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Abstract: Viral and synthetic vectors to deliver nucleic acids were key to the rapid development
of extraordinarily efficient COVID-19 vaccines. The four-component lipid nanoparticles (LNPs),
containing phospholipids, PEG-conjugated lipids, cholesterol, and ionizable lipids, co-assembled
with mRNA via a microfluidic technology, are the leading nonviral delivery vector used by BioN-
Tech/Pfizer and Moderna to access COVID-19 mRNA vaccines. LNPs exhibit a statistical distribution
of their four components when delivering mRNA. Here, we report a methodology that involves
screening libraries to discover the molecular design principles required to realize organ-targeted
mRNA delivery and mediate activity with a one-component ionizable multifunctional amphiphilic
Janus dendrimer (IAJD) derived from plant phenolic acids. IAJDs co-assemble with mRNA into
monodisperse dendrimersome nanoparticles (DNPs) with predictable dimensions, via the simple
injection of their ethanol solution in a buffer. The precise location of the functional groups in one-
component IA]Ds demonstrated that the targeted organs, including the liver, spleen, lymph nodes,
and lung, are selected based on the hydrophilic region, while activity is associated with the hydropho-
bic domain of IAJDs. These principles, and a mechanistic hypothesis to explain activity, simplify
the synthesis of IA]Ds, the assembly of DNPs, handling, and storage of vaccines, and reduce price,
despite employing renewable plant starting materials. Using simple molecular design principles will
lead to increased accessibility to a large diversity of mRNA-based vaccines and nanotherapeutics.

Keywords: targeted mRNA delivery; one-component vector; ionizable Janus dendrimer; dendrimersome
nanoparticles; molecular design principles; vaccines; nanotherapeutics; plant phenolic acids; simplified
preparation and handling; reduced vaccine price

1. Introduction

The efficient delivery of nucleic acids via viral [1-3] and synthetic [4-12] vectors
has remarkably impacted genetic nanomedicine, as illustrated by the great success of
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COVID-19 vaccines [13-18]. Recent reviews [19-23] and three publications from our
laboratories [24-26] summarized in great detail the advantages and disadvantages of viral
and nonviral delivery systems. Therefore, some of these advantages and disadvantages
will only be briefly repeated here. This recapitulation has as its main goal a clarification
of the scope, properties, and limitations of viral and synthetic vectors for the delivery of
DNA and RNA, and of the main functions of the nucleic acids. DNA must be delivered to
the nucleus, while RNA is delivered to the cytoplasm. At the same time, due to enzymatic
degradation, neither DNA nor RNA is stable, although RNA needs more careful handling
since it is single-stranded and is much less stable than DNA. This dissimilar stability of
nucleic acids and location of delivery endows the difference between the methodology
principles for the delivery of DNA and RNA.

Viral vectors have high transfection efficacy (95%) and higher specificity for cell
targeting, including for unnatural cells. The drawbacks of viral gene delivery include
immunogenicity, cytotoxicity, the difficulty of assembly, inflammatory responses to repeated
administration, and potential risk for insertional mutagenesis [24-26].

Delivery via nonviral vectors is safer and exhibits lower toxicity and immunogenicity
but exhibits much lower transfection efficiency (1-2%), and the synthetic vectors are less
stable than the viral vectors. The unlimited synthetic capabilities of synthetic vectors repre-
sent, most probably, their main advantage over viral vectors. Taking all these features into
account, we can understand why covalent and supramolecular dendrimers, as well as other
permanently charged synthetic vectors complexed on their cationic periphery groups with
nucleic acids, have pioneered the field of nonviral vectors for the cell transfection of DNA.
Due to the relatively higher stability of DNA, no protection—deprotection methodology is
required during the delivery of DNA. However, a protection—deprotection methodology is
required for the delivery of RNA. More details on these principles and methodologies will
be briefly summarized in a later part of this report.

Four-component lipid nanoparticles (LNPs) [27-29] consisting of ionizable lipids [27,28],
phospholipids [29], cholesterol, and a PEG-conjugated lipid [26-28], represent the state-of-
the-art technology employed by BioNTech/Pfizer [16] and Moderna [17] for the production
of their mRNA vaccines (Figure 1A). The protection-deprotection is accomplished in this
case through a reversible encapsulation of the mRNA mediated by an ionizable lipid
rather than by the permanently charged cationic components employed in the delivery
of DNA. The stability of the nanoparticle is aided through co-assembly with cholesterol
and PEG-conjugated lipids. The statistical distribution of the four components in the LNPs
is responsible for some of their limitations and difficulties of molecular design since the
exact location of their four components within LNPs is not known. For example, the
segregation of the neutral ionizable lipid as droplets in the core of LNPs [28,30] and the
“PEG dilemma” [31-34] are two of the main outcomes induced by the lack of their precise
location. An additional deficiency is optimal stability at temperatures of about —70 °C. The
detailed structure of the LNP is also not yet known in great detail, but it will be discussed,
together with alternative methods of delivery and their evolution, in a later subsection.

Recently, we took advantage of the unlimited synthetic capabilities of nonviral vectors
and elaborated a simple one-component sequence-defined ionizable amphiphilic Janus
dendrimer (IAJD) [24-26] concept that relies not only on precise composition but also, most
importantly, on the exact location and placement of its functional groups (Figure 1B) [24-26].
In addition, one-component IAJDs do not require the microfluidic or T-tube technology
employed by four-component LNPs to co-assemble with mRNA. One-component IA]Ds are
co-assembled with mRNA into vesicles named dendrimersome nanoparticles (DNPs). They
exhibit 97% nucleic acid encapsulation efficiency [24] and are assembled via the simple
injection of their ethanol solution into an acidic buffer containing mRNA rather than via the
microfluidic or T-tube technology required using LNPs. This simple assembly methodology
provides rapid access to screening libraries of IAJDs with different compositions and
sequences, both in their hydrophilic and hydrophobic parts.
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Figure 1. Schematic representation of four-component LNPs, one-component IAJD-based DNPs, and
the cell transfection mechanism of LNPs and DNPs encapsulating Luc-mRNA: (A) four-component
LNPs; (B) one-component IA]Ds and their DNPs; (C) cell transfection mechanism of LNPs and DNPs
encapsulating Luc-mRNA.

Here, we will elaborate on a methodology for screening libraries to discover, and later
even predict, the molecular design principles required to accomplish organ-targeted mRNA
delivery and engineer activity with a one-component ionizable multifunctional amphiphilic
Janus dendrimer (IAJD) derived from plant phenolic acids. Quantitative experiments on
this topic are outside the scope of this report but will become available soon.

Since this is an invited publication by the Guest Editors of a Special Issue dedicated
to the 85th anniversary of Donald A. Tomalia, we decided to organize a more unusual
manuscript that represents a combination of an original research paper, as the title indi-
cates, in the first part, combined with a perspective on the discovery, evolution, and the
immense role of Don on the discovery, evolution, and the current status of covalent and
supramolecular dendrimers, in the second part.

2. Materials and Methods
2.1. Materials

3,5-Dihydroxybenzoic acid (Acros, 97%), 1-bromononane (Lancaster, 99%), 1-bromodo
decane (Alfa Aesar, 99%),1-bromotetradecane (Acros, 98%), 1-bromohexadecane (TCI,
96%), 1-heptadecanol (TCI, 97%) (rac)-3-(bromomethyl)heptane, 1-bromooctadecane (Acros,
96%), 2-ethylhexyl bromide, (Aldrich, 95%), 1-bromooctane (Aldrich, 99%), 1-bromodecane
(Acros, 98%), 1-bromoundecane (Aldrich, 99%), 1-bromopentadecane (Aldrich, 98%), ben-
zyl chloride (Alfa Aesar, 99%), 4-toluenesulfonyl chloride (Alfa Aesar, 98%), palladium
on activated carbon catalyst (Spectrum, 10 wt% loading), lithium aluminum hydride
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(LiAlHy, TCI, 95%), 4-bromobutyric acid (Acros, 98%), thionyl chloride (Alfa Aesar, 99+%),
potassium phthalimide (Chem Impex, 99.8%), 1-methylpiperazine (Alfa Aesar, 98%), 1-(2-
hydroxyethyl)piperazine (Acros, 99%), and triethylamine (TCI, 99%) were used as received.
Heptadecyl 4-methylbenzenesulfonate (C17H350Ts) was synthesized according to a lit-
erature procedure reported by our laboratory [26]. All other reagents and solvents were
obtained from commercial sources and were used as received. CH,Cl, (DCM) was dried
over CaH; and distilled before use. 4-(Dimethylamino)pyridinium 4-toluenesulfonate
(DPTS) was prepared according to a literature method [35]. Acetate buffer (10 mM) was
prepared by dissolving sodium acetate (2.3 mM) and acetic acid (7.7 mM) in ultra-pure
water. The final pH of the buffer was adjusted with 0.1 M HCl or 0.1 M NaOH solu-
tion. Nucleoside-modified messenger RNA encoding firefly luciferase (Luc-mRNA) was
produced as reported [36]. Human embryonic kidney (HEK) 293T cells (American Type
Culture Collection, Manassas, VA, USA) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% inactivated fetal bovine serum (FBS) (Gem-
ini Bio-Products, West Sacramento, CA, USA), 2 mM L-glutamine and 100 U/mL peni-
cillin/streptomycin (Life Technologies, Carlsbad, CA, USA). DPBS (Corning, Corning, NY,
USA), OptiMEM (Gibco, Carlsbad, CA, USA), UltraPure DNase/RNase-free distilled water
(Invitrogen, Carlsbad, CA, USA ), Trypsin-EDTA (0.25%, Gibco, Carlsbad CA, USA), Trypan
Blue (Sigma-Aldrich, St. Louis, MO, USA), Cell Culture Lysis 5X Reagent (Promega, Madi-
son, WI, USA), Luciferase Assay System (Promega, Madison, W1, USA), and D-luciferin
sodium salt (Regis Technologies, Morton Grove, IL, USA) were used as received.

2.2. Characterization and Methods

The purity and structure of intermediate compounds and final products were deter-
mined using a combination of techniques, including thin-layer chromatography (TLC), 'H
and 13C NMR, high-pressure liquid chromatography (HPLC), and matrix-assisted laser
desorption ionization—time-of-flight (MALDI-TOF) mass spectrometry.

2.2.1. 1H and 3C NMR

'H and '*C NMR spectra were recorded at 400 MHz and 101 MHz, respectively, on
a Bruker (Billerica, MA, USA) NEO (400 MHz) NMR spectrometer equipped with an
autosampler, or 500 MHz and 126 MHz, respectively, on a Bruker DRX (500 MHz) NMR
spectrometer. All NMR values were measured at 23 °C in CDCl3. Chemical shifts (§) are
reported in ppm. The resonance multiplicities in the 'H NMR spectra are indicated as
“s” (singlet), “d” (doublet), “t” (triplet), “m” (multiplet), and “br” (broad resonance). A
residual protic solvent of CDClz (*H, 6 7.26 ppm; 13C, 6 77.16 ppm) and tetramethylsilane
(TMS, 6 0 ppm) were used as the internal reference in the 'H and >*C NMR spectra. NMR
spectra were analyzed using MNova 14 or TopSpin 4.07 (Bruker). More details are available
in previous publications from our laboratory [24-26].

2.2.2. Thin-Layer Chromatography (TLC)

TLC was used to monitor the evolution of the extent of the reaction by using silica
gel 60 Fys4 precoated plates (E. Merck, Darmstadt, Germany). The individual compounds
with aromatic groups were visualized using UV light (A = 254 nm). For compounds
without aromatic groups, the TLC plate was stained with iodine vapor to help visualiza-
tion. Purification via flash column chromatography (5iO,) was performed using silica gel
from Silicycle (60 A, 40-63 um), with the eluent partially mentioned in the experimental
part for each compound. More details are available in previous publications from our
laboratory [24-26].

2.2.3. High-Pressure Liquid Chromatography (HPLC)

The determination of the purity of individual compounds via HPLC was performed
by using a Shimadzu LC-20AD high-performance liquid chromatograph pump, a PE
Nelson Analytical 900 Series integration data station, a Shimadzu SPD-10A VP (UV-vis,
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A =254 nm), and three AM gel columns (a guard column, two 500 A, 10 um columns). THF
with 5% of NEt3 was used as the solvent, and characterization was carried out at 23 °C.
The detection of the compounds was determined using UV absorbance (A = 254 nm) or an
RI (refractive index) detector. More details are available in previous publications from our
laboratory [24-26].

2.2.4. Matrix-Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-TOF)
Mass Spectrometry

The molar mass of all molecules was determined via MALDI-TOF mass spectrometry
employing a Perseptive Biosystem-Voyager-DE (Framingham, MA, USA) mass spectrome-
ter equipped with a nitrogen laser (337 nm) and operating in linear mode. Angiotensin II
and Bombesin were used as standards for calibration. For the preparation of the sample
solution, the corresponding compound was first dissolved in THF (5-10 mg/mL). Sub-
sequently, the matrix (2,5-dihydroxybenzoic acid) was dissolved in THF 10 mg/mL, and
the two solutions were mixed with a 1/5 (v/v, compound solution/matrix solution) ratio.
Then, one drop of solution was placed on the MALDI plate and dried at 23 °C. Afterward,
the plate was inserted into the vacuum chamber of the instrument for analysis. The laser
intensity and voltages applied for the analysis were adjusted based on the molar mass and
nature of each compound. More details are available in previous publications from our
laboratory [24-26].

2.2.5. Dynamic Light Scattering (DLS)

DLS for the dimensions (sizes and polydispersities) of DNPs was performed on a
Malvern Instruments particle sizer (Zetasizer Nano S, Malvern Instruments, Malvern, UK)
equipped with 4 mW He-Ne laser 633 nm and avalanche photodiode positioned at 175° to
the beam and temperature-controlled cuvette holder. Instrument parameters were set up
automatically along with measurement times. The sample solution (c.a. 0.4 mL) was placed
in a semi-micro cuvette (1.6 mL, polystyrene, 10 x 10 x 45 mm, Greiner Bio-One, Monroe,
NC, USA), and the experiments were performed at 23 °C. More details are available in
previous publications from our laboratory [24-26].

