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A B S T R A C T   

The evolution and development of several examples of functionality-tolerant living polymerizations to the level 
of perfection that they could be employed to solve fundamental concepts in supramolecular science by living 
polymerization of self-assembling monomers and self-organizable dendronized monomers is brie昀氀y reviewed. 
The review focuses on the development of the living polymerization methodology with brief examples on how 
they impacted the 昀椀eld of self-assembly and self-organization. The 昀椀rst polymerization reaction discussed is the 
stereoselective polymerization of phenylacetylene and of other arylacetylenes to generate helical poly(arylace-
tylene) stereoisomers. The transition from functionality non-tolerant to functionality-tolerant stereoselective 
polymerizations and the evolution to functionality-tolerant living stereoselective polymerization of phenyl-
acetylene is used as the main example of this brief review. This living polymerization methodology is followed by 
living polymerization of vinyl ethers, oxazolines, of group transfer polymerization, of cationic ring-opening 
polymerization of cyclic siloxanes combined with hydrosilylation, of ROMP of cylooxanorbornene. This brief 
review is concluded by a brief discussion of the capabilities of the above-mentioned living methodologies with 
living radical polymerizations. The numerous applications in the 昀椀eld of supramolecular science of these living 
methodologies are not reviewed. However, the reader is directed to numerous comprehensive review articles 
discussing these applications. The challenges that remain to be solved in all these functionality-tolerant living 
polymerizations are presented.   

1. Introduction 

In 1956 Michael Szwarc discovered living anionic polymerization of 
styrene initiated by single electron transfer from sodium naphthalene to 
styrene to form the styryl radical anion. The radical of this radical anion 
dimerizes to generate the dianion propagating the polymerization of 
styrene in two directions [1]. In the same year Szwarc laboratory 
demonstrated the synthesis of block copolymers by living anionic 
polymerization [2]. The story of this discovery, the inspiration for it and 
the relaxed de昀椀nition of living polymerization was told by Szwarc in the 
昀椀rst Highlight written at my invitation in the 昀椀rst issue of the Journal of 
Polymer Science: Part A: Polymer Chemistry who pioneered the publi-
cation of highlights, graphical abstracts and front covers in scienti昀椀c 
publications in US [3]. Mechanistic investigations on the living anionic 
polymerization and of the single-electron transfer (SET) processes 

responsible for the initiation step were under investigation and debate 
for many years. Instead of joining mechanistic debates, Nikos Hadji-
christidis embarked on the elaboration of methodologies for the con-
struction of polymers with complex architecture by living anionic 
polymerization of conventional monomers. By designing complex ar-
chitectures with the help of high-quality experiments performed in 
sealed glassware under high vacuum, combined with excellent charac-
terization of the 昀椀nal products, Nikos became the most in昀氀uential sci-
entist involved in this 昀椀eld. There is no debate, as is the case in 
mechanistic studies, when the structural characterization of the 昀椀nal 
product is performed as Nikos always did. He expanded the arsenal of 
living anionic polymerization by combining living anionic with other 
living methodologies. Through design and synthesis of complex archi-
tectures Nikos provided models for commercial block copolymers, 
branched polyethylene, micellar structures, to name just a few. He also 
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optimized the properties of commercial polymers and designed new 
polymers with well-de昀椀ned properties designed by their perfect archi-
tecture. Nikos collaborated and continues to collaborate with the pre-
mier practitioners in polymer chemistry and polymer physics. Instead of 
enumerating his numerous landmark complex structures, techniques 
and methodologies I would rather cite some of his remarkable review 
and highlight articles, written at my invitation, on the methodology of 
living anionic polymerization and on complex architectures synthesized 
by this method since these landmark publications speak by themselves 
[4–7]. He is the very rare case of scientist who shares in great details the 
way he does all his experiments by not turning down to write invited 
papers and review/highlights describing the technique. 

This paper is a combination of review/highlight article that discusses 
mostly the approach used by our laboratory to solve fundamental con-
cepts in supramolecular science with the help of functionality-tolerant 
living polymerizations of self-assembling monomers including self- 
organizable dendronized monomers. Since self-assembling monomers 
and self-organizable dendronized monomers contain a large diversity of 
nucleophilic and electrophilic functional groups, very few living poly-
merization methodologies can be employed in these studies. Some of 
these living polymerizations have to be performed and employed at very 
low degrees of polymerization and at room temperature and some other 
at high temperatures and low degrees of polymerization. Justi昀椀cation 
for the selection of the method will be provided in each case. With the 
exception of ring opening metathesis polymerization (ROMP) [8] no 
living polymerization can compete with living anionic even if they 
tolerate a larger diversity of functionalities. The selection of living 
methodologies reported here, was also taking into account, the possi-
bility of challenging Nikos to improve the method or to develop more 
competitive and less expensive procedures. 

