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ABSTRACT: Constitutional isomerism has been previously demonstrated by one of our laboratories to represent a powerful design
strategy for the elaboration of complex functional self-organizations. Here we report the design, synthesis, and characterization of 14
positional, skeletal, and functional constitutional isomeric one-component, multifunctional, sequence-defined, amphiphilic ionizable
Janus dendrimers (IAJDs). Their coassembly by simple injection with luciferase mRNA (Luc-mRNA) to form dendrimersome
nanoparticles (DNPs) was studied. Subsequently, the resulting DNPs were employed to investigate, with screening experiments, the
delivery of Luc-mRNA in vivo. Constitutional isomerism was shown to produce changes of up to two orders of magnitude of the
total-body luciferase activity and targeted luciferase activity to the spleen and liver, of up to three orders of magnitude difference in
targeted luciferase activity to the lungs and up to six orders of magnitude to lymph nodes. These results indicate that constitutional
isomerism may represent not only a simple but also an important synthetic strategy that most probably may impact the activity of all
components of synthetic vectors used in RNA-based nanomedicine, including in mRNA vaccines and therapeutics.

onstitutional isomers possess identical molecular for- methodology to access targeted delivery of mRNA as

mulas but diverse connectivity between their atoms, dendrimersome nanoparticles (DNPs).” Both LNPs and
causing them to exhibit different physical properties. We DNPs have advantages and disadvantages already discussed
previously elaborated on constitutional isomerism as the most in previous publications.”~® Major advantages of IAJDs are
powerful molecular design methodology to discover' and derived from known placement of their functional groups in
predictlf’k the primary functional structure of self-assembling DNPs, their unlimited synthetic capabilities based on
dendrons, dendrimers, and self-organizable dendronized uncomplicated, accelerated, orthogonal-modular synthesis,
polymers, including dendritic dipeptides.l"’ Positional constitu- and their compliant assembly into monodisperse DNPs with
tional isomerism discriminated between periodic helical predictable dimensions via a simple-injection methodology
columnar and spherical-based A15* and ¢ Frank—Kasper transplanted from JDs and JGDs *~*"* rather than by complex
phases as well as quasiperiodic liquid quasicrystal (LQC) self- microfluidic and T-tube technologies required by 4-component
organizations’ (Figure 1a). Constitutional isomerism also LNPs.® Our accelerated methodology accesses rapid screening
selected between supramolecular helical channels and hollow in vivo in less time than any other delivery vector. Since

spheres.'” The same strategy was successful in the design of

< previous constitutional isomeric experiments reported from
cogwheel helical self-organizations that disregard chirality.”

W - s¢ i ‘ our laboratory involved self—assembling_dendronsl_5 and very
Positional constitutional isomers were employed in Frank— few self-assembling amphiphilic JDs, we decided to study

. . 14 .
Kasper and quasmrysta.l nvestigations, while sequence- the role of constitutional isomerism of IAJDs for in vivo
defined skeletal constitutional isomers were utilized in activity of DNPs during Luc-mRNA delivery.

cogwheel experiments.” However, except for several topo-
logical experiments,®® constitutional isomerism was not
employed to design synthetic vectors delivering RNA vaccines
and therapeutics.

The leading industrial vector used for the delivery of mRNA-
based Covid-19 vaccines is a 4-component ionizable lipid-
based nanoparticle (LNP)°® consisting of laboriously synthe-
sized phospholipids, cholesterol, a PEG-conjugated lipid, and
an ijonizable amine. Inspired from our previous work on
amphiphilic Janus dendrimers (JDs)” and sequence-defined
Janus glycodendrimers (JGDs),® our laboratories developed a
1-component multifunctional sequence-defined ionizable
amphiphilic Janus dendrimer (IAJD) to provide a simple

Here we report our investigation of a library of 14 IAJDs
exhibiting positional, functional, and skeletal constitutional
isomerism. These experiments demonstrated up to 2 orders of
magnitude increase in the total-body luciferase (Luc)
expression in vivo and in Luc-delivery to the targeted organs
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Figure 1. (a) Positional constitutional isomerism in dendron self-organization. (b) Structures of IA]Ds containing ionizable amines attached via
benzyl and benzoate esters to hydrophobic fragments. IAJD number and schematics are shown under and near structures.

