\$ SUPER

Contents lists available at ScienceDirect

European Polymer Journal

journal homepage: www.elsevier.com/locate/europolj

Solving fundamental concepts in supramolecular science with functionality-tolerant living polymerizations of self-assembling monomers and dendronized monomers

Virgil Percec^{a,*}, Dipankar Sahoo^{a,b}

- a Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, United States
- ^b Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6323, United States

ARTICLE INFO

Dedicated to Professor Nikos Hadjichristidis to honor his scientific and editorial contributions and his 80th birthday!

Keywords:
Functionality-tolerant
Stereoselective polymerizations
Living stereoselective polymerizations
Helical polyphenylacetylenes
Molecular machines
Supramolecular science

ABSTRACT

The evolution and development of several examples of functionality-tolerant living polymerizations to the level of perfection that they could be employed to solve fundamental concepts in supramolecular science by living polymerization of self-assembling monomers and self-organizable dendronized monomers is briefly reviewed. The review focuses on the development of the living polymerization methodology with brief examples on how they impacted the field of self-assembly and self-organization. The first polymerization reaction discussed is the stereoselective polymerization of phenylacetylene and of other arylacetylenes to generate helical poly(arylacetylene) stereoisomers. The transition from functionality non-tolerant to functionality-tolerant stereoselective polymerizations and the evolution to functionality-tolerant living stereoselective polymerization of phenylacetylene is used as the main example of this brief review. This living polymerization methodology is followed by living polymerization of vinyl ethers, oxazolines, of group transfer polymerization, of cationic ring-opening polymerization of cyclic siloxanes combined with hydrosilylation, of ROMP of cylooxanorbornene. This brief review is concluded by a brief discussion of the capabilities of the above-mentioned living methodologies with living radical polymerizations. The numerous applications in the field of supramolecular science of these living methodologies are not reviewed. However, the reader is directed to numerous comprehensive review articles discussing these applications. The challenges that remain to be solved in all these functionality-tolerant living polymerizations are presented.

1. Introduction

In 1956 Michael Szwarc discovered living anionic polymerization of styrene initiated by single electron transfer from sodium naphthalene to styrene to form the styryl radical anion. The radical of this radical anion dimerizes to generate the dianion propagating the polymerization of styrene in two directions [1]. In the same year Szwarc laboratory demonstrated the synthesis of block copolymers by living anionic polymerization [2]. The story of this discovery, the inspiration for it and the relaxed definition of living polymerization was told by Szwarc in the first Highlight written at my invitation in the first issue of the Journal of Polymer Science: Part A: Polymer Chemistry who pioneered the publication of highlights, graphical abstracts and front covers in scientific publications in US [3]. Mechanistic investigations on the living anionic polymerization and of the single-electron transfer (SET) processes

responsible for the initiation step were under investigation and debate for many years. Instead of joining mechanistic debates, Nikos Hadjichristidis embarked on the elaboration of methodologies for the construction of polymers with complex architecture by living anionic polymerization of conventional monomers. By designing complex architectures with the help of high-quality experiments performed in sealed glassware under high vacuum, combined with excellent characterization of the final products, Nikos became the most influential scientist involved in this field. There is no debate, as is the case in mechanistic studies, when the structural characterization of the final product is performed as Nikos always did. He expanded the arsenal of living anionic polymerization by combining living anionic with other living methodologies. Through design and synthesis of complex architectures Nikos provided models for commercial block copolymers, branched polyethylene, micellar structures, to name just a few. He also

E-mail address: percec@sas.upenn.edu (V. Percec).

 $^{^{\}ast}$ Corresponding author.

optimized the properties of commercial polymers and designed new polymers with well-defined properties designed by their perfect architecture. Nikos collaborated and continues to collaborate with the premier practitioners in polymer chemistry and polymer physics. Instead of enumerating his numerous landmark complex structures, techniques and methodologies I would rather cite some of his remarkable review and highlight articles, written at my invitation, on the methodology of living anionic polymerization and on complex architectures synthesized by this method since these landmark publications speak by themselves [4–7]. He is the very rare case of scientist who shares in great details the way he does all his experiments by not turning down to write invited papers and review/highlights describing the technique.

This paper is a combination of review/highlight article that discusses mostly the approach used by our laboratory to solve fundamental concepts in supramolecular science with the help of functionality-tolerant living polymerizations of self-assembling monomers including selforganizable dendronized monomers. Since self-assembling monomers and self-organizable dendronized monomers contain a large diversity of nucleophilic and electrophilic functional groups, very few living polymerization methodologies can be employed in these studies. Some of these living polymerizations have to be performed and employed at very low degrees of polymerization and at room temperature and some other at high temperatures and low degrees of polymerization. Justification for the selection of the method will be provided in each case. With the exception of ring opening metathesis polymerization (ROMP) [8] no living polymerization can compete with living anionic even if they tolerate a larger diversity of functionalities. The selection of living methodologies reported here, was also taking into account, the possibility of challenging Nikos to improve the method or to develop more competitive and less expensive procedures.

2. Synthesis of helical stereoisomers of poly(phenylacetylene)s and of poly(arylacetylene)s by stereoselective and living stereoselective polymerization. The *ortho*-substituent effect

Percec et al reported the stereoselective synthesis and characterization of all helical stereoisomers of polyphenylacetylene (PPA): ciscisoidal, cis-transoidal, trans-cisoidal, and trans-transoidal [9]. The ciscisoidal PPA is crystalline and insoluble and therefore, its structure was demonstrated by X-ray diffraction experiments combined with a calibration plot involving ¹H NMR and IR spectroscopies to determine its ciscontent. ¹H NMR methods were elaborated for the characterization of the other stereoisomers of PPA and for the determination of the ciscontent of the cis-transoidal stereoisomer. A combination of NMR and IR spectroscopy together with a calibration plot was elaborated for the calculation of the cis-content of both insoluble cis-cisoidal and soluble cis-transoidal stereoisomers. A new variant of a Ziegler-Natta catalyst was elaborated to synthesize the cis-cisoidal and cis-transoidal helical stereoisomers of PPA: AlEt₃/Fe(dmg)₂,2Py where dmg stands for dimethylglyoxime, was the most most efficient. (PPh3)2PdCl2 was employed for the synthesis of trans-cisoidal PPA. It was also discovered that thermal isomerization of the cis-cisoidal and cis-transoidal stereoisomers is accompanied by an intramolecular electrocyclization accompanied by aromatization and chain cleavage [9,10]. This thermal intramolecular cyclization accompanied by cis-trans isomerization can be induced also by the heat of polymerization when the polymerization reaction is highly exothermic or is performed at high temperature. The presence of oxygen can also be involved in this sequence of reactions although this issue is not completely elucidated [11-13]. Therefore, electrocyclization should be considered very carrefuly when investigating stereoselective polymerizations of PA. Related combinations of methods were employed for the synthesis of helical stereoisomers of poly(pentadeuterophenylacetylene) [14], poly(α -ethynylnaphthalene) [15,16], poly(ß-ethynylnaphthalene) [17], poly(N-ethynylcarbazole) [18], poly(2-and 3-ethynyl-9-substituted carbazole)s (Scheme 1) [19]. Electron-acceptor and electron-donor aromatic propiolic esters were

Scheme 1. Helical stereoisomers of the poly(arylacetylene)s synthesized by Percec et al.

synthesized and polymerized by anionic polymerization but the stereochemistry of the resulting polymers was not elucidated [20] (Scheme 1). Two proceedings of plenary lectures and a review article discussed in more details these developments [21-23]. In 1974 Higashimura laboratory from Kyoto University together with his graduate student Masuda started to a systematic series of investigations on the polymerization of PA and of many other acetylenic monomers with WCl₆ and MoCl₅, other metal salts and combinations of these salts with reducing agents [24]. Review articles on these topics were published [25,26]. However, this laboratory was mostly interested in kinetic investigations and did not study the stereochemistry of the resulting PPA. In 1983 Percec investigated by a combination of ¹H- and ¹³C NMR the structure of PPA synthesized by WCl₆ and MoCl₅ catalytic systems and demonstrated a stereoselective polymerization to cis-transoidal helical conformation [27-29]. A more refined methodology to determine the cis-content of PPA by expanding the method published in 1977 [9] was also elaborated in these publications. Our 1983 papers on the structural analysis PPA were contemporary with the elegant work of Katz from Columbia University who demonstrated, aided by our stereochemical analysis methods, the stereoselective polymerization of PA with metal carbenes [30] and metal carbynes [31,32]. In 1990 Kunzler and Percec demonstrated the living polymerization of *ortho*-aryl substituted acetylenes by MoCl₅ and WCl₆ based initiators demonstrating the ortho-phenyl substituent effect that suppresses the intramolecular electrocyclization [33]. The ortho-substituent effect was applied by Higashimura laboratory to provide the living metathesis polymerization of [o-(trifluoromethyl)phenyl]acetylene by Mo-based three-component catalysts [34], thus validating the concept of Kunzler and Percec.

Prior to the publication from 1977 that developed the methods to determine the *cis*-content of PPA [9]. Kern from Monsanto Company in US demonstrated the polymerization and oligomerization of PA with the Wilkinson catalyst, RhCl[PPh₃]₃, RhCl₃/LiBH₄ and RhCl₃ [35–37]. Although Kern recorded an X-ray diffractogram for the red-insoluble PPA he could not assign it, as Percec did, to the *cis*-cisoidal PPA since he did not have the combined NMR-IR method elaborated by Percec to quantitatively discriminate between *cis*-cisoidal and *trans*-cisoidal conformers together with their *cis*-content.

Starting in 1986 Anita Furlani together with Maria Vittoria Russo and their students from Sapienza University in Rome replaced the phosphine ligand of the Wilkinson catalyst used by Kern with the piligand cyclooctadiene (COD) combined with a variety of N-based ligands. By screening libraries of Rh complexes Furlani-Russo laboratory discovered with the help of Percec's NMR method that [Rh(COD)Cl]₂ in methanol in the presence of NaOH dissociates the Rh complex yielding high cis-content cis-transoidal PPA in a very short reaction time at room temperature [38-40]. Free standing films of PPA were obtained in the presence of a Rh-imidazole catalysts [41]. These series of elegant experiments pioneered the stereoselective polymerization of PA and of other acetylenic monomers with Rh-based catalysts. In 1998 the same laboratory reported the stereoselective polymerization of PA and pnitrophenylacetylene providing polymers with molecular weight distribution as narrow as 1.08 [42,43]. These and the previous experiments were an alarm clock to the entire community working in this field since narrow polydispersity functional helical PPA could be synthesized by functional groups-tolerant stereoselective Rh-catalysis. These results also indicated the potential of living stereoselective polymerization of PA by Rh-catalysis. The entire scientific community working in this field moved from Ziegler-Natta, WCl₆, MoCl₅ and other catalytic systems to Rh-catalysis since Rh tolerates a large diversity of functional groups during the stereoselective polymerization of PA and many other acetylenic monomers. In 1990 Tabata laboratory replaced the inorganic base NaOH used by Furlani together with [Rh(COD)Cl]₂ in methanol with the organic base NEt₃ and changed COD to NBD to generate [Rh(NBD)Cl]₂ that produced a very active catalytic system that provided long-lived propagating species from PA and from substituted PA during stereoselctive polymerization [44-47]. A comparison of the structure of substituted PPA synthesized by different catalytic systems including Ziegler-Natta, Rh, $MoCl_5$ and WCl_6 was also reported by Tabata laboratory [48]. Tabata laboratory demonstrated also stereoselective polymerization of propiolic esters with Rh-based catalysts [49]. Tabata laboratory employed their Rh-catalytic systems to the development of a large research program on helical polymers that is not the topic of this paper and therefore, it will not be discussed here. Stereoselective polymerization of PA was also accomplished in 1994 by Alper who employed Rh⁺(COD)BPh $_4$ in the presence of Et₃SiH [50]. Stereoselective polymerization of PA with more complex ligands attached to Rh, stereoselective polymerization of PA in water as well as the polymerization of liquid crystal monomers were all accomplished [51–53].

Although symptoms of living stereoselective polymerizations with Rh catalysts were seen in many experiments mentioned above, the first living stereoselective Rh-based catalyst, Rh(C \equiv CC₆H₅)(nbd)[P (C₆H₅)₃]₂ in the presence of DMAP, for the polymerization of PA was reported by Noyori laboratory in 1994 [54]. In 1986 Noyori reported a more active Rh catalyst for the living stereoselective polymerization of PA, [Rh(OCH₃)(NBD)]₂/P(C₆H₅)₃/DMAP, [55]. Noyori laboratory also elaborated additional Rh catalysts with enhanced reactivity for living stereoselective polymerization of PA and compared their reactivity and mechanism of polymerization [56,57].

