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Abstract: We study q-pushTASEP, a discrete time interacting particle system whose
distribution is related to the q-Whittaker measure. We prove a uniform in N lower tail
bound on the fluctuation scale for the location xN (N ) of the right-most particle at time
N when started from step initial condition. Our argument relies on a map from the q-
Whittaker measure to a model of periodic last passage percolation (LPP) with geometric
weights in an infinite strip that was recently established in Imamura et al. (Skew RSK
dynamics: Greene invariants, affine crystals and applications to q-Whittaker polynomi-
als. arXiv:2106.11922, 2021). By a path routing argument we bound the passage time
in the periodic environment in terms of an infinite sum of independent passage times for
standard LPP on N × N squares with geometric weights whose parameters decay geo-
metrically. To prove our tail bound result we combine this reduction with a concentration
inequality, and a crucial new technical result—lower tail bounds on N × N last passage
times uniformly over all N ∈ N and all the geometric parameters in (0, 1). This technical
result uses Widom’s trick (Widom in Int Math Res Notices 2002(9):455–464, 2002) and
an adaptation of an idea of Ledoux introduced for the GUE (Ledoux, in: GAFA seminar
notes, 2005) to reduce the uniform lower tail bound to uniform asymptotics for very
high moments, up to order N , of the Meixner ensemble. This we accomplish by first
obtaining sharp uniform estimates for factorial moments of the Meixner ensemble from
an explicit combinatorial formula of Ledoux (Electron J Probab 10:1116–1146, 2005),
and translating them to polynomial bounds via a further careful analysis and delicate
cancellation.
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1. Introduction, Main Results, and Proof Ideas

The Kardar–Parisi–Zhang (KPZ) universality class consists of a large variety of models,
all of which are believed to exhibit certain universal behaviors; for example, common
scaling limits. Most progress in this area has been in the setting of certain models that
are known as exactly solvable or integrable, which possess certain algebraic structure
that makes their analysis within reach, in comparison to non-integrable models.

In such models, it is often important for applications to have control on the upper
and lower tails of the KPZ observable on the fluctuation scale. Of the two, it is more
challenging to obtain this control on the lower tail (i.e., the one that typically has cubic
tail exponent), though in what are known as zero-temperature models, such as TASEP
and last passage percolation, a variety of techniques have been developed over the last
two decades to do this (e.g., Riemann–Hilbert methods or analysis of determinantal
representations; see Sect. 1.3 for a detailed discussion). In contrast, for positive tem-
perature models such as the KPZ equation, stochastic six vertex model, ASEP, and
polymer models, only a few techniques have recently been developed to approach this
problem. Further, each technique only seems to be applicable in particular cases; due to
fundamental limitations, there is no broad coverage.

In this paper we study the exactly solvable, discrete time interacting particle system
model of geometric q-pushTASEP, a positive temperature model, but one for which
the few methods available to obtain lower tails in positive temperature do not seem
applicable. We develop a new technique for lower tail estimates on the position of
the right-most particle, harnessing recently discovered connections between it and last
passage percolation.

We start by introducing the model of study and our main results.

1.1. Principal objects and models of study.

1.1.1. Some notation and distributions The q-Pochhammer symbol (z; q)n is given by

(z; q)n =
n−1∏

i=0

(1 − zqi ) for n = 0, 1, . . . ,

with (z; q)∞ defined by replacing n − 1 by ∞. The q-binomial coefficient is given by
(
n

k

)

q
= (q; q)n

(q; q)k(q; q)n−k
. (1)

The q-deformed beta binomial distribution is a distribution with parameters q, ξ ,
η, and m. Here m ∈ Z≥0 and the distribution is defined on {0, 1, . . . ,m}; the other
parameters are non-negative real numbers, and are restricted to more specific domains
in certain cases that we will describe. For s ∈ {0, . . . ,m}, the probability mass function
at s is given by

ϕq,ξ,η(s | m) = ξ s
(η/ξ ; q)s(ξ ; q)m−s

(η; q)m
·
(
m

s

)

q
.
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We refer the reader to [MP16, Section 6.1] for more information regarding this dis-
tribution, including a discussion on why the above expression sums (over s = 0, . . . ,m)
to 1 when the expression is well-defined and non-negative.

A special case is the q-Geometric distribution of parameter ξ (denoted q-Geo(ξ )),
obtained by taking m = ∞, η = 0, and q, ξ ∈ (0, 1], so that the probability mass
function at s ∈ Z≥0 is given by

ϕq,ξ,η(s | ∞) = ξ s
(ξ ; q)∞
(q; q)s

.

1.1.2. The model of q-pushTASEP The q-pushTASEP is a discrete time interacting
particle system on Z first introduced in [MP16]. We have N ∈ N many particles which
occupy distinct sites inZ, and we label their position at time T ∈ Z≥0 in increasing order
as x1(T ) < x2(T ) < · · · < xN (T ); we denote the collection of these random variables
by x(T ). We also specify a collection of parameters a1, . . . , aN and b1, b2, . . ., all lying
in (0, 1).

The evolution from time T to T + 1 is as follows (see Fig. 1). The particle positions
are updated from left to right: for k ∈ {1, . . . , N },

xk(T + 1) = xk(T ) + Jk,T + Pk,T ,

where Jk,T and Pk,T are independent random variables with Jk,T ∼ q-Geo(akbT+1)

(encoding a jump contribution) and

Pk,T ∼ ϕq−1,ξ=qgapk (T ),η=0

(· | xk−1(T + 1) − xk−1(T )
)
,

(encoding a push contribution) where gapk(T ) = xk(T )−xk−1(T )−1, x0(T ) = −∞ by
convention and, by a slight abuse of notation, ∼ means the LHS is distributed according to
the measure which has probability mass function given by the RHS. In other words, Pk,T
is a q-deformed beta binomial random variable with parameters q−1, ξ = qgapk (T ), η =
0, and m = xk−1(T + 1)− xk−1(T ). Note in particular that x1’s motion does not depend
on that of any other particle, i.e., marginally it follows a random walk. Further, the
process is an exclusion process, i.e., particles always occupy distinct sites and also
remain ordered.1

This model is integrable. More precisely, the distribution of xN (T ), started from
a special initial condition known as step initial condition where xk(0) = k, can be
related to a marginal of the q-Whittaker measure, a measure on partitions (equivalently,
Young diagrams) defined in terms of q-Whittaker polynomials. This connection will be
important for our arguments, and we will discuss it more in Sect. 1.5.

Apart from integrability, another reason q-pushTASEP is of interest is because it
degenerates to other well-known models. Indeed, in the q → 1 limit, when appropriately
renormalized, xN (T ) converges to the free energy of the log-gamma polymer model.
While our results will not carry over to this limit, we will make some further remarks
about this relationship between the models in Sect. 1.7. We also mention that after
speeding up time and letting the jump rates go to zero, q-pushTASEP converges to
the continuous time q-pushTASEP [BP16] which, when q = 0, is the well-known
pushTASEP [BF08].

1 Let �k−1(T + 1) = xk−1(T + 1) − xk−1(T ) and j be the value the probability mass function in the
RHS of the previous display is evaluated at. When �k−1(T + 1) ≥ gapk (T ), the probability mass function is
zero unless j ≥ �k−1(T + 1) − gapk (T ), as otherwise the factor (qgapk (T ); q−1)�k−1(T+1)− j is zero. It is
immediate from the definition that this implies xk (T ) + j ≥ xk−1(T + 1) + 1, thus ordering and exclusion are
maintained.
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xk+1(T + 1) = xk+1(T ) + 2xk(T ) = xk(T − 1) + 1

Fig. 1. A depiction of one step in the evolution of q-pushTASEP. The dotted circle is the position of the kth
particle at time T − 1, and the solid black circle is it after it moves to its position at time T . The left red circle
is the (k + 1)th particle at time T and the right one the same at time T + 1. The movement of the kth particle
in the previous step effects the Pk,T contribution to the total jump size of 2 of the (k + 1)th particle at time T

1.1.3. Law of large numbers and asymptotic Tracy–Widom fluctuations of q-pushTASEP
In this work we will focus on q-pushTASEP when the parameters are equal, i.e., u =
ai = b j for all i = 1, . . . , N and j = 1, 2, . . . for some u ∈ (0, 1), and when the initial
condition is xk(0) = k for k = 1, . . . , N . In this setting, and under some additional
restrictions on the parameters, [Vet22] proved a law of large numbers for xN (T ), which
in the T = N case states (with the convergence being in probability) that

lim
N→∞

xN (N )

N
= 2 · ψq(logq u) + log(1 − q)

log q
+ 1 =: fq; (2)

here logq u = log u/ log q is the logarithm to the base q and ψq is the q-digamma
function, given by

ψq(x) = 1

�q(x)

∂�q(x)

∂x
, (3)

where �q(x) = (q;q)∞
(qx ;q)∞ (1 − q)1−x is the q-gamma function.

Note that our definition of q-pushTASEP differs from that of [Vet22,MP16], in that
particles move to the right for us rather than the left, thus introducing an extra negative
sign in the law of large numbers. Our definition agrees with the one given in [IMS22].

[Vet22] also proves that the asymptotic fluctuation of xN converges to the GUE
Tracy–Widom distribution. To state this, let us consider the rescaled observable

X sc
N = xN (N ) − fq N

(−ψ ′′
q (logq u))1/3(log q−1)−1N 1/3 ; (4)

note that the denominator is a positive quantity, since ψ ′′
q (x) < 0 for all x > 0 (see e.g.,

[MS09]). Now for q, u ∈ (0, 1), and under certain restrictions on those parameters that
are used to simplify the analysis there, [Vet22, Theorem 2.2] asserts that X sc

N ⇒ FGUE,
where FGUE is the GUE Tracy–Widom distribution.

The proof given in [Vet22] relies on certain formulas for q-Laplace transforms of par-
ticle positions proved in [BCFV15]. The recent work [IMS22] gives different Fredholm
determinant formulas for randomly shifted versions of xN (T ) (see Corollary 5.1 there)
from which it should also be possible to extract the above distributional convergence,
with a perhaps simpler analysis; indeed, the analogous convergence is demonstrated for
a half-space version of the model in [IMS22, Theorem 6.11].

It remains a question whether the conditions assumed in [Vet22] are necessary for
this convergence to hold; our techniques suggest it should hold for any q, u ∈ (0, 1). In
particular, our results will hold for all q, u ∈ (0, 1).
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1.2. Main results. Our main theorem bounds the lower tail of the fluctuations of the
centred and scaled position X sc

N (as defined in (4)) of the N th particle of q-pushTASEP,
as introduced in Sect. 1.1.2.