(liver and spleen), up to 3 orders of magnitude increase in the procedures in higher than 99% purity as reported.”™*
delivery to the lungs, and up to 6 orders of magnitude to lymph Therefore, IAJD synthesis is discussed in the Supporting
nodes (LN). Changes of the targeted organ were also Information.

observed. Nine new IAJDs (294, 297, 300, 253, 301, 308,
309, 310, and 311) were designed to generate pairs of
constitutional isomers complementary to previously reported
but resynthesized IAJDs (87, 93,°° 249,”° 97,°° and 1787).
All were synthesized by accelerated modular-orthogonal

Figures 1b and 2 portray the chemical structures of the
investigated constitutional isomeric IAJDs along with their pK,
values, dimensions and polydispersities of their DNPs
coassembled with Luc-mRNA by injection,” ™ and their
corresponding total-body and targeted-organ Luc expression in
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Figure 2. Library of constitutional isomeric IAJDs shown with corresponding pK, values, along with DNPs coassembled with Luc-mRNA and their
dimensions and polydispersities. Total-body and targeted-organ Luc-mRNA activities were determined 4 h post intravenous (iv) injection (SI).

vivo determined as previously described.”® Note that Luc
activity is determined by whole-body mouse scanning, and
individual organ Luc activity is determined after removal. This
results in summation of organ Luc activities not equaling the
total-body Luc activity (Figures 2 and S1). Functional
constitutional isomers are based on benzyl and benzoate
ester groups. These groups are marked in dotted red ovoidal
contours. IAJDs 87 with 294, 97 with 300, 253 with 301, 178
with 308, and 309 with 310 are pairs of functional
constitutional isomers. Constitutional positional isomers or
regioisomers are IAJDs 294 and 297. Their positional isomeric
groups are 3,5- and 3,4-disubstituted benzoate esters, marked
with dotted blue ovoidal frames. Chain or skeletal constitu-
tional isomers are IAJDs 93 with 249 and are marked with
dotted brown ovoidal patterns.

3629

Reversing the ester group of the functional constitutional
isomer 87 from a flexible benzyl to rigid benzoate (294)
increased total-body Luc activity of 294 from 3.24 X 10" (for
87) to 5.94 X 107 (for 294) while maintaining major targeted
delivery to the spleen with reverse Luc activity. Both 87 and
294 also deliver to LNs, with higher Luc activity exhibited by
294 (10° for 294 vs 10° for 87). Changing the positional
constitutional isomerism of 294 from 3,5- to 3,4- for 297 while
maintaining benzoate ester and 2-ethylhexyl alkyl groups in the
hydrophobic parts decreased total-body Luc activity from 5.94
X 107 for 294 to 5.43 X 10° for 297. This modification is also
reflected by a corresponding reduction of Luc expression in the
spleen activity from 2.97 X 107 for 294 to 2.09 X 10° for 297.
This makes Luc activities in the liver and spleen for 297 almost
identical (10°). The Luc expression in LNs of 294 is 10°, while

https://doi.org/10.1021/jacs.3c13569
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that of 297 is 0.00. A total change of about 1 order of
magnitude in Luc expression in the whole body and also in the
spleen was observed when comparing 87 with 294 and 294
with 297. We next compared the chain or skeletal constitu-
tional isomers 93 with 249. The whole-body Luc expression
for 93 and 249 is 10%. However, for 93, the spleen exhibits the
highest targeted-organ Luc expression (1.61 X 10°), whereas
for 249, the liver has the highest Luc expression (1.20 X 10°).
Additionally, Luc expression in LN is approximately 107 for 93,
compared to about 10° for 249, representing a remarkable
change in Luc expression among the three targeted organs:
spleen, liver, and LN.