2.2.6. pKa Measurements of Individual IAJDs

IA]Ds were dissolved in ethanol (sat. with NaCl) at a concentration of 1.5 mg/mL
and in a volume of 3 mL. Then, a 0.1 M HCl solution was added to the ethanol solution,
with an increment of 7.5 uL. The resulting pH, after each addition of HCI solution, was
measured using a Thermo Scientific Orion Star A121 (Waltham, MA, USA) meter with
a Thermo Scientific Orion 8220BNWP pH probe. pK, was determined using the half
equivalence point titration. More details are available in previous publications from our
laboratory [24-26].

2.2.7. Production of Nucleoside-Modified Luc-mRNA

mRNA was produced as previously described [36] using T7 RNA polymerase on
linearized DNA encoding codon-optimized firefly luciferase and a 101 nt poly(A) tail. 1-
methylpseudouridine-5'-triphosphate was used instead of UTP. A trinucleotide cap1 analog
was added co-transcriptionally. Purification was performed as previously described [37].
mRNA was analyzed for RNase, dsRNA, endotoxin, and other forms of contamination and
stored frozen at —20 °C.

2.2.8. Formulation of DNPs Co-Assembled from IAJDs and Luc-mRNA

Nucleoside-modified mRNA encoding firefly luciferase (Luc-mRNA) was dissolved
in UltraPure DNase/RNase-free distilled water with an initial concentration of 4.0 mg/mL.
IAJDs were dissolved in ethanol at an initial concentration of 80 mg/mL. Luc-mRNA
solution (12.5 puL) was placed into a clean RNA-free Eppendorf (1.5 mL), and 463 uL
of acetate buffer (10 mM, pH 4.0) was added. The IA]JD stock solution in ethanol was
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taken (25 pL) and rapidly injected into the above Luc-mRNA solution in acetate buffer,
followed by vortex for 5 s. More details are available in previous publications from our
laboratory [24-26].

2.2.9. Luminescence Characterization for In Vivo Transfection Experiments

Bioluminescence imaging was performed with an IVIS Spectrum imaging system
(PerkinElmer, Waltham, MA, USA). Mice were anesthetized with 3% of isoflurane (Piramal
Healthcare Limited) and intraperitoneally (i.p.) administered with D-luciferin (Regis
Technologies) at a dose of 150 mg/kg of body weight. Ten minutes after the administration
of D-luciferin, mice were placed on the imaging platform while being maintained on
isoflurane via a nose cone and imaged using a certain exposure time (60, 30, or 15 s).
Bioluminescence values were quantified by measuring photon flux (photons/second, p/s)
in the region of interest (ROI) on mice, where the bioluminescence signal emanated was
analyzed using the Living Image Software (PerkinElmer). To quantify luminescent flux, an
oval ROI was placed over each organ of interest and analyzed. More details are available
in previous publications from our laboratory [24-26].

2.2.10. In Vivo mRNA Delivery in Mice with DNPs

All the mice used were in accordance with the guidelines and approval from the
Pennsylvania University Institution of Animal Care and Use Committee. Female or male
BALB/c mice (6-8 weeks old, from Charles River Laboratories, Wilmington, MA, USA)
were anesthetized with isoflurane (Piramal Healthcare Limited) and injected via retro-
orbital sinus with 100 uL of a DNP solution containing 10 pg of Luc-mRNA. Then, 4 to
6 h after injection, mice were i.p. injected with D-luciferin (150 mg/kg of body weight,
Regis Technologies) and imaged on a PerkinElmer IVIS Spectrum CT system (PerkinElmer,
Waltham, MA). The tissue luminescence signal was measured on the IVIS imaging system
using a certain exposure time (60, 30, or 15 s) and medium binning (binning = 8) to ensure
that the signal obtained was within the operative detection range. For the IVIS imaging of
the organs, mice were sacrificed, and the heart, lungs, liver, and spleen were immediately
collected; then, bioluminescence imaging was performed as described above. Image
analysis was conducted with the Living Image software (PerkinElmer). Bioluminescence
values were quantified by measuring photon flux (photons/second) in the region of interest
(ROI) using the Living Image software. More details are available in previous publications
from our laboratory [24-26].

2.2.11. Molecular Modelling

Molecular models of the IAJD bilayers were drawn using the DS ViewerPro (version
5.0) software. The Material Studio Modeling (version 3.1) software from Accelrys was used
to perform energy minimization analyses of the built models on supramolecular structures.
BIOVIA Discovery Studio Visualizer (version 2019) was used for display style and coloring.
Color codes were used similarly to those in the ChemDraw (Waltham, MA, USA) structure
(hydrophilic part in blue; hydrophobic part in light and dark green; oxygen and OH in
pink; carbons in the aromatic ring in gray; and H groups on aromatic in white).

2.3. Synthesis of IA]Ds
2.3.1. Synthesis of the Monoprotected Benzyl Ether of Methyl 3,5-Dihydroxybenzoate, 2

Methyl 3,5-dihydroxybenzoate, 1, (10.00 g, 59.5 mmol, 1.0 equiv) (Scheme 1), benzyl
chloride (8.30 g, 65.4 mmol, 1.1 equiv), KI (1.23 g, 7.43 mmol, 0.125 equiv), K,CO3 (9.06 g,
65.4 mmol, 1.1 equiv), and DMF (50 mL) were added into a 100 mL round-bottom flask.
The reaction mixture was stirred at 600 rpm, at 80 °C under N, while monitored for
conversion using TLC. After 5 h, methyl 3,5-dihydroxybenzoate was completely consumed,
and the reaction mixture was poured into ice/water (150 mL). The aqueous layer was
extracted with ethyl acetate 4 times. The organic phase was dried over MgSQy, and the
solvent was removed in a rotary evaporator. The solid product was purified via column
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Scheme 1. Synthesis of 3,5-nonsymmetric nsSS IA]Ds: (i) BnCl, K,CO3, KI, DME, 80 °C, 5 h; (ii)
Cy5H37Br, K,CO3, DME, 120 °C, 2 h; (iii) Hy, Pd/C, DCM, MeOH, 12 h; (iv) C17Hz50Ts, K,CO3, DME,
120 °C, 2 h; (v) LiAlH,, THE, 0-23 °C, 1 h; (vi) DCC, DPTS, DCM 12 h; (vii) methylpiperazine, K,CO3,
MeCN, 95 °C, 3 h; (viii) 1-(2-hydroxyethyl)piperazine, K,CO3, MeCN, 95 °C, 3 h.

2.3.2. Synthesis of Methyl 3-(benzyloxy)-5-(octadecyloxy)benzoate, 33

Methyl 3-(benzyloxy)-5-hydroxybenzoate, 2, (2.00 g, 7.74 mmol, 1 equiv), 1-bromooctad
ecane (2.84 g, 8.52 mmol, 1.1 equiv), KoCOj3 (2.14 g, 15.48 mmol, 2 equiv), and 30 mL DMF
were heated at 120 °C and stirred under a N, atmosphere for 2 h. The reaction mixture
was cooled to 23 °C poured into 150 mL ice water. The resulting white precipitate was
filtered and collected. Then, the precipitate was recrystallized from minimum acetone to
afford the title compound as a white solid (3.28 g, 84%). Mp = 65 °C. 'H NMR (400 MHz,
CDCly) 6 7.48-7.29 (m, 5 H, PhH), 7.27 (br, 1 H, PhH), 7.20 (br, 1 H, PhH), 6.73 (t, 1 H,
PhH), 5.08 (s, 2 H, PhCH,0-), 3.97 (t, 2 H, PhOCH3-), 3.90 (s, 3 H, PhCOOCH3), 1.78 (m,
2H, PhOCH2CH2CHz(CH2)14CH3), 1.44 (m, 2H, PhOCHzCHzCHz(CH2)14CH3), 1.28 (m,
28 H, PhOCH,CH,CH,(CH,)14CH3), 0.89 (t, 3 H, PhO(CH,)1;CHj3). '3C NMR (101 MHz,
CDCl3) 4 167.0,160.3, 159.9, 136.7, 132.1, 128.7, 128.2, 127.7, 108.3, 108.0, 107.1, 77.4, 70.4,
68.5,52.3,32.1,29.8,29.7,29.7,29.5, 29.3, 26 .4, 26.1, 22.9, 22.8, 14.2. Purity by HPLC: 99+%.
MALDI-TOF MS m/z of [M + H]" calculated for C33Hs51O4: 511.4; found: 512.5. [M + Na]*
calculated for C33HgpNaOy: 533.4; found: 534.5. [M + K]* calculated for C33H59KOy4: 549.3;
found: 550.4 (Figure S2).

2.3.3. Synthesis of the Methyl 3-hydroxy-5-(octadecyloxy)benzoate, 34

Methyl 3-(benzyloxy)-5-(octadecyloxy)benzoate, 33, (3.26 g, 6.42 mmol), DCM (20 mL),
and methanol (10 mL) were added in a 50 mL round-bottom flask. Then, Pd/C (0.16 g,
5 wt%) was added to the solution, and the flask was evacuated and filled with hydrogen
three times. Afterward, the mixture was stirred at 23 °C under a hydrogen atmosphere for
12 h. The reaction mixture was filtered through Celite, and the filter cake was washed with
DCM. The evaporation of the solvent yielded the title compound as a white solid (2.70 g,
100%). Mp =99 °C. 'H NMR (400 MHz, CDCl3) § 7.13 (d, 2 H, PhH), 6.64 (t, 1 H, PhH), 3.95
(t, 2 H, PhOCH;-), 3.89 (s, 3 H, PA\COOCH3), 1.75 (m, 2 H, PhOCH,CH,CH,(CH,)14CH3),
1.44 (m, 2 H, PhOCH,CH,CH,(CH;)14CHj3), 1.26 (m, 28 H, PhOCH,CH,CH,(CH;)14CHj3),
0.88 (t, 3 H, PhO(CH;);7CH3). 13C NMR (101 MHz, CDCl3) 6 167.0, 160.4, 157.0, 131.9, 109.0,
107.7,107.1, 68.4, 52.2, 31.9, 29.7, 29.7, 29.6, 29.6, 29.4, 29.4, 29.2, 26.0, 22.7, 14.2. Purity by
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HPLC: 99+%. MALDI-TOF MS m/z of [M + H]" calculated for CygHy504: 421.3; found:
421.5. [M + Na]* calculated for CygHyyNaOy: 443.3; found: 443.4. [M + K]* calculated for
Co6Hy4KOy: 459.7; found: 459.2 (Figure S3).

2.3.4. Synthesis of Methyl 3-(heptadecyloxy)-5-(octadecyloxy)benzoate (35d)

Methyl 3-hydroxy-5-(octadecyloxy)benzoate, 34, (0.50 g, 1.19 mmol, 1 equiv), C17H350Ts
(0.54 g, 1.31 mmol, 1.1 equiv), and K,COs3 (0.33 g, 2.38 mmol, 2 equiv) were heated at
120 °C and stirred under a N, atmosphere for 2 h. The reaction mixture was cooled to
23 °C and poured into ice/water (150 mL). The resulting white precipitate was filtered and
collected. Then, the precipitate was recrystallized from minimum acetone to afford the
title compound as a white solid (0.70 g, 89%). Mp = 72 °C. 'H NMR (400 MHz, CDCl;)
0 7.15 (br, 2 H, PhH), 6.63 (t, 1 H, PhH), 3.96 (t, 4 H, PhOCH,CH,;CH>-), 3.89 (s, 3 H,
PhCOOCH3), 1.77 (m, 4 H, PhOCH,CH,CHj>-), 1.43 (m, 4 H, PhOCH,CH,CH>-), 1.26
(m, 54 H, PhOCH2CH2CH2(CH2)13CH3 and PhOCH2CH2CH2(CH2)14CH3), 0.88 (t, 6 H,
PhO(CH,)1,CHj3 and PhO(CH,);7CH3). *C NMR (101 MHz, CDCl3) § 167.1, 160.3, 132.0,
107.8,106.7, 68.5, 52.3, 34.1, 33.0, 32.1, 29.9, 29.8, 29.8, 29.8, 29.7, 29.7, 29.6, 29.5, 29.3, 28.9,
28.3,26.2,22.8,14.3. Mp =72 °C. Purity by HPLC: 99+%. MALDI-TOF MS m/z of [M + H]*
calculated for C43H79Oy4: 659.6; found: 660.3. [M + Na]* calculated for C43H7sNaOy: 681.6;
found: 682.4. [M + K]* calculated for C43H73KO4: 697.6; found: 699.5 (Figure S4).

2.3.5. Synthesis of (3-(Heptadecyloxy)-5-(octadecyloxy)phenyl)methanol (36d)

Methyl 3-(heptadecyloxy)-5-(octadecyloxy)benzoate, 35d, (0.70 g, 1.06 mmol, 1 equiv)
dissolved in 5 mL dry THF, which was added dropwise to a slurry of LiAlH, (40 mg,
1.06 mmol, 1 equiv) in dry THF (5 mL) at 0 °C under a N atmosphere. Afterward, the
resulting mixture was stirred at 23 °C for 1 h. Finally, the reaction was quenched via the
successive addition of water (0.2 mL), a 15% NaOH aqueous solution (0.2 mL), and water
(1.0 mL). The white precipitate was filtered. The solid filtrate was dissolved in DCM, dried
over anhydrous MgSQy, and filtered. The solvent was removed under reduced pressure to
afford the title compound as a white solid (0.46 g, 69%). Mp = 62 °C. 'H NMR (400 MHz,
CDCl3) § 6.49 (br, 2 H, PhH), 6.37 (t, 1 H, PhH), 4.61 (s, 2 H, PhCH,OH), 3.93 (t, 4 H,
PhOCHzCHzCHz-), 1.76 (m, 4 H, PhOCHzCHzCHz-), 1.44 (m, 4 H, PhOCHzCHzCHz-),
1.29 (m, 54 H, PhOCHzCHzCHz(CHz)lg,CHg, and PhOCH2CH2CH2(CH2)14CH3), 0.88 (t,
6 H, PhO(CH,)1,CH3 and PhO(CH,),7CH3). *C NMR (101 MHz, CDCl3) § 160.7, 160.6,
143.4, 125.7, 105.2, 100.7, 68.2, 65.6, 32.1, 30.5, 29.9, 29.8, 29.8, 29.7, 29.6, 29.5, 29.5, 29.4,
26.2,25.9,22.8,14.3. Mp = 62 °C. Purity by HPLC: 99+%. MALDI-TOF MS m/z [M + H]*
calculated for C4pH77Oy4: 630.6; found: 631.3. [M + Na]* calculated for C4oH7gNaOy: 653.6;
found: 653.0. [M + K]* calculated for C4pH3KO4: 670.6; found: 670.6 (Figure S5).