A Rh-catalyst was developed independently and simultaneously with the Noyori catalysts by Erica Farnetti together with M. Falcon, and N. Marsich from the University of Trieste. They demonstrated stereoselective living polymerization of phenylacetylene promoted by rhodium catalysts with bidentate phosphine ligands [58]. This catalayst involves the use of [Rh(OCH₃)(NBD)]₂ together with the bidentate phoshines dppe, dppp and dppb, rather than monodentate phosphines as Noyori laboratory used. [Rh(OCH3)(NBD)]2/dppb is an excellent catalyst providing very narrow polydispersity PPA with cis-transoidal helical conformation but with low initiator efficiency since it consists of a mixture of reactive and unreactive species. This simple, elegant but forgotten experiment deserves additional investigations. Masuda, who pioneered together with Higashimura the WCl6 and MoCl5-based catalysts discussed above for the stereoselective polymerization of PA, also developed Rh catalysts for the living stereoselective polymerization of PA [59-62].

The most recent developments in stereoselective living polymerization of phenylacetylene mediated by Rh were developed in Maeda laboratory who also reported the first end-functionalization of *cis*-transoidal PPA including its synthesis in water [63–66]. It is also interesting to mention that Maeda laboratory succeeded to develop simple methods for the synthesis of linear and cyclic poly(diphenylacetylene) after he revised the original mechanism proposed for the polymerization of diphenylacetylene with WCl₆/Sn(Ph)₄ [67,68].

Last but not least, we should mention the well-characterized Moalkylidene complexes of Schrock that mediate the living polymerization of (o-trimethylsilylphenyl)acetylene, of ethynylmetallocenes, the living cyclopolymerization of 1,6-heptadiyne derivatives and tantalum-carbene complexes that are effective for living polymerization of 2-butyne [69–73].

3. Self-organizable dendronized helical stereoisomers of PPA eliminate intramolecular electrocyclization accompanied by chain cleavage and generate molecular Machines

The Rh catalyst elaborated by Noyori was employed by our laboratory for the living stereoselective synthesis of *cis*-transoidal PPA dendronized with self-assembling dendrons [19,74–82]. This process allowed the development of a new concept at the interface between polymer science, organic chemistry, supramolecular chemistry, and nanotechnology. The helix-coil transition of PPA accompanied by intramolecular electrocyclization was replaced with an unprecedented and reversible thermally induced *cis*-cisoidal to *cis*-transoidal isomerization that provided a molecular machine interfaced with the real world

for the first time by simple coating of the polymer into a helical dendritic jacket [83] (Fig. 1).

4. From living side-chain liquid crystalline poly(vinyl ether)s, poly(oxazoline)s and poly(siloxane)s to self-organizable dendronized polymers by living cationic polymerizations

In 1986 and 1987 our laboratory pioneered the synthesis of poly (vinyl ether)s, poly(propenyl ether)s and poly(oxazoline)s containing mesogenic side groups as new classes of side-chain liquid crystalline polymers [84,85]. Several years later our laboratory transformed these methodologies into the most successful living polymerizations employed in the molecular engineering of highly functional mesogenic vinyl ethers [86–94]. This methodology was inspired and improved from the living polymerization of vinyl ethers elaborated by O. Webster [95] (Fig. 2).

Percec was a consultant at the Central Research, Experimental Station of DuPont and was involved in the development of this technology. Group transfer polymerization (GTP) also discovered by Owen Webster was another functionality-tolerant living polymerization that was employed in these experiments [91,96–98] (Figs. 3 and 4). Living cationic polymerization of cyclic siloxanes was an additional functionality-tolerant polymerization, that was employed in a two-step process: the cationic polymerization/copolymerization that is relatively sensitive to functionalities, followed by hydrosilylation that tolerates a large diversity of functionalities. This methodology was employed to produce a new mechanism decoupling the motion of the main-chain from the side-groups by phase separation [93,94].

Cationic ring-opening polymerization of oxazolines was discovered simultaneously in four different laboratories [99–102]. It was

subsequently elaborated into a living polymerization process [103] and more recently expanded to the preparation of high molecular weight polymers [104,105]. The functionality tolerance of this polymerization was demonstrated by Percec [106,107] and soon after it was employed in the synthesis of side-chain liquid crystal polymers [85]. The simplest method for the synthesis of oxazolines was also elaborated by our laboratory [108]. This brief discussion on the functionality-tolerant living polymerizations justifies the selection of living polymerization of vinyl ethers [109,110] and oxazolines [111–116] for the first examples of self-organizable dendronized polymers prepared by living polymerizations.

The discovery and direct visualization of A15 [117–123], and Sigma Frank-Kasper [124] and liquid quasi crystal (QLC) [125] phases was made by employing conventional organic reactions and radical polymerizations. However, the demonstration that all these phases can be accomplished within five monomer repeat units of a polyoxazoline could not have been accomplished without the living polymerization of oxazolines [126] (Fig. 5).

5. From self-organizable helical dendronized polymers by living ROMP to monodisperse polymers by self-interrupted living ROMP of dendronized monomers

Living ring opening metathesis polymerization (ROMP) is one of the most functionality-tolerant living polymerization known [115,127–132] and therefore, the early experiments on self-organizable helical dendronized polymers were accomplished by ROMP and even by conventional free radical polymerization experiments [133–137]. The most unusual feature of living ROMP mediated by the Grubbs Ru-catalyst is the extremely long stability of its active species. This facilitated the first

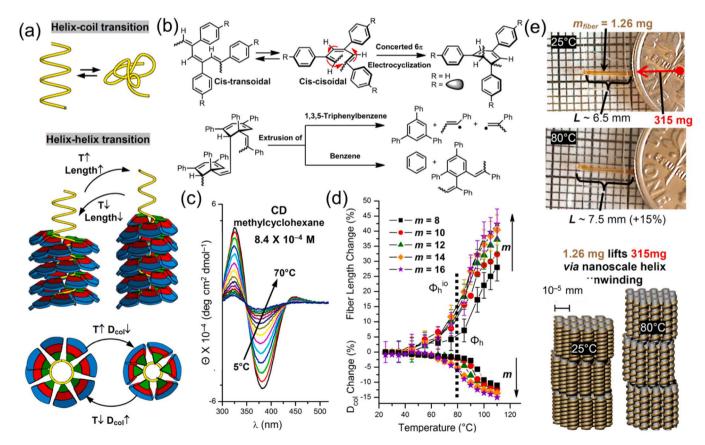


Fig. 1. Molecular machine self-organized from dendronized helical polyphenylacetylenes. Illustration of the helix-coil transition and its transformation into a helix-helix transition that mediates expansion and contraction of the helical structure with temperature (a); expanded images collected by a digital camera at 25 °C and at 80 °C of the oriented fiber (b); variable-temperature CD spectrum (c); comparison of the fiber length change from optical microscopy and column diameter from the fiber XRD for the library of the polyphenylacetylenes with different peripheral alkyl chain length in the dendron (m) (d). The Figure is adapted and modified from [74]. Copyright © 2008, American Chemical Society.

Initiation

$$\begin{array}{c} \text{H}_2\text{C} = \text{CH} \xrightarrow{\text{TfOH}} \text{H}_3\text{C} \xrightarrow{\text{CH} \text{OTf}} \text{H}_3\text{C} \xrightarrow{\text{CH} \text{OTf}} \text{H}_3\text{C} \xrightarrow{\text{CH}_3} \text{H}_3\text{C} \xrightarrow{\text{CH}_$$

Fig. 2. Mechanism of living cationic polymerization of isobutyl vinyl ether. This figure was redrawn from reference 95.

$$(CH_3)_3SiOSi(CH_3)_3 \ + \ x \stackrel{(SiO)_4}{\underset{D'4}{(SiO)_4}} \ + \ y \stackrel{(SiO)_4}{\underset{D'4}{(SiO)_4}} \ + \ y \stackrel{(SiO)_4}{\underset{D'4}{(SiO)_4}} \ \xrightarrow{CF_3SO_2OH \ (TfOH)} \ (CH_3)_3SiO(SiO)_x \stackrel{CH_3}{\underset{H}{(SiO)_y}}SiH_2(CH_3)_3$$

Fig. 3. Synthesis of poly(methylsiloxane-co-dimethylsiloxane)s. The Figure was redrawn from reference 93.

Fig. 4. Polymerization of acrylic monomers by GTP. The Figure was redrawn from reference 97.

synthesis of a monodisperse polymer by self-interrupted living ROMP of a dendronized monomer (Fig. 6) [138]. This experiment could not be accomplished yet with any other living polymerization methodology.

6. Can SET-LRP and ATRP compete with other FUNCTIONALITY-TOLERANt living polymerizations of self-organizable dendronized monomers?

A recent perspective from our laboratory discussed the historical development of different living radical polymerization methodologies and also provides solutions to resolve the incompatibility between single- electron transfer living radical polymerization (SET-LRP) in nondisproportionating solvents [139-154]. The closely related SET-LRP and ATRP differ mostly by the nature of solvent, disproportionating vs non-disproportionating, and Cu species, Cu(0) vs Cu(I), employed as catalyst in the polymerization. Although all living radical polymerizations are under continuous mechanistic investigations the question that we would like to address here is if they can compete with the functionality-tolerant living polymerizations already discussed and what are the most important problems that must be elucidated in order to provide additional developments of this methodology. We will refer particularly to SET-LRP. SET-LRP is the first method to provide LRP of acrylonitrile (AN), vinyl chloride (VC) and of acrylates at room temperature [146,147,155-217] even in air and in the presence of radical inhibitors [163-167]. It provides perfectly bifunctional polymers, lack of termination even at 100 % conversion, proceeds in mixtures of solvents exhibiting cooperative and synergistic solvent effect [168-176], and uses a simple Cu-wire or any other Cu-shape as a catalyst generating the simplest method for continuous industrial scale development from low molar mass up to very high molar mass polymers. SET-LRP can be

also photoinduced [177]. The development of TEMNINI [178–182] and thio-bromo "click" [183–185] allowed for the first time the elaboration of methodologies for the synthesis of dendrimers from conventional monomers. However, as far as the main topic of this brief publication, due to solvent-intolerance which is equivalent with functionality-tolerance, only one helical structure of a self-organizable dendronized polymer was elucidated with the help of SET-LRP, an 8/4 helical structure of a dendronized polymer [186–190] (Fig. 7). Therefore, there is a long way to go until LRPs will compete with the other functionality-tolerant living polymerization methodologies discussed in this brief publication. We expect that solving fundamental problems such as the catalytic effect of solvent [191], and the mixed ligand effect [192,193] may provide the expected developments for LRPs.