Theorem 1.1. Let q, u ∈ (0, 1) and let ai = b j = u for all i, j . There exist positive
absolute constants c′, C, and N0 (independent of q and u) such that, with θ0 = C(1 −
u)−1/3(1 ∨ (log q−1)−2/3) and c = (1 − u)1/2c′, and for N ≥ N0 and θ > θ0,

P
(
X sc
N < −θ

) ≤ exp
(−cθ3/2).

We believe the true lower tail behavior to be exp(−cθ3), at least for θ � N 2/3, i.e.,
smaller than the large deviation regime, similar to other models in the KPZ class. We
discuss ahead in Remark 1.7 why our arguments do not achieve this, and also how with
additional different arguments it should be possible to attain the full exponent of 3.

It is an interesting question whether Theorem 1.1 can be extended to the case of
general ai and b j . As we will see, a crucial connection to last passage percolation that
we rely on continues to hold, so the general scheme is broadly applicable. However
certain moment formulas available for the last passage percolation problem in the case
of homogeneous parameters are not known for the general case, and this is where the
strategy stops being directly applicable.

1.3. Lower tails of KPZ observables. In the past decade, integrable tools have been
combined with other perspectives to slowly push out of strictly integrable settings. Ex-
amples include studies of geometric properties in models of last passage percolation (e.g.,
[Joh00b,BSS14,BSS19,BG21,BHS18,BGZ21,BGHH22,SSZ21,SS22]), process-level
regularity properties (e.g., [CH14,CH16,Ham22,Ham19,CHH23,SV21,Dau23]) of pro-
cesses whose finite-dimensional distributions are accessible via exactly solvable tools,
recent progress on constructing the ASEP speed process [ACG23], edge and bulk
scaling behavior of tiling or dimer models [Agg23,Hua21,AH21,HYZ23], as well
as the construction of the directed landscape and convergence of LPP models to it
[DV21a,DOV22,DV21b]. In these works, a crucial input from the integrable side has
repeatedly been bounds on the tails of the relevant statistic. In the following, by zero
temperature models we will mean models which can be embedded in determinantal point
processes, e.g., integrable models of last passage percolation.

In the case of zero temperature models (e.g., geometric or exponential last passage
percolation or the totally asymmetric simple exclusion process), these tail bounds had
been studied two decades ago, with arguments relying in an essential way on deter-
minantal structure possessed by these models. In positive temperature (e.g., the KPZ
equation or the asymmetric simple exclusion process), where such structure is not di-
rectly available, progress on obtaining these important tail inputs has only been made in
the last few years, but their availability promises to create the opportunity to bring the
zero temperature successes to the positive temperature.

1.3.1. The relative difficulty of upper and lower tail bounds From a physical perspective,
it is easy to see that the upper and lower tails should have different rates of decay, with
the lower tail decaying faster. This is because the upper tail concerns making a single,
“largest” object even larger—in q-pushTASEP, making the right-most particle lie even
further to the right, which can be accomplished by demanding a single large jump of the
right-most particle. So, in particular, the other particles are not a barrier. In contrast, in
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the lower tail exactly the opposite happens: for the right-most particle to lie atypically
to the left, all the other particles must also do so—in particular, many jumps, including
those of other particles, must be suppressed. However, this intuition does not reveal the
fact that, typically, it is technically much more challenging to obtain lower tail bounds
than upper ones. Further, while this intuition turns out to be well-suited for arguments to
understand large deviations behavior (e.g., [BGS21] for LPP), i.e., deviations on scale
N , in applications one needs bounds on the fluctuation scale (i.e., deviations on scale
N 1/3).

For solvable zero temperature models, which have determinantal descriptions, the
difference in the difficulty of upper and lower tails can be seen from the fact that the
upper tail bounds follow directly from bounds on the kernel of the associated determi-
nantal point process, while this is not the case for lower tail bounds. Nevertheless, as
mentioned above, in these models, a number of approaches have been developed over
the last two decades. These include the Riemann–Hilbert approach (e.g., [BDM+01]),
methods based on explicit formulas for moments (e.g., [Led05a]), connections to random
matrix theory (e.g., [Joh00a,LR10,BGHK21,RRV11] as well as large deviation work
e.g., [GH21,AGH21,CDG23]), and abstract concentration (see e.g., [ADH17, Section 3]
for applications to first passage percolation).

The toolbox for the upper tail is already fairly well developed in positive temperature
(i.e., non-determinantal but exactly solvable models). Here too one often has determinan-
tal formulas for the distribution of the observable, and one can extract the upper tail by
establishing decay of the kernel in these determinantal formulas. An instance where this
is done is [BCD21, Theorem 1.4], in the context of the log-gamma polymer. Besides this
approach, one can also try to extract upper tail estimates from the moments of the expo-
nential of the random variable of interest (e.g., for the KPZ equation, this corresponds to
moments of the stochastic heat equation, or, for our model, the analogue is q-moments).
An example of this method is captured in [CG20a, Proposition 4.3 and Lemma 4.5],
where tail estimates for the narrow-wedge KPZ equation are obtained through estimates
on the kth moment of the stochastic heat equation. We also mention recent works [GH22]
and [LS22a] which respectively make use of Gibbs properties and special structure of
stationary versions of the relevant models (the KPZ equation and O’Connell–Yor poly-
mer respectively) to prove upper tail estimates, but these methods by their nature are
specific to models which have such probabilistic structure.

For our model of q-pushTASEP, a Fredholm determinant formula of the type the first
approach relies on can be found in [BCFV15, Theorem 3.3] (via our model’s connection
to the q-Whittaker measure, see Sect. 1.5 ahead or the discussion in [MP16, Section 7.4]),
and a different one in [IMS22, Corollary 5.1]. A formula for the q-moments in our
model is also available, though there is a subtlety in that not all q-moments are finite;
see Section 7.4 in [MP16] for the formula and a brief discussion of this point.

Having said this, while there are well-established approaches to obtain such upper
tail estimates, it is certainly not a triviality to actually do so in any model, and we do not
pursue them for q-pushTASEP in this work. However, we plan to revisit this question as
part of subsequent work in which we will need both tail bounds to study further aspects
of this model.

The toolbox for the lower tail in positive temperature is smaller but is being actively
developed, and we briefly review some of the tools now. However, these do not seem
applicable to our model, and so we are ultimately led to develop a new technique.
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1.3.2. Work using determinantal representations of Laplace transforms The first class
of techniques for lower tails in positive temperature models gives a determinantal rep-
resentation for the Laplace transform (or q-Laplace transform) of the observable. This
approach was initiated in [CG20b], which obtained fluctuation-scale lower tail bounds
for the narrow wedge solution to the KPZ equation. [CG20b] used a formula from
[BG16,ACQ11] which equates the Laplace transform of the fundamental solution of
the stochastic heat equation (which is related to the KPZ equation via the Cole–Hopf
transform) to an expectation of a multiplicative functional of the Airy point process,
which is determinantal. That it is a multiplicative functional (as well as its precise form)
is very useful as it allows the lower tail of the KPZ equation to be bounded in terms of
the lower tail behavior of the particles at the edge of the Airy point process, which in
turn can be controlled via determinantal techniques as outlined above.

The Laplace transform identity that this argument relies on can be seen as a special
case of a general matching proved in [Bor18] between the stochastic six vertex model’s
height function and a multiplicative functional of the row lengths of a partition sampled
according to the Schur measure. The stochastic six vertex model and the Schur measure
are each known to specialize to a number of models also of interest; for example, one
degeneration of the former is the asymmetric simple exclusion process (ASEP), and the
analogous one for the latter is the discrete Laguerre ensemble, a determinantal process.
This yields an identity between the q-Laplace transform of ASEP and a multiplicative
functional of the discrete Laguerre ensemble [BO17], which was used to obtain a lower
tail bound for the former in [ACG23], using the latter’s connection to TASEP.

Unfortunately, not all degenerations to models of interest play nicely on both sides.
For instance, for the O’Connell–Yor polymer, the Schur measure side of the stochastic
six vertex model identity degenerates to an average of a multiplicative functional with
respect to a point process whose measure is a signed measure instead of a probability
measure [IS16]. Typical modes of analysis break down in the context of signed measures.
For other models too, including ours, this issue of signed measures seems to arise.

A related recent approach brings in the machinery of Riemann–Hilbert problems and
has been developed in [CC22]. There, in the setting of the KPZ equation, the mentioned
expectation of the multiplicative functional of the Airy point process is expressed as a
Fredholm determinant, and then the latter is written as a Riemann–Hilbert problem. So
far this approach has only been developed at the level of the KPZ equation, and so it
remains to be seen how broadly it can be applied.

1.3.3. Coupling and geometric methods in polymer models For the semi-discrete
O’Connell–Yor and log-gamma polymer models, recent work [LS22b,LS22a] has ob-
tained lower tail estimates via a mixture of exact formulas, coupling arguments, and
geometric considerations. This builds on methods developed in the zero temperature
model of exponential last passage percolation [EJS20,EJS21,EGO22]. The program
has so far been implemented in full in the semi-discrete O’Connell–Yor model and in
part for the log-gamma polymer. First, [LS22b] obtains the bounds for a stationary ver-
sion of the model (where one can prove an explicit formula for the Laplace transform
of the free energy), and then, for the O’Connell–Yor case, these are translated to the
original model using geometric considerations of the polymer measure in [LS22a]. In
fact, the Laplace transform bound obtains a lower tail exponent of 3/2, which is then
upgraded to the sharp exponent of 3 by adapting geometric arguments from [GH23].
Since this method relies heavily on the polymer geometry, it is unclear how it could be
extended to address the model of q-pushTASEP which only has a particle interpretation.
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In summary, while there are a variety of methods in zero-temperature models to obtain
lower tail bounds, so far only a handful of tools are available for positive temperature
models. The ones available do not seem immediately applicable to our model. For this
reason, we introduce a new method which does not rely on polymer structure or identities
between q-Laplace transforms and multiplicative functionals of determinantal point
processes, which are not directly available in q-pushTASEP. We rely instead on the
recent work [IMS21] which relates the q-Whittaker measure on partitions to a model
of periodic geometric last passage percolation. In this way, we are able to use both
the polymer techniques and determinantal structure which are available in geometric
last passage percolation to analyze q-pushTASEP. Our methods may also be useful in
studying the lower tails of q-pushTASEP with certain other special initial data that also
have connections to marginals of q-Whittaker measures, or q-pushTASEP with particle
creation [BBC20,IMS22] which should have a description in terms of a similar last
passage percolation problem via half-space q-Whittaker measures.

To explain our broad approach, we next describe this model of periodic last passage
percolation.