2. Synthesis of helical stereoisomers of poly(phenylacetylene)s 
and of poly(arylacetylene)s by stereoselective and living 
stereoselective polymerization. The ortho-substituent effect 

Percec et al reported the stereoselective synthesis and characteriza-
tion of all helical stereoisomers of polyphenylacetylene (PPA): cis- 
cisoidal, cis-transoidal, trans-cisoidal, and trans-transoidal [9]. The cis- 
cisoidal PPA is crystalline and insoluble and therefore, its structure was 
demonstrated by X-ray diffraction experiments combined with a cali-
bration plot involving 1H NMR and IR spectroscopies to determine its cis- 
content. 1H NMR methods were elaborated for the characterization of 
the other stereoisomers of PPA and for the determination of the cis- 
content of the cis-transoidal stereoisomer. A combination of NMR and IR 
spectroscopy together with a calibration plot was elaborated for the 
calculation of the cis-content of both insoluble cis-cisoidal and soluble 
cis-transoidal stereoisomers. A new variant of a Ziegler-Natta catalyst 
was elaborated to synthesize the cis-cisoidal and cis-transoidal helical 
stereoisomers of PPA: AlEt3/Fe(dmg)2.2Py where dmg stands for 
dimethylglyoxime, was the most most ef昀椀cient. (PPh3)2PdCl2 was 
employed for the synthesis of trans-cisoidal PPA. It was also discovered 
that thermal isomerization of the cis-cisoidal and cis-transoidal stereo-
isomers is accompanied by an intramolecular electrocyclization 
accompanied by aromatization and chain cleavage [9,10]. This thermal 
intramolecular cyclization accompanied by cis–trans isomerization can 
be induced also by the heat of polymerization when the polymerization 
reaction is highly exothermic or is performed at high temperature. The 
presence of oxygen can also be involved in this sequence of reactions 
although this issue is not completely elucidated [11–13].Therefore, 
electrocyclization should be considered very carrefuly when investi-
gating stereoselective polymerizations of PA. Related combinations of 
methods were employed for the synthesis of helical stereoisomers of 
poly(pentadeuterophenylacetylene) [14], poly(α-ethynylnaphthalene) 
[15,16], poly(ß-ethynylnaphthalene) [17], poly(N-ethynylcarbazole) 
[18], poly(2-and 3-ethynyl-9-substituted carbazole)s (Scheme 1) [19]. 
Electron-acceptor and electron-donor aromatic propiolic esters were 

Scheme 1. Helical stereoisomers of the poly(arylacetylene)s synthesized by Percec et al.  
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synthesized and polymerized by anionic polymerization but the ste-
reochemistry of the resulting polymers was not elucidated [20] (Scheme 
1). Two proceedings of plenary lectures and a review article discussed in 
more details these developments [21–23]. In 1974 Higashimura labo-
ratory from Kyoto University together with his graduate student Masuda 
started to a systematic series of investigations on the polymerization of 
PA and of many other acetylenic monomers with WCl6 and MoCl5, other 
metal salts and combinations of these salts with reducing agents [24]. 
Review articles on these topics were published [25,26]. However, this 
laboratory was mostly interested in kinetic investigations and did not 
study the stereochemistry of the resulting PPA. In 1983 Percec investi-
gated by a combination of 1H- and 13C NMR the structure of PPA syn-
thesized by WCl6 and MoCl5 catalytic systems and demonstrated a 
stereoselective polymerization to cis-transoidal helical conformation 
[27–29]. A more re昀椀ned methodology to determine the cis-content of 
PPA by expanding the method published in 1977 [9] was also elaborated 
in these publications. Our 1983 papers on the structural analysis PPA 
were contemporary with the elegant work of Katz from Columbia Uni-
versity who demonstrated, aided by our stereochemical analysis 
methods, the stereoselective polymerization of PA with metal carbenes 
[30] and metal carbynes [31,32]. In 1990 Kunzler and Percec demon-
strated the living polymerization of ortho-aryl substituted acetylenes by 
MoCl5 and WCl6 based initiators demonstrating the ortho-phenyl sub-
stituent effect that suppresses the intramolecular electrocyclization 
[33]. The ortho-substituent effect was applied by Higashimura labora-
tory to provide the living metathesis polymerization of [o-(tri-
昀氀uoromethyl)phenyl]acetylene by Mo-based three-component catalysts 
[34], thus validating the concept of Kunzler and Percec. 