2.3.6. Synthesis of 3-(Heptadecyloxy)-5-(octadecyloxy)benzyl 4-bromobutanoate, 37d

A solution of (3-(heptadecyloxy)-5-(octadecyloxy)phenyl)methanol, 36d, (0.46 g,
0.73 mmol, 1 equiv), 4-bromobutyric acid (0.13 g, 0.80 mmol, 1.1 equiv), and DPTS
(0.24 g, 0.80 mmol, 1.1 equiv) was dissolved in 8 mL DCM. DCC (0.30 g, 1.46 mmol,
2 equiv) was added to the above mixture. The reaction mixture was stirred at 23 °C
for 12 h. Afterward, the resulting precipitate (urea) was filtered out from the reaction
mixture. The filtrate was concentrated to around 3 mL and purified via column chro-
matography (5iO;) with hexane/DCM = 1/1 as the mobile phase to give the title com-
pound as a white solid (0.45 g, 79%). Mp = 45 °C. 'TH NMR (400 MHz, CDCl3) 6 6.46 (br,
2 H, PhH), 6.40 (t, 1 H, PhH), 5.05 (s, 2 H, PhCH,OCO), 3.93 (t, 4 H, PhOCH,CH,CH,-
), 3.47 (t, 2 H, -OCOCH,CH,CH,;Br), 2.54 (t, 2 H, -OCOCH,CH,CH,Br), 2.20 (m, 2 H,
-OCOCHzCHgCHzBI‘), 1.76 (m, 4 H, PhOCH2CH2CH2-), 1.45 (m, 4 H, PhOCHQCH2CH2-),
1.27 (m, 54 H, PhOCHzCHzCHz(CH2)13CH3 and PhOCH2CH2CH2(CH2)14CH3), 0.88 (t,
6 H, PhO(CH,)1,CH3 and PhO(CH,),7CH3). *C NMR (101 MHz, CDCl3) § 172.4, 160.6,
137.9,106.5, 101.2, 68.2, 66.5, 32.8, 32.6, 32.1, 32.0, 29.8, 29.8, 29.8, 29.7, 29.7, 29.7, 29.5, 29.5,
29.5,29.4,27.9,26.2,22.8, 14.3. Purity by HPLC: 99+%. MALDI-TOF MS m/z of [M + H]*
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calculated for C4¢HgyBrOy: 779.6; found: 780.5. [M + Na]* calculated for C46HgzBrNaOy:
801.5; found: 802.6. [M + K]* calculated for C46HgzBrKOy: 817.5; found: 818.6 (Figure S6).

2.3.7. Synthesis of 3-(Heptadecyloxy)-5-(octadecyloxy)benzyl
4-(4-methylpiperazin-1-yl)butanoate, 38g, IA]D242

3-(Heptadecyloxy)-5-(octadecyloxy)benzyl 4-(4-methylpiperazin-1-yl)butanoate, 38g,
IAJD242, was synthesized using a modified literature procedure [38]. A mixture of 3-
(heptadecyloxy)-5-(octadecyloxy)benzyl 4-bromobutanoate, 37d, (0.18 g, 0.23 mmol), 1-
methylpiperazine (25 mg, 0.25 mmol), K;CO3; (39 mg, 0.28 mmol), and MeCN (10 mL)
was stirred at 95 °C for 3 h. The reaction mixture was cooled to 23 °C, and MeCN was
removed under reduced pressure. Then, water (20 mL) was added, and the resulting mix-
ture was extracted with DCM (20 mL) three times. The organic phases were collected and
dried over anhydrous MgSQO,. After filtration, the obtained filtrate was concentrated
to around 3 mL and purified via column chromatography (SiO,) with DCM/MeOH
= 30/1 and 15/1 as the eluent. Then, the obtained product was dissolved in DCM
(20 mL), which was washed using a NaHCOj solution (2%, 20 mL). The aqueous phase
was extracted via DCM (20 mL) another two times. The organic phases were com-
bined and dried over anhydrous MgSOj,. The filtration and evaporation of the solvent
yielded the title compound as a colorless oil (0.18 g, 99%). 'H NMR (400 MHz, CDCl3)
4 6.44 (br, 2 H, PhH), 6.37 (t, 1 H, PhH), 5.01 (s, 2 H, PhCHj-), 3.90 (t, 4 H, PhOCH,-),
2.59-2.25 (m, 15 H, -N(CH,CH3);N-, -NCH,;CH,CH,COO- and -NCHj3), 1.83 (m, 2 H,
-OCOCH;,CH,CH;-), 1.77 (m, 4 H, PhOCH,CH>-), 1.42 (m, 4 H, PhOCH,CH,CH>-), 1.27
(br, 54 H, PhOCH,CH,CH,(CH;)13CH3 and PhOCH,CH,CH,(CH;)14CH3), 0.86 (t, 6 H,
-CH,CH,CHj3). 13C NMR (101 MHz, CDCl;) 6 173.3, 160.5, 138.2, 106.5, 101.0, 68.2, 66.2,
57.6,55.1, 52.9, 45.9, 32.3, 32.0, 29.8, 29.8, 29.7, 29.7, 29.5, 29.5, 29.4, 26.2, 22.8, 22.2, 14.2.
Purity by HPLC: 99+%. MALDI-TOF MS m/z of [M + HJ* calculated for Cs51HgsNpO4:
799.7; found: 799.8. [M + Na]* calculated for C51HgsN,NaOy: 821.7; found: 821.7. [M + K]*
calculated for C51HgsKN,Oy: 837.6; found: 837.6 (Figure S7).

2.3.8. Synthesis of 3-(Heptadecyloxy)-5-(octadecyloxy)benzyl
4-(4-(2-hydroxyethyl)piperazin-1-yl)butanoate, 38h, IA]JD243

3-(Heptadecyloxy)-5-(octadecyloxy)benzyl 4-(4-(2-hydroxyethyl)piperazin-1-yl)butan
oate, 38h, IA]D243, was synthesized using a modified literature procedure [38]. A mixture
of 3-(heptadecyloxy)-5-(octadecyloxy)benzyl 4-bromobutanoate, 37d, (0.18 g, 0.23 mmol),
1-(2-hydroxyethyl)piperazine (33 mg, 0.25 mmol), K,COj3 (39 mg, 0.28 mmol), and MeCN
(10 mL) was stirred at 95 °C for 3 h. The reaction mixture was cooled to 23 °C, and MeCN
was removed under reduced pressure. Then, water (20 mL) was added, and the resulting
mixture was extracted with DCM (20 mL) three times. The organic phases were collected
and dried over anhydrous MgSOy. After filtration, the obtained filtrate was concentrated
to around 3 mL and purified via column chromatography (SiO;) with DCM/MeOH = 30/1
and 15/1 as the eluent. Then, the obtained product was dissolved in DCM (20 mL), which
was washed using a NaHCOj solution (2%, 20 mL). The aqueous phase was extracted
via DCM (20 mL) another two times. The organic phases were combined and dried over
anhydrous MgSQOy. The filtration and evaporation of the solvent yielded the title compound
as a colorless oil (0.18 g, 95%). 'H NMR (400 MHz, CDCl3) § 6.45 (br, 2 H, PhH), 6.38 (t,
1 H, PhH), 5.02 (s, 2 H, PhCH>-), 3.91 (t, 4 H, PhOCH3-), 3.60 (t, 2 H, -CH,CH,0OH), 2.63—
2.31 (m, 14 H, -N(CH,CH;);N-, -NCH,CH,CH,COO- and -CH,CH,0OH), 1.84 (m, 2 H,
-OCOCH,CH,CHj;-), 1.74 (m, 4 H, PhOCH,CH>-), 1.43 (m, 4 H, PhOCH,CH,CH,-), 1.25
(br, 54 H, PhOCHQCHZCHz(CHz)BCHg, and PhOCHQCHQCHz(CHz)MCHg,), 0.87 (t, 6 H,
-CH,CH,CH3). 1*C NMR (101 MHz, CDCl3) 6 173.4, 160.6, 138.2, 106.5, 101.0, 68.2, 66.3,
59.5, 57.8, 57.6, 53.0, 53.0, 32.3, 32.0, 29.8, 29.8, 29.7, 29.7, 29.5, 29.5, 29.4, 26.2, 22.8, 22.2,
14.2. Purity by HPLC: 99+%. MALDI-TOF MS m/z of [M + H]* calculated for C5;HgyN,Os:
829.7; found: 829.8. [M + Na]* calculated for Cs5,HggN,NaOs: 851.7; found: 852.0. [M + K]*
calculated for C5;HgsKN2Os: 867.7; found: 867.9 (Figure S8).
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2.3.9. Synthesis of Methyl 3,5-bis(heptadecyloxy)benzoate), 64d

Methyl 3,5-dihydroxybenzoate, 1, (0.40 g, 2.38 mmol, 1 equiv) (Scheme 2), C17H350Ts
(2.30 g, 5.23 mmol, 2.2 equiv), K,CO3 (0.82 g, 5.95 mmol, 2.5 equiv), and DMF (20 mL) was
heated to 120 °C and stirred under a N, atmosphere for 2 h. The reaction mixture was
cooled to 23 °C and poured into ice water (150 mL). The resulting white precipitate was
filtered and collected. The solid precipitate was recrystallized from minimum acetone to
afford the title compound as a white solid (1.33 g, 87%). Mp = 70 °C. 'H NMR (400 MHz,
CDCl3) 6 7.16 (br, 2 H, PhH), 6.63 (t, 1 H, PhH), 3.96 (t, 4 H, PhOCH,CH,;CH>-), 3.89 (s, 3 H,
PhCOOCH3), 1.77 (m, 4 H, PR OCH,CH,CH;-), 1.45 (m, 4 H, PhOCH,CH,;CH>-), 1.26 (m,
52 H, PhOCH,CH,CH,(CH,);3CHj3), 0.88 (t, 6 H, PhnO(CH,);,CH3). 3C NMR (101 MHz,
CDCl3) ¢ 167.0, 160.2, 131.8, 107.6, 106.6, 77.2, 68.3, 64.1, 52.2, 31.9, 29.7, 29.7, 29.6, 29.6,
29.4,29.2,26.0,25.8,22.7, 14.1. Purity by HPLC: 99+%. MALDI-TOF MS m/z of [M + H]*
calculated for C4Hy77Oy: 645.8; found: 646.6. [M + Na]* calculated for C4oH7¢NaOy: 667.6;
found: 668.7. [M + K]* calculated for C4pH7,KO4: 683.5; found: 682.6 (Figure S9).

HO, Ci7H350, C47H350, C47H350
0 i 2 ii i Br
—_— e —_—
OCH;  100% OCH3 400% OH 969, o
HO C47H350 C47H350 C47H350 o
1 64d 65d 66d
C17H350, am)
N N—
Vi 3> _(/_ \—
(o]
C47H350, B 97% C47H350 o
@1 _&—/_ _ 67e (IAJD265)
[o]
C47H350 o C47H350 N N_/—OH
66d , @ -&_/_' )
94% o
C47H350 o
67f (IAJD266)

Scheme 2. Synthesis of 3,5-symmetric sSSIA]Ds: (i) C17H350Ts, K,CO3z, DMF, 120 °C, 2 h; (ii) LiAlHy,
THEF, 0-23 °C, 1 h; (iii) DCC, DPTS, DCM 12 h; (iv) methylpiperazine, K;CO3, MeCN, 95 °C, 3 h;
(v) 1-(2-hydroxyethyl)piperazine, K,CO3, MeCN, 95 °C, 3 h.

2.3.10. Synthesis of (3,5-Bis(heptadecyloxy)phenyl)methanol, 65d

Methyl 3,5-bis(heptadecyloxy)benzoate), 64d, (0.66 g, 1.02 mmol, 1 equiv) was dis-
solved in 10 mL dry THF, which was added dropwise to a slurry of LiAlH4 (38 mg,
1.02 mmol, 1 equiv) in dry THF (5 mL) at 0 °C under a N atmosphere. Afterward, the
resulting mixture was stirred at 23 °C for 1 h. Finally, the reaction was quenched via the
successive addition of water (0.2 mL), a 15% NaOH aqueous solution (0.2 mL), and water
(1.0 mL). The white precipitate was filtered. The solid filtrate was dissolved in DCM, dried
over anhydrous MgSQy, and filtered. The solvent was removed under reduced pressure to
afford the title compound as a white solid (0.62 g, 100%). Mp = 64 °C. 'H NMR (400 MHz,
CDCl3) ¢ 6.50 (br, 2 H, PhH), 6.37 (t, 1 H, PhH), 4.61 (s, 2 H, PhCH,OH), 3.93 (t, 4 H,
PhOCHQCHz(sz-), 1.76 (m, 4 H, PhOCHzCH2CH2-), 1.45 (m, 4 H, PhOCHzCHzCHz-),
1.26 (m, 52 H, PhOCH,CH,CH,(CH,)13CH3), 0.88 (t, 6 H, PhO(CH,);sCH3). 3C NMR
(101 MHz, CDCl3) 6 160.6, 143.2, 105.1, 100.6, 77.2, 68.1, 65.5, 34.0, 32.9, 31.9, 29.7, 29.7,
29.6, 29.6, 29.6, 29.5, 29.4, 29.4, 29.3, 28.8, 28.2, 26.1, 22.7, 14.1. Purity by HPLC: 99+%.
MALDI-TOF MS m/z of [M + H]* calculated for C41H7504: 617.6; found: 618.3. [M + Na]*
calculated for C41Hy¢NaOy: 639.6; found: 640.3. [M + K]* calculated for C41H76KOy4: 655.5;
found: 656.6 (Figure S10).