1.4. Last passage percolation. We first describe the environment in which our last pas-
sage percolation (LPP) problem will exist. We consider a sequence of N × T “big
rectangles” indexed by k ∈ N ∪ {0}, each of which contains NT “small squares” in-
side. These are arranged in a periodic strip as shown in Fig. 2. We use the coordinates
(i, j; k) (with (i, j) ∈ {1, . . . , N }×{1, . . . , T } and k ∈ {0, 1, . . . , }) to denote the small
square with coordinates (i, j) in the kth big square. The site (i, j; k) is associated with
an independent non-negative random variable ξ(i, j;k) which we call a site weight.

The distribution of the randomness of the site weights is as follows. We will say
X ∼ Geo(z) if X is a random variable such that P(X ≥ k) = zk for k = 0, 1, 2 . . .; in
other words, z is the failure probability in repeated independent trials and X is the number
of failures before the first success. Then the site weights are specified as follows: ξ(i, j;k)
are independent across all i, j, k, and distributed as Geo(aib jqk) for k = 0, 1, 2, . . . and
(i, j) ∈ {1, . . . , N } × {1, . . . , T }.

Note that in our model with the specialization u = ai = b j , the site weights in the
same big square, i.e., with the same value of k, are identically distributed as Geo(u2qk).
For s = (i, j; k) a site in the strip, we may also write ξs for ξ(i, j;k).
Remark 1.2. Observe that P(ξ(i, j;k) 
= 0) = aib jqk for all i , j , k, which is summable
over (i, j) ∈ {1, . . . , N }×{1, . . . , T } and k = 0, 1, . . .. So by the Borel–Cantelli lemma,
almost surely, for all large enough k and all (i, j) ∈ {1, . . . , N } × {1, . . . , T }, ξ(i, j;k)
will be zero.

We consider downward paths which are allowed to wrap around the strip, i.e., paths
which are at (i, T ; k) may move to (i, 1; k + 1) and paths which are at (N , j; k) may
move to (1, j; k + 1) in the next step; again see Fig. 2. Each such path γ is assigned
a weight w(γ ) given by

∑
v∈γ ξv . Note that while a priori the weight of γ could be

infinite if γ is an infinite path, in our setting the environment will only have finitely
many non-zero site weights almost surely (as noted above in Remark 1.2), and so this
possibility will not arise.

Now, the last passage value Lv,w between v and w small squares in the strip is defined
as

Lv,w := max
γ :v→w

w(γ ),
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Geo(u2)

Geo(u2q)

Geo(u2q2)

Geo(a2b4)

Geo(qa3b1)

Geo(q2a2b2)

N T

Fig. 2. The environment in which the infinite last passage percolation occurs. The dashed arrow on top
indicates the direction in which the squares wrap around, and the solid green line on the left is a downward
path which wraps around the strip. In the left panel we have the model under consideration in this article with
the specialization of T = N and u = ai = b j for all i, j , while on the right is the general model

where the maximum is over all downward paths from v to w, assuming at least one
such path exists. If not, we define Lv,w to be −∞; we say this only to give a logically
complete definition, but such cases will not actually arise in this paper.

This model of LPP is similar to other models of periodic LPP considered in the
literature (e.g., [BL18,BL19,BL21,BO21,SS22] though perhaps with slightly different
selections of parameters or distributions of the random variables), and also has connec-
tions to the periodic Schur measure [Bor07,BO21].

1.5. Relation between q-pushTASEP and LPP. We can now explain the exactly solvable
connection between q-pushTASEP and the model of LPP in an infinite periodic strip
just introduced that was recently discovered by Imamura–Mucciconi–Sasamoto, and on
which our arguments crucially rely. We first state the equivalence precisely.

While this paper only considers the case T = N , we will state the LPP equivalence
for general T . For this, we return to the LPP problem described in Sect. 1.4 where the
infinite periodic environment has “fundamental domain” with N × T . The parameters
of the geometric random variables is as described there, i.e., site (i, j; k) has parameter
aib jqk .

Theorem 1.3. Let L be the LPP value in the environment just described with ai , b j ∈
(0, 1) for all (i, j) ∈ {1, . . . , N } × {1, . . . , T }. Let xN (T ) be the position of the Nth
particle at time T in q-pushTASEP with the same parameters ai , b j for all (i, j) ∈
{1, . . . , N } × {1, . . . , T } and step initial condition. Then

xN (T )
d= L + N .

The connection between xN (T ) and L runs through a measure on partitions known as
the q-Whittaker measure, as mentioned above. More precisely, it was shown in [MP16]
(and stated ahead as Theorem A.3) that xN (T ), for any N , T ∈ N and with step initial
condition (i.e., xk(0) = k for k = 1, . . . , N ), is distributed as the length of the top row
in a partition (encoded as a Young diagram) distributed according to the q-Whittaker
measure (after a deterministic shift by N ). So it remains to establish a distributional
equality between the q-Whittaker measure’s top row and the LPP value L; the proof of
this was explained to us by Matteo Mucciconi and relies on results from [IMS21] and
we discuss it next.



64 Page 10 of 55 I. Corwin, M. Hegde

[IMS21] proves a relation between the q-Whittaker measure and the periodic LPP
model. From the perspective of the needs of this paper, the main consequence of [IMS21]
is the development of a bijection which generalizes the Robinson–Schensted–Knuth
correspondence. In traditional LPP on Z

2, the RSK correspondence associates to the
LPP environment (with non-negative integer site weights) a pair of Young tableaux of
the same shape, with the property that LPP statistics are encoded in the row lengths of the
tableaux; for instance, the LPP value is exactly the length of the top row of the tableaux.
It is well-known that, under this correspondence, the measure on the environment given
by i.i.d. geometric random variables gets pushed forward to give the Schur measure
on partitions, i.e., Young diagrams. The generalization of RSK established in [IMS21],
called skew RSK there, relates pairs of skew Young tableaux to pairs of vertically strict
tableaux (tableaux where the ordering condition on the entries is imposed only along
columns and not rows) along with some additional data.

In this bijection, LPP has not had a role to play. To involve LPP, we recall an earlier
generalization of RSK known as the Sagan–Stanley correspondence [SS90], which can
be interpreted as giving a bijection between the LPP environment in an infinite strip (again
with non-negative integer site weights) and pairs of skew Young tableaux. [IMS21] also
shows that, if one composes this bijection with the skew RSK bijection, then the LPP
value is exactly the length of the top row of the vertically strict tableaux coming from
the skew RSK.

It turns out that the generating function of vertically strict tableaux can be written
in terms of the q-Whittaker polynomials. Using this fact, certain weight preservation
properties of the bijection, and an argument similar to the well-known one that establishes
the above mentioned relationship between geometric LPP and the Schur measure, one can
show that the LPP value when the infinite strip has site weights given by independent
geometric variables with parameter specified above has the same distribution as the
top row of a random partition from the q-Whittaker measure. Since this statement is
not recorded explicitly in [IMS21], we will give a proof using results from that paper
in Appendix A. In fact, one can relate the lengths of all the rows of the partition to
LPP values involving multiple disjoint paths, and we prove this stronger statement in
Theorem A.4. Theorem 1.3 then follows by combining this theorem with Theorem A.3
(relating xN (T ) and the top row of the q-Whittaker measure).

1.6. Proof ideas. We specialize to N = T and ai = b j = u ∈ (0, 1) for (i, j) ∈
{1, . . . , N } × {1, . . . , T }.

To summarize, xN (N ) is, up to a deterministic shift by N , the LPP value in an infinite
periodic environment of inhomogeneous geometric random variables. Now, the weight
of any path in this environment is a lower bound on the last passage percolation value.
We consider a specific path which allows us to utilize the homogeneity of the geometric
variable parameters inside a big square (as well as tail information of geometric LPP in
such homogeneous squares) along with the independence across big squares.

More specifically, we consider the path formed by concatenating paths from the top
to bottom of the big squares along the center, i.e., the squares in which the geometric
parameter is u2q2i for some i ∈ N∪ {0}. More precisely, we do not exactly concatenate
the paths as they do not have a common site; we simply consider the sum of the weights
of the paths, ignoring the positive weight of the extra site needed to actually join the
paths. See Fig. 3.

Let us calculate the law of large numbers of this path, i.e., its weight up to first order,
using the knowledge of the LLN for geometric LPP. Indeed, in an N × N square with
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Fig. 3. A depiction of the paths we consider near the boundary between different big squares. The two
solid green paths go from the topmost site to the bottommost site in their respective big squares, where the
environment is homogeneous. We do not consider the dotted green path needed to connect them, which is
valid for proving an upper bound on the lower tail since including its weight will only increase the overall
weight

geometric parameter u2q2i , to first order in N , the LPP value is 2N · uqi

1−uqi
(see for

example [Joh00a] or Theorem 1.4 ahead), so that the overall LPP value of the path we
have described is, again to first order,

2N ·
∞∑

i=0

uqi

1 − uqi
= 2N ·

∞∑

i=0

qi+logq u

1 − qi+logq u
. (5)

To evaluate this sum we need the q-digamma function ψq , defined in (3). Now, the
q-digamma function ψq is related to the sum in (5) by the formula

ψq(x) = − log(1 − q) + log q ·
∞∑

i=0

qi+x

1 − qi+x
.

From this we see that (5) equals

2N · ψq(logq(u)) + log(1 − q)

log q
= N ( fq − 1), (6)

which is the first order term in the probability in Theorem 1.1 (remember that L and
xN (N ) differ by a constant term of N ) and matches the LLN proved in [Vet22].

1.6.1. Uniform LPP control We have identified a concatenation of LPP problems which
obtains the correct first order behaviour. Now, the order of fluctuations of geometric LPP
of parameter u2q2i in an N × N square is u1/3qi/3(1 − u2q2i )−1N 1/3 (again see for
example [Joh00a] or Theorem 1.4 ahead). One can think of these fluctuations, once
rescaled by this expression, as being approximately distributed according to the GUE
Tracy–Widom distribution. The latter has a negative mean and, a calculation as in the
previous subsection shows that the accumulated loss on the fluctuation scale across all
the big squares is finite, in particular of order (log q−1)−1| log log q−1|N 1/3 (ignoring
the dependence on u). This means that if we can control the geometric LPP values
across all the squares and use appropriate tools on concentration of sums of independent
random variables, we will obtain a lower tail inequality for xN (N ).
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(In fact, the true behavior of xN (N ) should be fq N − �((log q−1)−1N 1/3), i.e., the
fluctuation term should not have the log log factor. Our approach does not seem able
to achieve this, and we discuss this more ahead in Sect. 1.7, along with some of the
consequences of the appearance of the extra log log factor.)

To apply concentration inequalities, we will need control over all the constituent
geometric LPP problems. Observe that as the big squares get farther into the environment,
the parameter u2q2i of the geometric random variables goes to zero. So, in fact, we need a
tail bound on the geometric LPP problems which is uniform in the parameterq essentially
in the entire range (0, 1).