7. Conclusion

Functionality-tolerant stereoselective living polymerization is the dream of polymer synthesis for all classes of monomers. Unfortunately, this dream came through only for the stereoselective living polymerization of phenylacetylene and its derivatives, many other arylacetylenes and substituted acetylenes. This brief review/highlight-like article tells the story of this successful discovery. It started with Ziegler-Nata stereoselective polymerization of PA and with the development of NMR combined with IR analysis methods for the determination of all helical isomers of PPA. It continued with $MoCl_5$ and WCl_6 based stereoselective systems, the *ortho*-phenyl substituent effect to generate living polymerization of PA mediated by Rh-catalysts. Ultimately a large diversity of Rh-based initiators mediating stereoselective living polymerization of PA were developed and are already used every day. Since the backbone of

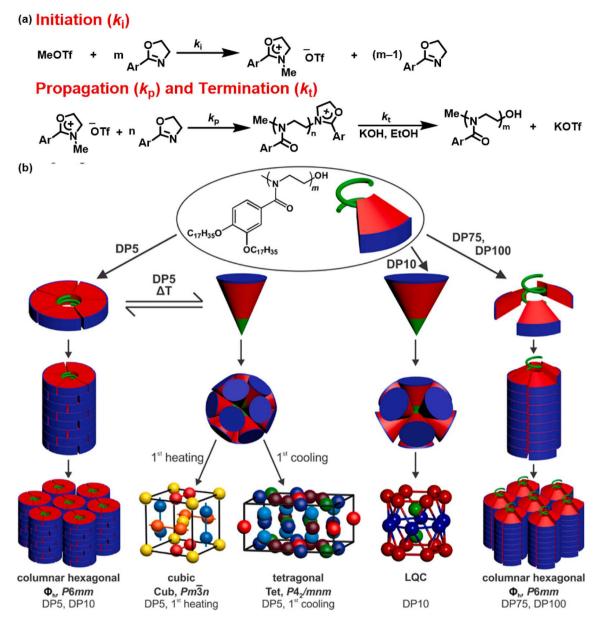


Fig. 5. (a) Living cationic ring opening polymerization of poly oxazolines; (b) Summary of periodic and quasiperiodic arrays self-organized from assemblies of poly [(3,4)17G1-Oxz]. Part (a) of the Figure is redrawn and part (b) was an adapted and modified from reference 126. Copyright © 2018, American Chemical Society.

the helical-PPA provides a chromophore for UV-combined with circular dichroism (CD) experiments, the stereoisomers of PPA provided access to numerous investigations related to helical chirality. Numerous review articles on applications, many written at my invitation are available [23,76,80,82,194-201] and therefore, applications were not discussed here. The Rh-based stereoselective living polymerization can generate polymers from very low molar mass up to very high molar mass. A warning to be considered is, as demonstrated by Percec et al in 1977, the heat of polymerization can induce the thermal-mediated intramolecular electrocyclization accompanied by cis-trans isomerization. Rh provides excellent pathways for functionality-tolerant stereoselective living polymerizations but it is extraordinarily expensive. What is needed to advance this field even father is what Percec laboratory did to metalcatalyzed cross-coupling reactions: replace the very expensive Pd with the very inexpensive but more reactive Ni and create synthetic strategies towards very stable but reactive and inexpensive catalysts [202-209]. Additional functionality-tolerant living polymerizations are the cationic polymerization and cyclopolymerization [210,211] of vinyl ethers and group transfer polymerization of acrylic monomers, both pioneered by

Webster [95-98], the cationic ring-opening polymerization of oxazolines and Ru-mediated ROMP. The first three are ideal for the synthesis of low molar mass polymers either in solution at room temperature or in bulk at high temperature. All are excellent but limited in scope. ROMP is an excellent methodology but it is restricted to the structure of the monomers that can be used. Cationic ring-opening polymerization and copolymerization of cyclic siloxanes followed by hydrosilylation is also a useful method but it is very limited in scope. Unfortunately, we could use in one single case living anionic polymerization to low molar mass dendronized polymers to solve a conceptual problem on this topic [128]. We expect that this brief review/perspective will encourage other laboratories to pursue functionality-tolerant living and stereoselective living polymerization for all classes of monomers in order to bring an even larger bridge between polymer synthesis and supramolecular science [212-217]. A more detailed discussion on the terminology of living polymerization was recently published by our laboratory elsewhere [139] and the readers of this paper are recommended to consult it.

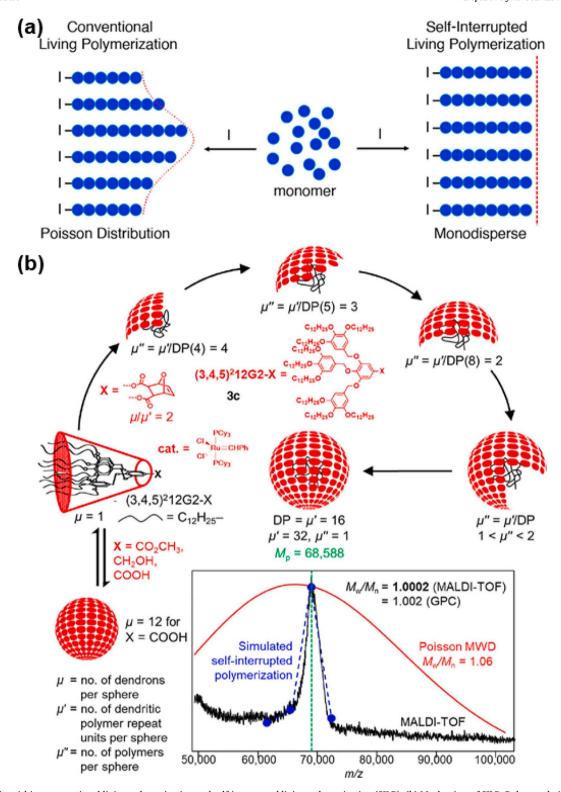


Fig. 6. (a) Distinguishing conventional living polymerization and self-interrupted living polymerization (SILP); (b) Mechanism of SILP. Polymer chains with DP < 16 and nonpolymerizable dendrons with ester, acid, or alcohol apex groups self-assemble into spheres. A sphere can be formed from a single chain with DP = 16, at which point the active polymer chain end is sequestered inside the sphere and polymerization ceases (center). Comparison of experimental (black), simulated (blue), and theoretical Poisson (red) MW distributions. Parts of the Figure were adapted and combined from reference 138. Copyright © 2020, American Chemical Society. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

CRediT authorship contribution statement

Virgil Percec: Conceptualization, Funding acquisition, Methodology, Project administration, Resources, Supervision, Writing – original

draft, Writing – review & editing. **Dipankar Sahoo:** Software, Visualization, Writing – review & editing.

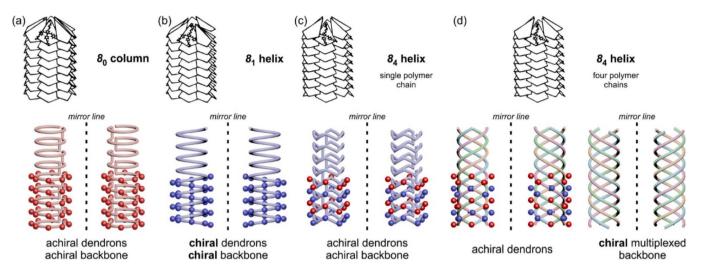


Fig. 7. Schematic representations of four models for the supramolecular columns of 12-4EO-PMA: (a) achiral nonhelical 8_0 column of stacked disks; (b) chiral 8_1 -helical column; (c) achiral 8_4 -helical column with a single polymer chain; (d) 8_4 -helical column with achiral arrangement of dendrons and a chiral backbone multiplex of four polymer chains. In each schematic representation (bottom), the polymer backbone is shown with and without its jacketing dendrons. The Figure is adapted from reference 190. Copyright © 2017, American Chemical Society.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors acknowledged all students and postdocs as all as all collaborators who contributed to the research discussed in this Review. Financial support from the National Science Foundation Grants DMR-2104554, DMR-1720530, and DMR-1807127, the P. Roy Vagelos Chair at the University of Pennsylvania, United States and the Alexander von Humboldt Foundation, Germany is gratefully acknowledged.

References

- [1] M. Szwarc, 'Living' polymers, Nature 178 (1956) 1168–1169, https://doi.org/ 10.1038/1781168a0.
- [2] M. Szwarc, M. Levy, R. Milkovich, Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers¹, J. Am. Chem. Soc. 78 (1956) 2656–2657, https://doi.org/10.1021/ja01592a101.
- [3] M. Szwarc, Living polymers. Their discovery, characterization, and properties, J. Polym. Sci. A Polym. Chem. 36 (1998) IX–XV. https://doi.org/10.1002/(SICI) 1099-0518(19980115)36:1<IX::AID-POLA2>3.0.CO;2-9.
- [4] N. Hadjichristidis, Synthesis of miktoarm star (μ-star) polymers, J. Polym. Sci. A Polym. Chem. 37 (1999) 857–871, https://doi.org/10.1002/(SICI)1099-0518 (19990401)37:7<857::AID-POLA1>3.0.CO;2-P.
- [5] N. Hadjichristidis, H. Iatrou, S. Pispas, M. Pitsikalis, Anionic polymerization: High vacuum techniques, J. Polym. Sci. A Polym. Chem. 38 (2000) 3211–3234, https://doi.org/10.1002/1099-0518(20000915)38:18<3211::AID-POLA10>3.0. CO:2-1.
- [6] N. Hadjichristidis, M. Pitsikalis, S. Pispas, H. Iatrou, Polymers with complex architecture by living anionic polymerization, Chem. Rev. 101 (2001) 3747–3792, https://doi.org/10.1021/cr9901337.
- [7] N. Hadjichristidis, H. Iatrou, M. Pitsikalis, G. Sakellariou, Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid N-carboxyanhydrides, Chem. Rev. 109 (2009) 5528–5578, https://doi.org/10.1021/cr900049t.
- [8] T.M. Trnka, R.H. Grubbs, The development of L₂X₂Ru_CHR olefin metathesis catalysts: an organometallic success story, Acc. Chem. Res. 34 (2001) 18–29, https://doi.org/10.1021/ar000114f.
- [9] C.I. Simionescu, V. Percec, S. Dumitrescu, Polymerization of acetylenic derivatives. XXX. Isomers of polyphenylacetylene, J. Polym. Sci. Polym. Chem. Ed. 15 (1977) 2497–2509, https://doi.org/10.1002/pol.1977.170151018.

- [10] C.I. Simionescu, V. Percec, Thermal cis-trans isomerization of cis-transoidal polyphenylacetylene, J. Polym. Sci. Polym. Chem. Ed. 18 (1980) 147–155, https://doi.org/10.1002/pol.1980.170180114.
- [11] V. Percec, J.G. Rudick, Independent electrocyclization and oxidative chain cleavage along the backbone of cis-poly(phenylacetylene), Macromolecules 38 (2005) 7241–7250, https://doi.org/10.1021/ma051060y.
- [12] V. Percec, J.G. Rudick, P. Nombel, W. Buchowicz, Dramatic decrease of the cis content and molecular weight of cis-transoidal polyphenylacetylene at 23 °C in solutions prepared in air, J. Polym. Sci. A Polym. Chem. 40 (2002) 3212–3220, https://doi.org/10.1002/pola.10421.
- [13] V. Percec, J.G. Rudick, E. Aqad, Diminished helical character in para-substituted cis-transoidal polyphenylacetylenes due to intramolecular cyclization, Macromolecules 38 (2005) 7205–7206, https://doi.org/10.1021/ma051536d.
- [14] C.I. Simionescu, V. Percec, Polypentadeuterophenylacetylene isomers, J. Polym. Sci. B Polym. Lett. Ed. 17 (1979) 421–429, https://doi.org/10.1002/pol.1979.130170705.
- [15] C. Simionescu, S. Dumitrescu, V. Percec, I. Negulescu, I. Diaconu, On the polymerization of acetylenic derivatives. XIX. Synthesis of poly (α-ethynyl naphtalene) and its electrophysical properties, J. Polym. Sci., C Polym. Symp. 42 (1973) 201–216, https://doi.org/10.1002/polc.5070420123.
- [16] C. Simionescu, S. Dumitrescu, V. Percec, On the polymerization of acetylenic derivatives. XXIV. Some structural peculiarities of poly(α-ethynylnaphthalene), Polym. J. 8 (1976) 313–317, https://doi.org/10.1295/polymj.8.313.
- [17] C. Simionescu, S. Dumitrescu, V. Percec, The polymerization of acetylenic derivatives. XXV. synthesis and properties of isomeric poly (β-ethynylnaphthalene), Polym. J. 8 (1976) 139–149, https://doi.org/10.1295/ polymi.8.139.
- [18] S. Dumitrescu, V. Percec, C.I. Simionescu, Polymerization of acetylenic derivatives. XXVII. Synthesis and properties of isomeric poly-N-ethynylcarbazole, J. Polym. Sci. Polym. Chem. Ed. 15 (1977) 2893–2907, https://doi.org/10.1002/ pol.1977.170151206
- [19] V. Percec, M. Obata, J.G. Rudick, B.B. De, M. Glodde, T.K. Bera, S.N. Magonov, V. S.K. Balagurusamy, P.A. Heiney, Synthesis, structural analysis, and visualization of poly(2-ethynyl-9-substituted carbazole)s and poly(3-ethynyl-9-substituted carbazole)s containing chiral and achiral minidendritic substituents, J. Polym. Sci. A Polym. Chem. 40 (2002) 3509–3533, https://doi.org/10.1002/pola.10458.
- [20] C.I. Simionescu, S. Dumitrescu, M. Grigoras, V. Percec, Synthesis and polymerization of aromatic groups containing propiolic esters, J. Polym. Sci. B Polym. Lett. Ed. 17 (1979) 287–292, https://doi.org/10.1002/ pol.1979.130170507.
- [21] C. Simionescu, S. Dumitrescu, V. Percec, Isomeric copolymers of acetylenes, J. Polym. Sci., C Polym. Symp. 64 (2007) 209–227, https://doi.org/10.1002/ polc 5070640116
- [22] C.I. Simionescu, V. Percec, Polyarylacetylenes, Structure and properties, J. Polym. Sci., C Polym. Symp. 67 (2007) 43–71, https://doi.org/10.1002/polc.5070670105.
- [23] C.I. Simionescu, V. Percec, Progress in polyacetylene chemistry, Prog. Polym. Sci. 8 (1982) 133–214, https://doi.org/10.1016/0079-6700(82)90009-0.
- [24] T. Masuda, K. Hasegawa, T. Higashimura, Polymerization of phenylacetylenes. I. Polymerization of phenylacetylene catalyzed by WCI₆ and MoCI₅, Macromolecules 7 (1974) 728–731, https://doi.org/10.1021/ma60042a005.
- [25] T. Masuda, T. Higashimura, Synthesis of high polymers from substituted acetylenes: exploitation of molybdenum- and tungsten-based catalysts, Acc. Chem. Res. 17 (1984) 51–56, https://doi.org/10.1021/ar00098a002.