2.3.11. Synthesis of 3,5-Bis(heptadecyloxy)benzyl 4-bromobutanoate, 66d
(3,5-Bis(heptadecyloxy)phenyl)methanol, 65d, (0.62 g, 1.02 mmol, 1 equiv), 4-bromobut
yric acid (0.20 g, 1.22 mmol, 1.2 equiv), DPTS (0.36 g, 1.22 mmol, 1.2 equiv) were dis-
solved in 10 mL DCM. N,N’ -Dicyclohexylcarbodiimide, DCC, (0.42 g, 2.04 mmol, 2 equiv)
was added into the above mixture. The reaction mixture was stirred at 23 °C for 12 h.
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Afterward, the resulting precipitate (urea) was filtered from the reaction mixture. The
solid filtrate was concentrated to around 3 mL and purified via column chromatogra-
phy (5iO,) with hexane/DCM = 1/1 as the mobile phase to give the title compound
as a white solid (0.75 g, 96%). Mp = 55 °C. H NMR (400 MHz, CDCl3)é 6.47 (br, 2 H,
PhH), 6.40 (t, 1 H, PhH), 5.05 (s, 2 H, PhCH,0OCO), 3.93 (t, 4 H, PhnOCH,CH,CH,-),
3.47 (t, 2 H, -OCOCH,CH,CH;Br), 2.57 (t, 2 H, -OCOCH,CH,CH,Br), 2.20 (m, 2 H, -
OCOCH2CH2CHzBI‘), 1.77 (m, 4 H, PhOCHzCHzCHz-), 1.45 (m, 4 H, PhOCHQCHz(:Hz-),
1.28 (m, 52 H, PhOCH,CH,CH,(CH,);3CH3), 0.88 (t, 6 H, PhO(CH,);,CH3). 3C NMR
(101 MHz, CDCl3) 6 172.3, 160.5, 137.8, 106.4, 101.1, 77.2, 68.1, 66.4, 64.8, 32.7, 32.6, 32.5,
32.5,31.9,30.3,29.7,29.7, 29.6, 29.6, 29.6, 29.5, 29.4, 29.4, 29.3, 27.8, 27.8, 26.1, 25.9, 22.7,
14.1. Purity by HPLC: 99+%. MALDI-TOF MS m/z of [M + H]* calculated for C45HgyBrOy:
765.5; found: 767.0. [M + Na]* calculated for C45Hgi BrNaOy: 787.5; found: 790.0. [M + K]*
calculated for C45Hgi BrKOj4: 803.5; found: 805.9 (Figure S11).

2.3.12. Synthesis of 3,5-Bis(pentadecyloxy)benzyl 4-(4-methylpiperazin-1-yl)butanoate,
67e, IA]D265

3,5-Bis(pentadecyloxy)benzyl 4-(4-methylpiperazin-1-yl)butanoate, 67e, IA]D265, was
synthesized using a modified literature procedure [38]. A solution of 3,5-bis(heptadecyloxy)
benzyl 4-bromobutanoate, 66d, IA]JD 264, (300 mg, 0.39 mmol, 1 equiv), 1-methylpiperazine
(47 mg, 0.47 mmol, 1.2 equiv), and K,COj3 (81 mg, 0.59 mmol, 1.5 equiv) in 20 mL MeCN was
heated to 95 °C and stirred for 3 h. The reaction mixture was cooled to 23 °C, and MeCN
was removed under reduced pressure. Then, water (20 mL) was added, and the resulting
mixture was extracted with DCM (20 mL) three times. The organic phases were collected
and dried over anhydrous MgSO;. After filtration, the obtained filtrate was concentrated
to around 3 mL and purified via column chromatography (SiO,) with DCM/MeOH = 30/1
and 15/1 as the eluent. The obtained product was dissolved in DCM (20 mL) and washed
using a NaHCOj solution (2%, 20 mL). The aqueous phase was extracted via DCM (20 mL)
another two times. The organic phases were combined and dried over anhydrous MgSO;.
The filtration and evaporation of the solvent yielded the title compound as a colorless oil
(0.50 g, 97%). 'H NMR (400 MHz, CDCl3) 6 6.46 (br, 2 H, PhH), 6.39 (t, 1 H, PhH), 5.02 (s, 2 H,
PhCH>-), 3.92 (t, 4 H, PhOCH>-), 2.63-2.25 (m, 15 H, -N(CH,CH;),N-, -NCH,CH,CH,COO-
and -NCH3), 1.83 (m, 2 H, -OCOCH,CH;,CH,-), 1.73 (m, 4 H, PhOCH,CH3-), 1.42 (m,
4 H, PhOCH,CH,CH,-), 1.26 (br, 52 H, PhOCH,CH,CH,(CH;);3CH3s), 0.88 (t, 6 H, -
CH,CH,CH3). 3C NMR (101 MHz, CDCl3) 6 173.3, 160.5, 138.1, 106.4, 100.9, 77.2, 68.1,
66.2,57.6,55.2, 53.1, 46.1, 32.3, 31.9, 29.7, 29.7, 29.6, 29.6, 29.4, 29.4, 29.3, 26.1, 22.7, 22.2,
14.1. Purity by HPLC: 99+%. MALDI-TOF MS m/z of [M + H]* calculated for C5gHg3N,O4:
785.7; found: 785.9. [M + Na]* calculated for C5opHgpN>NaQOy: 807.7; found: 808.9. [M + K]*
calculated for C50HgpKN,Oy: 823.7; found: 835.6 (Figure 512).

2.3.13. Synthesis of 3,5-Bis(pentadecyloxy)benzyl
4-(4-(2-hydroxyethyl)piperazin-1-yl)butanoate, 67f, IAJD266
3,5-Bis(pentadecyloxy)benzyl 4-(4-(2-hydroxyethyl)piperazin-1-yl)butanoate, 67f,
IAJD266, was synthesized using a modified literature procedure [38]. A solution of 3,5-
bis(heptadecyloxy)benzyl 4-bromobutanoate, 66d, IAJD 264, (300 mg, 0.39 mmol, 1 equiv),
1-(2-hydroxyethyl)piperazine (62 mg, 0.47 mmol, 1.2 equiv), and K,COs3 (81 mg, 0.59 mmol,
1.5 equiv) in 20mL MeCN was heated to 95 °C and stirred for 3 h. The reaction mixture was
cooled to 23 °C, and MeCN was removed under reduced pressure. Then, water (20 mL) was
added, and the resulting mixture was extracted with DCM (20 mL) three times. The organic
phases were collected and dried over anhydrous MgSOy. After filtration, the obtained
filtrate was concentrated to around 3 mL and purified via column chromatography (SiO,)
with DCM/MeOH = 30/1 and 15/1 as the eluent. The obtained product was dissolved in
DCM (20 mL) and washed using a NaHCOj3 solution (2%, 20 mL). The aqueous phase was
extracted via DCM (20 mL) another two times. The organic phases were combined and
dried over anhydrous MgSQOj,. The filtration and evaporation of the solvent yielded the title
compound as a colorless oil (0.50 g, 94%). 'H NMR (400 MHz, CDCl3) 6 6.46 (br, 2 H, PhH),
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6.39 (t, 1 H, PhH), 5.01 (s, 2 H, PhCH>-), 3.89 (t, 4 H, PhOCH>-), 3.61 (t, 2H, -CH,CH,OH)),
2.62-2.31 (m, 14 H, -N(CH,CH>),N-, -NCH,CH,CH,COO- and -CH,CH,OH), 1.82 (m, 2 H,
-OCOCH,CH»,CHj5-), 1.72 (m, 4 H, PhOCH,CH>-), 1.40 (m, 4 H, PhOCH,CH,CH,-), 1.28
(br, 52 H, PhOCH,CH,CH,(CH,)13CHj3), 0.86 (t, 6 H, -CH,CH,CH3). 3C NMR (101 MHz,
CDCl3) 6 173.3, 160.5, 138.1, 106.4, 100.9, 77.2, 68.1, 66.2, 59.3, 57.6, 57.5, 53.0, 52.8, 32.2, 31.9,
31.8,29.5,29.4,29.4,29.3,29.2,26.1,22.7,22.1,14.1. Purity by HPLC: 99+%. MALDI-TOF
MS m/z of [M + H]* calculated for Cs5;HosN,Os: 815.7; found: 815.6. [M + Na]™* calculated
for C51HosN,NaOs: 837.7; found: 837.7. [M + K]* calculated for C51HgyKN,Os: 853.7;
found: 853.7 (Figure S13).

3. Results and Discussion
3.1. Concept, Strategy, and Methodology

IA]Ds are stable for a long time after being stored in a chemistry laboratory at room
temperature in air, while their DNPs are stable and remain active for at least 5 months
at the normal refrigerator temperature of 5 °C [24-26]. The original architecture of one-
component IA]Ds [24-26] was inspired by the structure of amphiphilic Janus dendrimers
(JDs) [39-51], Janus glycodendrimers (JGDs) [52-70], and sequence-defined JGDs [71,72]
and will be discussed in more detail later.

JDs and JGDs are self-assembled through the simple injection of their ethanol solu-
tion into water or buffer to produce monodisperse vesicles known as dendrimersomes
and glycodendrimersomes, with predictable dimensions [40]. The physical properties of
dendrimersomes are as good as those of three-component stealth liposomes co-assembled
from phospholipids, PEG-conjugated lipids, and cholesterol [73-75]. The three-component
concept of stealth liposomes [73-76] inspired the elaboration of the four-component LNPs
(Figure 1A) currently employed to deliver mRNA. The mechanism for the delivery of
mRNA is most probably closely related to the mechanisms of both four-component
LNPs and one-component DNPs (Figure 1C), although their structures are quite different
(Figure 1A,B).

LNPs contain the mRNA encapsulated together with ionizable lipids in the center
of a stealth liposome (Figure 1A), while DNPs may contain the mRNA encapsulated as a
spherical helix (Figure 1B) that provides the largest number of contacts between the nucleic
acid and dendrimersome.

The ability to molecularly design both the hydrophilic and the hydrophobic parts
of one-component IA]Ds provides synthetic advantages that will be demonstrated in
this publication. Oligooxyethylene fragments were originally employed to design the
multifunctional sequence-defined hydrophilic region and generate single-single, (SS,
single hydrophilic dendron connected to single hydrophobic dendron), twin—twin (TT,
two hydrophilic dendrons connected to two hydrophobic dendrons), and twin-mixed
(TM, two different hydrophilic dendrons connected to two hydrophobic dendrons) IA]Ds
(Figure 1B) [24]. A simplified SS, sSS architecture was also generated, which resulted from
the removal of the oligooxyethylene fragments from the hydrophilic dendron while main-
taining only its ionizable amine, which, after protonation, becomes hydrophilic and active
to mRNA binding (Figure 1B) [24].

In all cases, hydrophobic dendrons were constructed mostly from 3,5-substituted, with
only very few preliminary examples of 3,4- and 3,4,5-substituted plant phenolic acids or
trisubstituted pentaerythritol containing identical alkyl groups. Sequence-defined JGDs
were demonstrated to be extraordinarily important in providing the highest activity of
their glycan when binding to sugar-binding proteins known as lectins and galectins [52-57].
Sequence-defined self-assembling dendronized perylenebisimides (PBIs) were also demon-
strated to dramatically change their rate of self-organization process via a cogwheel mecha-
nism accompanied by deracemization in a crystal state [76-80]. In addition, phospholipids
forming the bilayer of natural cell membranes are generated by a nonsymmetric substitu-
tion of their glycerol with alkyl groups containing a different number of cis-double bonds
to introduce their homochiral stereocenter [81]. This arrangement provides dissimilar chain
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lengths in the bilayer of vesicles even for an identical number of carbons in their alkyl
groups but different numbers of cis-double bonds. With the currently available results, the
mechanism of the self-assembly of JDs into DNPs was shown to be preferred by the 3,5-
rather than 3,4- or 3,4,5-substitution pattern since the 3,5-substitution pattern favors the
interdigitation of its alkyl groups in the hydrophobic part of the bilayer of the vesicle and
stabilizes the mechanical integrity of the assembly [40].

These literature data prompted us to advance the hypothesis that a sequence-defined
arrangement in the hydrophobic part of IA]Ds could also be influential, as it was shown
to be important in the hydrophilic part, on the activity of targeted delivery of mRNA
mediated by IAJDs [24-26]. This was already indicated with preliminary experiments [26]
by replacing their identical alkyl group lengths with dissimilar alkyl group lengths in their
hydrophobic part to create nonsymmetric SS (nSS) and nonsymmetric simplified SS (nsSS)
(Figure 1B) and testing them for their in vitro and in vivo delivery of mRNA.

Originally, this combination of dissimilar alkyl groups in their hydrophobic part
was hypothesized to decrease the crystallization tendency of the hydrophobic part of the
bilayer containing long alkyl groups and increase the solubility of the IAJD in ethanol. The
decreased rate of crystallization and increased solubility of IA]JD were indeed accomplished
using this methodology, but unexpectedly, it was also accompanied by increased activity of
mRNA delivery by the corresponding DNP to specific organs [24-26].

Figure 1A outlines the structure and co-assembly with the mRNA of four-component
LNPs [25]. Figure 1B shows the structures of sSS, SS, and TM IA]Ds with dissimilar (nsSS,
nSS) and similar alkyl groups in their hydrophobic parts and their co-assembly with mRNA
into DNPs. Figure 1C illustrates the current mechanism accepted for the in vivo delivery
of mRNA with both four-component LNPs and one-component DNPs. This mechanism
involves the endocytosis of LNPs or DNPs, followed by the endosomal escape of mRNA
and the synthesis of a protein in collaboration with the ribosome.

Since normal mRNA experiments can take extended periods of time, especially in
the case of vaccine experiments, we employed firefly luciferase mRNA (Luc-mRNA) that
provides important screening results in several hours [24-26]. In this case, the protein
translated in the cell is the luciferase enzyme that interacts with D-luciferin to generate
oxy-luciferin emitting light that helps to identify rapidly the organ targeted.