Now, the literature contains extremely sharp estimates on the upper and lower tails of
geometric LPP for any fixed parameter q [BDM+01]. Unfortunately, these estimates are
not stated uniformly in q in the required range, and the method of proof does not seem
like it would yield such an estimate. Indeed, the arguments rely on steepest descent
analysis of contour integrals, and the resulting contours implicitly depend on q, thus
making it difficult to extract uniform-in-q estimates. Thus we need to prove new results.
The following is our second main result and obtains a uniform lower tail in the entire
parameter range of q. Here,

μq = (1 + q1/2)2

1 − q
. (7)

Theorem 1.4. Let TN be the LPP value from top to bottom of an N × N square in an
environment given by i.i.d. Geo(q) random variables. There exist positive constants c,
x0, and N0 such that, for q ∈ (0, 1), N ≥ N0, and x > x0,

P

(
TN ≤ (μq − 1)N − x · q1/6

1 − q
N 1/3

)
≤ exp(−cx3/2).

We next make some remarks on aspects of this result before outlining how to use
Theorem 1.4 to complete the proof of Theorem 1.1.

Remark 1.5 (Effective range of x). Observe that μq −1 = 2q1/2(1+q1/2)
1−q , so the first order

term (μq − 1)N = O(q1/2N/(1 − q)). Thus, for x > C(q1/3N 2/3) for some fixed
constant C , the probability is actually zero (since TN ≥ 0 always). For this reason it will
be enough to prove the theorem for x < δ(q1/2N )2/3 for some small δ > 0; then for
δ(q1/2N )2/3 ≤ x ≤ C(q1/2N )2/3 one can obtain the claimed bound by modifying the
constant c, and beyond that the bound holds trivially.

Remark 1.6 (Effective range of q). Though q is allowed to be arbitrarily close to zero,
the statement is really only meaningful when q is lower bounded by a constant times
N−2. This is simply because when q = o(N−2), then (μq − 1)N = O(q1/2N ) =
o(1); similarly, the fluctuation scale is also o(1). As a result the upper bound on x of
δ(q1/2N )2/3 under which we need to prove the theorem also becomes o(1), where it is
trivial. This effective lower bound on q reflects the fact that q = �(N−2) is the regime
in which the number of points in [1, N ]2 ∩ Z

2 where the geometric random variable is
non-zero is O(1), and, more precisely, converges to a Poisson random variable; thus the
geometric LPP problem converges to Poissonian LPP (see [Joh01]).

Remark 1.7 (Tail exponent of 3/2). While the tail bound we obtain is exp(−cx3/2), the
true lower tail behavior is exp(−cx3) as proven in [BDM+01] for fixed q. The same
should be true uniformly in q as well, i.e., we expect the inequality in Theorem 1.4 with
the RHS replaced by exp(−cx3) to be true.
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As we said earlier, the more usual method of obtaining lower tail bounds via steepest
descent analysis of Riemann–Hilbert problems does not appear to be suited to obtain
uniform estimates. Instead, we utilize a method, often referred to in the literature as
“Widom’s trick”, which was first introduced by Widom [Wid02] to reduce the task to
understanding the trace of the kernel operator of the Meixner ensemble, a determinantal
point process associated to geometric LPP via the RSK correspondence. Widom’s trick
essentially treats the points of the Meixner ensemble as being independent, ignoring
the repulsive behavior determinantal point processes exhibit. This simplifies the task of
obtaining a lower tail bound, but at the cost of only yielding a tail bound with exponent
3/2.

This can likely be upgraded to the full cubic tail exponent uniformly in q using
bootstrapping arguments developed in [GH23], but one would first have to obtain similar
uniform lower tail estimates (i.e., with a non-optimal tail exponent like 3/2, though the
framework in [GH23] requires only stretched exponential tails) to points displaced (on
the N 2/3 scale) from (N , N ). We will not pursue this here as it is not necessary for our
bounds on q-pushTASEP, but extending our argument to other directions would involve
considering more complicated formulas. Indeed, a formula for the factorial moments
of the empirical distribution of the Meixner ensemble (see Sect. 1.6.2) simplifies in the
(N , N ) case (see (17)) and in the case of other directions one would need to perform
asymptotic analysis on an additional layer of summation and handle an extra direction
parameter in a uniform way in all of the estimates.

Remark 1.8 (Comparison to exponential LPP). The cubic lower tail exponent has also
been obtained in the model of exponential LPP [LR10,BGHK21]; however, the method
there is very different and crucially relies on the connection of that LPP value to the top
eigenvalue of the Laguerre Unitary Ensemble random matrix theory model [Joh00a] and
a certain tridiagonal representation of the same. Geometric LPP does not seem to have
any analogous connection to random matrix theory so such techniques are not applicable.
We also note that, since exponential random variables have a scale invariance property,
one obtains tail estimates for exponential LPP for any rate of the random variables by
considering only rate 1. Thus the delicacy of uniformity in the q-parameter for geometric
LPP that we must deal with also has no analogue in the exponential case.

1.6.2. Meixner ensemble analysis Let us finally say a few words about what we need
to know about the Meixner operator’s trace. It is well-known (but proven here for com-
pleteness in Lemma 2.3, see also [Led05a]) that the trace can be expressed in terms of
the upper tail of the expected empirical distribution νq,N of the Meixner ensemble. We
then need to obtain a lower bound on the upper tail of νq,N . An argument of Ledoux
given in the context of the GUE in [Led05a] suggests that this can be accomplished by
obtaining sharp asymptotics for the moments of νq,N . In our context, this means that the
estimates need to be sharp in both their q and N dependencies.

We obtain these estimates by first doing a careful analysis of formulas available
for the factorial or Pochhammer moments of νq,N (i.e., E[X (X − 1) · · · (X − k + 1)]
for X ∼ νq,N ) from [Led05b], performing a Laplace method type argument for sums
instead of integrals. We then develop arguments to convert these estimates into ones for
the polynomial moments. These two tasks comprise the bulk of the technical content
of the paper. The difficulty of obtaining these estimates comes primarily from the high
order of the moments needed to adapt Ledoux’s idea to our setting: indeed, it turns out
that we need moments up to order N , unlike in the GUE case where order N 2/3 sufficed,
and with a particular q-dependence for the error term (see Remark 3.2).
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Further, in Ledoux’s exposition in [Led05a] for the GUE, estimates were obtainable
for the polynomial moments directly, unlike here where we must first start with factorial
moments. Since X ∼ νq,N with extremely high probability takes values of order N , the
factor by which Xk and X (X−1) · · · (X−k+1) typically differ when k = O(N ) becomes
substantial, in fact, exponential in N . Thus the transfer between factorial and polynomial
moments becomes delicate, and an exact cancellation needs to happen between factors
which appear in the asymptotics for the factorial moments (coming from the value of the
maximizer of the exponent in Laplace’s method) and the exponential-in-N discrepancy
factor just mentioned. It would be interesting to see if there is some other more direct
method to obtain the polynomial moment estimates which avoids these cancellations or
approaches them in a more systematic way.

However, even with this cancellation, it does not seem tractable to move directly from
factorial to polynomial moments. The strategy we instead adopt also makes use of the
“layer cake representation” of the polynomial moments (as well as of other quantities):
E[Xk] = ∫ ∞

0 ktk−1
P(X > t) dt . This equality shows that, if we have sharp upper bounds

for the upper tail of X (with the bounds being applicable in the entire tail), we can get
sharp upper bounds for the polynomial moments of X ; here by sharp we mean with
the right dependencies on the various parameters in the exponent (and not the correct
coefficient in the exponent, which we will not be concerned with).

We obtain such probability tail bounds using Markov’s inequality combined with the
factorial moment asymptotics and the cancellation; in fact, even ignoring the fact that
we need moments of order N for our ultimate applications, we require estimates on the
same order moments here too in order to obtain the sharp exponentially decaying upper
tails (in particular, to get the right dependence on N in Proposition 4.5). Next turning
to the lower bound on the polynomial moments, we develop a related but slightly more
complicated argument for which also only the upper bounds on the tail of X ∼ νq,N
suffice.

With these precise upper bounds on the upper tail of νq,N (which recall is the Meixner
ensemble’s mean empirical distribution) in hand, it is essentially immediate to also obtain
uniform-in-q upper tail estimates for geometric LPP with the correct 3/2 tail exponent,
and we record it below (though we do not need this estimate for any of our arguments
concerning q-pushTASEP):

Theorem 1.9. Let TN be the LPP value from top to bottom of an N × N square in an
environment given by i.i.d. Geo(q) random variables. There exist positive constants c,
C, x0, and N0 such that, for q ∈ (0, 1), N ≥ N0, and x0 ≤ x ≤ (q1/2N )2/3,

P

(
TN ≥ (μq − 1)N + x · q1/6

1 − q
N 1/3

)
≤ C exp(−cx3/2).

For x ≥ (q1/2N )2/3, the inequality holds with the RHS replaced byCq−1/4N−1/2(1+
q1/6xN−2/3)−cN .

1.6.3. Tying it together With Theorem 1.4, the last ingredient is a concentration inequal-
ity. The inequality must take into account the fact that the scale of the random variables
is decreasing. Typical concentration inequalities are for sub-Gaussian tail decay (while
here we only have tail exponent 3/2) and are for deviations from the mean (while our
estimates are from the law of large numbers centering). While there are results in the
literature for different tail decays, e.g., [KC18], adapting these to address the second
point directly to our setting results in a constant order loss for each term being summed,
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independent of the scale of the summand. This is too lossy as we have an infinite number
of terms. Instead we redo the arguments establishing these bounds, which ultimately rely
on estimates on the moment generating function, in such a way to fit our applications.
With this final step, we will obtain Theorem 1.1.

Remark 1.10 (An argument for the lower tail of xN (T )). As we saw, the conceptual heart
of the argument consisted of finding a concatenation of paths which, to first order, has the
same weight as the law of large numbers (5) for the model. Now, if we were interested
in xN (T ) for general T , there is also a representation of it in terms of a periodic LPP
problem, where the environment consists of periodic rectangles of dimension N × T
instead of N × N squares as here. However, in such an environment, it is not clear what
concatenation of paths would achieve the correct first order weight, and this is why we
restrict to T = N in this paper. We leave the general T case for future work.

1.7. A remark on convergence to the log-gamma free energy. Though not needed for
the results in this paper, we also note that, as proven in [MP16], the q → 1 limit of X sc

N ,
when renormalized correctly, is the free energy of the log-gamma polymer introduced
in [Sep12] (we refer to the reader to that paper for the precise definition of the model).
Indeed for example, setting q = exp(−ε) and u = exp(−Aε) for a fixed A > 0, [MP16,
Theorem 8.7] tell us that ε(xN (N ) − (2N − 1)ε−1 log ε−1) converges in distribution to
the log-gamma free energy where the parameters of the inverse gamma random variables
are all 2A. It can be checked that the appropriately normalized q → 1 limit of fq (as
defined in (2)) is indeed the law of large numbers for the log-gamma polymer.