- [26] T. Masuda, T. Higashimura, Polyacetylenes with substituents: Their synthesis and properties, in: Catalytical and radical polymerization, Springer-Verlag, Berlin/ Heidelberg, 1986, pp. 121–165. https://doi.org/10.1007/BFb0037614.
- [27] V. Percec, Microstructure of polyphenylacetylene obtained by MoCl₅ and WCl₆ type catalysts, Polym. Bull. 10 (1983) 1–7, https://doi.org/10.1007/ BF00263230
- [28] V. Percec, P.L. Rinaldi, A ¹³C-NMR study of the microstructure of polyphenylacetylenes prepared with MoCl₅ and WCl₆, Polym. Bull. 9 (1983) 548–555, https://doi.org/10.1007/BF00265243.
 [29] V. Percec, P.L. Rinaldi, ¹³C-NMR studies of thermally isomerized
- [29] V. Percec, P.L. Rinaldi, ¹³C-NMR studies of thermally isomerized polyphenylacetylenes prepared with MoCl₅ and WCl₆ catalysts, Polym. Bull. 9 (1983) 582–587, https://doi.org/10.1007/BF00307882.
- [30] T.J. Katz, S.J. Lee, Initiation of acetylene polymerization by metal carbenes, J. Am. Chem. Soc. 102 (1980) 422–424, https://doi.org/10.1021/ja00521a094.
- [31] T.J. Katz, S.J. Lee, M. Nair, E.B. Savage, Induction of olefin metathesis by acetylenes, J. Am. Chem. Soc. 102 (1980) 7940–7942, https://doi.org/10.1021/ ia00547a025
- [32] T.J. Katz, T.H. Ho, N.Y. Shih, Y.C. Ying, V.I.W. Stuart, Polymerization of acetylenes and cyclic olefins induced by metal carbynes, J. Am. Chem. Soc. 106 (1984) 2659–2668, https://doi.org/10.1021/ja00321a029.
- [33] J. Kunzler, V. Percec, Living polymerization of aryl substituted acetylenes by MoCl₅ and WCl₆ based initiators: The ortho phenyl substituent effect, J. Polym. Sci. A Polym. Chem. 28 (1990) 1221–1236, https://doi.org/10.1002/ pola.1990.080280522.
- [34] T. Masuda, K. Mishima, J. Fujimori, M. Nishida, H. Muramatsu, T. Higashimura, Living metathesis polymerization of [o-(trifluoromethyl)phenyl]acetylene by molybdenum-based three-component catalysts, Macromolecules 25 (1992) 1401–1404, https://doi.org/10.1021/ma00031a007.
- [35] R.J. Kern, A novel polymerisation involving C-H addition to C≡C catalysed by RhCl(Ph3P)3, Chem. Commun. (london) (1968) 706a–a, https://doi.org/ 10.1039/Cl968000706A.
- [36] P. Ehrlich, R.J. Kern, E.D. Pierron, T. Provder, On the structure, crystallinity, and paramagnetism of polyphenylacetylene, J. Polym. Sci. B Polym. Lett. 5 (1967) 911–915, https://doi.org/10.1002/pol.1967.110051004.
- [37] R.J. Kern, Preparation and properties of isomeric polyphenylacetylenes, J. Polym. Sci. A-1, Polym. Chem. 7 (1969) 621–631, https://doi.org/10.1002/ pol.1969.150070216.
- [38] A. Furlani, C. Napoletano, M. Russo, W.J. Feast, Stereoregular polyphenylacetylene, Polym. Bull. 16 (1986) 311–317, https://doi.org/10.1007/ BF00255002.
- [39] A. Furlani, S. Licoccia, M.V. Russo, A. Camus, N. Marsich, Rhodium and platinum complexes as catalysts for the polymerization of phenylacetylene, J. Polym. Sci. A Polym. Chem. 24 (1986) 991–1005, https://doi.org/10.1002/ pola.1986.080240515.
- [40] A. Furlani, C. Napoletano, M.V. Russo, A. Camus, N. Marsich, The influence of the ligands on the catalytic activity of a series of RhI complexes in reactions with phenylacetylene: Synthesis of stereoregular poly(phenyl) acetylene, J. Polym. Sci. A Polym. Chem. 27 (1989) 75–86, https://doi.org/10.1002/ pola.1989.080270107.
- [41] M.V. Russo, G. Lucci, A. Furlani, A. Camust, N. Marsich, Synthesis of polyphenylacetylene free-standing films in the presence of rhodium-imidazole catalysts, Appl. Organometal. Chem. 6 (1992) 517–524, https://doi.org/ 10.1002/apc.590060608
- [42] M.V. Russo, A. Furlani, R. D'Amato, Synthesis and properties of p-nitrophenylacetylene-phenylacetylene copolymers, J. Polym. Sci. A Polym. Chem. 36 (1998) 93–102, https://doi.org/10.1002/(SICI)1099-0518(19980115)36: 1<93::AID-POLA13>3.0.CO:2-8.
- [43] R. D'Amato, T. Sone, M. Tabata, Y. Sadahiro, M.V. Russo, A. Furlani, Pressure-induced cis to trans isomerization of poly((p-nitrophenyl)acetylene) prepared using Rh complex catalysts. extension of π conjugation length, Macromolecules 31 (1998) 8660–8665, https://doi.org/10.1021/ma980544+.
- [44] M. Tabata, W. Yang, K. Yokota, Polymerization of m-chlorophenylacetylene initiated by [Rh(norbornadiene)Cl]2-triethylamine catalyst containing long-lived propagation species, Polym. J. 22 (1990) 1105–1107, https://doi.org/10.1295/ polymi.22.1105.
- [45] W. Yang, M. Tabata, S. Kobayashi, K. Yokota, A. Shimizu, Synthesis of ultra-high-molecular-weight aromatic polyacetylenes with [Rh(norbornadiene)Cl]2-triethylamine and solvent-induced crystallization of the obtained amorphous polyacetylenes, Polym. J. 23 (1991) 1135–1138, https://doi.org/10.1295/polymi.23.1135.
- [46] M. Lindgren, H.-S. Lee, W. Yang, M. Tabata, K. Yokota, Synthesis of soluble polyphenylacetylenes containing a strong donor function, Polymer 32 (1991) 1531–1534, https://doi.org/10.1016/0032-3861(91)90437-N.
- [47] M. Tabata, W. Yang, K. Yokota, 1H-NMR and UV studies of Rh complexes as a stereoregular polymerization catalysts for phenylacetylenes: Effects of ligands and solvents on its catalyst activity, J. Polym. Sci. A Polym. Chem. 32 (1994) 1113–1120, https://doi.org/10.1002/pola.1994.080320613.
- [48] Y. Fujita, Y. Misumi, M. Tabata, T. Masuda, Synthesis, geometric structure, and properties of poly(phenylacetylenes) with bulkypara-substituents, J. Polym. Sci. A Polym. Chem. 36 (1998) 3157-3163, https://doi.org/10.1002/(SICI)1099-0518(199812)36:17-<3157::AID-POLA18>3.0.CO;2-U.
- [49] M. Tabata, Y. Sadahiro, T. Sone, K. Yokota, Y. Ishikawa, Unusually facil cis to trans isomerization of a polypropiolate bearing a long alkyl chain polymerized using a [Rh(norbornadiene)Cl]2 catalyst: An ESR study, J. Polym. Sci. A Polym. Chem. 36 (1998) 2457–2461, https://doi.org/10.1002/(SICI)1099-0518 (199810)36:14<2457::AID-POLA3-3.0.CO;2-Q.</p>

- [50] Y. Goldberg, H. Alper, Polymerisation of phenylacetylene catalysed by a zwitterionic rhodium(I) complex under hydrosilyation conditions, J. Chem. Soc., Chem. Commun. (1994), https://doi.org/10.1039/c39940001209.
- [51] S.-I. Lee, S.-C. Shim, T.-J. Kim, Catalytic polymerization of phenylacetylene by cationic rhodium and iridium complexes of ferrocene-based ligands, J. Polym. Sci. A Polym. Chem. 34 (1996) 2377–2386, https://doi.org/10.1002/(SICI)1099-0518(19960915)34:12<2377::AID-POLA12>3.0.CO;2-5.
- [52] B.Z. Tang, W.H. Poon, S.M. Leung, W.H. Leung, H. Peng, Synthesis of stereoregular poly(phenylacetylene)s by organorhodium complexes in aqueous media, Macromolecules 30 (1997) 2209–2212, https://doi.org/10.1021/ ma961573s
- [53] B.Z. Tang, X. Kong, X. Wan, X.-D. Feng, Synthesis and properties of stereoregular polyacetylenes containing cyano groups, poly[[4-[[[n-[(4-cyano-4-biphenyl])-oxy]alkyl]oxy]carbonyl]phenyl]acetylenes], Macromolecules 30 (1997) 5620–5628. https://doi.org/10.1021/ma970409h
- [54] Y. Kishimoto, P. Eckerle, T. Miyatake, T. Ikariya, R. Noyori, Living polymerization of phenylacetylenes initiated by Rh(C≡CC6H5)(nbd)[P(C6H5)3]2, J. Am. Chem. Soc. 116 (1994) 12131–12132, https://doi.org/10.1021/ja00105a095.
- [55] Y. Kishimoto, T. Miyatake, T. Ikariya, R. Noyori, An efficient rhodium(I) initiator for stereospecific living polymerization of phenylacetylenes, Macromolecules 29 (1996) 5054–5055, https://doi.org/10.1021/ma960180q.).
- [56] Y. Kishimoto, M. Itou, T. Miyatake, T. Ikariya, R. Noyori, Polymerization of monosubstituted acetylenes with a zwitterionic rhodium(I) complex, Rh+(2,5norbornadiene)[n6-C6H5)B-(C6H5)3], Macromolecules 28 (1995) 6662–6666, https://doi.org/10.1021/ma00123a037.
- [57] Y. Kishimoto, P. Eckerle, T. Miyatake, M. Kainosho, A. Ono, T. Ikariya, R. Noyori, Well-controlled polymerization of phenylacetylenes with organorhodium(I) complexes: mechanism and structure of the polyenes, J. Am. Chem. Soc. 121 (1999) 12035–12044, https://doi.org/10.1021/ja991903z.
- [58] M. Falcon, E. Farnetti, N. Marsich, Stereoselective living polymerization of phenylacetylene promoted by rhodium catalysts with bidentate phosphines, J. Organometal. Chem. 629 (2001) 187–193, https://doi.org/10.1016/S0022-328X(01)00846-4.
- [59] Y. Misumi, T. Masuda, Living polymerization of phenylacetylene by novel rhodium catalysts. quantitative initiation and introduction of functional groups at the initiating chain end, Macromolecules 31 (1998) 7572–7573, https://doi.org/ 10.1021/ma981265p.
- [60] M. Miyake, Y. Misumi, T. Masuda, Living polymerization of phenylacetylene by isolated rhodium complexes, Rh[C(C6H5)=C(C6H5)2](nbd)(4-XC6H4)3P (X = F, Cl), Macromolecules 33 (2000) 6636–6639, https://doi.org/10.1021/ px004077.
- [61] N. Onishi, M. Shiotsuki, T. Masuda, N. Sano, F. Sanda, Polymerization of phenylacetylenes using rhodium catalysts coordinated by norbornadiene linked to a phosphino or amino group, Organometallics 32 (2013) 846–853, https://doi. org/10.1021/om301147n.
- [62] Y. Misumi, K. Kanki, M. Miyake, T. Masuda, Living polymerization of phenylacetylene by rhodium-based ternary catalysts, (diene)Rh(I) complex/ vinyllithium/phosphorus ligand. Effects of catalyst components, Macromol. Chem. Phys. 201 (2000) 2239–2244. https://doi.org/10.1002/1521-3935 (20001101)201:17<2239::AID-MACP2239>3.0.CO;2-P.
- [63] T. Taniguchi, T. Yoshida, K. Echizen, K. Takayama, T. Nishimura, K. Maeda, Facile and versatile synthesis of end-functionalized poly(phenylacetylene)s: A multicomponent catalytic system for well-controlled living polymerization of phenylacetylenes, Angew. Chem. Int. Ed. 59 (2020) 8670–8680, https://doi.org/ 10.1002/anje.202000361.
- [64] S. Sakamoto, T. Taniguchi, Y. Sakata, S. Akine, T. Nishimura, K. Maeda, Rhodium (I) complexes bearing an aryl-substituted 1,3,5-hexatriene chain: Catalysts for living polymerization of phenylacetylene and potential helical chirality of 1,3,5-hexatrienes, Angew. Chem. Int. Ed. 60 (2021) 22201–22206, https://doi.org/ 10.1002/anie.202108032.
- [65] K. Echizen, T. Taniguchi, T. Nishimura, K. Maeda, Well-controlled living polymerization of phenylacetylenes in water: Synthesis of water-soluble stereoregular telechelic poly(phenylacetylene)s, Angew. Chem. Int. Ed. 61 (2022) e202202676.
- [66] K. Echizen, T. Taniguchi, T. Nishimura, K. Maeda, Synthesis of stereoregular telechelic poly(phenylacetylene)s: Facile terminal chain-end functionalization of poly(phenylacetylene)s by terminative coupling with acrylates and acrylamides in rhodium-catalyzed living polymerization of phenylacetylenes, J. Am. Chem. Soc. 143 (2021) 3604–3612, https://doi.org/10.1021/jacs.1c00150.
- [67] M. Miyairi, T. Taniguchi, T. Nishimura, K. Maeda, Facile synthesis of linear and cyclic poly(diphenylacetylene)s by molybdenum and tungsten catalysis, Angew. Chem. Int. Ed. 62 (2023) e202302332.
- [68] M. Miyairi, T. Taniguchi, T. Nishimura, K. Maeda, Revisiting the polymerization of diphenylacetylenes with tungsten(VI) chloride and tetraphenyltin: An alternative mechanism by a metathesis catalytic system, Angew. Chem. Int. Ed. 59 (2020) 14772–14780, https://doi.org/10.1002/anie.202005964.
- [69] H.H. Fox, M.O. Wolf, R. O'Dell, B.L. Lin, R.R. Schrock, M.S. Wrighton, Living cyclopolymerization of 1,6-heptadiyne derivatives using well-defined alkylidene complexes: Polymerization mechanism, polymer structure, and polymer properties, J. Am. Chem. Soc. 116 (1994) 2827–2843, https://doi.org/10.1021/ ia00086a016.
- [70] F.J. Schattenmann, R.R. Schrock, W.M. Davis, Preparation of biscarboxylato imido alkylidene complexes of molybdenum and cyclopolymerization of diethyldipropargylmalonate to give a polyene containing only six-membered rings, J. Am. Chem. Soc. 118 (1996) 3295–3296, https://doi.org/10.1021/ ja9541600.