Prior to the publication from 1977 that developed the methods to 
determine the cis-content of PPA [9]. Kern from Monsanto Company in 
US demonstrated the polymerization and oligomerization of PA with the 
Wilkinson catalyst, RhCl[PPh3]3, RhCl3/LiBH4 and RhCl3 [35–37]. 
Although Kern recorded an X-ray diffractogram for the red-insoluble 
PPA he could not assign it, as Percec did, to the cis-cisoidal PPA since 
he did not have the combined NMR-IR method elaborated by Percec to 
quantitatively discriminate between cis-cisoidal and trans-cisoidal con-
formers together with their cis-content. 

Starting in 1986 Anita Furlani together with Maria Vittoria Russo 
and their students from Sapienza University in Rome replaced the 
phosphine ligand of the Wilkinson catalyst used by Kern with the pi- 
ligand cyclooctadiene (COD) combined with a variety of N-based li-
gands. By screening libraries of Rh complexes Furlani-Russo laboratory 
discovered with the help of Percec’s NMR method that [Rh(COD)Cl]2 in 
methanol in the presence of NaOH dissociates the Rh complex yielding 
high cis-content cis-transoidal PPA in a very short reaction time at room 
temperature [38–40]. Free standing 昀椀lms of PPA were obtained in the 
presence of a Rh-imidazole catalysts [41]. These series of elegant ex-
periments pioneered the stereoselective polymerization of PA and of 
other acetylenic monomers with Rh-based catalysts. In 1998 the same 
laboratory reported the stereoselective polymerization of PA and p- 
nitrophenylacetylene providing polymers with molecular weight dis-
tribution as narrow as 1.08 [42,43]. These and the previous experiments 
were an alarm clock to the entire community working in this 昀椀eld since 
narrow polydispersity functional helical PPA could be synthesized by 
functional groups-tolerant stereoselective Rh-catalysis. These results 
also indicated the potential of living stereoselective polymerization of 
PA by Rh-catalysis. The entire scienti昀椀c community working in this 昀椀eld 
moved from Ziegler-Natta, WCl6, MoCl5 and other catalytic systems to 
Rh-catalysis since Rh tolerates a large diversity of functional groups 
during the stereoselective polymerization of PA and many other acety-
lenic monomers. In 1990 Tabata laboratory replaced the inorganic base 
NaOH used by Furlani together with [Rh(COD)Cl]2 in methanol with the 
organic base NEt3 and changed COD to NBD to generate [Rh(NBD)Cl]2 
that produced a very active catalytic system that provided long-lived 
propagating species from PA and from substituted PA during stereo-
selctive polymerization [44–47]. A comparison of the structure of 

substituted PPA synthesized by different catalytic systems including 
Ziegler-Natta, Rh, MoCl5 and WCl6 was also reported by Tabata labo-
ratory [48]. Tabata laboratory demonstrated also stereoselective poly-
merization of propiolic esters with Rh-based catalysts [49]. Tabata 
laboratory employed their Rh-catalytic systems to the development of a 
large research program on helical polymers that is not the topic of this 
paper and therefore, it will not be discussed here. Stereoselective poly-
merization of PA was also accomplished in 1994 by Alper who employed 
Rh+(COD)BPh4– in the presence of Et3SiH [50]. Stereoselective poly-
merization of PA with more complex ligands attached to Rh, stereo-
selective polymerization of PA in water as well as the polymerization of 
liquid crystal monomers were all accomplished [51–53]. 

Although symptoms of living stereoselective polymerizations with 
Rh catalysts were seen in many experiments mentioned above, the 昀椀rst 
living stereoselective Rh-based catalyst, Rh(C cCC6H5)(nbd)[P 
(C6H5)3]2 in the presence of DMAP, for the polymerization of PA was 
reported by Noyori laboratory in 1994 [54]. In 1986 Noyori reported a 
more active Rh catalyst for the living stereoselective polymerization of 
PA, [Rh(OCH3)(NBD)]2/P(C6H5)3/DMAP, [55]. Noyori laboratory also 
elaborated additional Rh catalysts with enhanced reactivity for living 
stereoselective polymerization of PA and compared their reactivity and 
mechanism of polymerization [56,57]. 