However, notice that the centering term for the convergence is (2N − 1)ε−1 log ε−1,
while the first order behavior (in N ) we calculated in (6) via the connection to LPP,
when written in terms of ε, was 2Nε−1 log ε−1. In other words, there is a discrepancy
of ε−1 log ε−1. This comes from the earlier noted point that the fluctuation scale we are
able to prove (when written in terms of ε) is ε−1 log ε−1, unlike the true fluctuation scale
of ε−1 suggested by [MP16]; equivalently, our lower tail bound (for xN (N ) and not X sc

N )
only kicks in after ε−1 log ε−1N 1/3 into the tail. For this reason, unfortunately, our tail
bounds do not survive in the limit to provide a tail bound on the log-gamma free energy.

The ultimate source of the discrepancy in the fluctuation scale that we are able to
prove is that we are approximating the true LPP value in the infinite cylinder by a sum
of LPP values in N × N big squares. In more detail, the portion of our path in the
i th big square from the top suffers a loss of order qi/6(1 − q2i )−1N 1/3 (ignoring the
u-dependence), essentially because this is the scale of fluctuations on which the LPP
value in this box converges to the Tracy–Widom distribution, and the latter has a negative
mean. Observing that 1 − q2i is approximately εi up to constants when q = exp(−ε),
we see that the sum of this loss from i = 1 to ∞ yields an overall loss of of order N 1/3

times ε−1 ∑∞
i=1 i

−1e−iε/6 = ε−1 log(1 − e−ε/6) ≈ ε−1 log(ε−1). Thus to avoid the
lossy factor of log ε−1 it seems one would need a different scheme of approximation.

As mentioned earlier in Sect. 1.3.3, very recent work [LS22b] has established a bound
(with tail exponent 3/2) on the lower tail of the free energy of a stationary version
of the log-gamma model (as well as other polymer models such as the O’Connell–
Yor model) using a Burke property enjoyed by the model (proved in [OY01] which
also introduced the model, and analogous properties in models such as exponential
LPP were used to obtain exponentially decaying tail estimates earlier in [EJS20,EJS21,
EGO22]), which gives access to formulas for the moment generating function of the free
energy. For the O’Connell–Yor model, in [LS22a], these bounds were transferred to the



64 Page 16 of 55 I. Corwin, M. Hegde

non-stationary version of the model using geometric arguments involving the polymer
measure introduced in [FSV14], and the tail exponent was upgraded to the optimal 3 by
adapting geometric methods from [GH23]. One expects that a similar program would
deliver the corresponding bounds in the log-gamma case as well.

2. Widom’s Trick Applied to the Lower Tail in Geometric LPP

In the next two sections we will prove Theorem 1.4, which provides an upper bound
on the lower tail of the LPP value in an i.i.d. geometric environment, uniform in the
parameter of the geometric random variables.

The argument relies on a trick introduced by Widom in [Wid02], which we explain
next.

2.1. Widom’s trick. We first need to introduce the Meixner ensemble, the determinantal
point process associated to geometric LPP via the RSK correspondence. The fact that it
is determinantal is the crucial property for Widom’s argument.

Definition 2.1 (Meixner ensemble). First let μ
q
Geo denote the Geo(q) distribution on

N0 := N ∪ {0}, i.e., the distribution with discrete weights given by

μ
q
Geo({x}) = (1 − q)qx .

For q ∈ (0, 1) and N ∈ N, the N × N Meixner ensemble is a determinantal point
process on N0 with kernel given, for x, y ∈ N0 with x 
= y and with respect to μ

q
Geo, by

KN (x, y) = κN−1

κN
· MN (x)MN−1(y) − MN−1(x)MN (y)

x − y
; (8)

here MN = κN xN + κN−1xN−1 + · · · + κ0 are the orthonormal polynomials (which we
call the Meixner polynomials, though it differs from the classical Meixner polynomials
by a constant multiple due to the normalization) with respect to μ

q
Geo. The second factor

on the right-hand side of (8) makes sense for x, y ∈ R, and so the x = y case can be
defined by taking the appropriate limit.

Here is the relation between the Meixner ensemble and the geometric LPP value.

Proposition 2.2 (Proposition 1.3 of [Joh00a]). Fix q ∈ (0, 1) and N ∈ N. Let λ1 ≥
λ2 ≥ · · · λN be distributed according to the N × N Meixner ensemble and let TN be the

LPP value in the environment of i.i.d. Geo(q) random variables. Then TN
d= λ1 − N + 1.

With this background we may explain Widom’s trick. The fact that (λ1, . . . , λN ) is
determinantal with kernel KN given by (8) implies, using the Cauchy–Binet formula,
that, for any t ∈ R,

P (λ1 ≤ t) = det
(
IN − K t

N

)
,

where K t
N can be written as the Gram matrix of the Meixner polynomials, i.e.,

K t
N = (〈M�−1, Mk−1〉�2({t,t+1,...}, μq

Geo)

)
1≤k,�≤N . (9)
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The fact that Gram matrices are positive semi-definite implies that the eigenvalues
of K t

N are non-negative; also, we may write, for any unit vector u ∈ R
N and with

g(x) = ∑N
i=1 ui Mi−1(x),

1 =
N∑

i=1

u2
i = 〈g, g〉�2(N0,μ

q
Geo)

= 〈g1·<t , g1·<t 〉�2(N0,μ
q
Geo)

+ 〈g1·≥t , g1·≥t 〉�2(N0,μ
q
Geo)

≥ 〈g1·≥t , g1·≥t 〉�2(N0,μ
q
Geo)

= 〈g, g〉�2({t,t+1,...},μq
Geo)

= uT K t
Nu,

which in turn implies that the eigenvalues of K t
N are at most 1.

Let us label the eigenvalues of K t
N as ρt

1, . . . , ρ
t
N . Since 1 − x ≤ e−x for x ∈ [0, 1],

P (λ1 ≤ t) = det
(
IN − K t

N

) =
N∏

i=1

(1 − ρt
i ) ≤ exp

(
−

N∑

i=1

ρt
i

)
= exp

(−Tr(K t
N )

)
.

Thus Widom’s trick reduces the problem of bounding the lower tail to understanding
the trace of an associated operator. This in turn can be accomplished by lower bounding
the upper tail of the expected empirical distribution νq,N of the Meixner ensemble,
defined precisely by

νq,N = E

[
1

N

N∑

i=1

δλi

]
. (10)

We record the connection between the operator’s trace and the tail of νq,N next.

Lemma 2.3. For any t ∈ N, Tr(K t
N ) = Nνq,N ([t,∞)).

Proof. First we observe that, from (9),

Tr(K t
N ) =

N−1∑

�=0

〈M�−1, M�−1〉�({t,t+1,...},μq
Geo)

=
∫ ∞

t

N−1∑

�=0

M2
� dμ

q
Geo. (11)

Now since (λ1, . . . , λN ) is determinantal with kernel KN with respect to μ
q
Geo, it is

a standard fact of the theory of determinantal point processes (or see [Led05a, Proposi-
tion 1.2]) that, for any bounded measurable f : N0 → R,

E

[
N∏

i=1

[1 + f (λi )]
]

=
N∑

r=0

1

r !
∫

N
r
0

r∏

i=1

f (xi ) det(KN (xi , x j ))1≤i, j≤r dμ
q
Geo(x1)

· · · dμ
q
Geo(xr ).

Replacing f by ε f , taking the ε → 0 limit, and thereby equating the order ε terms
on both sides (since the constant-in-ε terms on both sides are easily seen to be 1), we
obtain that

E

[
N∑

i=1

f (λi )

]
=

∫

N0

f (x)KN (x, x) dμ
q
Geo(x).

By the Christoffel–Darboux formula and (8), KN (x, x) = ∑N−1
�=0 M�(x)2. With this,

taking f (x) = 1x≥t and using (11) yields the claim. ��
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So the task is now to obtain a lower bound on the upper tail of νq,N . The bound we
prove is stated in the next theorem, and its proof will be the main goal of the remainder
of this section as well as of the next two.

Theorem 2.4. Let X be distributed as νq,N as defined in (10)and letμq be as in (7). There
exist positive absolute constants c, C, and N0 such that, for N ≥ N0, ε ∈ [CN−2/3, 1],
and q ∈ [ε3, 1),

P

(
X ≥ μq N (1 − q1/6ε)

)
≥ cε3/2.

In fact, the lower bound of order ε3/2 is sharp and we prove a matching order upper
bound in Proposition 4.4.

With Theorem 2.4 and Widom’s trick, Theorem 1.4’s proof is straightforward.

Proof of Theorem 1.4. Recall from Proposition 2.2 that if λ1 is distributed as the largest

particle of the Meixner ensemble, then TN
d= λ1 − N + 1. From Lemma 2.3, for any

t ∈ N,

P (λ1 ≤ t) ≤ exp
(
−Nνq,N ([t,∞))

)
.

So we see that, for any ε > 0,

P

(
TN ≤ (μq − 1)N − μq Nq1/6ε)

)
= P

(
λ1 ≤ μq N (1 − q1/6ε)

)

≤ exp
{
−Nνq,N

([μq N (1 − q1/6ε),∞)
)}

.

By Theorem 2.4, there exist positive constants c and c0 such that, for all q ∈ [ε3, 1)

and CN−2/3 ≤ ε ≤ 1,

νq,N
([μq N (1 − q1/6ε),∞)

) ≥ cε3/2.

Putting the above together with ε = xN−2/3(1 −q)−1μ−1
q = xN−2/3(1 +q1/2)2 for

x > C and adjusting the constant in the exponent gives

P

(
TN ≤ (μq − 1)N − x

q1/6

1 − q
N 1/3

)
≤ exp

(
−cx3/2

)

when q ≥ x3N−2 and xN−2/3 ≤ 1 (since q ≥ ε3 and ε ≤ 1 are required to apply
Theorem 2.4), which are both implied by the hypothesis that x ≤ (q1/2N )2/3. This
completes the proof. ��

To prove Theorem 2.4, we rely on a strategy of Ledoux explained in [Led05a, Sec-
tion 5]. It relies on getting strong estimates on polynomial moments of the mean empirical
distribution νq,N . The bounds we prove are the following.

Theorem 2.5. Let X be distributed according to νq,N as defined in (10). There exist
positive C, α0, and N0 such that for any N ≥ N0 and (k, q) satisfying k ≤ (α0N ∧
q−1/6N 2/3) and q ∈ [k−2, 1),

C−1(q1/6k)−3/2(μq N )k ≤ E[Xk] ≤ C(q1/6k)−3/2(μq N )k .
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Observe that the moments grow to first order like (μq N )k , which reflects that we
expect νq,N to be supported on [0, μq N ] (though more precisely there is a decaying-in-N
amount of mass beyond this point, which we will in fact upper bound in Proposition 4.5).
The polynomial dependence on k is what captures the behaviour of the tail of νq,N
near this right edge, and this is the basic observation of Ledoux’ argument. Indeed, the
exponent of −3/2 for k is what gives the 3/2 exponent of ε in Theorem 2.4.