- [71] M. Buchmeiser, R.R. Schrock, Synthesis of polyenes that contain metallocenes via the living polymerization of ethynylferrocene and ethynylruthenocene, Macromolecules 28 (1995) 6642–6649, https://doi.org/10.1021/ma00123a034.
- [72] R.R. Schrock, S. Luo, N.C. Zanetti, H.H. Fox, Living polymerization of (o-(trimethylsilyl)phenyl)acetylene using "small alkoxide" molybdenum(VI) initiators, Organometallics 13 (1994) 3396–3398, https://doi.org/10.1021/ organolylangs
- [73] R.R. Schrock, Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture), Angew. Chem. Int. Ed. 45 (2006) 3748–3759, https://doi.org/ 10.1002/anie.200600085.
- [74] V. Percec, J.G. Rudick, M. Peterca, P.A. Heiney, Nanomechanical function from self-organizable dendronized helical polyphenylacetylenes, J. Am. Chem. Soc. 130 (2008) 7503–7508, https://doi.org/10.1021/ja801863e.
- [75] V. Percec, E. Aqad, M. Peterca, J.G. Rudick, L. Lemon, J.C. Ronda, B.B. De, P. A. Heiney, E.W. Meijer, Steric communication of chiral information observed in dendronized polyacetylenes, J. Am. Chem. Soc. 128 (2006) 16365–16372, https://doi.org/10.1021/ja0665848.
- [76] J.G. Rudick, V. Percec, Helical chirality in dendronized polyarylacetylenes, New J. Chem. 31 (2007) 1083, https://doi.org/10.1039/b616449h.
- [77] V. Percec, M. Peterca, J.G. Rudick, E. Aqad, M.R. Imam, P.A. Heiney, Self-assembling phenylpropyl ether dendronized helical polyphenylacetylenes, Chem. Eur. J. 13 (2007) 9572–9581, https://doi.org/10.1002/chem.200701008.
- [78] V. Percec, J.G. Rudick, M. Peterca, S.R. Staley, M. Wagner, M. Obata, C. M. Mitchell, W. Cho, V.S.K. Balagurusamy, J.N. Lowe, M. Glodde, O. Weichold, K. J. Chung, N. Ghionni, S.N. Magonov, P.A. Heiney, Synthesis, structural analysis, and visualization of a library of dendronized polyphenylacetylenes, Chem. Eur. J. 12 (2006) 5731–5746, https://doi.org/10.1002/chem.200600009.
- [79] V. Percec, J.G. Rudick, M. Peterca, E. Aqad, M.R. Imam, P.A. Heiney, Synthesis, structural, and retrostructural analysis of helical dendronized poly(1-naphthylacetylene)s, J. Polym. Sci. A Polym. Chem. 45 (2007) 4974–4987, https://doi.org/10.1002/pola.22265.
- [80] J.G. Rudick, V. Percec, Nanomechanical function made possible by suppressing structural transformations of polyarylacetylenes, Macromol. Chem. Phys. 209 (2008) 1759–1768, https://doi.org/10.1002/macp.200800271.
- [81] V. Percec, J.G. Rudick, M. Wagner, M. Obata, C.M. Mitchell, W.-D. Cho, S. N. Magonov, AFM visualization of individual and periodic assemblies of a helical dendronized polyphenylacetylene on graphite, Macromolecules 39 (2006) 7342–7351, https://doi.org/10.1021/ma060845g.
- [82] J.G. Rudick, V. Percec, Induced helical backbone conformations of selforganizable dendronized polymers, Acc. Chem. Res. 41 (2008) 1641–1652, https://doi.org/10.1021/ar800086w.
- [83] B.L. Feringa, W.R. Browne, Macromolecules flex their muscles, Nat. Nanotech. 3 (2008) 383–384, https://doi.org/10.1038/nnano.2008.194.
- [84] J.M. Rodriguez-Parada, V. Percec, Poly(vinyl ether)s and poly(propenyl ether)s containing mesogenic groups: A new class of side-chain liquid-crystalline polymers, J. Polym. Sci. A Polym. Chem. 24 (1986) 1363–1378, https://doi.org/ 10.1002/pola.1986.080240619.
- [85] J.M. Rodriguez-Parada, V. Percec, Synthesis and characterization of liquid crystalline poly(N-acylethyleneimine)s, J. Polym. Sci. A Polym. Chem. 25 (1987) 2269–2279, https://doi.org/10.1002/pola.1987.080250823.
- [86] V. Percec, M. Lee, H. Jonsson, Molecular engineering of liquid crystal polymers by living polymerization. II. Living cationic polymerization of 11-[(4-cyano-4'biphenyl) oxy] undecanyl vinyl ether and the mesomorphic behavior of the resulting polymers, J. Polym. Sci. A, Polym. Chem. 29 (1991) 327–337, https:// doi.org/10.1002/pola.1991.080290305.
- [87] V. Percec, M. Lee, Molecular engineering of liquid-crystal polymers by living polymerization. 3. Influence of molecular weight on the phase transitions of poly {8-[(4-cyano-4-biphenyl)oxy]octyl vinyl ether} and of poly{6-[4-cyano-4-biphenyl)oxy]hexyl vinyl ether}, Macromolecules 24 (1991) 1017–1024, https://doi.org/10.1021/ma00005a008.
- [88] V. Percec, M. Lee, Molecular engineering of liquid crystal polymers by living polymerization. XXIII. Synthesis and characterization of AB block copolymers based on ω-[(4-cyano-4-biphenyl)-oxy]alkyl vinyl ether, 1H, 1H, 2H, 2H-perfluorodecyl vinyl ether, and 2-(4-blphenyloxy)ethyl vinyl ether with 1H, 1H, 2H, 2H-perfluorodecyl vinyl ether, J. Macromol. Sci., Part a. 29 (1992) 723–740, https://doi.org/10.1080/10601329208054112.
- [89] V. Percec, M. Lee, Molecular engineering of liquid crystalline polymers by living polymerization. 10. Influence of molecular weight on the phase transitions of poly{i-[(4-cyano-4-biphenylyl)oxy]alkyl vinyl ether}s with nonyl and decanyl alkyl groups, Macromolecules 24 (1991) 2780–2788, https://doi.org/10.1021/ ma000103022
- [90] V. Percec, D. Tomazos, Molecular engineering of side-chain liquid-crystalline polymers by living cationic polymerization, Adv. Mater. 4 (1992) 548–561, https://doi.org/10.1002/adma.19920040905.
- [91] V. Percec, D. Tomazos, C. Pugh, Influence of molecular weight on the thermotropic mesophases of poly[6-[4-(4-methoxy-8-methylstyryl)phenoxy] hexyl methacrylatel, Macromolecules 22 (1989) 3259–3267, https://doi.org/ 10.1011/ms00198-0112
- [92] V. Percec, C.G. Cho, C. Pugh, D. Tomazos, Synthesis and characterization of branched liquid-crystalline polyethers containing cyclotetraveratrylene-based disk-like mesogens, Macromolecules 25 (1992) 1164–1176, https://doi.org/ 10.1021/ma00029a025.
- [93] V. Percec, B. Hahn, Liquid crystalline polymers containing heterocycloalkanediyl groups as mesogens. 7. Molecular weight and composition effects on the phase transitions of poly(methylsiloxane)s and poly(methylsiloxane-codimethylsiloxane)s containing 2-[4-(2(S)-methyl-1-butoxy)phenyl]-5-(11-