3.2. Accelerated Modular-Orthogonal Synthesis of Two Libraries of nsSS IA]Ds

Figure 2A shows the structures of the 3,5-dihydroxy, 3,4-dihydroxy, and 3,4,5-trihydroxy
plant phenolic acids known by common names as «-resorcylic, protocatechuic, and gallic
acid, respectively [82], that were used by our laboratory in the synthesis of a larger diversity
of complex systems [50] including IAJDs [24-26]. Due to their antioxidant activity, some of
these phenolic acid derivatives are used as food additives and are present in vegetable oils,
butter, fats, meat, and many other daily components of our food [83].

Here, using the accelerated modular-orthogonal methodology outlined in Figure 2B,
we will first report the synthesis of two libraries of nsSS IAJDs containing 78 molecules
based on 3,5-dihydroxy phenolic acid containing methyl piperazine and hydroxyethyl
piperazine as ionizable amines. The synthesis of a single nSS IAJD-131 (Supporting Scheme
510) is also reported. nsSS IAJDs with various combinations of n-alkyl groups containing
18,17, 16,14, 12, 10, 9, 8, and 2-ethyl hexyl (EH) were synthesized. Linear and branched
alkyl groups were employed since they do not oxidize and therefore dramatically increase
the stability of IA]JDs by comparison with that of four-component systems containing
unsaturated phospholipids.

In the first step of their synthesis, the 3-benzylether of 3,5-dihydroxy methyl benzoate
was produced in 40% isolated yield in 5 h via the etherification of 1 with BnCl at 80 °C in
DMEF with K,COj3 base. Subsequently, 2 was alkylated with a 1-bromoalkyl group in DMF,
with K,COj3 base at 120 °C, to produce a 60% to 98% isolated yield of 3. The hydrogenolysis
of 3 (Hy/Pd, DCM/MeOH, 12 h) generated 4 in 100% isolated yield. The alkylation of 4 with
various linear and branched alkyl bromides from 1-bromooctane to 1-bromooctadecane in
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DMEF, with K,COj3 base at 120 °C, created the libraries of the nonsymmetric compounds 5
in 75-90% isolated yield.
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Figure 2. Structures of plant phenolic acids: «-resorcylic acid, protocatechuic acid, and gallic acid
and synthesis of nsSS IAJDs containing 3,5-nonsymmetric alkyl groups as well as of sSS IA]Ds
containing 3,5-symmetric alkyl groups: (A) structures of plant phenolic acids employed as start-
ing materials in the synthesis of IAJDs; (B) accelerated modular-orthogonal synthesis of nsSS IA-
JDs based on 3,3-dihydroxybenzoate; (C) accelerated modular-orthogonal synthesis of sSS IAJDs
based on 3,4-dihydroxybenzoate. Reagents and Conditions: (i) BnCl, K,CO3, KI, DMF, 80 °C, 5 h;
(ii) RBr, K,CO3, DME, 120 °C, 2 h; (iii) Hp, Pd/C, DCM, MeOH, 12 h; (iv) LiAlHy, THF, 0-23 °C, 1 h;
(v) 4-bromobutyric acid, SOCl,, DMF (cat.), DCM, 23 °C, 1 h, then DMAP, NEt;, DCM, 0-23 °C, 2 h;
(vi) DCC, DPTS, 12 h; (vii) methylpiperazine or hydroxyethyl piperazine, K,COj3, MeCN, 95 °C, 3 h.

The reduction of compounds 5 with LiAlH, in THF (0-23 °C, 1 h) generated the
benzyl alcohols 6 in 100% isolated yield. Compounds 6 were esterified with 4-bromobutyric
acid either via its acid chloride generated with SOCI, catalyzed via DMF in CH,Cl, at
23 °C followed by reaction in the presence of NEt; /DMAP (0-23 °C, 2 h) or via the direct
esterification of 6 with DCC/DPTS in 12 h to produce compounds 7 in 75% to 95% isolated
yield. Compounds 7 were reacted with methyl piperazine or hydroxyethyl piperazine
(KyCO3, MeCN, 95 °C, 3 h) to give rise to IA]Ds 8 (78-98% isolated yields) and 9 (80-100%
isolated yields). Their purity using a combination of thin-layer chromatography (TLC), high-
pressure liquid chromatography (HPLC), matrix-assisted laser desorption/ionization-time-
of-flight (MALDI-TOF) mass spectroscopy, 'H-NMR, and *C-NMR was higher than 99%.

3.3. Accelerated Modular—Orthogonal Synthesis of a Complete Library of sSS IA]Ds

In order to finalize the few experiments reported previously on sSS IA]Ds [25,26]
and provide a complete library, we employed the methodology from Figure 2C for their
synthesis. The dialkylation of 1 was accomplished at 120 °C in DMF with K,COjs as the
base in 2 h to produce compounds 10 in 88% to 96% isolated yields. The reduction of 10
with LiAlH, for 1 h in THF at 0-23 °C generated 11 in 100% yield. Compound 12 (73-93%
isolated yields) was prepared as in the case of 7 (Figure 2B,C). Compounds 13 (71-97%
isolated yields) and 14 (73-94% isolated yields) were obtained under similar reaction
conditions to 8 and 9. Their structures are shown in Figure 2C.

The structures of all 98 nsSS and sSS IA]Ds are shown in Figure 3 (IAJDs 112 to 272)
together with IAJD 131. Figure 3 also outlines a simplified cartoon illustration of the
structure of each IAJD together with the number of carbons in the pair of their alkyl groups,
the number of the IA]D structure, and the pKa values shown in blue under the IAJD
numbers in black. The schematic illustration from Figure 3 will simplify the discussion
in the rest of this publication. Two libraries of IA]Ds containing 85 nsSS, 43 containing
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methylpiperazine, and 42 hydroxyethyl piperazine ionizable amines were synthesized
using the methodology elaborated in Figure 2B. All of them are shown in Figure 3, together
with the nSS IA]D 131, whose synthesis is outlined in Supporting Schemes S9 and S11
sSS that were synthesized as outlined in Figure 2B. Therefore, a total of 98 IA]Ds together
with their complexes with mRNA known as dendrimersome nanoparticles (DNPs) will
be discussed in the following subsections. We must clarify again that DNPs are in fact
vesicles with a stability closely related to that of viral capsids rather than to the stability
of LNPs. As we can see from the structures of Figure 3, all these IAJDs are based on first-
generation dendrons that were defined by our laboratory, via analogy with minipeptides
and miniproteins as minidendrons and minidendrimers [50]. In this particular case, they
contain one or two branching points in their hydrophobic part, while the hydrophilic part
contains branching points derived from their ionizable amine.
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Figure 3. The structures of nsSS IA]Ds with 3,5-nonsymmetric alkyl chains and of nSSIAJD 131. IAJD
numbers and pK, values are shown under corresponding schematic representations of nsSS and nSS
IA]JDs: (A) structures of IA]Ds; (B) schematic representations of IA]JDs with the number of carbons
in the alkyl groups from their hydrophobic part on the left and right sides of the structure; IAJD
numbers in black under the schematic of IAJD, and pKa values in blue under the number of IAJD.
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3.4. Co-Assembly of IA]Ds with Luc-mRNA into Dendrimersome Nanoparticles (DNPs) via
Simple Injection

The injection method elaborated for the self-assembly of dendrimersomes from am-
phiphilic Janus dendrimers [39] and glycodendrimersomes from Janus glycodendrimers [52]
was adopted for the self-assembly of IA]Ds [24-26] and their co-assembly with mRNA
into DNPs [24-26]. Narrow polydispersity DNPs [24-26] with predictable dimensions, as
obtained in the case of dendrimersomes [39] and glycodendrimersomes [52], are accessible
via the simple injection of an ethanol solution of IAJD into an acidic solution of Luc-mRNA
of molar mass 661,050 daltons. This method facilitates fast access to the DNPs employed
for in vivo mice transfection experiments. We must stress that our DNPs are in fact den-
drimersome vesicles containing mRNA encapsulated in their interior most probably in
a spherical helix conformation (Figure 1B). Their vesicular structure was demonstrated
previously [24]. However, the mechanism of mRNA encapsulation and the structure of the
DNPs containing mRNA are under investigation. The details of the co-assembly method
via injection are described as follows: Nucleoside-modified mRNA encoding firefly lu-
ciferase (Luc-mRNA) was dissolved in UltraPure DNase/RNase-free distilled water with
an initial concentration of 4.0 mg/mL. IAJDs were dissolved in ethanol with an initial
concentration of 80 mg/mL. The Luc-mRNA solution (12.5 puL) was placed into a clean
RNA-free Eppendorf tube (1.5 mL). Then, 463 uL of acetate buffer (10 mM, pH 4.0) was
added. Afterward, 25 pL of IAJD in the ethanol stock solution was taken and rapidly
injected above the Luc-mRNA solution in acetate buffer, followed by vortex for 5 s. The
size and the size distribution of the resulting nanoparticles were determined using DLS
and are reported in Figure 4 under the schematic illustration of the corresponding IA]Ds.
More than 98% of Luc-mRNA was encapsulated in the interior of DNPs that are stable and
active at 5 °C for more than 135 days. These data will be reported soon.

3.5. In Vivo Delivery of Mice with DNPs Containing Luc-mRNA

Female or male BALB/c mice, 6-8 weeks old, from Charles River Laboratories, were
anesthetized with 3% isoflurane from Piramal Healthcare Limited and injected via retro-
orbital sinus with 100 pL. of DNP solution containing 10 pug of Luc-mRNA. At 4-6 h
post-injection, mice were intraperitoneally (i.p.) injected with D-luciferin at a dose of
150 mg/kg of body weight, from Regis Technologies and imaged on a PerkinElmer In Vivo
Imaging System (IVIS) Spectrum CT. Ten minutes after the administration of D-luciferin,
mice were placed on the imaging platform while being maintained on isoflurane via a nose
cone, and whole-body luminescence signal was measured on the IVIS imaging using a
certain exposure time (60, 30, or 15 s). The tissue luminescence signal was measured on the
IVIS imaging system using a certain exposure time (60, 30, or 15 s) and medium binning
(binning = 8) to ensure that the signal obtained was within the operative detection range.
For the IVIS imaging of the organs, mice were sacrificed; the heart, lungs, liver, and spleen
were immediately collected; and bioluminescence imaging was performed as described
above. Image analysis was conducted with the Living Image software from PerkinElmer.
Bioluminescence values were quantified by measuring photon flux (photons/second) in the
region of interest (ROI) using the Living Image software and were then analyzed. Figure 4
reports the in vivo transfection results for all 78 IAJDs synthesized, together with their
organ analysis and total flux luminescence results. The remarkable first conclusion of the
complex Figure 4 is that all the IA]JDs are active for the delivery of Luc-mRNA, even if
these are only fast screening experiments. We must stress that both the co-assembly with
mRNA and transfection experiments performed in vivo were not yet optimized.
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Figure 4. Delivery of Luc-mRNA in vivo by DNPs assembled from IA]Ds with 3,5-nonsymmetric
alkyl chains: (A) schematic representation of the IAJD structures with the number of the carbons
in the hydrophobic part on the left and right sides of IAJD, pKa values under the schematic in
blue, dimensions and polydispersity under pKa in black, and total flux luminescence activity (p/s)
in red; (B) the representative image of luciferase expression in the whole body or organs 4-6 h
post-intravenous (i.v.) injection of Luc-mRNA co-assembled with various IAJDs; (C) the images of
organs with luciferase activity shown in the color code from the top right column. Color code: pink is
hydroxyethyl, the light blue square is piperazine, and the perpendicular line on the square in blue is
methyl, dark blue is the hydrophilic fragment, and green is the hydrophobic fragment of IAJD.

3.6. In Vivo Delivery of Luc-mRNA with nsSS DNPs to Spleen and Liver

A detailed discussion of these results is provided by grouping these results into
targeted delivery to specific organs and correlating the molecular structure of the IAJD
with the specific target and activity. We decided to group these experiments in specific
delivery to the spleen, lymph nodes, liver, and lung. The twenty most active nsSS and sSS
IA]Ds that deliver predominantly to the spleen are shown in Figure 5A, while the fifteen
most active nsSS and SS IA]Ds delivering to the liver are presented in Figure 5B. There is a
striking difference between the nsSS and sSS IA]Ds delivering to the spleen (Figure 5A) vs.
the one delivering to the liver (Figure 5B). Seventeen out of the twenty (85%) nsSS IA]Ds
that deliver to the spleen contain hydroxyethyl piperazine as an ionizable amine in their
hydrophilic part, while the other three contain methyl piperazine (Figure 5A). By contrast,
twelve out of the fifteen (80%) nsSS JAJDs that deliver to the liver contain the methyl
piperazine ionizable amine in their hydrophilic part, two carry hydroxyethyl piperazine,
and only one contains dimethyl amino group as ionizable amine (Figure 5B).
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Figure 5. Structures of 15 most active IAJDs for selective delivery of mRNA to the liver and
20 most active IAJDs for selective delivery of mRNA to the spleen: (A) IA]Ds delivering to the spleen;
(B) IAJDs delivering to the liver. Legend: schematic representations of IA]JDs with the number of
carbons in the alkyl groups from their hydrophobic part on the left and right sides of the structure,
IAJD numbers in black under the schematic of IAJD, and pKa values in blue under the number

of IAJD.

The pKa values of the IA]Ds delivering to the spleen are between 6.10 and 6.64, while
the pKa values of the compounds targeting the liver are between 5.90 and 6.69. At the
extracellular pH of 7.4 (Figure 1C), the exterior of DNPs co-assembled from these IAJDs
with Luc-mRNA becomes deprotonated. These results demonstrate that the target of the
delivery is provided via the structure of the ionizable amine from the hydrophilic part of
the IAJD.