Note also that we allow k to go up to a rather large value; essentially of order N ,
since, when q = �(N−2), then q−1/6N 2/3 = �(N ). We will in fact need the estimate
to allow such large values of k in the application, namely the proof of Theorem 2.4.
We expand on this slightly ahead in Remark 2.7. Finally we remark that the expression
q−1/6N 2/3 in the upper bound on k is a technical feature, and may be an artifact, of the
conversion we perform from factorial to polynomial moments (indeed, this expression
does not appear in the bound on k in the upcoming Theorem 3.1 on factorial moment
estimates).

We will prove Theorem 2.5 in Sects. 3 and 4; the upper and lower bounds are separated
into Propositions 4.6 and 4.7 respectively.

We conclude this section by using Theorem 2.5 to implement Ledoux’ argument to
establish Theorem 2.4.

Proof of Theorem 2.4. First, by the Cauchy–Schwarz inequality, we have

E[X2k1X≥μq N (1−q1/6ε)] ≤ E[X4k]1/2
P

(
X ≥ μq N (1 − q1/6ε)

)1/2
. (12)

By Theorem 2.5, when q ≥ k−2, 4k ≤ (α0N ∧ q−1/6N 2/3) and N ≥ N0 (conditions
we assume in the rest of the proof),

E[X4k] ≤ C1(q
1/6k)−3/2(μq N )4k .

It is also easy to see that

E[X2k1X≥μq N (1−q1/6ε)] = E[X2k] − E[X2k1X<μq N (1−q1/6ε)]
≥ E[X2k] − E[Xk]

(
μq N (1 − q1/6ε)

)k
. (13)

Now, from Theorem 2.5, under the same conditions on (q, k) as above,

E[X2k] ≥ C2(q
1/6k)−3/2(μq N )2k,

while, again from Theorem 2.5 and the same conditions on (q, k),

E[Xk] ≤ C3(q
1/6k)−3/2(μq N )k .

Since overall it holds (under the condition that the expression in the parentheses is
positive) from (12) and (13) that

P
(
X ≥ μq N (1 − q1/6ε)

) ≥ E[X4k]−1
(
E[X2k] − E[Xk](μq N )k(1 − q1/6ε)k

)2
,

substituting the above recalled bounds on the moments of X yields (cancelling out all
the common factors of (μq N )4k on the right-hand side)

P
(
X ≥ μq N (1 − q1/6ε)

)
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≥ C−1
1 (q1/6k)3/2

[
C2(q

1/6k)−3/2 − C3(q
1/6k)−3/2(1 − q1/6ε)k

]2

≥ C−1
1 (q1/6k)−3/2

[
C2 − C3 exp(−q1/6εk)

]2
. (14)

We need to set k such that the expression in the square brackets is uniformly positive;
it is sufficient if

C3

C2
exp

(
−q1/6εk

)
<

1

2
. (15)

We will verify that this condition is met with k = Wq−1/6ε−1 for a large absolute
constant W to be chosen: the expression on the LHS of the previous display becomes

C3

C2
exp (−W ) . (16)

We pick W such that C3
C2

exp(−W ) < 1
2 . With this our choice of k has been made,

and we next verify that the conditions that k, q, ε must satisfy to apply Theorem 2.5
indeed hold. After that we will check that (15) holds.

Recall that under the hypotheses of Theorem 2.4 that we are proving, we have a lower
bound on ε of the form N−2/3 times an absolute constant that we are free to choose and
which we label c−1

0 , i.e., ε satisfies ε > c−1
0 N−2/3. We also have q ≥ ε3. We need to

verify two conditions: (i) q ≥ k−2 and (ii) k ≤ 1
4 min(α0N , q−1/6N 2/3).

For (i), it is easy to check that q ≥ k−2 is equivalent to q ≥ W−3ε3 for our choice of
k. If W ≥ 1 (which we can ensure by raising W if needed), then clearly our hypothesis
that q ≥ ε3 implies q ≥ k−2.

Next we set c0 > 0 small enough (depending on W ) that the condition ε > c−1
0 N−2/3

implies k ≤ 1
4 min(α0N , q−1/6N 2/3) (i.e., that ε > 4 max(W, α−1

0 )N−2/3, i.e., c0 <
1
4 min(W−1, α0)). This verifies that the upper bound (ii) above on k holds, and thus that
the hypotheses of Theorem 2.5 are satisfied.

Using (15) in (14) and substituting k = Wq−1/6ε−1 in the same, we obtain

P
(
X ≥ μq N (1 − q1/6ε)

) ≥ 1
4C

−1
1 C2

2W
−3/2ε3/2.

Thus, overall, our choice of parameters yields that there exist positive absolute con-
stants c and c0, such that for all ε > c−1

0 N−2/3 and q ≥ ε3,

P
(
X ≥ μq N (1 − q1/6ε)

) ≥ cε3/2.

This completes the proof. ��
Remark 2.6. Unfortunately, it does not seem possible to adapt the above argument to
work with estimates on the factorial moments directly instead of first converting to
polynomial moments, as such an adaptation would allow us to avoid the analysis to go
from Theorem 3.1 to Theorem 2.5.

The reason is essentially that factorial moments do not work well with the Cauchy–
Schwarz inequality: E[(Xk)] ≤ E[(X)2

k]1/2, but we do not have any control on the RHS
via estimates on factorial moments. This is in stark contrast to polynomial moments,
where applying Cauchy–Schwarz results in another polynomial moment, which we do
have estimates on.
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Remark 2.7. We observe that the proof used the polynomial moment of X ∼ νq,N

of order q−1/6ε−1. When ε = N−2/3 (which falls within the parameter ranges we
are interested in since such a value of ε correspond to the KPZ fluctuation scale), the
moments we are considering become of order q−1/6N 2/3 (which further becomes N if
q = �(N−2)), and this is why we need Theorem 2.5 to allow k to go up to q−1/6N 2/3.

3. Sharp Factorial Moment Bounds

Here we prove Theorem 2.5 on sharp bounds for the moments of the expected empirical
distribution νq,N (as defined in (10)) of the Meixner ensemble. We adopt the notation

(x)k := x(x − 1) · · · (x − k + 1).

While there is no explicit formula available for the polynomial moments of νk,N ,
there is one for the factorial moments, i.e., moments of the form E[(X)k] = E[X (X −
1) · · · (X−k+1)]. Indeed letting X be distributed according toνq,N , [Led05b, Lemma 5.2]
states that

Mq(k, N ) := E[(X)k] = qk

(1 − q)k

k∑

i=0

q−i
(
k

i

)2

·
N−1∑

�=i

(� + k − i)!
(� − i)! .

In fact, this simplifies [CCO20, Eq. (3.5)] to

Mq(k, N ) = qk

(1 − q)k

1

N
· 1

k + 1

k∑

i=0

q−i
(
k

i

)2

· (N + k − i)!
(N − i − 1)! . (17)

Our approach is to use this formula to obtain asymptotics on the factorial moments,
and then later convert them into polynomial moments.

3.1. The factorial moment asymptotics.

Theorem 3.1. Let X be distributed according to νq,N as defined in (10), and let μq =
(1 + q1/2)2/(1 − q) be as in (7). There exist positive constants C, N0, and k0 such that
for all N ≥ N0, k0 ≤ k ≤ 1

2 N, and q ∈ [k−2, 1), Mq(k, N ) is upper and lower bounded
by (and letting α := k/N)

(q1/6k)−3/2(μq N )k exp

(
−N

[
(μq − α) log

(
1 − α

μq

)
+ α

])

up to factors of C exp
(
Cq1/2 k3

N2

)
or its inverse. Further, the upper bound holds for all

q ∈ (0, 1).

As we said, νN ,q has right edge of support roughly μq N = (1+q1/2)2

1−q N , and this is

what gives that to first order, Mq(k, N )N−k grows like μk
q . The main task is to obtain

the correct polynomial dependence on k and q, namely q−1/4k−3/2, of the same.
It turns out that the exponential factor in the theorem is the quantity to go between

factorial and polynomial moments. In Sect. 4, when we use Theorem 3.1 to prove Theo-
rem 2.5 on sharp upper and lower bounds on the polynomial moments, this factor will get
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canceled. In fact, the expression in the exponent that one gets by directly doing Laplace’s
method on the sum (as is our broad strategy to prove Theorem 3.1 as we indicated in the
introduction) is not the one recorded above. The recorded expression is instead obtained
by identifying an additional cancellation as mentioned in the idea of proofs Sect. 1.6;
this cancellation is isolated as Lemma B.2 in Appendix B, where most of the technical
estimates required for Theorem 3.1 are done.

Remark 3.2. Let us also emphasize the fact that the coefficient of k3/N 2 in the error
term is of order q1/2 and not unit order, which would have been easier to obtain (and
would suffice if uniform-in-q bounds are not required). As we saw at the end of the
previous section, the q1/2 factor was important in obtaining the uniform lower bound in
Theorem 2.4, as it ensures that q1/2k3/N 2 does not blow up as q → 0 for the choice of
k (which recall grows as q−1/6).

Before turning to giving the proof of Theorem 3.1 in full (though as mentioned
much of the technical estimates have been relegated to Appendix B), let us outline the
strategy. First, we will use Stirling’s approximation and a precise form of the fact that(k
i

) ≈ exp(kH(i/k)) (with H(x) = −x log x − (1− x) log(1− x) the entropy function)
to write the sum in (17) as, approximately and up to absolute constants,

Nkqk

(1 − q)k
· k−1 · 1

k + 1

k∑

i=0

k2

i(k − i)
exp

(
i log q−1 + 2k · H(i/k)

+ (k + 1) log

(
1 +

k − i

N

)
+ (N − i − 1) log

(
1 +

k + 1

N − i − 1

)
− (k + 1)

)
. (18)

Then, the idea is to obtain asymptotics for the sum using Laplace’s method. Indeed,
if we were to write k as αN and regard the sum (along with the (k + 1)−1 factor as being
approximately the integral

∫ 1

0

1

x(1 − x)
exp (N fα(x)) dx,

where

fα(x) = αx log q−1 + 2αH(x) + α log(1 + α(1 − x))

+ (1 − αx) log

(
1 +

α

1 − αx

)
− α, (19)

then, letting g(x) = (x(1 − x))−1, one would expect from the Laplace method heuristic
that the sum in (18) is approximately

(N | f ′′
α (x0)|)−1/2 exp(N fα(x0))g(x0),

up to constants, where x0 = x0(α) is the maximizer of fα on [0, 1]. Evaluating fα(x0)

and g(x0) will yield the claimed q and k dependencies in Theorem 3.1.
There are existing results in the literature, for example [Mas14], on Laplace’s method

for sums which also obtain the correct constant coefficient multiplying the previous
display. However these are not directly useful to us: we need all our estimates to be
uniform in the parameter q, which can be difficult to verify after applying black-box
theorems. For this reason we perform the analysis explicitly ourselves; but we will not be
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concerned with obtaining the correct constant dependencies as these are not necessary
for our ultimate applications. However, since there is not much novel or probabilistic
content in these computations, we defer to Appendix B the proofs of these bounds (which
are stated as Propositions B.1 and B.5).