To confirm the impact of IAJDs’ conformational isomerism
on Luc expression and organ targeting, we decided to
investigate four additional pairs of functional constitutional
isomers. The benzyl ester 97 exhibits a whole-body Luc
expression of 1.32 X 10% with significant Luc expression in LN
(1.40 X 107 and 8.50 X 10°). The isolated spleen, liver, and
lung exhibit Luc expression levels of 7.00 X 107, 2.00 X 107,
and 1.20 X 107, respectively. Reversing the benzyl ester of 97
into benzoate ester for 300 reduces the whole-body Luc
expression to 5.15 X 10° with LN Luc activity dropping to
1.00 X 10° and 1.44 X 10° Isolated spleen also exhibits a
reduced Luc expression of 3.95 X 10° Replacing the 1-(2-
hydroxyethyl)piperazine ionizable amine of 97 and 300 with 1-
2(2-hydroxyethoxy)ethyl piperazine provided the constitu-
tional isomeric 253 and 301, respectively. The benzyl ester
253 exhibits a total-body Luc activity of 3.10 X 10° with the
highest organ Luc activity of 2.20 X 10° for the spleen. Its
constitutional isomeric benzoate ester 301 displays a total-
body luciferase activity of 1.50 X 10° with the highest organ
Luc activity of 3.81 X 107 for spleen and 3.08 X 10 for liver.
The LNs of both IAJDs 253 and 301 exhibited 1 order of
magnitude higher Luc activity (10° vs 10°) for 301. This
experiment demonstrated that constitutional isomerism of the
ester group dramatically affects total-body Luc activity of IAJD
regardless of the structure of its ionizable group. In the next
experiments, we changed the ionizable amine from 1-2(2-
hydroxyethoxy)ethyl piperazine back to 1-(2-hydroxyethyl)-
piperazine and the hydrophobic part of the IAJD from
symmetric as it was the case for 87, 294, 297, 93, 249, 97,
300, 253, and 301 to nonsymmetric by employing a
combination of octadecyl and tridecyl alkyl groups to produce
178 and 308. IAJD 178 showed a total-body Luc activity of
4.05 x 10%, with a highest organ Luc activity of 9.96 X 107,
nearly 10%, observed in liver. In contrast, 308 exhibited a total-
body Luc activity of 3.99 X 107, with the highest Luc activity of
1.30 X 107 in spleen. It is interesting to observe that the Luc
activities in the spleen, liver, and lung are also in the range of
107 (523 X 107, 9.96 X 107, and 2.81 X 107) for 178. The
activity of 308 to the lung was only 1.00 X 10° which is a
difference of two orders of magnitude. Very high Luc activities
in LNs of 178 (3.48 X 107 and 3.01 X 10”) were observed,
while two orders of magnitude lower LN-Luc activities were
detected for 308 (6.11 X 10° and 8.98 X 10°).

Reversing back from the 1-(2-hydroxyethyl)piperazine
ionizable amine to the 1-2(2-hydroxyethoxy)ethyl piperazine
while maintaining the nonsymmetric hydrophobic part, we
generated the pair of constitutional isomeric IAJDs 309 and
310. IAJD 309 displayed the maximum total-body Luc activity
of 2.78 X 107, with Luc activity of 2.20 X 10 in spleen, 4.90 X
10° in liver, and 3.1 X 10° in lungs, as well as 1.10 X 10° and
7.10 X 10° in LNs. IAJD 310 exhibits only slightly higher total
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and targeted activities than 309, supporting that a more flexible
ionizable amine increases the rate of assembly of the benzoate
ester close to that of the benzyl ester. DNPs of 311, the
constitutional isomer of 297, are, as expected from the bilayer
assembly discussion that follows, unstable and unable to be
investigated in vivo.