A Rh-catalyst was developed independently and simultaneously with 
the Noyori catalysts by Erica Farnetti together with M. Falcon, and N. 
Marsich from the University of Trieste. They demonstrated stereo-
selective living polymerization of phenylacetylene promoted by 
rhodium catalysts with bidentate phosphine ligands [58]. This catalayst 
involves the use of [Rh(OCH3)(NBD)]2 together with the bidentate 
phoshines dppe, dppp and dppb, rather than monodentate phosphines as 
Noyori laboratory used. [Rh(OCH3)(NBD)]2/dppb is an excellent cata-
lyst providing very narrow polydispersity PPA with cis-transoidal helical 
conformation but with low initiator ef昀椀ciency since it consists of a 
mixture of reactive and unreactive species. This simple, elegant but 
forgotten experiment deserves additional investigations. Masuda, who 
pioneered together with Higashimura the WCl6 and MoCl5-based cata-
lysts discussed above for the stereoselective polymerization of PA, also 
developed Rh catalysts for the living stereoselective polymerization of 
PA [59–62]. 

The most recent developments in stereoselective living polymeriza-
tion of phenylacetylene mediated by Rh were developed in Maeda lab-
oratory who also reported the 昀椀rst end-functionalization of cis- 
transoidal PPA including its synthesis in water [63–66]. It is also 
interesting to mention that Maeda laboratory succeeded to develop 
simple methods for the synthesis of linear and cyclic poly(diphenyla-
cetylene) after he revised the original mechanism proposed for the 
polymerization of diphenylacetylene with WCl6/Sn(Ph)4 [67,68]. 

Last but not least, we should mention the well-characterized Mo- 
alkylidene complexes of Schrock that mediate the living polymerization 
of (o-trimethylsilylphenyl)acetylene, of ethynylmetallocenes, the living 
cyclopolymerization of 1,6-heptadiyne derivatives and tantalum- 
carbene complexes that are effective for living polymerization of 2- 
butyne [69–73]. 

3. Self-organizable dendronized helical stereoisomers of PPA 
eliminate intramolecular electrocyclization accompanied by 
chain cleavage and generate molecular Machines 

The Rh catalyst elaborated by Noyori was employed by our labora-
tory for the living stereoselective synthesis of cis-transoidal PPA 
dendronized with self-assembling dendrons [19,74–82]. This process 
allowed the development of a new concept at the interface between 
polymer science, organic chemistry, supramolecular chemistry, and 
nanotechnology. The helix-coil transition of PPA accompanied by 
intramolecular electrocyclization was replaced with an unprecedented 
and reversible thermally induced cis-cisoidal to cis-transoidal isomeri-
zation that provided a molecular machine interfaced with the real world 
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for the 昀椀rst time by simple coating of the polymer into a helical dendritic 
jacket [83] (Fig. 1). 

4. From living side-chain liquid crystalline poly(vinyl ether)s, 
poly(oxazoline)s and poly(siloxane)s to self-organizable 
dendronized polymers by living cationic polymerizations 

In 1986 and 1987 our laboratory pioneered the synthesis of poly 
(vinyl ether)s, poly(propenyl ether)s and poly(oxazoline)s containing 
mesogenic side groups as new classes of side-chain liquid crystalline 
polymers [84,85]. Several years later our laboratory transformed these 
methodologies into the most successful living polymerizations employed 
in the molecular engineering of highly functional mesogenic vinyl ethers 
[86–94]. This methodology was inspired and improved from the living 
polymerization of vinyl ethers elaborated by O. Webster [95] (Fig. 2). 

Percec was a consultant at the Central Research, Experimental Sta-
tion of DuPont and was involved in the development of this technology. 
Group transfer polymerization (GTP) also discovered by Owen Webster 
was another functionality-tolerant living polymerization that was 
employed in these experiments [91,96–98] (Figs. 3 and 4). Living 
cationic polymerization of cyclic siloxanes was an additional 
functionality-tolerant polymerization, that was employed in a two-step 
process: the cationic polymerization/copolymerization that is rela-
tively sensitive to functionalities, followed by hydrosilylation that tol-
erates a large diversity of functionalities. This methodology was 
employed to produce a new mechanism decoupling the motion of the 
main-chain from the side-groups by phase separation [93,94]. 