Proof of Theorem 3.1. In the following, we will include error terms of the form ±O
(r(k, N )) in front to emphasize that we allow the error to be positive or negative, as long
as it is in magnitude bounded by Cr(k, N ) for some constant C not depending on q,
i , k, α, or N , in the range (0 < α ≤ 1

2 )). Similarly, a factor of �(1) indicates that the
equality holds up to a factor of an absolute constant.

We will first obtain a bound on the summands in (17). We start with bounding (N +
k − i)!/(N − i − 1)! using Stirling’s approximation (non-asymptotic form) to obtain

(N + k − i)!
(N − i − 1)!

=
√

2π(N + k − i)√
2π(N − i − 1)

exp
[
(N + k − i) log(N + k − i)

− (N + k − i) − (N − i − 1) log(N − i − 1) + (N − i − 1) ± O(N−1)
]

= �(1) · exp

[
(N − i − 1) log

N + k − i

N − i − 1
+ (k + 1)

(
log(N + k − i) − 1

)]

= �(1) · exp

[
(N − i − 1) log

(
1 +

k + 1

N − i − 1

)
+ (k + 1)

(
log(N + k − i) − 1

)]
.

Substituting the above expression into that of Mq(k, N ) (17) and multiplying by
N−k , we obtain

Mq(k, N )N−k = �(1)qk

(1 − q)k(k + 1)

k∑

i=0

q−i
(
k

i

)2

exp
[
(N − i − 1) log

(
1 +

k + 1

N − i − 1

)

+ (k + 1) log(N + k − i) − (k + 1) log N − (k + 1)
]

= �(1)qk

(1 − q)k(k + 1)

k∑

i=0

q−i
(
k

i

)2

exp
[
(N − i − 1) log

(
1 +

k + 1

N − i − 1

)

+ (k + 1) log

(
1 +

k − i

N

)
− (k + 1)

]
.

Now since

(
k

i

)
= �(1)

√
k

i(k − i)
exp(kH(i/k)),

where H(p) = −p log p − (1 − p) log(1 − p) is the entropy function, we obtain that
Mq(k, N )N−k is equal to

�(1)qk

(1 − q)k
· k−1 · 1

k + 1

k∑

i=0

k2

i(k − i)
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exp
[
i log q−1 + 2kH(i/k) + (N − i − 1) log

(
1 +

k + 1

N − i − 1

)

+ (k + 1) log

(
1 +

k − i

N

)
− (k + 1)

]
.

Rewriting the previous display a little, we obtain

�(1)qk

(1 − q)k
· k−1 · 1

k + 1

k∑

i=0

1
i
k (1 − i

k )
exp

[
N

{
i
N log q−1 +

2k

N
· H(i/k)

+

(
1 − i + 1

N

)
log

(
1 +

k + 1

N − i − 1

)
+
k + 1

N
log

(
1 +

k − i

N

)
− k + 1

N

}]
. (20)

Note that the expression inside the curly brackets in the exponent is fα(i/k) with
α = k/N and fα as defined in (19). The sum is upper and lower bounded using Propo-
sitions B.1 and B.5 (which perform the Laplace’s method-type asymptotics mentioned
above) in Appendix B, up to a factor of C exp(Cq1/2k3/N 2) or its inverse, and for
N ≥ N0, k0 ≤ k ≤ N , and q ≥ k−2, by

q−1/4k1/2

[(
1 + q1/2

)2

q

]k

exp

(
−N

[
(μq − α) log

(
1 − α

μq

)])
.

Substituting this into (20) yields that Mq(k, N )N−k is equal to

�(1) · k−3/2q−1/4

[(
1 + q1/2

)2

1 − q

]k

exp

(
−N

[
(μq − α) log

(
1 − α

μq

)]
± O(1)q1/2 k3

N 2

)
, (21)

which completes the proof after recalling that μq = (1 + q1/2)2/(1 − q). ��

4. Translating from Factorial to Polynomial Moments

Now we convert the factorial moment bounds of Theorem 3.1 to polynomial bounds
and thus prove Theorem 2.5. The basic idea is the following. Notice that the difference
between the bounds in the two theorems is essentially the factor of exp(−N [(μq −
α) log(1 − μq

α
) + α]) in the bounds for the factorial moments, where α = k/N . The

presence of this factor is a problem because it is much smaller than O(1). So our goal
is to show that that factor goes away when we move to the kth polynomial moment.

Now, we can write the ratio [X (X − 1) · · · (X − k + 1)]/Xk as

k−1∏

i=1

(1 − i X−1) = exp

(
−

k∑

i=1

log

(
1 − i

X

))
.

If we believe that the support of X essentially has upper boundary μq N , then, when
considering high powers of X , heuristically one should get the correct behavior when
replacing X by μq N . Doing so, we can recognize the sum in the previous display as N
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times a Riemann sum of the integral
∫ α

0 log(1 − x/μq) dx = (α −μq) log(1 − α
μq

)−α.
This exactly cancels the extra factor we noted above.

Because this factor which needs to be cancelled will come up a number of times in
this section, let us adopt some notation for it. For α ∈ (0, 1), define hα : [α,∞) → R

by

hα(x) = (α − x) log
(

1 − α

x

)
− α. (22)

The proof we provide does not exactly make the above heuristic precise. While the
conversion between factorial and polynomial expressions outlined above essentially
holds for deterministic x (see for example Lemma 4.1 ahead), due to the randomness of X ,
the procedure is not able to provide sharp estimates on the kth moment of X in the entire
range ofq and k that we will require. What we will do instead is obtain sharp upper bounds
on the upper tail of X using the factorial moments, and then use the general formula
(sometimes called the layer cake representation) E[Xk] = ∫ ∞

0 kxk−1
P(X > x) dx and

variants to obtain the sharp estimates on E[Xk] in the complete parameter range we need
(as was discussed briefly in the introduction in Sect. 1.6.2).

(In fact, for lower order moments it is possible to make the heuristic precise in a
more direct way, without making use of the layer cake representation. For example, for
moments of order N 2/3, the factor by which E[Xk] and E[(X)k] differs becomes of
unit order, and it is possible to approximate hα(x) by −α2/(2x) ± O(α3) where recall
α = k/N , since α3N = k3/N 2 = �(1) when k = �(N 2/3). But because we require
moments up to order N , the errors in these approximations become much too large and so
we must keep all the expressions, such as hα , as they are and track all the cancellations.)

In the next Sect. 4.1 we collect some general statements connecting factorial and
polynomial moments. In Sect. 4.2 we use the estimates on factorial moments to obtain
sharp upper bounds onP(X > x). Finally in Sects. 4.3 and 4.4 we will use these estimates
and the layer cake representation to obtain the upper and lower bounds respectively on
E[Xk].

4.1. General lemmas connecting factorial and polynomial moments.

Lemma 4.1. Let k, N , x ∈ N with k ≤ x and let α = k/N, β = x/N. Then, with hα as
in (22),

(x)k ≥ xk exp
(
Nhα(β)

)
.

Proof. We see that

(x)k = x(x − 1) · · · (x − k + 1) = xk ×
k−1∏

i=1

(
1 − i

x

)
= xk · exp

(
k−1∑

i=1

log

(
1 − i

x

))
.

Now, the RHS is lower bounded by

xk · exp

(
k−1∑

i=1

log

(
1 − i

βN

))
= xk · exp

(
αN−1∑

i=1

log

(
1 − i

βN

))
.

We recognize the sum in the exponent as N times the left Riemann sum associated
to the integral

∫ α

0 log(1 − x/β) dx = (α −β) log(1 − α
β
)−α. Since x �→ log(1 − x/β)
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is a decreasing function, the integral is a lower bound for the left Riemann sum, i.e., the
previous display is lower bounded by

xk · exp

(
N

[
(α − β) log

(
1 − α

β

)
− α

])
.

Rearranging completes the proof. ��
Lemma 4.2. Let X be a non-negative integer-valued random variable. Then for any
k, N ∈ N with k ≤ N/2, α := k/N, and β > α, with hα as in (22),

E[Xk] ≥ (
E[(X)k] − E[(X)k1X>βN ]) · exp

(
−Nhα(β) − 1

4 (β − α)−1
)
.

Proof. As in the previous proof, we see that, under the condition that x ≤ βN ,

(x)k = xk ×
k−1∏

i=1

(
1 − i

x

)
= xk × exp

(
k−1∑

i=1

log

(
1 − i

x

))
≤ xk

× exp

(
αN−1∑

i=1

log

(
1 − i

βN

))
.

We again recognize the sum as N times the left Riemann sum of
∫ α

0 log(1−x/β) dx =
(α − β) log(1 − α

β
) − α. The absolute value of the deviation between the Riemann sum

of f and the associated integral is bounded by supx∈[0,α] | f ′(x)|α/N (e.g. by bounding
| f (x) − f (i/N )| on [i/N , (i + 1)/N ] by sup[0,α] | f ′|/N , integrating the inequality on
[i/N , (i +1)/N ], and summing over i = 1, . . . αN ), and we can evaluate this expression
to be α/((β − α)N ) for our particular f . So we see that, when x ≤ βN ,

(x)k ≤ xk exp

(
N

[
(α − β) log

(
1 − α

β

)
− α

]
+ (β − α)−1α

)
. (23)

So with this, and since X is non-negative, for any β > α and since α ≤ 1
2 ,

E[Xk] ≥ E[Xk1X≤βN ] ≥ E
[
(X)k1X≤βN

]

· exp

(
N

[
(β − α) log

(
1 − α

β

)
+ α

]
− 1

2 (β − α)−1
)

.

Writing (X)k1X≤βN as (X)k − (X)k1X>βN completes the proof. ��
In the next lemma we record some basic properties of hα which will be useful ahead.

Lemma 4.3. Recall hα(x) = (α − x) log(1 − α
x ) − α from (22). Then hα is increasing

and, for α ∈ (0, 1
2 ] and x ≥ y,

hα(x) − hα(y) ≤
{

α2y−2(x − y) y ≥ 2α

α2 y ≥ 1.