Figures 3 and S1 illustrate a quantitative comparison of all
data from Figure 2, including the statistical analysis. Excellent
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Figure 3. Comparison of total-body flux and targeted-organ Luc
activities of DNPs assembled from constitutional-isomers-based
IAJDs demonstrating the structure—activity dependence.

reproducibility of in vivo results was observed for most IAJDs
(Figure S2), although these are only screening experiments. A
brief inspection of Figure 3 indicates that IAJDs 93, 97, 249,
301, and 178 exhibit total-body flux values close to the highest
current LNPs that are in the range of 10° to the liver.”**
However, most efficient delivery vectors for vaccines must
deliver to LN or, preferably, to spleen and LN, as is the case
for 93, 97, 249, 301, and 178. It is interesting to remark that
93 and 249 are skeletal constitutional isomers, 301 is the
functional isomer of 253, while 178 and 97 are the functional
constitutional isomers of 308 and 300. Notably, the benzoate
ester 301 exhibits higher Luc activity compared to its benzyl
ester counterpart, 253. At the same time, 178 is a benzyl ester
that shows higher Luc activity than its constitutional isomeric
benzoate 308. This trend is not statistically significant. All
benzoate ester constitutional isomers containing the 1-2(2-
hydroxyethoxy)ethyl piperazine as ionizable amine exhibit
higher activity than their benzyl esters with the same ionizable
amine. However, all IAJDs containing the 1-(2-hydroxyethyl)-
piperazine ionizable amine exhibit higher Luc activity as benzyl
esters compared to benzoate esters (e.g., 87 vs 294, 249 vs 93,
97 vs 300, and 178 vs 308). This could be due to increased
overall flexibility of the benzoate IAJDs containing the more
flexible 1-(2-hydroxyethyl)piperazine ionizable amine group.
IAJDs with benzoate ester form more thermodynamically
stable but slower self-assembling bilayers than their counter-
parts with benzyl esters (Figure 4). The complementarity
between kinetics and thermodynamics is seen in Figure 4,

https://doi.org/10.1021/jacs.3c13569
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IAJD 87 (b) IAJD 294

IAJD 93

IAJD 253

Figure 4. Molecular models of bilayers assembled from (a) IAJD 87,
(b) TAJD 294, (c) IAJD 297, (d) IAJD 93, (e) IAJD 253, and (f) IAJD
301 with Supplemental Movies 1—6 in the SI, respectively.

supporting previous models for other IAJDs.”** The bilayers of
DNPs from 87 and 294 are partially interdigitated in the
hydrophobic part that leads to higher bilayer stability but
slower assembly. In contrast, end-to-end assembly of 297, 93,
253, and 301 eliminates this kinetic requirement, reaching
equilibrium faster,'” although bilayer stability is higher for
three and lower for two alkyl groups.”® IAJDs 297, 308, and
309 show higher bulk viscosity, likely due to their hydrophobic
interdigitation”"*
bilayer stability.
In conclusion, the results reported here demonstrated that

making their assembly slow despite high

constitutional isomerism represents an important synthetic
methodology to orchestrate the total-body and targeted-organ
activities of 1-component IAJDs coassembled with Luc-mRNA
into DNPs (see cryo-TEM in Figure S8) and to endow the
stability of the hydrophobic part of their bilayer. Although the
results reported here are screening experiments and, therefore,
have not been optimized for formulation, they demonstrated
access to a simple, if not the simplest, synthetic strategy to
engineer total-body and targeted activities to the spleen, liver,
lung, and LNs of DNPs with up to 6 orders of magnitude.
These results are complementary to experiments with achiral
symmetric and chiral nonsymmetic constitutional isomeric JDs
based on glyceride,”

i indicating that constitutional isomerism
must be taken into consideration when designing individual
parts of 4-component LNPs including phospholipids, lipid-

conjugated-PEG, ionizable amines,6
9f—m

as well as other
vectors.
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