The activity of the IAJDs from Figure 5A in their delivery to the spleen is shown in
Figure 6. Most of these IA]Ds deliver mRNA to the spleen and lymph nodes. Without any
optimization, eleven nsSS IAJDs (55% of them), namely 125, 127, 130, 162, 178, 180, 186,
211,217, 221, and 233, exhibit the total flux of their luminescence very close to or higher
than 10® p/s. All the other sSS and nsSS IA]Ds display the total flux of their luminescence
in the range of high 10”7 p/s values. It is very interesting to observe that the most active
of all the IA]JDs contain between three and six methylenic units difference between the
number of carbons in their nonsymmetric 3,5-disubstituted hydrophobic part. This is a
quite remarkable result considering that most of these results were obtained only from
screening experiments without any optimization, as shown in the plots from Figure 7.
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Figure 6. Selective delivery of Luc-mRNA in vivo by 20 most active DNPs to the spleen: (A) schematic
representation of the IAJD structures with the number of the carbons in the hydrophobic part on the
left and right sides of IAJD, pKa values under the schematic in blue, dimensions and polydispersity
under pKa in black, and total flux luminescence activity (p/s) in red; (B) the representative images of
luciferase expression in the whole body or organs after i.v. injection of Luc-mRNA co-assembled with
IA]Ds; (C) the images of organs with luciferase activity shown in color coding from the top right col-
umn; color code: pink is hydroxyethyl, the light blue square is piperazine, and the perpendicular line
on the square in blue is methyl, dark blue is the hydrophilic fragment, and green is the hydrophobic
fragment of IA]D.

Excellent agreement for duplicated or triplicated experiments is shown by the error
bars of the statistical analysis illustrated in Figure 7. The experiments, the results of
which are shown in Figure 7, revealed the most active synthetic vectors for the delivery
of mRNA to the spleen regardless of whether they were generated from four-component
LNPs or from one-component DNPs. MC3 shows slightly higher activity in delivery to
the liver and must not be compared with the spleen since MC3 delivers only to the liver.
Figure 8 illustrates the in vivo delivery of Luc-mRNA with the fifteen most active nsSS
IA]Ds that deliver to the liver. Delivery to the liver is accomplished successfully with
four-component LNPs and is currently part of the technology of BioNTech/Pfizer and
Moderna COVID-19 vaccines.
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Figure 7. Comparison of the activities of the 20 most active DNPs that deliver mRNA to the spleen:
(A) schematic representations of IA]JDs with the number of carbons in the alkyl groups from their
hydrophobic part on the left and right sides of the structure, and IAJD numbers in black under the
schematic of IAJD. MC3 delivers mRNA to the liver; (B) plots of total flux luminescence (p/s) for the
DNPs assembled from the IAJDs from (A).

Consequently, to date, we have not invested special effort in delivery experiments
to the liver since delivery to the spleen and lymph nodes is more efficient for the design
of vaccines. Figure 8 summarizes the most active in vivo mice results accomplished with
the nsSS IA]Ds from Figure 5B. It is interesting to observe from Figure 8 that the delivery
of mRNA to the liver is also accompanied by delivery to lymph nodes. Although only
screening experiments were performed in all cases, a total flux of luminescence of 108 p/s
was observed for the nsSS IAJD 173, which has a combination of 13 and 16 carbons in
its nonsymmetric hydrophobic part. This IAJD has a three-carbon difference between
the length of the two alkyl groups. This result is in agreement with the results observed
for the activity of the delivery to the spleen. Four nsSS IA]Ds, ie., 161, 171, 177, and
190, display almost 108 p/s total flux luminescence activity. Without any optimization,
screening experiments show that all the other nsSS IA]Ds, including the SSTAJD 30, display
the total flux of their luminescence in the range of 107 p/s.
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Figure 8. Selective delivery of Luc-mRNA in vivo by 15 most active DNPs to the liver: (A) schematic
representation of the IAJD structures with the number of the carbons in the hydrophobic part on the
left and right sides of IAJD, pKa values under the schematic in blue, dimensions and polydispersity
under pKa in black, and total flux luminescence activity (p/s) in red; (B) the images of luciferase
expression in the whole body 4-6 h after the i.v. injection of Luc-mRNA co-assembled with IA]Ds;
(C) the images of organs with their activity shown using the color code from the bottom right column.

It is interesting to observe that the two pairs of nsSS IA]Ds that show activity for
delivery to the lung and contain both hydroxyethyl piperazine and methyl piperazine
ionizable amines with the identical pairs of alkyl groups (15 and 10 for 141 and 142; 9 and
16 for 189 and 190) follow the same trend of their total flux. The highest activity is for the
IA]JD containing hydroxyethyl piperazine. The summary of the total flux as a function of
IA]JD structure is summarized in Figure 9.
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Figure 9. Comparison of the activities of the 15 most active DNPs which deliver mRNA to the liver:
(A) schematic representations of IA]JDs with the number of carbons in the alkyl groups from their
hydrophobic part on the left and right sides of the structure, and IAJD numbers in black under the
schematic of IAJD; (B) plots of total flux luminescence (p/s) for the DNPs assembled from the IAJDs
from (A).

3.7. In Vivo Delivery of Luc-mRNA with DNPs to Lung

In order to provide a comprehensive discussion on the concept of screening libraries
to discover the molecular design principles of IA]Ds and correlate their structure with
the targeted activity, in this report, we decided to also summarize the twenty IAJDs that
display the most active activity in their delivery to the lung [24].

These data represent a combination of results, reported first time here and in our
previous publications [24-26]. Figure 10 shows the structures of all these IAJDs. They
represent a large diversity of IAJD structures, including SS, TT, TM, sSS, nsSS, and sSS.

Figure 11 shows the mice images for all in vivo experiments performed with the IA]Ds
from Figure 10. Figure 12 plots the activity data for the IA]Ds from Figure 10 with their
in vivo mice experiments from Figure 11. Without discussing the details, we see that the
hydrophilic part of IA]Ds determines the delivery target, while the hydrophobic part of the
IA]Ds is responsible for the level of activity.
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Figure 10. Structures of the 20 most active IA]Ds for selective delivery of mRNA to the lung.
(A) Legend: Schematic representations of IA]JDs with the number of carbons in the alkyl groups from
their hydrophobic part on the left and right sides of the structure, IAJD numbers in black, under the

schematic of IAJD and pKa values in blue under the number of IAJD (B).

IAJDs 33, 34, 31, and 155 display activity in the range of 108 p/s, while IAJD 33
shows a total flux for the lung of 10° p/s, which is similar to that of MC3 to the liver.
The comparison with MC3 from Figure 12 is not valid since MC3 delivers mRNA only to
the liver. IAJDs 110, 111, 29, and 159 show activity almost equal to 108 p/s. We can also
compare the SSTAJD 111 containing 11 carbons in its equal alkyl groups of the hydrophobic
part and activity of 7.4 x 107 p/s, with nSS IAJD 155 containing a combination of 11 and
ethyl hexyl alkyl groups that provide 1.01 x 10® p/s total flux activity.
These unoptimized results demonstrate that the targeted organ is selected according
to the structure and sequence of the ionizable amine in the hydrophilic part of the IA]D,
while the overall activity is determined mostly based on the structure, composition, and

sequence of the hydrophobic part of the IA]D.
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Figure 11. Selective delivery of Luc-mRNA in vivo by 20 most active DNPs to the lung: (A) schematic
representation of the IAJD structures with the number of the carbons in the hydrophobic part on the
left and right sides of IAJD, pKa values under the schematic in blue, dimensions and polydispersity
under pKa in black, and total flux luminescence activity (p/s) in red; (B) the images of luciferase
expression in the whole body 4-6 h after the i.v. injection of Luc-mRNA formulated with IA]Ds;
(C) the images of organs with luciferase activity are shown using color coding from the bottom
right column.
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Figure 12. Comparison of the activities of 20 best DNPs that deliver mRNA to the lung: (A) schematic
representations of IA]Ds with the number of carbons in the alkyl groups from their hydrophobic part
on the left and right sides of the structure, and IAJD numbers in black under the schematic of IAJD.
MC3 delivers mRNA to the liver; (B) plots of total flux luminescence (p/s) for the DNPs assembled
from the IAJDs from (A).

3.8. In Vivo Delivery of Luc-mRNA with sSS DNPs

So far, we discussed experiments in which the delivery of mRNA was performed
with nsSS-based DNPs. Figure 13A shows the delivery experiments of mRNA with all the
22 sSS IA]D-forming DNPs containing the number of carbons in their alkyl groups that were
employed in the construction of the nsSS IA]Ds reported in the previous subsections. All the
22 sSS IA]D-based DNPs deliver to the spleen. It is interesting to observe from Figure 13B
that the whole-body total flux of the luciferase activity of all the DNPs assembled from sSS
IAJDs is in the range of 107 p/s, and therefore, it is lower than 10® p/s. This demonstrates,
as it will be shown more efficiently in three-dimensional figures in the following subsections,
that substitution with nonsymmetric alkyl groups in the hydrophobic part of nsSS IA]Ds
decreases the crystallization and increases the solubility in ethanol of IAJDs with long
alkyl groups through comparison with that of sSSIAJDs. At the same time, this concept
facilitates a substantial enhancement of the activity of their DNPs.
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Figure 13. Selective delivery of Luc-mRNA in vivo via all 22 sSSIAJDs-based DNPs: (A) the schematic
structures of all sSS IA]Ds, the number of carbons in their alkyl groups, their numbers, pKa, di-
mensions and polydispersity of their DNPs and whole-body mice images of delivered Luc-mRNA;
(B) whole-body luciferase activity (total flux in p/s) as a function of the number of carbons in the
alkyl groups of sSS IAJDs derived DNPs.
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3.9. A Hypothetic Mechanism Explaining the Activity of mRNA Delivery via the Hydrophobic
Part of IA]Ds

A model describing the structure of the bilayer of the vesicles named dendrimersomes
assembled via the injection of Janus dendrimers in water and in the buffer as well as the
prediction of their dimensions was elaborated by one of our laboratories [41]. This method
relies on the idea that dendrimersome vesicles are closed bilayer films with identical bilayer
structure and bilayer planarity in a solid state that is only slightly curved in the wall of the
dendrimersome assembly [84-86].

It has been demonstrated that amphiphilic Janus dendrimers self-assembled from
3,5-disubstituted phenolic acids interdigitate their aliphatic alkyl groups forming den-
drimersome vesicles with mechanical properties and prolonged circulation time as good
as those of stealth liposomes [73,75,87] and polymersomes [39]. Figure 14A illustrates
the interdigitation of the octadecyl alkyl groups of sSS IAJD 99. A perfect bilayer is self-
organized during this self-assembly process. This process generates a very compact bilayer
of the dendrimersome nanoparticle that in fact is a vesicle with maximum hydrophobic
interactions between its alkyl groups. The transition from sSS IAJD 99 to nsSS IAJD 178
and to other nsSS IAJDs was selected originally to improve the solubility of sSS IAJD 99
containing two octadecyl alkyl groups and of other sSS IA]Ds containing long alkyl groups.
This increased solubility was expected due to the two different alkyl chain lengths in the
hydrophobic part of the new nsSS IAJD 178 that will increase the entropy of the bilayer.
The expected increased solubility due to decreased tendency towards the crystallization of
the IAJDs was indeed accomplished at the transition from sSS IA]Ds to nsSS IA]Ds, as it
was in the case of sSS IAJD 99 to nsSS IAJD 178. This mechanism of increasing solubility
by decreasing the tendency towards crystallization provides an excellent opportunity to
design IA]Ds with long alkyl groups that do not contain cis-double bonds as phospholipids
contain and, therefore, are oxidatively stable. However, at the time of these preliminary
experiments, we could not predict that an increase in DNP activity for the delivery of
mRNA from 4.49 x 100 to 4 x 10® will occur by changing the self-assembly of DNPs from
sSS IAJD 99 to nsSS IA]D 178. The model for the bilayer of nsSS IAJD 178 responsible for
this two orders of magnitude increase in DNP activity is shown in Figure 14B,D,F. This
model demonstrates that an increase in nsSS IAJD 178 solubility was accompanied by a
decrease in the perfection of the bilayer packing that decreases the hydrophobic interactions
between the alkyl groups in the hydrophobic part of the DNP bilayer self-organized from
nsSS IAJD 178. This less perfect DNP does not contain empty space in its bilayer, as shown
in the model from Figure 14B,D. This “empty space” is in fact filled up with distorted rather
than almost all-trans alkyl groups. Nevertheless, the “empty space” from Figure 14 helps to
indicate the number of methylenes that have to change their all-frans conformation, which
most probably facilitates a more efficient endosomal escape of the mRNA in the cytoplasm
(Figure 1C) due to lower hydrophobic interaction in the bilayer of nsSS IA]Ds based DNPs.
These preliminary results will be complemented via a comprehensive investigation of this
process, which will be published soon. Regardless of the outcome of these more detailed
investigations, the model from Figure 14 indicates one of the key contributions of this
report: “an unexpectedly simple design principle for the control of delivery activity by the molecular
engineering of the hydrophobic part of DNPs” .

As already mentioned, a quantitative approach to these molecular design principles
requires additional research. For example, the mechanism may be completely different for
the case of IA]Ds derived from 3,4-dihydroxy and 3,4,5-trihydroxy phenolic acids from
the case of the similar structure based on 3,5-dihydroxy homolog since the former do
not interdigitate in their bilayer structure. Nevertheless, the synthetic capability of one-
component IAJD and DNP delivery systems definitively relies on the ability of molecular
design principles based on the precise location of its functional groups rather than on the
statistical distribution of its four components from the case of four-component LNPs.
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sSS IAJD 99

Figure 14. Molecular models of the bilayer structure of sSS IAJD 99 and of nsSS IAJD 178:
(A,B) dimers of sSS IAJD 99 containing 18 carbons in both alkyls and of nsSS IAJD 178 based
on 18 and 13 carbons in its alkyls (stick models, side view for both IA]Ds); (C,D) dimers of sSS IA]JD
99 and of nsSS IAJD 178 (space-filling models, side view for both IAJDs); (E,F) bilayers of sSS IAJD 99
and of nsSS IAJD 178 (space-filling models, side views for both IAJDs). Color legends: hydrophilic

part in blue; hydrophobic part in light and dark green; oxygen and OH in pink; aromatic ring in gray;
H groups on aromatic in white.
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3.10. The Current Status of the Molecular Design Principles to Target the Delivery of mRNA
Mediated via IA]Ds

A three-dimensional (3D) representation of the transfection activity accomplished
in vivo with DNPs co-assembled from sSS IA]Ds and nsSS IAGDs with mRNA is illustrated
in Figure 15 for the case of delivery to the lung (Figure 15A) and to the spleen and lymph
nodes (Figure 15B) as a function of the number of carbons in their alkyl groups. The red
cylinders from the diagonals of the two 3D plots contain equal numbers of carbons in
the alkyl groups located at the 3- and 5- positions of the sSS IA]Ds, while the blue and
cyan cylinders show the activity results for different numbers of carbons in the same two
positions of the nsSS IA]Ds derived DNPs.