- undecanyl)-1,3,2-dioxaborinane side groups, Macromolecules 22 (1989) 1588–1599, https://doi.org/10.1021/ma00194a014.
- [94] B. Hahn, V. Percec, Liquid-crystalline polymers containing heterocycloalkane mesogenic groups. 5. Synthesis of biphasic chiral smectic polysiloxanes containing 2,5-disubstituted-1,3-dioxane- and 2,5-disubstituted-1,3,2-dioxaborinane-based mesogenic groups, Macromolecules 20 (1987) 2961–2968, https:// doi.org/10.1021/ma00178a001
- [95] C.G. Cho, B.A. Feit, O.W. Webster, Cationic polymerization of isobutyl vinyl ether: Livingness enhancement by dialkyl sulfides, Macromolecules 23 (1990) 1918–1923, https://doi.org/10.1021/ma00209a006.
- [96] O.W. Webster, W.R. Hertler, D.Y. Sogah, W.B. Farnham, T.V. RajanBabu, Group-transfer polymerization. 1. A new concept for addition polymerization with organosilicon initiators, J. Am. Chem. Soc. 105 (1983) 5706–5708, https://doi.org/10.1021/ia00355a039.
- [97] D.Y. Sogah, W.R. Hertler, O.W. Webster, G.M. Cohen, Group transfer polymerization - polymerization of acrylic monomers, Macromolecules 20 (1987) 1473–1488, https://doi.org/10.1021/ma00173a006.
- [98] O.W. Webster, Living polymerization methods, Science 251 (1991) 887–893, https://doi.org/10.1126/science.251.4996.887.
- [99] D.A. Tomalia, D.P. Sheetz, Homopolymerization of 2-alkyl- and 2-aryl-2-oxazolines, J. Polym. Sci. A-1, Polym. Chem. 4 (1966) 2253–2265, https://doi.org/ 10.1002/pol.1966.150040919.
- [100] T. Kagiya, S. Narisawa, T. Maeda, K. Fukui, Ring-opening polymerization of 2-substituted 2-oxazolines, J. Polym. Sci. B Polym. Lett. 4 (1966) 441–445, https://doi.org/10.1002/pol.1966.110040701.
- [101] W. Seeliger, E. Aufderhaar, W. Diepers, R. Feinauer, R. Nehring, W. Thier, H. Hellmann, Recent syntheses and reactions of cyclic imidic esters, Angew. Chem. Int. Ed. Engl. 5 (1966) 875–888, https://doi.org/10.1002/ anie 196608751
- [102] T.G. Bassiri, A. Levy, M. Litt, Polymerization of cyclic imino ethers. I. Oxazolines, J. Polym. Sci. B Polym. Lett. 5 (1967) 871–879, https://doi.org/10.1002/ pol.1967.110050927.
- [103] S. Kobayashi, H. Uyama, Polymerization of cyclic imino ethers: From its discovery to the present state of the art, J. Polym. Sci. A Polym. Chem. 40 (2002) 192–209, https://doi.org/10.1002/pola.10090.
- [104] R. Hoogenboom, Poly(2-oxazoline)s: A polymer class with numerous potential applications, Angew. Chem. Int. Ed. 48 (2009) 7978–7994, https://doi.org/ 10.1002/anie.200901607.
- [105] B.D. Monnery, V.V. Jerca, O. Sedlacek, B. Verbraeken, R. Cavill, R. Hoogenboom, Defined high molar mass poly(2-oxazoline)s, Angew. Chem. Int. Ed. 57 (2018) 15400–15404, https://doi.org/10.1002/anie.201807796.
- [106] V. Percec, Synthesis and polymerization of 2-(β-N-carbazolylethyl)-2-oxazoline and 2-(3,5-dinitrophenyl)-2-oxazoline, Polym. Bull. 5 (1981) 651–657, https://doi.org/10.1007/BF00255306.
- [107] V. Percec, Synthesis of ABA triblock copolymers containing electrono-donor or electrono-acceptor pendant groups in A blocks, Polym. Bull. 5 (1981) 643–649, https://doi.org/10.1007/BP00255305.
- [108] M.N. Holerca, V. Percec, ¹H NMR spectroscopic investigation of the mechanism of 2-substituted-2-oxazoline ring formation and of the hydrolysis of the corresponding oxazolinium salts, Eur. J. Org. Chem. 2000 (2000) 2257–2263, https://doi.org/10.1002/1099-0690(200006)2000:12<2257::AID-EJOC2257>3.0.CO;2-2.
- [109] V. Percec, J. Heck, M. Lee, G. Ungar, A. Alvarez-Castillo, Poly{2-vinyloxyethyl 3,4,5-tris[4-(n-dodecanyloxy)benzyloxy]benzoate}: A self-assembled supramolecular polymer similar to tobacco mosaic virus, J. Mater. Chem. 2 (1992) 1033, https://doi.org/10.1039/jm9920201033.
- [110] V. Percec, M. Lee, J. Heck, H.E. Blackwell, G. Ungar, A. Alvarez-Castillo, Reentrant isotropic phase in a supramolecular disc-like oligomer of 4-[3,4,5-tris(n-dodecanyloxy)benzoyloxy]-4'-[(2-vinyloxy)ethoxy]biphenyl, J. Mater. Chem. 2 (1992) 931–938, https://doi.org/10.1039/JM9920200931.
- [111] V. Percec, M.N. Holerca, Detecting the shape change of complex macromolecules during their synthesis with the aid of kinetics, A New Lesson from Biology, Biomacromolecules 1 (2000) 6–16, https://doi.org/10.1021/bm005507g.
- [112] V. Percec, M.N. Holerca, S.N. Magonov, D.J.P. Yeardley, G. Ungar, H. Duan, S. D. Hudson, Poly(oxazolines)s with tapered minidendritic side groups, The Simplest Cylindrical Models to Investigate the Formation of Two-Dimensional and Three-Dimensional Order by Direct Visualization, Biomacromolecules 2 (2001) 706–728, https://doi.org/10.1021/bm015550j.
- [113] V. Percec, M.N. Holerca, S. Uchida, D.J.P. Yeardley, G. Ungar, Poly(oxazoline)s with tapered minidendritic side groups as models for the design of synthetic macromolecules with tertiary structure. A demonstration of the limitations of living polymerization in the design of 3-D structures based on single polymer chains, Biomacromolecules 2 (2001) 729–740, https://doi.org/10.1021/bm015559l.
- [114] D.J.P. Yeardley, G. Ungar, V. Percec, M.N. Holerca, G. Johansson, Spherical supramolecular minidendrimers self-organized in an "inverse micellar"-like thermotropic body-centered cubic liquid crystalline phase, J. Am. Chem. Soc. 122 (2000) 1684–1689, https://doi.org/10.1021/ja993915q.
- [115] V. Percec, G. Johansson, D. Schlueter, J.C. Ronda, G. Ungar, Molecular recognition directed self-assembly of tubular supramolecular architectures from building blocks containing monodendrons as exo-receptors and crown- or pseudocrown-ethers as endo-receptors, Macromol. Symp. 101 (1996) 43–60, https://doi. org/10.1002/masy.19961010107.
- [116] M.N. Holerca, D. Sahoo, M. Peterca, B.E. Partridge, P.A. Heiney, V. Percec, A tetragonal phase self-organized from unimolecular spheres assembled from a

- substituted poly(2-oxazoline), Macromolecules 50 (2017) 375–385, https://doi.org/10.1021/acs.macromol.6b02298.
- [117] V.S.K. Balagurusamy, G. Ungar, V. Percec, G. Johansson, Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis, J. Am. Chem. Soc. 119 (1997) 1539–1555, https://doi.org/10.1021/ ia963295i
- [118] S.D. Hudson, H.-T. Jung, V. Percec, W.-D. Cho, G. Johansson, G. Ungar, V.S. K. Balagurusamy, Direct visualization of individual cylindrical and spherical supramolecular dendrimers, Science 278 (1997) 449–452, https://doi.org/10.1126/science.278.5337.449.
- [119] V. Percec, C.-H. Ahn, G. Ungar, D.J.P. Yeardley, M. Möller, S.S. Sheiko, Controlling polymer shape through the self-assembly of dendritic side-groups, Nature 391 (1998) 161–164, https://doi.org/10.1038/34384.
- [120] D.R. Dukeson, G. Ungar, V.S.K. Balagurusamy, V. Percec, G.A. Johansson, M. Glodde, Application of isomorphous replacement in the structure determination of a cubic liquid crystal phase and location of counterions, J. Am. Chem. Soc. 125 (2003) 15974–15980, https://doi.org/10.1021/ja037380j.
- [121] V. Percec, C.-H. Ahn, W.-D. Cho, A.M. Jamieson, J. Kim, T. Leman, M. Schmidt, M. Gerle, M. Möller, S.A. Prokhorova, S.S. Sheiko, S.Z.D. Cheng, A. Zhang, G. Ungar, D.J.P. Yeardley, Visualizable cylindrical macromolecules with controlled stiffness from backbones containing libraries of self-assembling dendritic side groups, J. Am. Chem. Soc. 120 (1998) 8619–8631, https://doi.org/10.1021/ja981211v.
- [122] S.A. Prokhorova, S.S. Sheiko, M. Möller, C.-H. Ahn, V. Percec, Molecular imaging of monodendron jacketed linear polymers by scanning force microscopy, Macromol. Rapid Commun. 19 (1998) 359–366, https://doi.org/10.1002/(SICI) 1521-3927(19980701)19:7<359::AID-MARC359>3.0.CO;2-T.
- [123] S.A. Prokhorova, S.S. Sheiko, C.-H. Ahn, V. Percec, M. Möller, Molecular conformations of monodendron-jacketed polymers by scanning force microscopy, Macromolecules 32 (1999) 2653–2660, https://doi.org/10.1021/ma981326j.
- [124] G. Ungar, Y.S. Liu, X.B. Zeng, V. Percec, W.D. Cho, Giant supramolecular liquid crystal lattice, Science 299 (2003) 1208–1211, https://doi.org/10.1126/ science.1078849.
- [125] X. Zeng, G. Ungar, Y. Liu, V. Percec, A.E. Dulcey, J.K. Hobbs, Supramolecular dendritic liquid quasicrystals, Nature 428 (2004) 157–160, https://doi.org/ 10.1038/nature02368.
- [126] M.N. Holerca, D. Sahoo, B.E. Partridge, M. Peterca, X. Zeng, G. Ungar, V. Percec, Dendronized poly(2-oxazoline) displays within only five monomer repeat units liquid quasicrystal, A15 and σ Frank-Kasper phases, J. Am. Chem. Soc. 140 (2018) 16941–16947, https://doi.org/10.1021/jacs.8b11103.
- [127] V. Percec, D. Schlueter, Mechanistic investigations on the formation of supramolecular cylindrical shaped oligomers and polymers by living ring opening metathesis polymerization of a 7-oxanorbornene monomer substituted with two tapered monodendrons, Macromolecules 30 (1997) 5783–5790, https://doi.org/ 10.1021/ma970157k.
- [128] V. Percec, D. Schlueter, J.C. Ronda, G. Johansson, G. Ungar, J.P. Zhou, Tubular architectures from polymers with tapered side groups, Assembly of Side Groups via a Rigid Helical Chain Conformation and Flexible Helical Chain Conformation Induced via Assembly of Side Groups, Macromolecules 29 (1996) 1464–1472, https://doi.org/10.1021/ma951244k.
- [129] V. Percec, C.-H. Ahn, W.-D. Cho, G. Johansson, D. Schlueter, Design of new macromolecular architectures by using quasi-equivalent monodendrons as building blocks, Macromol. Symp. 118 (1997) 33–43, https://doi.org/10.1002/ masy 19971180106
- [130] V. Percec, D. Schlueter, G. Ungar, S.Z.D. Cheng, A. Zhang, Hierarchical control of internal superstructure, diameter, and stability of supramolecular and macromolecular columns generated from tapered monodendritic building blocks, Macromolecules 31 (1998) 1745–1762, https://doi.org/10.1021/ma971459p.
- [131] V. Percec, D. Schlueter, Y.K. Kwon, J. Blackwell, M. Moeller, P.J. Slangen, Dramatic stabilization of a hexagonal columnar mesophase generated from supramolecular and macromolecular columns by the semifluorination of the alkyl groups of their tapered building blocks, Macromolecules 28 (1995) 8807–8818, https://doi.org/10.1021/ma00130a013.
- [132] V. Percec, C.-H. Ahn, T.K. Bera, G. Ungar, D.J.P. Yeardley, Coassembly of a hexagonal columnar liquid crystalline superlattice from polymer(s) coated with a three-cylindrical bundle supramolecular dendrimer, Chem. Eur. J. 5 (1999) 1070–1083, https://doi.org/10.1002/(SICI)1521-3765(19990301)5:3<1070:: AID-CHEM1070>3.0.CC;2-9.
- [133] Y.K. Kwon, C. Danko, S. Chvalun, J. Blackwell, J.A. Heck, V. Percec, Comparison of the supramolecular structures formed by a polymethacrylate with a highly tapered side chain and its monomeric precursor, Macromol. Symp. 87 (1994) 103–114, https://doi.org/10.1002/masy.19940870113.
- [134] V. Percec, J. Heck, D. Tomazos, F. Falkenberg, H. Blackwell, G. Ungar, Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(p-dodecyloxybenzyloxy)benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar mesophase, J. Chem. Soc., Perkin Trans. 1 (1993) 2799–2811, https://doi.org/10.1039/P19930002799.
- [135] V. Percec, D. Tomazos, J. Heck, H. Blackwell, G. Ungar, Self-assembly of taper-shaped monoesters of oligo(ethylene oxide) with 3,4,5-tris(n-dodecan-1-yloxy) benzoic acid and of their polymethacrylates into tubular supramolecular architectures displaying a columnar hexagonal mesophase, J. Chem. Soc., Perkin Trans. 2 (1994) 31–44, https://doi.org/10.1039/P29940000031.
- [136] Y.K. Kwon, S. Chvalun, A.-I. Schneider, J. Blackwell, V. Percec, J.A. Heck, Supramolecular tubular structures of a polymethacrylate with tapered side groups