Cationic ring-opening polymerization of oxazolines was discovered 
simultaneously in four different laboratories [99–102]. It was 

subsequently elaborated into a living polymerization process [103] and 
more recently expanded to the preparation of high molecular weight 
polymers [104,105]. The functionality tolerance of this polymerization 
was demonstrated by Percec [106,107] and soon after it was employed 
in the synthesis of side-chain liquid crystal polymers [85]. The simplest 
method for the synthesis of oxazolines was also elaborated by our lab-
oratory [108]. This brief discussion on the functionality-tolerant living 
polymerizations justi昀椀es the selection of living polymerization of vinyl 
ethers [109,110] and oxazolines [111–116] for the 昀椀rst examples of self- 
organizable dendronized polymers prepared by living polymerizations. 

The discovery and direct visualization of A15 [117–123], and Sigma 
Frank-Kasper [124] and liquid quasi crystal (QLC) [125] phases was 
made by employing conventional organic reactions and radical poly-
merizations. However, the demonstration that all these phases can be 
accomplished within 昀椀ve monomer repeat units of a polyoxazoline 
could not have been accomplished without the living polymerization of 
oxazolines [126] (Fig. 5). 

5. From self-organizable helical dendronized polymers by living 
ROMP to monodisperse polymers by self-interrupted living 
ROMP of dendronized monomers 

Living ring opening metathesis polymerization (ROMP) is one of the 
most functionality-tolerant living polymerization known [115,127–132] 
and therefore, the early experiments on self-organizable helical 
dendronized polymers were accomplished by ROMP and even by con-
ventional free radical polymerization experiments [133–137]. The most 
unusual feature of living ROMP mediated by the Grubbs Ru-catalyst is 
the extremely long stability of its active species. This facilitated the 昀椀rst 

Fig. 1. Molecular machine self-organized from dendronized helical polyphenylacetylenes. Illustration of the helix–coil transition and its transformation into a 
helix–helix transition that mediates expansion and contraction of the helical structure with temperature (a); expanded images collected by a digital camera at 25 çC 
and at 80 çC of the oriented 昀椀ber (b); variable-temperature CD spectrum (c); comparison of the 昀椀ber length change from optical microscopy and column diameter 
from the 昀椀ber XRD for the library of the polyphenylacetylenes with different peripheral alkyl chain length in the dendron (m) (d). The Figure is adapted and modi昀椀ed 
from [74]. Copyright © 2008, American Chemical Society. 
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synthesis of a monodisperse polymer by self-interrupted living ROMP of 
a dendronized monomer (Fig. 6) [138]. This experiment could not be 
accomplished yet with any other living polymerization methodology. 

6. Can SET-LRP and ATRP compete with other FUNCTIONALITY- 
TOLERANt living polymerizations of self-organizable 
dendronized monomers? 

A recent perspective from our laboratory discussed the historical 
development of different living radical polymerization methodologies 
and also provides solutions to resolve the incompatibility between sin-
gle- electron transfer living radical polymerization (SET-LRP) in non- 
disproportionating solvents [139–154]. The closely related SET-LRP 
and ATRP differ mostly by the nature of solvent, disproportionating vs 
non-disproportionating, and Cu species, Cu(0) vs Cu(I), employed as 
catalyst in the polymerization. Although all living radical polymeriza-
tions are under continuous mechanistic investigations the question that 
we would like to address here is if they can compete with the 
functionality-tolerant living polymerizations already discussed and 
what are the most important problems that must be elucidated in order 
to provide additional developments of this methodology. We will refer 
particularly to SET-LRP. SET-LRP is the 昀椀rst method to provide LRP of 
acrylonitrile (AN), vinyl chloride (VC) and of acrylates at room tem-
perature [146,147,155–217] even in air and in the presence of radical 
inhibitors [163–167]. It provides perfectly bifunctional polymers, lack 
of termination even at 100 % conversion, proceeds in mixtures of sol-
vents exhibiting cooperative and synergistic solvent effect [168–176], 
and uses a simple Cu-wire or any other Cu-shape as a catalyst generating 
the simplest method for continuous industrial scale development from 
low molar mass up to very high molar mass polymers. SET-LRP can be 

also photoinduced [177]. The development of TEMNINI [178–182] and 
thio-bromo “click” [183–185] allowed for the 昀椀rst time the elaboration 
of methodologies for the synthesis of dendrimers from conventional 
monomers. However, as far as the main topic of this brief publication, 
due to solvent-intolerance which is equivalent with functionality- 
tolerance, only one helical structure of a self-organizable dendronized 
polymer was elucidated with the help of SET-LRP, an 8/4 helical 
structure of a dendronized polymer [186–190] (Fig. 7). Therefore, there 
is a long way to go until LRPs will compete with the other functionality- 
tolerant living polymerization methodologies discussed in this brief 
publication. We expect that solving fundamental problems such as the 
catalytic effect of solvent [191], and the mixed ligand effect [192,193] 
may provide the expected developments for LRPs. 

