPR 0.087 (0.011)  0.093 (0.012) 0.096 (0.014) FPR 0.081(0.010) ~ 0.082 (0.012) 0.097 (0.013)
SceN Network Yes Yes Yes SCCN Network Yes Yes Yes
Detection Detection
TPR 0.946 (0.106) ~ 0.893 (0.122) 0.667 (0.278) TPR 1(0.105) 1(0.120) 0.993 (0.262)
FPR 0.858 (0.258)  0.773 (0.173)  0.845 (0.439) FPR 0.844 (0.228)  0.764 (0.172) 0.940 (0.369)
BSGP Network Yes Yes Yes B5GP Network Yes Yes Yes
Detection Detection
Cheng and Church TPR 0(0) 0(0) 0(0) Cheng and Church TPR 0(0) 0(0) 0(0)
Plaid Plaid
OPSM FPR 0(0) 0(0) 0(0) OPSM FPR 0(0) 0(0) 0(0)
x:nan ) Network x:""_’"‘ ) Network
SpecalBlclisterng Detection No biclusters detected SpectialBicluztering Detection No biclusters detected
Sample Size: 1000 cases vs. 1000 controls Sample Size: 10000 cases vs. 10000 controls
Methods o 0.5 1 2 Methods 4 0.5 1 2
TPR 0.957(0.209)  0.878 (0.287) 0.789 (0. 363) TPR 0.959(0.229)  0.873(0.357) 0.771(0.391)
FPR 0.061 (0.007) ~ 0.061 (0.058) 0.071 (0.159) FPR 0.060 (0.007) ~ 0.061 (0.061) 0.069 (0.160)
EDRcontts Network No No No ERRconee) Network No No No
Detection Detection
TPR 0.993 (0.169) ~ 0.904 (0.180) 0.823 (0. 187) TPR 0.992 (0.174)  0.907 (0.176) 0.819 (0. 183)
FPR 0.749 (0.140)  0.727 (0.145)  0.754 (0.176) FPR 0.753 (0.145)  0.734(0.145) 0.759 (0.157)
FWER-control Network No No No FWER-control Network No No No
Detection Detection
TPR 1(0) 1(0) 1(0) TPR 1(0) 1(0) 1(0)
FPR 0.081(0.008)  0.087 (0.010) 0.081 (0.012) FPR 0.081(0.007) 0.091(0.007) 0.087 (0.011)
SCo Network Yes Yes Yes SCEN Network Yes Yes Yes
Detection Detection
TPR 0.968 (0.106) ~ 0.903 (0.122) 0.875 (0.278) TPR 0.972 (0.208) = 0.884(0.122) 0.873 (0.290)
FPR 0.374(0.438)  0.405 (0.360) 0.737 (0.447) FPR 0.574 (0.426) ~ 0.368 (0.499) 0.679 (0.407)
B5GP Network Yes Yes Yes BSGP Network Yes Yes Yes
Detection Detection
Cheng and Church TPR 0(0) 0(0) 0(0) Cheng and Church TPR 0(0) 0(0) 0(0)
Plaid Plaid
OPSM FPR 0(0) 0(0) 0(0) OPSM FPR 0(0) 0(0) 0(0)
XMOTIF Network aMOTIE Network
Spectral Bidustering Detection No biclusters detected Spechal Biclustering Detection No biclusters detected

most cover all within-ROI voxels, which leads to a substantial loss of spatial specificity when
identifying covariate-related vFC patterns.

Regarding the network-level inference performance, all common biclustering methods
failed to detect any positive biclusters (differentially expressed subarea pairs), except for
BSGP. However, BSGP nonetheless failed to ensure spatial contiguity, and the precise con-
nection between the extracted subareas was not correctly revealed. That is, unlike the results
yielded by SCCN (Figure 6(e)), BSGP (Figure 6(d)) could not effectively differentiate be-
tween clusters with different levels of brightness. In comparison, SCCN shows outstanding
network-level performance for detecting community structures and incorporating spatial con-
tiguity.

4.2. Negative control analysis. We further performed a negative control analysis to eval-
uate the FPR of our method. We consider a scenario in which the connections between a pre-
selected ROI pair are unrelated to a clinical condition of interest. We generated |U| = 900 and
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|V | = 1600 voxels in regions A and B. We distinguished the patient and control groups as 1
and 0, but since there were no abnormal subarea pairs {(U., V;)} across groups, we simply set
the connectivity matrices Z° ~ N(0, o) over the entire regions for all S subjects. Based on
Z°, we obtained the inference matrix W? across clinical groups. Since the network detection
was validated to be scalable to different sample sizes and sample variances, we evaluated the
configuration (§ = 1000, 0 = 1) as a proof of concept. Finally, we implemented SCCN on
WO Since the false positive voxel pairs tended to be distributed randomly, no subarea pairs
were significant. Therefore, the subarea-level false positive findings were 0. The edgewise
FPR (suprathreshold voxel-pairs) among 1000 iterations was 6.82 x 1073 (std. 1.29 x 1079),
which is consistent with the predetermined alpha level (E(p) = 0.00005). We have provided
a graph visualization of these results in Appendix F (Lu et al. (2024)).