- in aligned hexagonal phases, Macromolecules 27 (1994) 6129–6132, https://doi.org/10.1021/ma00099a029.
- [137] Y.K. Kwon, S.N. Chvalun, J. Blackwell, V. Percec, J.A. Heck, Effect of temperature on the supramolecular tubular structure in oriented fibers of a poly(methacrylate) with tapered side groups, Macromolecules 28 (1995) 1552–1558, https://doi. org/10.1021/ma00109a029.
- [138] M.N. Holerca, M. Peterca, B.E. Partridge, Q. Xiao, G. Lligadas, M.J. Monteiro, V. Percec, Monodisperse macromolecules by self-interrupted living polymerization, J. Am. Chem. Soc. 142 (2020) 15265–15270, https://doi.org/ 10.1021/jacs.0c07912.
- [139] N. Bensabeh, A. Moreno, D.S. Maurya, J. Adamson, M. Galia, G. Lligadas, V. Percec. Resolving the incompatibility between SET-LRP and non-disproportionating solvents, Giant 15 (2023) 100176; https://doi.org/10.1016/j.giant.2023.100176.
- [140] T. Otsu, Iniferter concept and living radical polymerization, J. Polym. Sci.: Part A, Polym. Chem. 38 (2000) 2121–2136, https://doi.org/10.1002/(SICI)1099-0518 (20000615)38,12<2121::AID-POLA10>3.0.CO;2-X.
- [141] J.-S. Wang, K. Matyjaszewski, Controlled/'living' radical polymerization: atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc. 117 (1995) 5614–5615, https://doi.org/10.1021/ ison/356036
- [142] K. Matyjaszewski, J. Xia, Atom transfer radical polymerization, Chem. Rev. 101 (2001) 2921–2990, https://doi.org/10.1021/cr940534g.
- [143] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium(III)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization, Macromolecules 28 (1995) 1721–1723, https://doi.org/10.1021/ma00109a056.
- [144] M. Ouchi, T. Terashima, M. Sawamoto, Transition metal-catalyzed living radical polymerization: Toward perfection in catalysis and precision polymer synthesis, Chem. Rev. 109 (2009) 4963–5050, https://doi.org/10.1021/cr900234b.
- [145] V. Percec, B. Barboiu, "Living" radical polymerization of styrene initiated by arenesulfonyl chlorides and Cul(bpy)nCl, Macromolecules 28 (1995) 7970–7972, https://doi.org/10.1021/ma00127a057.
- [146] V. Percec, A.V. Popov, E. Ramirez-Castillo, M. Monteiro, B. Barboiu, O. Weichold, A.D. Asandei, C.M. Mitchell, Aqueous room temperature metal-catalyzed living radical polymerization of vinyl chloride, J. Am. Chem. Soc. 124 (2002) 4940-4941, https://doi.org/10.1021/ja0256055.
- [147] V. Percec, A.V. Popov, E. Ramirez-Castillo, O. Weichold, Living radical polymerization of vinyl chloride initiated with iodoform and catalyzed by nascent Cu0/tris(2-aminoethyl)amine or polyethyleneimine in water at 25 °C proceeds by a new competing pathways mechanism, J. Polym. Sci.: Part A, Polym. Chem. 41 (2003) 3283–3299, https://doi.org/10.1002/pola.10937.
- [148] V. Percec, T. Guliashvili, J.S. Ladislaw, A. Wistrand, A. Stjerndahl, M. J. Sienkowska, M.J. Monteiro, S. Sahoo, Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C, J. Am. Chem. Soc. 128 (2006) 14156–14165, https://doi.org/10.1021/ja0654844z.
- [149] B.M. Rosen, V. Percec, Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization, Chem. Rev. 109 (2009) 5069–5119, https://doi.org/10.1021/cr900024j.
- [150] G. David, C. Boyer, J. Tonnar, B. Ameduri, P. Lacroix-Desmazes, B. Boutevin, Use of iodocompounds in radical polymerization, Chem. Rev. 106 (2006) 3936–3962, https://doi.org/10.1021/cr0509612.
- [151] S. Yamago, Precision polymer synthesis by degenerative transfer controlled/ living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents, Chem. Rev. 109 (2009) 5051–5068, https://doi.org/10.1021/cr9001269.
- [152] J. Chiefari, Y.K. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T. A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, E. Rizzardo, S.H. Thang, Living free-radical polymerization by reversible addition—fragmentation chain transfer: The RAFT process, Macromolecules 31 (1998) 5559–5562, https://doi.org/ 10.1021/ma9804951.
- [153] G. Moad, E. Rizzardo, S.H. Thang, RAFT polymerization and some of its applications, Chem. Asian J. 8 (2013) 1634–1644, https://doi.org/10.1002/ asia.201300262.
- [154] D.H. Solomon, Genesis of the CSIRO polymer group and the discovery and significance of nitroxide-mediated living radical polymerization, J. Polym. Sci.: Part A, Polym. Chem. 43 (2005) 5748–5764, https://doi.org/10.1002/ pola.21067.
- [155] B. Barboiu, V. Percec, Metal catalyzed living radical polymerization of acrylonitrile initiated with sulfonyl chlorides, Macromolecules 34 (2001) 8626–8636, https://doi.org/10.1021/ma011248r.
- [156] V. Percec, A.V. Popov, E. Ramirez-Castillo, J.F.J. Coelho, L.A. Hinojosa-Falcon, Non-transition metal-catalyzed living radical polymerization of vinyl chloride initiated with iodoform in water at 25 °C, J. Polym. Sci. A Polym. Chem. 42 (2004) 6267–6282, https://doi.org/10.1002/pola.20481.
- [157] V. Percec, F. Asgarzadeh, Metal-catalyzed living radical graft copolymerization of olefins initiated from the structural defects of poly(vinyl chloride), J. Polym. Sci.: Part A Polym. Chem. 39 (2001) 1120–1135, https://doi.org/10.1002/1099-0518 (20010401)39:7<1120::aid-pola1089>3.0.co;2-z.
- [158] N.H. Nguyen, J. Kulis, H.-J. Sun, Z. Jia, B. van Beusekom, M.E. Levere, D. A. Wilson, M.J. Monteiro, V. Percec, A comparative study of the SET-LRP of oligo (ethylene oxide) methyl ether acrylate in DMSO and in H2O, Polym. Chem. 4 (2013) 144–155, https://doi.org/10.1039/c2py20782f.

- [159] M.J. Sienkowska, V. Percec, Synthesis of α, ω-di(iodo)PVC and of four-arm star PVC with identical active chain ends by SET-DTLRP of VC initiated with bifunctional and tetrafunctional initiators, J. Polym. Sci. A Polym. Chem. 47 (2009) 635–652, https://doi.org/10.1002/pola.23189.
- [160] V. Percec, M.J. Sienkowska, Synthesis of the four-arm star-block copolymer [PVC-b-PBA-CH(CH3)-CO-O-CH2]4C by SET-DTLRP initiated from a tetrafunctional initiator, J. Polym. Sci. A Polym. Chem. 47 (2009) 628–634, https://doi.org/10.1002/pola.23188.
- [161] T. Hatano, B.M. Rosen, V. Percec, SET-LRP of vinyl chloride initiated with CHBr 3 and catalyzed by Cu(0)-wire/TREN in DMSO at 25 °C, J. Polym. Sci.: Part A Polym. Chem. 48 (2009) 164–172, https://doi.org/10.1002/pola.23774.
- [162] A.D. Asandei, V. Percec, From metal-catalyzed radical telomerization to metal-catalyzed radical polymerization of vinyl chloride: Toward living radical polymerization of vinyl chloride, J. Polym. Sci. A Polym. Chem. 39 (2001) 3392–3418, https://doi.org/10.1002/pola.1322.
- [163] M.J. Monteiro, T. Guliashvili, V. Percec, Kinetic simulation of single electron transfer-living radical polymerization of methyl acrylate at 25 °C, J. Polym. Sci. A Polym. Chem. 45 (2007) 1835–1847, https://doi.org/10.1002/pola.21947.
- [164] S. Fleischmann, B.M. Rosen, V. Percec, SET-LRP of acrylates in air, J. Polym. Sci.: Part A Polym. Chem. 48 (2010) 1190–1196, https://doi.org/10.1002/ pola.23879.
- [165] G. Lligadas, V. Percec, SET-LRP of acrylates in the presence of radical inhibitors, J. Polym. Sci.: Part A Polym. Chem. 46 (2008) 3174–3181, https://doi.org/ 10.1002/pola.22635.
- [166] S. Fleischmann, V. Percec, SET-LRP of methyl methacrylate initiated with CCl₄ in the presence and absence of air, J. Polym. Sci. Part a: Polym. Chem. 48 (2010) 2243–2250, https://doi.org/10.1002/pola.24000.
- [167] N.H. Nguyen, V. Percec, SET-LRP of methyl acrylate catalyzed with activated Cu (0) wire in methanol in the presence of air, J. Polym. Sci.: Part A Polym. Chem. 49 (2011) 4756–4765, https://doi.org/10.1002/pola.24922.
- [168] G. Lligadas, V. Percec, Synthesis of perfectly bifunctional polyacrylates by singleelectron-transfer living radical polymerization, J. Polym. Sci.: Part A Polym. Chem. 45 (2007) 4684–4695, https://doi.org/10.1002/pola.22307.
- [169] X. Jiang, B.M. Rosen, V. Percec, Mimicking "nascent" Cu(0) mediated SET-LRP of methyl acrylate in DMSO leads to complete conversion in several minutes, J. Polym. Sci.: Part APolym. Chem. 48 (2009) 403–409, https://doi.org/10.1002/ pola.23797.
- [170] X. Jiang, B.M. Rosen, V. Percec, Immortal SET-LRP mediated by Cu(0) wire, J. Polym. Sci.: Part A Polym. Chem. 48 (2010) 2716–2721, https://doi.org/ 10.1002/pola.24059.
- [171] N.H. Nguyen, M.E. Levere, V. Percec, SET-LRP of methyl acrylate to complete conversion with zero termination, J. Polym. Sci.: Part A Polym. Chem. 50 (2011) 860–873, https://doi.org/10.1002/pola.25838.
- [172] X. Jiang, S. Fleischmann, N.H. Nguyen, B.M. Rosen, V. Percec, Cooperative and synergistic solvent effects in SET-LRP of MA, J. Polym. Sci.: Part A Polym. Chem. 47 (2009) 5591–5605. https://doi.org/10.1002/pola.23689.
- [173] N.H. Nguyen, B.M. Rosen, X. Jiang, S. Fleischmann, V. Percec, New efficient reaction media for SET-LRP produced from binary mixtures of organic solvents and H₂O, J. Polym. Sci.: Part A Polym. Chem. 47 (2009) 5577–5590, https://doi. org/10.1002/nola.23665
- [174] M.E. Levere, N.H. Nguyen, V. Percec, No reduction of CuBr 2 during Cu(0)-catalyzed living radical polymerization of methyl acrylate in DMSO at 25 °C, Macromolecules 45 (2012) 8267–8274, https://doi.org/10.1021/ma301547n.
- [175] N. Zhang, S.R. Samanta, B.M. Rosen, V. Percec, Single electron transfer in radical ion and radical-mediated organic, materials and polymer synthesis, Chem. Rev. 114 (2014) 5848–5958, https://doi.org/10.1021/cr400689s.
- [176] G. Lligadas, S. Grama, V. Percec, Single-electron transfer living radical polymerization platform to practice, develop, and invent, Biomacromolecules 18 (2017) 2981–3008, https://doi.org/10.1021/acs.biomac.7b01131.
- [177] A. Anastasaki, V. Nikolaou, Q. Zhang, J. Burns, S.R. Samanta, C. Waldron, A. J. Haddleton, R. McHale, D. Fox, V. Percec, P. Wilson, D.M. Haddleton, Copper (II)/tertiary amine synergy in photoinduced living radical polymerization: Accelerated synthesis of ω-functional and α, ω-heterofunctional poly(acrylates), J. Am. Chem. Soc. 136 (2014) 1141–1149, https://doi.org/10.1021/ja411780m
- [178] V. Percec, T.K. Bera, B.B. De, Y. Sanai, J. Smith, M.N. Holerca, B. Barboiu, R. B. Grubbs, J.M.J. Fréchet, Synthesis of functional aromatic multisulfonyl chlorides and their masked precursors, J. Org. Chem. 66 (2001) 2104–2117, https://doi.org/10.1021/jo001694x.
- [179] V. Percec, B. Barboiu, C. Grigoras, T.K. Bera, Universal iterative strategy for the divergent synthesis of dendritic macromolecules from conventional monomers by a combination of living radical polymerization and irreversible terminator multifunctional initiator (TERMINI), J. Am. Chem. Soc. 125 (2003) 6503–6516, https://doi.org/10.1021/ja034746j.
- [180] C. Percec, H.-J. Grigoras, Toward self-assembling dendritic macromolecules from conventional monomers by a combination of living radical polymerization and irreversible terminator multifunctional initiator, J. Polym. Sci.: Part A Polym. Chem. 42 (2004) 505–513, https://doi.org/10.1002/pola.11014.
- [181] V. Percec, C. Grigoras, T.K. Bera, B. Barboiu, P. Bissel, Accelerated iterative strategy for the divergent synthesis of dendritic macromolecules using a combination of living radical polymerization and an irreversible terminator multifunctional initiator, J. Polym. Sci.: Part A Polym. Chem. 43 (2005) 4894–4906, https://doi.org/10.1002/pola.20864.
- [182] V. Percec, B. Barboiu, T.K. Bera, M. Van Der Sluis, R.B. Grubbs, J.M.J. Fréchet, Designing functional aromatic multisulfonyl chloride initiators for complex organic synthesis by living radical polymerization, J. Polym. Sci.: Part A Polym.