7. Conclusion 

Functionality-tolerant stereoselective living polymerization is the 
dream of polymer synthesis for all classes of monomers. Unfortunately, 
this dream came through only for the stereoselective living polymeri-
zation of phenylacetylene and its derivatives, many other arylacetylenes 
and substituted acetylenes. This brief review/highlight-like article tells 
the story of this successful discovery. It started with Ziegler-Nata ster-
eoselective polymerization of PA and with the development of NMR 
combined with IR analysis methods for the determination of all helical 
isomers of PPA. It continued with MoCl5 and WCl6 based stereoselective 
systems, the ortho-phenyl substituent effect to generate living poly-
merizations of PPA and culminated with enantioselective polymeriza-
tion of PA mediated by Rh-catalysts. Ultimately a large diversity of Rh- 
based initiators mediating stereoselective living polymerization of PA 
were developed and are already used every day. Since the backbone of 

Fig. 2. Mechanism of living cationic polymerization of isobutyl vinyl ether. This 昀椀gure was redrawn from reference 95.  

Fig. 3. Synthesis of poly(methylsiloxane-co-dimethylsiloxane)s. The Figure was redrawn from reference 93.  

Fig. 4. Polymerization of acrylic monomers by GTP. The Figure was redrawn from reference 97.  
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the helical-PPA provides a chromophore for UV-combined with circular 
dichroism (CD) experiments, the stereoisomers of PPA provided access 
to numerous investigations related to helical chirality. Numerous review 
articles on applications, many written at my invitation are available 
[23,76,80,82,194–201] and therefore, applications were not discussed 
here. The Rh-based stereoselective living polymerization can generate 
polymers from very low molar mass up to very high molar mass. A 
warning to be considered is, as demonstrated by Percec et al in 1977, the 
heat of polymerization can induce the thermal-mediated intramolecular 
electrocyclization accompanied by cis–trans isomerization. Rh provides 
excellent pathways for functionality-tolerant stereoselective living po-
lymerizations but it is extraordinarily expensive. What is needed to 
advance this 昀椀eld even father is what Percec laboratory did to metal- 
catalyzed cross-coupling reactions: replace the very expensive Pd with 
the very inexpensive but more reactive Ni and create synthetic strategies 
towards very stable but reactive and inexpensive catalysts [202–209]. 
Additional functionality-tolerant living polymerizations are the cationic 
polymerization and cyclopolymerization [210,211] of vinyl ethers and 
group transfer polymerization of acrylic monomers, both pioneered by 

Webster [95–98], the cationic ring-opening polymerization of oxazo-
lines and Ru-mediated ROMP. The 昀椀rst three are ideal for the synthesis 
of low molar mass polymers either in solution at room temperature or in 
bulk at high temperature. All are excellent but limited in scope. ROMP is 
an excellent methodology but it is restricted to the structure of the 
monomers that can be used. Cationic ring-opening polymerization and 
copolymerization of cyclic siloxanes followed by hydrosilylation is also a 
useful method but it is very limited in scope. Unfortunately, we could 
use in one single case living anionic polymerization to low molar mass 
dendronized polymers to solve a conceptual problem on this topic [128]. 
We expect that this brief review/perspective will encourage other lab-
oratories to pursue functionality-tolerant living and stereoselective 
living polymerization for all classes of monomers in order to bring an 
even larger bridge between polymer synthesis and supramolecular sci-
ence [212–217]. A more detailed discussion on the terminology of living 
polymerization was recently published by our laboratory elsewhere 
[139] and the readers of this paper are recommended to consult it. 

Fig. 5. (a) Living cationic ring opening polymerization of poly oxazolines; (b) Summary of periodic and quasiperiodic arrays self-organized from assemblies of poly 
[(3,4)17G1-Oxz]. Part (a) of the Figure is redrawn and part (b) was an adapted and modi昀椀ed from reference 126. Copyright © 2018, American Chemical Society. 
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M. Gerle, M. Möller, S.A. Prokhorova, S.S. Sheiko, S.Z.D. Cheng, A. Zhang, 
G. Ungar, D.J.P. Yeardley, Visualizable cylindrical macromolecules with 
controlled stiffness from backbones containing libraries of self-assembling 
dendritic side groups, J. Am. Chem. Soc. 120 (1998) 8619–8631, https://doi.org/ 
10.1021/ja981211v. 
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