(A) (B)

Figure 15. Comparison of the Luc-mRNA delivery activities (whole-body total flux in p/s) of DNPs
exhibiting in the hydrophilic part the methyl piperazine group ((A) left side) and hydroxyethylpiper-
azine group ((B) right side). The red cylinders represent the activity of the symmetric sSS IAJDs
employed in the assembly of DNPs, and the blue cylinders are the nonsymmetric nsSS IAJDs used to
assemble in the hydrophobic part. Cylinders in cyan color represent activity higher than 108 (p/s).

A remarkable conclusion results from these 3D plots. The red cylinders that corre-
spond to sDD IAJD-derived DNPs exhibit the lowest activity, while the blue cylinders
that correspond to nsSS IAJD-based DNPs display the highest activity. The cyan cylinders
exhibit activities that are higher than 10® p/s. This structure of IAJD activity of DNP
dependence demonstrates the ability to discover molecular design principles for the tar-
geted delivery of mRNA via the rapid screening of DNPs co-assembled through the simple
injection of IA]Ds with different primary structures with mRNA and to predict their activity.
No dialysis and fractionation of the DNP assemblies, as needed in the case of LNPs, is
required for these rapid screening experiments.

4. The Early Days of Nucleic Acid Delivery and Their Evolution to the
Current Methodologies

According to our knowledge, Figure 16 organizes for the first time the historical
development of the viral and synthetic vectors for the delivery of DNA and RNA starting
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from the early days to the currently employed methodologies. This is not a comprehensive
review, and therefore, we apologize to the authors that may have discovered methodologies
that we may have missed incorporating in Figure 16. However, the goal of this figure is to
illustrate, in a very brief fashion, the conceptual development of this field and the rationale
for the direction of its evolution. As shown in the title of Figure 16, delivery vectors for
nucleic acids can be classified in the simplest way as viral and nonviral or synthetic. Some
of the viruses employed in nucleic acid delivery are the retrovirus which was first used
for the delivery of RNA in 2014 [88]. Adenovirus [89], adeno-associated virus [90], and
lentivirus [91] were some of the most frequently used viruses for the delivery of DNA that
started as early as 1995, 1993, and 1999, respectively. Viral vectors are currently used in
commercial vaccines [92-96]. Viral vectors are very efficient, but synthetic vectors rely on
their unlimited synthetic capabilities.
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Figure 16. Summary of the viral and nonviral vectors for the delivery of nucleic acids and the
evolution of methodology development [2,12,24,29,39,52,88,90,91,95-117].

The discussion on synthetic vectors will rely on demonstrating their synthetic ca-
pabilities. The simplest classification of synthetic vectors relies on liposomes, covalent
and supramolecular dendrimers, and polymers. The early days of nucleic acid delivery
with liposomes employed cationic one-component liposomes. Cationic one-component
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liposomes were pioneered by the laboratory of Felgner for the delivery of DNA in 1987 [95]
and by the same laboratory for the delivery of RNA in 1993 [96]. Cationic liposomes are
toxic and bind both DNA and RNA via electrostatic interactions on their exterior surface
and in their interior. The nucleic acid from their exterior surface undergoes enzymatic
degradation, and therefore, an ideal vector would contain the nucleic acid only in its inte-
rior where it is protected against enzymatic degradation. Toxicity and degradation were
the limiting features that did not facilitate, according to our knowledge, the commercial
development of cationic one-component liposomes in vaccines, although the cationic lipid
component is commercially available under the name Lipofectamine transfection reagent
and Transfectamine 5000 transfection reagent.

In 2010, Cullis laboratory developed a four-component cationic liposome for the
delivery of RNA [97] that is affected by the same features as the one-component cationic
liposomes. The solution to the one-component and four-component cationic liposomes
was solved in an elegant way also by Cullis laboratory in 2012 [29]. This laboratory
elaborated four-component ionizable lipid nanoparticles (LNPs) by expanding the three-
component stealth liposomes into four-component lipid nanoparticles. LNPs rely on a
combination of phospholipids, cholesterol, ionizable lipids, and PEG-conjugated lipids. The
elegance of this concept consists of the presence of an ionizable lipid that, at a certain pH,
becomes protonated and, therefore, binds RNA, while at the physiological pH, it becomes
deprotonated and, therefore, releases the RNA from the periphery of LNPs but not from its
interior and eliminates cationic-derived toxicity. Therefore, LNPs are nontoxic.

However, the ionizable lipid and the PEG-conjugated lipid have their own deficiencies
in a four-component LNP, which were briefly mentioned in the introductory part of this
paper and in our previous publications [24-26]. Details of these developments and the
deficiencies resulting from the statistical distribution of the four components of the LNPs
will be discussed in the next subsection. LNPs are currently the most successful RNA
delivery vector used in commercial mRNA-based vaccines, although they deliver mostly to
the liver. A five-component LNP system was recently developed by Siegwart Laboratory
in 2020 [12]. The fifth component of this LNP has either permanently positive or negative
charges that can facilitate delivery to organs other than the liver. Cationic covalent den-
drimers made their entry into the delivery of nucleic acids in 1993 [98] and 1996 [99], when
Szoka and Tomalia, Baker laboratories, reported the delivery of DNA with the cationic
covalent PAMAM dendrimers. Both laboratories investigated different generations and
observed a strong dependence on the delivery in vitro as a function of generation number.
In 2006, Peng Laboratory also employed cationic PAMAM dendrimers to deliver RNA [100].
In 1999, Caminade and Majoral Lab used phosphorus (P)-containing dendrimers to deliver
DNA [101]. Cationic carbosilanes were employed to deliver DNA and RNA by Mufioz and
Bryszewska laboratories in 2005 [102,118-122], while cationic PPI was used by Sinselmeyer
Lab in 2002 [103,123]. Both covalent cationic dendrimers are associated with some of the
negative features of cationic liposomes.

A solution to this problem was generated by Sarbolouki’s laboratory in 2000 [104].
His laboratory encapsulated the complex of cationic dendrimers with DNA into liposomes
named dendrosomes. In 2010, Parekh Lab employed dendrosomes for the delivery of
RNA [105]. Dendrosomes eliminate the toxicity and enzymatic degradation of cationic
dendrimers but require extensive additional processes for encapsulation in liposomes.

Cationic supramolecular dendrimers obtained via the self-assembly of cationic am-
phiphilic dendrimers were employed by the laboratory of Diederich starting in 2003 [106]
and Langer and Hammond in 2005 [107] for the delivery of DNA. Supramolecular cationic
dendrimers are also toxic. Therefore, the Langer and Anderson laboratories elaborated on
two- to four-component LNPs in which the ionizable lipid was replaced with amphiphilic
ionizable dendrimers based on PAMAM or polyethylene imine (PEI) [124,125].

The most recent progress in this field was in 2021, when Percec and Weissman lab-
oratories [24-26] developed one-component multifunctional sequence-defined ionizable
amphiphilic Janus dendrimers (IAJDs) that co-assemble with mRNA into dendrimersome
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nanoparticles (DNPs). This co-assembly process proceeds by the simple injection of the
IA]D into the acidic buffer solution of mRNA. The IAJD concept was developed, as already
mentioned in the early part of this paper, based on inspiration from research on amphiphilic
Janus dendrimers (JDs) that self-assemble dendrimersomes (DS) [39-51] and sequence-
defined amphiphilic Janus glycodendrimers (JGD) that self-assemble glycodendrimersomes
(GDSs) [52-70].

As discovered in this report, the structure of the hydrophilic part of IAJD determines
the organ targeted, while the structure of the IAJD in its hydrophobic part determines the
activity of the in vivo transfection. With these synthetic vector technologies, delivery to the
spleen and lymph nodes, liver and lymph nodes, and lung became accessible. One of the
most difficult challenges in this field remains the delivery to the nervous system, including
the brain, which is under extensive investigation in the laboratory of Cena [126-141].

The final group of synthetic vectors that have been developed are based on synthetic
polymers. Cationic poly(L-lysine) and polyethyleneimine were, respectively, both em-
ployed for the delivery of DNA in 1987 by Wu’s laboratory [108] and in 1995 by Boussif’s
laboratory [109]. We must recall that polyethyleneimine is a very high-molecular-weight
branched polymer obtained via the cationic ring-opening polymerization of ethylene imine.
A very elegant strategy was recently developed by Waymouth’s laboratory, where Charge-
Altering Releasable Transporters (CARTs) were employed for the delivery of RNA in
2017 and for DNA in 2018 [110,111]. A brief illustration of the most important historical
developments ranging from liposomes, viral vectors, stealth liposomes, polymersomes, den-
drimersomes, four-component LNPs, glycodendrimersomes, and 1c-DNPs is schematically
illustrated in Figure 17 [90,112].
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Figure 17. A brief summary of the evolution, development, and discovery of ionizable LNPs and
DNPs [24,25,29,39,52,73,90,112,142].
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The rationale of Figure 17 is first to illustrate their three-dimensional structures and
their structures containing the encapsulated mRNA. Briefly, we can observe that, in the
absence of mRNA liposomes, stealth liposomes, polymersomes, dendrimersomes, 4c-
LNPs, glycodendrimersomes, and 1c-DNPs are all vesicles. Liposomes are unstable and
require cholesterol and PEG-conjugated lipids to increase their stability and circulation time.
Polymersomes, 4c-LNPs, glycodendrimersomes, and 4c-DNPs are as stable, or even more
stable than, stealth liposomes. Regardless of the method of preparation, liposomes, stealth
liposomes, polymersomes, and 4c-LNPs are polydisperse and must be fractionated in
order to obtain the desired dimension and polydispersity. Viral vectors are monodispersed,
and dendrimersomes, glycodendrimersomes, and 1c-LNPs are obtained with narrow
polydispersity and predictable dimensions through simple injection in water or buffer.
Therefore, viral vectors and 1c-DNPs are more closely related in both the absence and
presence of mRNA. Notably, 4c-LNPs require dialysis after the encapsulation of mRNA.
During this process, the neutral ionizable lipids get encapsulated together with the mRNA
inside of their external vesicle, generating a complex internal mixture containing ionizable
lipids, mRNA, and cholesterol [28,142-147]. Therefore, an ideal synthetic nonviral vector
would have to be closely related to the structure of viral vectors in order to provide the
very high activity of the viral vectors and the flexibility of the synthetic vectors. Although
substantial research is required to accomplish a system like this, we believe that the strategy
of 1c-IAJD-DNP is conceptually suitable to accomplish it. Alternative dendrimer fragments
such as carbosilane, PPI, and others can also be incorporated into IAJDs [101,102,118-122].

5. Inspiration from and Collaboration with Donald A. Tomalia

The history of the discovery of covalent dendrimers was published repeatedly, and
it is well known to all contributors and readers of this Special Issue dedicated to the 85th
anniversary of Donald A. Tomalia. However, in spite of being well known, we will repeat
it briefly here. Dendrimers were discovered independently in four different laboratories. In
1978, Fritz Voegtle from the University of Bonn [113] reported the bis-cyanoethylation of
primary aliphatic amines and of bifunctional secondary amines, followed by the reduction
of the cyano groups and the subsequent iteration of these two steps to synthesize two
generations of “cascade” molecules. In a series of US patents starting in 1981, Denkewalter,
Kolc, and Lukasavage of Allied Corporation [114] produced branching monodisperse
spherical poly(lysine)s that were found by Aharoni from the same company to be indeed
globular and monodisperse [148]. In 1985, Tomalia, Baker, Dewald, Hall, Kallos, Martin,
Roeck, Ryder, and Smith from Dow Chemical Company reported the synthesis and char-
acterization of a new class of polymers named starburst-dendritic macromolecules [115].
Seven generations of starburst-dendritic macromolecules were synthesized via the iter-
ative Michael addition of methyl acrylate to ethylenediamine or ammonia, followed by
extensive amidation with excess ethylene diamine and reiteration of this methodology.
Additionally, in 1985, Newkome, Yao, Baker, and Gupta reported a new “cascade” molecule
that provided a synthetic approach to unimolecular micelles. This molecule was named
arborol [116]. These laboratories reported excellent synthesis methods, identified side
reactions to structural imperfections in the designed compound, and employed careful
analysis of the final products.

However, neither “cascades” nor “arborols” but rather “dendrimers” provided the
name for the new field of perfectly branched and monodisperse synthetic macromolecules.
In fact, The First International Dendrimer Symposium (IDS-1), a conference that became
biannual, was organized by Professor Fritz Voegtle, the person who invented “cascade”
molecules, between 3 and 5 October 1999, in Frankfurt, Germany [149].

Many review articles and books on covalent dendrimers were published by Tomalia,
Voegtle, and Newkome laboratories and by many other groups that joined the field soon
after [7,8,149-166].

In an attempt to synthesize a biaxial nematic thermotropic liquid crystal, in the
late 1980s, Percec’s laboratory discovered self-assembling dendrons, self-assembling den-
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drimers, and self-organizable dendronized polymers [167]. Percec’s laboratory, in collabo-
ration with top experts in the field, developed and employed a combination of structural
analysis through X-ray diffraction, transmission electron microscopy, electron density maps,
and reconstruction of the X-ray diffractograms using the method elaborated by Watson
and Crick to solve the structure of DNA, to elucidate the three-dimensional (3D) structure
of supramolecular dendrimers [167-174]. This combination of diffraction methodologies
added a new dimension to the characterization of dendrimers and created the complemen-
tary subfield of supramolecular dendrimers. Helical chirality resembling the mechanism
used by rod-like or columnar and polygonal including icosahedral viruses [175-178],
Frank—Kasper phases [175,176,178-203], liquid quasicrystals [173,204-209], amphiphilic
Janus dendrimers [39-51], Janus glycodendrimers [52-70] and one-component sequence-
defined ionizable amphiphilic Janus dendrimers (IA]JDs) [24-26] are just a few of the new
concepts via which supramolecular dendrimers impacted a diversity of disciplines of soft
and living matter.