In summary, we have shown that the subarea detection is not affected by different values
of variance o2, sample size S, or other sources of noise. SCCN also yields vFC patterns
with high sensitivity and low FPRs. The spatial-contiguity constraints allow positive edges
to borrow strengths from each other within a data-driven subarea; sensitivity is thus notably
increased. Data-driven subareas with these constraints can also exclude false-positive edges
that bridge voxels that are randomly scattered in ROIs. False-positive findings are, therefore,
largely suppressed. In addition, the jointly improved sensitivity (and thus statistical power)
and control of the FPR yield almost identical voxel sets across all simulated datasets. Repli-
cability is hence remarkably improved.

5. Discussion. Psychiatric and neurological disorders are often associated with a dis-
rupted brain connectome. To improve the spatial specificity and sensitivity for detecting a
disease-impacted brain connectome, in this work we focused on voxel-level connectivity net-
work analysis. We developed statistical models focusing on extracting abnormal voxel pairs
from a region pair of interest, which can be further extended to whole-brain connectome
analysis. We have attempted to simultaneously address the challenges of a controlled FPR
for multiple voxel-pair testing and the spatial-contiguity constraints for vFC analysis.

In addition, the brain parcellation to extract subareas is usually based on commonly used
brain atlases (e.g., Brodmann’s map or the International Consortium for Brain Mapping), and
these were built on comprehensively studied cortical anatomy, such as complex gyro-sulcal
folding patterns. Different regions blocked by gyri and sulci tend to show differential neuro-
biological structures and functions, and these atlases can thus serve as a good foundation to
investigate subarea community structures. However, to further overcome the limitation of us-
ing existing brain parcellations, one can consider combining any extracted spatially adjacent
subareas from a pair of spatially adjacent regions if the combination is statistically coherent
and biologically meaningful.

The centerpiece of our proposed method is the identification of subarea pairs containing
an unusually high density of phenotype-related voxel pairs. By leveraging this high density,
we can effectively control the FPR by excluding isolated false-positive edges, and we thus
greatly reduce the number of false-positive nodes. We have, therefore, improved the spatial
specificity of extracted disease-related patterns at a voxel level. Herein, we have proposed a
new nonparametric objective function to achieve this goal, and this has been implemented
with efficient algorithms. We also developed inference methods to assess the statistical sig-
nificance of each subarea pair extracted.

The biological findings from our data example are novel; SCCN revealed vFC connec-
tome patterns for schizophrenia within the well-known salience network. We discovered that
the malfunction of salience network connectivity is mainly driven by disrupted connections
between the dorsal insula and anterior cingulate cortex, instead of the omnibus region-level
findings. We further validated our findings through extensive simulations and showed that our
methods could improve sensitivity with a controlled FPR while retaining spatial contiguity.
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In summary, SCCN provides a new toolkit for vFC analysis with improved spatial reso-
lution and specificity while preserving a well-controlled false-positive error rate. Therefore,
the findings from SCCN can be translated into more effective potential treatments for brain
disorders. Since the input data of SCCN is voxel-pair-level inference results, it is applica-
ble to all connectivity measures and data modalities where valid statistical inference can be
performed (e.g., white-matter tractography). SCCN may also provide a promising strategy
for whole-brain connectome voxel-pair network analysis. All sample code can be found at
https://github.com/TongLu-bit/DecodingNetwork-SCCN.
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SUPPLEMENTARY MATERIAL

Appendix (DOI: 10.1214/23-A0AS1824SUPPA; .pdf). The appendix provides supple-
mentary details on the following topics: (i) definition and implementation of spatial-
contiguity constraints; (ii) within-region vFC association analysis; (iii) proofs of Lemma
1 and Theorem 1 & 2, and construction of the MDL-based test statistics; (iv) additional
information on the schizophrenia data analysis; (v) additional information on UK Biobank
smoking data analysis; (vi) additional information on negative control analysis.

Code for implementing SCCN model (DOI: 10.1214/23-A0AS1824SUPPB; .zip). This
supplementary file contains MATLAB codes to implement algorithms proposed in this paper.
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