- Chem. 38 (2000) 4776–4791, https://doi.org/10.1002/1099-0518(200012)38:1 +<4776::AID-POLA160>3.0.CO;2-5.
- [183] B.M. Rosen, G. Lligadas, C. Hahn, V. Percec, Synthesis of dendritic macromolecules through divergent iterative thio-bromo "Click" chemistry and SET-LRP, J. Polym. Sci.: Part A Polym. Chem. 47 (2009) 3940–3948, https://doi. org/10.1002/pola.23518.
- [184] B.M. Rosen, G. Lligadas, C. Hahn, V. Percec, Synthesis of dendrimers through divergent iterative thio-bromo "Click" chemistry, J. Polym. Sci.: Part A, Polym. Chem. 47 (2009) 3931–3939, https://doi.org/10.1002/pola.23519.
- [185] A. Moreno, G. Lligadas, J. Adamson, D.S. Maurya, V. Percec, Assembling complex macromolecules and self-organizations of biological relevance with Cu(I)catalyzed azide-alkyne, thio-bromo, and termini double click reactions, Polymers 15 (2023) 1075, https://doi.org/10.3390/polym15051075.
- [186] M. Peterca, V. Percec, M.R. Imam, P. Leowanawat, K. Morimitsu, Molecular structure of helical supramolecular dendrimers, J. Am. Chem. Soc. 130 (2008) 14840–14852, https://doi.org/10.1021/ja806524m.
- [187] S. Zhang, R.-O. Moussodia, H.-J. Sun, P. Leowanawat, A. Muncan, C.D. Nusbaum, K.M. Chelling, P.A. Heiney, M.L. Klein, S. André, R. Roy, H.-J. Gabius, V. Percec, Mimicking biological membranes with programmable glycan ligands selfassembled from amphiphilic Janus glycodendrimers, Angew. Chem. 126 (2014) 11079–11083, https://doi.org/10.1002/ange.201403186.
- [188] V. Percec, M.R. Imam, M. Peterca, P. Leowanawat, Self-organizable vesicular columns assembled from polymers dendronized with semifluorinated Janus dendrimers act as reverse thermal actuators, J. Am. Chem. Soc. 134 (2012) 4408–4420, https://doi.org/10.1021/ja2118267.
- [189] A. Rapp, I. Schnell, D. Sebastiani, S.P. Brown, V. Percec, H.W. Spiess, Supramolecular assembly of dendritic polymers elucidated by ¹H and ¹³C solidstate MAS NMR spectroscopy, J. Am. Chem. Soc. 125 (2003) 13284–13297, https://doi.org/10.1021/ja035127d.
- [190] K.A. Andreopoulou, M. Peterca, D.A. Wilson, B.E. Partridge, P.A. Heiney, V. Percec, Demonstrating the 8/1-helicity and nanomechanical function of selforganizable dendronized polymethacrylates and polyacrylates, Macromolecules 50 (2017) 5271–5284, https://doi.org/10.1021/acs.macromol.7b01216.
- [191] D.S. Maurya, J. Adamson, N. Bensabeh, G. Lligadas, V. Percec, Catalytic effect of DMSO in metal-catalyzed radical polymerization mediated by disproportionation facilitates living and immortal radical polymerizations, J. Polym. Sci. 61 (2023) 959–978, https://doi.org/10.1002/pol.20220632.
- [192] X. Feng, D.S. Maurya, N. Bensabeh, A. Moreno, T. Oh, Y. Luo, J. Lejnieks, M. Galià, Y. Miura, M.J. Monteiro, G. Lligadas, V. Percec, Replacing Cu(II)Br 2 with Me6-TREN in biphasic Cu(0)/TREN catalyzed SET-LRP reveals the mixedligand effect, Biomacromolecules 21 (2019) 250–261, https://doi.org/10.1021/ acs.biomac.9b01282.
- [193] D.S. Maurya, A. Malik, X. Feng, N. Bensabeh, G. Lligadas, V. Percec, Me₆-TREN/ TREN mixed-ligand effect during SET-LRP in the catalytically active DMSO revitalizes TREN into an excellent ligand, Biomacromolecules 21 (2020) 1902–1919. https://doi.org/10.1021/acs.biomac.9b01765.
- [194] T. Nakano, Y. Okamoto, Synthetic helical polymers: conformation and function, Chem. Rev. 101 (2001) 4013–4038, https://doi.org/10.1021/cr0000978.
- [195] J. Liu, J.W.Y. Lam, B.Z. Tang, Acetylenic polymers: Syntheses, structures, and functions, Chem. Rev. 109 (2009) 5799–5867, https://doi.org/10.1021/ cr900149d.
- [196] K. Akagi, Helical polyacetylene: Asymmetric polymerization in a chiral liquidcrystal field, Chem. Rev. 109 (2009) 5354–5401, https://doi.org/10.1021/ cr900198k.
- [197] E. Yashima, K. Maeda, H. Iida, Y. Furusho, K. Nagai, Helical polymers: synthesis, structures, and functions, Chem. Rev. 109 (2009) 6102–6211, https://doi.org/10.1021/cr900162q.
- [198] F. Freire, E. Quiñoá, R. Riguera, Supramolecular assemblies from poly (phenylacetylene)s, Chem. Rev. 116 (2016) 1242–1271, https://doi.org/ 10.1021/acs.chemrev.5b00280
- [199] E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda, Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions, Chem. Rev. 116 (2016) 13752–13990, https://doi.org/10.1021/acs.chemrev.6b00354.
- [200] A. Xu, T. Masuda, A. Zhang, Stimuli-responsive polyacetylenes and dendronized poly(phenylacetylene)s, Polym. Rev. 57 (2017) 138–158, https://doi.org/ 10.1080/15583724.2016.1169547.
- [201] J. Darkwa, Palladium catalyzed phenylacetylene polymerization to low molecular weight cis-transoidal and trans-cisoidal poly(phenylacetylene)s: A perspective, Polym. Rev. 57 (2017) 52–64, https://doi.org/10.1080/ 15583724.2016.1184165.
- [202] V. Percec, J.-Y. Bae, D.H. Hill, Aryl mesylates in metal catalyzed homocoupling and cross-coupling reactions. 2. Suzuki-type nickel-catalyzed cross-coupling of aryl arenesulfonates and aryl mesylates with arylboronic acids, J. Org. Chem. 60 (1995) 1060–1065, https://doi.org/10.1021/jo00109a044.
- [203] V. Percec, J.-Y. Bae, D.H. Hill, Aryl mesylates in metal catalyzed homo- and cross-coupling reactions. 4. scope and limitations of aryl mesylates in nickel catalyzed cross-coupling reactions, J. Org. Chem. 60 (1995) 6895–6903, https://doi.org/10.1021/jo00126a047.
- [204] V. Percec, G.M. Golding, J. Smidrkal, O. Weichold, NiCl2(dppe)-catalyzed cross-coupling of aryl mesylates, arenesulfonates, and halides with arylboronic acids, J. Org. Chem. 69 (2004) 3447–3452, https://doi.org/10.1021/jo049940i.
- [205] J. Malineni, R. Jezorek, N. Zhang, V. Percec, An indefinitely air-stable σ-Ni^{II} precatalyst for quantitative cross-coupling of unreactive aryl halides and mesylates with aryl neopentylglycolboronates, Synthesis 48 (2016) 2795–2807, https://doi.org/10.1055/s-0035-1562342.

- [206] J. Malineni, R. Jezorek, N. Zhang, V. Percec, NiIICl(1-Naphthyl)(PCy3)2, An air-stable c-NiII precatalyst for quantitative cross-coupling of aryl C-O electrophiles with aryl neopentylglycolboronates, Synthesis 48 (2016) 2808–2815, https://doi.org/10.1055/s-0035-156/3443
- [207] R.L. Jezorek, N. Zhang, P. Leowanawat, M.H. Bunner, N. Gutsche, A.K.R. Pesti, J. T. Olsen, V. Percec, Air-stable nickel precatalysts for fast and quantitative cross-coupling of aryl sulfamates with aryl neopentylglycolboronates at room temperature, Org. Lett. 16 (2014) 6326–6329, https://doi.org/10.1021/ol503061c.
- [208] V. Percec, S. Wang, N. Huang, B.E. Partridge, X. Wang, D. Sahoo, D.J. Hoffman, J. Malineni, M. Peterca, R.L. Jezorek, N. Zhang, H. Daud, P.D. Sung, E.R. McClure, S.L. Song, An accelerated modular-orthogonal Ni-catalyzed methodology to symmetric and nonsymmetric constitutional isomeric AB₂ to AB₉ dendrons exhibiting unprecedented self-organizing principles, J. Am. Chem. Soc. 143 (2021) 17724–17743, https://doi.org/10.1021/jacs.1c08502.
- [209] B.M. Rosen, K.W. Quasdorf, D.A. Wilson, N. Zhang, A.-M. Resmerita, N.K. Garg, V. Percec, Nickel-catalyzed cross-couplings involving carbon—oxygen bonds, Chem. Rev. 111 (2011) 1346–1416, https://doi.org/10.1021/cr100259t.
- [210] R. Rodenhouse, V. Percec, Liquid crystal polymers containing macroheterocyclic ligands 6. synthesis of mesomorphic polymers containing crown ethers by cationic cyclopolymerization and cyclocopolymerization of 1,2-bis(2-ethenyloxyethoxy)benzene derivatives containing mesogenic side groups, Adv. Mater. 3 (1991) 101–104, https://doi.org/10.1002/adma.19910030206.

- [211] R. Rodenhouse, V. Percec, A.E. Feiring, Liquid crystal polymers containing macroheterocyclic ligands. 4. Synthesis of mesomorphic polymers containing crown ethers by cationic cyclocopolymerization of 1,2-bis(2-ethenyloxyethoxy) benzene with mesogenic vinyl ethers, J. Polym. Sci. C Polym. Lett. 28 (1990) 345–355, https://doi.org/10.1002/pol.1990.140281105.
- [212] B.M. Rosen, C.J. Wilson, D.A. Wilson, M. Peterca, M.R. Imam, V. Percec, Dendron-mediated self-assembly, disassembly, and self-organization of complex systems, Chem. Rev. 109 (2009) 6275–6540, https://doi.org/10.1021/cr900157q.
- [213] V. Percec, G. Ungar, M. Peterca, Self-assembly in action, Science 313 (2006) 55–56, https://doi.org/10.1126/science.1129512.
- [214] H.-J. Sun, S. Zhang, V. Percec, From structure to function via complex supramolecular dendrimer systems, Chem. Soc. Rev. 44 (2015) 3900–3923, https://doi.org/10.1039/C4CS00249K.
- [215] V. Percec, Merging macromolecular and supramolecular chemistry into bioinspired synthesis of complex systems, Isr. J. Chem. 60 (2020) 48–66, https:// doi.org/10.1002/ijch.202000004.
- [216] V. Percec, Q. Xiao, Helical chirality of supramolecular columns and spheres self-organizes complex liquid crystals, crystals, and quasicrystals, Isr. J. Chem. 61 (2021) 530–556, https://doi.org/10.1002/ijch.202100057.
- [217] V. Percec, Q. Xiao, Helical self-organizations and emerging functions in architectures, biological and synthetic macromolecules, Bull. Chem. Soc. Jpn. 94 (2021) 900–928, https://doi.org/10.1246/bcsj.20210015.