Tomalia’s leading role, characterized by enthusiasm, creativity, and modesty, inspired,
encouraged, and attracted new contributors to the field of dendrimers. He supported us
when we discovered that supramolecular dendrimers can form conventional thermotropic
liquid crystal phases [210-212], rod-like or columnar shape assemblies [117,213-250], and
ultimately, spherical and even chiral spherical or spherical helical shapes generating Frank—
Kasper [175,176,178-202] and quasicrystal [173,203-209] phases. He also inspired and
encouraged us to generate the first nanoperiodic tables of supramolecular dendrimers [198]
and to continue the pathway to the discovery of new concepts in supramolecular den-
drimers by solving their 3D structure, elucidating the mechanism, and ultimately predicting
additional primary structures behaving in a similar way. Don also inspired Percec’s labora-
tory to select the name dendrimersome out of several other options when we discovered the
self-assembly of amphiphilic Janus dendrimers into monodisperse vesicles with predictable
dimensions [39]. While the readers of this Special Issue are familiar with the contributions
of Tomalia to dendrimers, not many of them may know that in 1966, the laboratories of
Tomalia, Kagia, Seeliger, and Litt, independently from each other, discovered the cationic
ring-opening polymerization of 2-substituted-2-ozazolines and their living polymeriza-
tion [205,251-257]. Self-organizable dendronized polymers obtained through the living
cationic ring-opening polymerization of dendronized 2-oxazolines allowed Percec’s labora-
tory to establish some of the most fundamental dependences of primary structure—tertiary
structure [255-257], including the discovery of liquid quasicrystal, A15, and o Frank-
Kasper phases within only five monomer repeat units of the degree of polymerization of
the dendronized polymer [205] (Figure 18).

A series of self-accelerated [187,189] and self-interrupted processes [190] during the
synthesis of supramolecular dendrimers, some of them inspired by Tomalia’s work [149],
culminated in the first methodology for the synthesis of monodisperse macromolecules via
the self-interrupted living ring-opening polymerization of a dendronized monomer [190].
We would like to state that our laboratory never wrote a joint paper with Tomalia. However,
one of the corresponding authors (V.P.) has never been turned down by Don when he was
invited as a plenary or invited speaker at the numerous conferences organized by V.P.

The posters shown in Figure 19 present the list of the invited speakers from the third
Frontiers in Macromolecular and Supramolecular Science Symposium dedicated to the
memory of V.P.’s PhD mentor that took place at the Romanian Academy between 7 and
9 June 2010 in Bucharest and Iasi. Donald Tomalia is an illuminating and enthusiastic
lecturer and a contagiously positive example for the young and even for senior generations
of scientists (Figure 20).
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Figure 20. Top part shows the enthusiastic Donald Tomalia giving his lecture at the Romanian
Academy in Iasi in 2010. Bottom part, first row from right to left: Robert (Barney) Grubbs, the
Nobel Laureate Robert (Bob) Grubbs, Donald Tomalia, and Ehud Keinan, the President of the Israel
Chemical Society.

6. Conclusions

Ninety-eight one-component IA]Ds based on, mostly plant 3,5-dihydroxy phenolic
acid, with different primary structures in both their hydrophilic and hydrophobic parts were
synthesized via an accelerated modular—orthogonal methodology. These very simple first-
generation amphiphilic Janus dendrimers are constructed from minidendrons, as defined
by our laboratory [50,167]. Therefore, they can be named also Janus minidendrimers
containing one or two branching points in the hydrophobic part and one or two in the
hydrophilic ionizable amine part. In spite of their synthetic simplicity, they are extremely
efficient in the construction of IA]JDs [24-26]. Their co-assembly with Luc-mRNA was
accomplished via injection in an acidic buffer to generate DNPs of well-defined dimensions
and narrow polydispersity. This methodology provided rapid access to in vivo transfection
experiments in mice, without the need for fractionation or dialysis, and demonstrated that
all the IAJDs provided DNPs active in transfection experiments in vivo. This methodology
also allowed us to determine that their activity could be grouped in terms of delivery to
the spleen and lymph nodes, liver and lymph nodes, and lung.

A primary structure-activity analysis generated by screening libraries allowed the
discovery of molecular design principles to target the delivery of mRNA and demonstrate,
for this class of IA]Ds, that their hydrophilic part determines, through the structure of
their ionizable amine and their sequence the targeted organ, with hydroxyethyl piperazine
favoring the spleen and methyl piperazine favoring the liver. Piperidine and dimethyl
amine favor delivery to the lung. It seems that sterically hindered cyclic ionizable amines
display high organ selectivity. The primary structure of the hydrophilic part was shown to
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determine their activity. A change from sSSIAJDs to nsSS IAJDs demonstrated a mechanism
to increase the delivery of mRNA activity by up to two orders of magnitude.

A mechanism explaining the increase in activity via the hydrophobic part was pro-
vided. This report generated the first approach to molecular design principles required for
mRNA delivery to targeted organs with one-component IA]Ds derived from plant phenolic
acids and supports the preliminary data reported in previous communications [25,26]. Most
experiments reported here were performed with the symmetric 3,5-dihydroxy plant pheno-
lic acid regardless of the substitution pattern in the hydrophobic part. The corresponding
3,4-dihydroxy plant phenolic acids provide two constitutional isomers under the same
conditions, thus doubling the discovery capability. The 3,4,5-trihydroxy plant phenolic acid
provides four-constitutional isomers, thus quadrupling the power of discovery.

However, in addition to other natural phenolic acids, the 3 phenolic acids reported in
Figure 2A were already employed to design and synthesize 30 additional constitutional
isomeric symmetric and nonsymmetric AB, to ABy phenolic acids. All of them can be
employed in these IAJD experiments using molecular design principles [83]. Aside from
providing access to elucidate some of the most complex systems of fundamental and
applied interest for today’s society [167,173,174,258-260], we expect that the discovery of
the molecular design principle methodology reported here will bestow rapid access to
a large diversity of mRNA vaccines and other nanotherapeutics that will require much
simpler preparation, handling, and storage at a reduced price, and lower concentration of
mRNA while employing renewable plant starting materials.

These results also represent a first step towards the generation of a nanoperiodic table
of IA]Ds for the delivery of mRNA, similar to those of proteins [261-263], self-assembling
dendrons, and dendrimers [198,264,265], that may be able to help expand the fields of
genetic medicine and nanomedicine [34,266-269].

We expect that the development of new architectural concepts, including polygonal
supramolecular dendrimers and new synthetic methodologies [270-291], as well as the
attraction of new creative minds to this field, through a methodology similar to that
pioneered by the very enthusiastic Donald A. Tomalia, will help impact this field and take
it to a new level of discovery and even prediction that, together with practical applications,
will reward education and society. All co-authors of this paper thank the Guest Editors
for their kind invitation to contribute, with this special combination of research articles
and brief review-perspective to the 85th anniversary of Donald A. Tomalia, one of the most
influential inventors of this field.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/pharmaceutics15061572/s1, Scheme S1: Synthesis of Nonane-
Based IAJDs with 3,5-Nonsymmetric Alkyl Chains; Scheme S2: Synthesis of Dodecane-Based
IAJDs with 3,5-Nonsymmetric Alkyl Chains; Scheme S3: Synthesis of Tetradecane-Based IAJDs
with 3,5-Nonsymmetric Alkyl Chains; Scheme S4: Synthesis of Hexadecane-Based IAJDs with
3,5-Nonsymmetric Alkyl Chains; Scheme S5: Synthesis of Heptadecane-Based IA]Ds with 3,5-
Nonsymmetric Alkyl Chains; Scheme S6: Synthesis of Octadecane-Based IA]Ds with 3,5-Nonsymmetr
ic Alkyl Chains; Scheme S7: Synthesis of Undecane and Pentadecane Based IA]Ds with 3,5-Nonsymme
tric Alkyl Chains; Scheme S8: Synthesis of Tridecane Based IA]Ds with 3,5-Nonsymmetric Alkyl
Chains; Scheme S9: Synthesis of IAJD131; Scheme S10: Synthesis of Decane-Based IAJDs with 3,5-
Nonsymmetric Alkyl Chains; Scheme S11: Synthesis of IAJDs with 3,5-symmetric Alkyl Chains;
Figure S1: TH NMR spectrum (top), MALDI-TOF MS spectrum (bottom left) and HPLC trace (bottom
right) of Monoprotected Benzyl Ether of Methyl 3,5-Dihydroxybenzoate 2; Figure S2: TH NMR
spectrum (top), MALDI-TOF MS spectrum (bottom left) and HPLC trace (bottom right) of Methyl
3-(benzyloxy)-5-(octadecyloxy)benzoate, 33; Figure S3: 'H NMR spectrum (top), MALDI-TOF MS
spectrum (bottom left) and HPLC trace (bottom right) of Methyl 3-hydroxy-5-(octadecyloxy)benzoate,
34; Figure S4: 'H NMR spectra (top), MALDI-TOF MS spectra (bottom left) and HPLC trace (bottom
right) of Methyl 3-(heptadecyloxy)-5-(octadecyloxy)benzoate, 35d; Figure S5: 'H NMR spectrum
(top), MALDI-TOF MS spectrum (bottom left) and HPLC trace (bottom right) of (3-(Heptadecyloxy)-
5-(octadecyloxy)phenyl)methanol, 36d; Figure S6: 'H NMR spectrum (top), MALDI-TOF MS spec-
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trum (bottom left) and HPLC trace (bottom right) of 3-(Heptadecyloxy)-5-(octadecyloxy)benzyl
4-bromobutanoate, 37d; Figure S7: 'H NMR spectrum (top), MALDI-TOF MS spectrum (bottom left)
and HPLC trace (bottom right) of 3-(heptadecyloxy)-5-(octadecyloxy)benzyl 4-(4-methylpiperazin-
1-yl)butanoate, 38g, IAJD242; Figure S8: 'H NMR spectrum (top), MALDI-TOF MS spectrum
(bottom left) and HPLC trace (bottom right) of 3-(Heptadecyloxy)-5-(octadecyloxy)benzyl 4-(4-(2-
hydroxyethyl)piperazin-1-yl)butanoate, 38h, IAJD243; Figure S9: 'H NMR spectrum (top), MALDI-
TOF MS spectrum (bottom left) and HPLC trace (bottom right) of methyl 3,5-bis(heptadecyloxy)benzo
ate), 64d; Figure S10: 'H NMR spectrum (top), MALDI-TOF MS spectrum (bottom left) and HPLC
trace (bottom right) of (3,5-bis(heptadecyloxy)phenyl)methanol, 65d; Figure S11: 'H NMR spectrum
(top), MALDI-TOF MS spectrum (bottom left) and HPLC trace (bottom right) of 3,5-bis(heptadecyloxy)
benzyl 4-bromobutanoate, 66d; Figure S12: TH NMR spectrum (top), MALDI-TOF MS spectrum
(bottom left) and HPLC trace (bottom right) of 3,5-bis(pentadecyloxy)benzyl 4-(4-methylpiperazin-1-
yl)butanoate, 67e, IAJD265; Figure S13: IH NMR spectrum (top), MALDI-TOF MS spectrum (bottom
left) and HPLC trace (bottom right) of 3,5-Bis(pentadecyloxy)benzyl 4-(4-(2-hydroxyethyl)piperazin-
1-yl)butanoate, 67f, IA]JD266; Figure S14: DLS data of DNPs assembled from IA]JDs 112, 123, 129,
131, 137, 139 and 140; Figure S15: DLS data of DNPs assembled from IAJDs 163, 164, 166-170,
174, 175; Figure S16: DLS data of DNPs assembled from IA]JDs 176, 179-185; Figure S17: DLS data
of DNPs assembled from IAJDs 186-194; Figure S18: DLS data of DNPs assembled from IAJDs
197-205; Figure S19: DLS data of DNPs assembled from IAJDs 206-214; Figure S20: DLS data of
DNPs assembled from IAJDs 224-232; Figure S21: DLS data of DNPs assembled from IAJDs 233-241;
Figure S22: DLS data of DNPs assembled from IA]JDs 242-247, 263-265; Figure 523: DLS data of
DNPs assembled from IAJDs 266-272; Figure S24: Titration curves showing changes in solution pH
in response to addition of a strong acid and calculated pKa for IA]JDs 73, 90, 112, 121, 123, 129, 131,
137; Figure S25: Titration curves showing changes in solution pH in response to addition of a strong
acid and calculated pKa for IA]Ds 139, 140, 163-168; Figure S26: Titration curves showing changes in
solution pH in response to addition of a strong acid and calculated pKa for IA]Ds 169, 170, 174-176,
179-181; Figure S27: Titration curves showing changes in solution pH in response to addition of a
strong acid and calculated pKa for IA]Ds 182-189; Figure S28: Titration curves showing changes in
solution pH in response to addition of a strong acid and calculated pKa for IA]JDs 190-194, 197-199;
Figure S29: Titration curves showing changes in solution pH in response to addition of a strong acid
and calculated pKa for IA]JDs 200-207; Figure S30: Titration curves showing changes in solution pH
in response to addition of a strong acid and calculated pKa for IAJDs 208-215; Figure S31: Titration
curves showing changes in solution pH in response to addition of a strong acid and calculated pKa
for IA]JDs 261-223; Figure S32: Titration curves showing changes in solution pH in response to
addition of a strong acid and calculated pKa for IA]Ds 224-231; Figure S33: Titration curves showing
changes in solution pH in response to addition of a strong acid and calculated pKa for IA]Ds 232-239;
Figure S34: Titration curves showing changes in solution pH in response to addition of a strong acid
and calculated pKa for IA]JDs 240-247; Figure S35: Titration curves showing changes in solution pH
in response to addition of a strong acid and calculated pKa for IA]Ds 263-270; Figure S36: Titration
curves showing changes in solution pH in response to addition of a strong acid and calculated pKa
for IA]Ds 271, 272; Table S1: pK, of Individual IAJDs. References [24-26,35,36,38] are cited in the
supplementary materials.
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