In particular, if α ∈ (0, 1
2 ] and x ≥ y ≥ 1,

hα(x) − hα(y) ≤ α2(y−2(x − y) ∧ 1
)
.
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Proof. That hα is increasing is easily checked by differentiating.
Since x ≥ y, hα(x) ≥ hα(y) as hα is increasing. The lemma follows from the

facts that (i) hα is concave for x > α, so that hα(x) − hα(y) ≤ (x − y)h′
α(y), and

noting by direct calculation that h′
α(y) = −α/y − log(1 − α/y) ≤ α2/y2 for all

y ≥ 2α and α ∈ [0, 1
2 ]; and (ii) since h is increasing and y ≥ 1, hα(x) − hα(y) ≤

limz→∞ hα(z) − hα(1) = α + (1 − α) log(1 − α) ≤ α2 for all α ∈ [0, 1]. ��

4.2. Sharp upper bounds on the upper tail of νq,N . As we outlined earlier, for our
ultimate goal of sharp asymptotics for E[Xk], we will need to obtain sharp upper bounds
on expectations such as E[Xk] and E[(X)k1X≥t ] (as appeared in Lemma 4.2). For this
we will need upper bounds on P(X ≥ t) for appropriate t , which will then be used to
estimate the expectations using the “layer cake” representation (i.e., a general form of
the identity E[Xk] = ∫ ∞

0 ktk−1
P(X ≥ t) dt).

In this section we obtain these sharp upper bounds on P(X ≥ t), where t = μq N (1 +
q1/6ε). The nature of the tail differs between ε ∈ (−1, 0) and ε > 0; in the former case,
it decays polynomially in ε (indeed, Theorem 2.4 asserts a lower bound of order ε3/2, and
we will prove a matching upper bound), while in the latter case it decays exponentially.
These are captured in the next two propositions. We recall the definitions of μq from (7)
and the distribution νq,N as defined in (10).

Proposition 4.4. Let X ∼ νq,N . There exist positive constants C and N0 such that, for
N ≥ N0, ε ∈ (N−2/3, 1) and q ∈ [N−2, 1),

P

(
X ≥ μq N (1 − q1/6ε)

)
≤ Cε3/2.

Proposition 4.5. Let X ∼ νq,N . There exist positive constants c, C and N0 such that,
for N ≥ N0, ε > 0, and q ∈ [N−2, 1),

P

(
X ≥ μq N (1 + q1/6ε)

)
≤

{
Cε−3/4N−3/2 exp

(−cε3/2N
)

ε ∈ (0, q1/3]
C(q1/6N )−3/2(1 + q1/6ε)−cN ε ≥ q1/3.

When ε ∈ [q1/3, q−1/6], we may replace (1 + q1/6ε)−cN by exp(−cq1/6εN ) in the
second inequality.

Observe the change in behaviour of the bound at ε = q1/3; in particular, the coef-
ficients in the exponent depend on q when ε > q1/3 and are no longer uniform. The
reason for the change in the nature of the bound can be understood by recalling that the
upper tail of X is closely related to the upper tail of TN , the LPP value in geometric
LPP: P(TN ≥ t − N + 1) ≤ N · P(X ≥ t) (we will prove this as well as use it in the
proof of Theorem 1.9 on the upper tail of TN at the end of Sect. 4.2 ahead). Setting
t = μq N (1 + q1/6ε), we see that

P

(
TN ≥ (μq − 1)N + μqq

1/6εN
)

≤ P(X ≥ μq N (1 + q1/6ε)).

Now μq −1 = O(q1/2/(1−q)) and, when ε = q1/3, the deviation μqq1/6εN equals
O(q1/2N/(1 − q)) as well, and so we are in the large deviation regime of geometric
LPP. While in the moderate deviation regime we would expect universality (and hence
the bounds are uniform in q), in the large deviation regime the bound should be expected
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to depend on the last passage percolation vertex distribution; in this case it is Geo(q),
and so it is not surprising that the bound depends on q.

To prove Proposition 4.5, the basic idea will be to use Markov’s inequality with the
kth factorial moment of X for a k which will be optimized over.

Proof of Proposition 4.4. We may assume ε < 1
2 by modifying the constant C . By

Markov’s inequality, Theorem 3.1, and Lemma 4.1 (to lower bound the denominator),
for any N ≥ N0, k0 ≤ k ≤ 1

2 N , and q ∈ (0, 1) (and using that k ≤ N/2, ε < 1
2 , and

q < 1 guarantees μq N (1 − q1/6ε) ≥ k to apply Lemma 4.1),

P

(
X ≥ μq N (1 − q1/6ε)

)
≤ E[(X)k]

(μq N (1 − q1/6ε))k

≤
C(q1/6k)−3/2(μq N )k exp

(
Nhα(μq) + Cq1/2 k3

N2

)

(μq N )k(1 − q1/6ε)k exp
(
Nhα(μq(1 − q1/6ε))

) ,

where α = k/N and hα(x) = (α − x) log(1 − α
x ) − α as in (22). We will ultimately

pick ε < 1
2 . Since (1 − x)−1 ≤ exp(2x) for x ∈ [0, 1

2 ], μq ≥ 1, and |hα(x) − hα(y)| ≤
α2y−2(x − y) for x ≥ y ≥ 2α from Lemma 4.3, we obtain

P

(
X ≥ μq N (1 − q1/6ε)

)
≤ C(q1/6k)−3/2 exp

(
2q1/6εk + Cq1/6ε

k2

N
+ Cq1/2 k3

N 2

)
.

Setting k = q−1/6ε−1 (note that k ≤ N/2 if ε ≥ 22/3N−2/3 since q ≥ N−2), and
using that k ≤ N , we obtain

P

(
X ≥ μq N (1 − q1/6ε)

)
≤ Cε3/2 exp

(
C + Cε−3N−2

)
≤ Cε3/2,

the last inequality using that ε ≥ N−2/3. ��
Proof of Proposition 4.5. We address the case of ε ∈ [0, q1/3] first. As in the previous
proof, by Markov’s inequality and Theorem 3.1, for any N ≥ N0, k0 ≤ k ≤ 1

2 N , and
q ∈ (0, 1),

P

(
X ≥ μq N (1 + q1/6ε)

)
≤ E[(X)k]

(μq N (1 + q1/6ε))k

≤
C(μq N )k(q1/6k)−3/2 exp

(
Nhα(μq) + Cq1/2 k3

N2

)

(μq N )k(1 + q1/6ε)k exp
(
Nhα(μq(1 + q1/6ε))

) .

(24)

Since (1 + x)−1 ≤ exp(−x/2) for x ∈ [0, 1], and since hα is increasing (as recorded
in Lemma 4.3), we obtain

P

(
X ≥ μq N (1 + q1/6ε)

)
≤ C(q1/6k)−3/2 exp

(
−cq1/6kε + Cq1/2 k3

N 2

)
,

the last inequality for k ≤ 1
2cC

−1N . Setting k = δε1/2q−1/6N for a constant δ > 0 to
be set shortly, and using that ε ≤ q1/3 (so that k ≤ 1

2cC
−1N if δ < 1

2cC
−1), we obtain

P

(
X ≥ μq N (1 + q1/6ε)

)
≤ Cδε

−3/4N−3/2 exp
(
−cδε3/2N + Cδ3ε3/2N

)
.



The Lower Tail of q-pushTASEP Page 29 of 55 64

Picking δ to be an appropriately small absolute constant completes the proof in the
case ε ≤ q1/3.

Next we turn to the the case of ε ≥ q1/3. We look again at (24). Using that hα(μq(1+
q1/6ε)) > hα(μq) as hα is increasing (from Lemma 4.3) and taking k = αN in (24) for
a small absolute constant α to be chosen, we conclude that

P

(
X ≥ μq N (1 + q1/6ε)

)
≤ C(q1/6N )−3/2(1 + q1/6ε)−αN exp

(
Cq1/2α3N

)

≤ C(q1/6N )−3/2(1 + q1/6ε)−αN/2

for all small enough α (using that q1/6ε ≥ q1/2). In the case that q1/6ε ≤ 1, it holds
that (1 +q1/6ε)−1 ≤ exp(−cq1/6ε), which provides the claimed bound in the remaining
case. This completes the proof of Proposition 4.5.

With these upper tail estimates of X ∼ νq,N available, we can also quickly give the
proof of Theorem 1.9 on the uniform upper tail of geometric LPP:

Proof of Theorem 1.9. As in the proof of Theorem 1.4, we have that TN
d= λ1 − N + 1,

where (λ1, . . . , λN ) is the Meixner ensemble. So for any t ∈ R,

P(TN ≥ t − N + 1) = P(λ1 ≥ t) ≤ P

(
N−1

N∑

i=1

δλi /N ([t,∞)) ≥ 1

N

)

≤ Nνq,N ([t,∞)), (25)

where that last inequality is Markov’s inequality and recall νq,N = E[N−1 ∑N
i=1 δλi /N ]

is the expected empirical distribution of the Meixner ensemble defined in (10).
We set t = μq N (1 + q1/6ε) for an ε ∈ (0, 1) to be set later. Now if we let X be

distributed as νq,N , we see that we want to estimate

Nνq,N ([μq N (1 + q1/6ε),∞)) = N · P
(
X ≥ μq N (1 + q1/6ε)

)
.

By the first case of Proposition 4.5, the previous display is upper bounded by

Cε−3/4N−1/2 exp(−cε3/2N )

when ε < q1/3. Taking ε = xN−2/3 and noting that x < q1/3N 2/3 implies ε < q1/3

completes the proof in this range of x . For x > q1/3N 2/3, doing the above using the
bound from Proposition 4.5 for ε > q1/3 completes the proof.

4.3. The upper bound on E[Xk]. In this section we apply Lemmas 4.1 to obtain the
upper bound on E[Xk], and we will turn to the lower bounds in Sect. 4.4. The precise
upper bound is the following. (Recall from (7) that μq = (1 + q1/2)2/(1 − q).)

Proposition 4.6. Let X be distributed according to νq,N as defined in (10) and μq be as
in (7). There exist positive constants C, k0, α0, and N0 such that, for any N ≥ N0 and
(k, q) satisfying k0 ≤ k ≤ min(α0N , q−1/6N 2/3) and q ∈ [N−2, 1), it holds that

E[Xk] ≤ C(q1/6k)−3/2(μq N )k exp

(
Cq1/2 k3

N 2

)
.
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We note that, for the range of k under consideration, we can absorb the factor
exp(Cq1/2k3/N 2) into the constant factor C (and thus match the statement of Theo-
rem 2.5). We keep this factor in this statement merely to match the form of Proposi-
tion 4.7 ahead where it cannot be similarly absorbed, and because it will appear naturally
in the proof.

Proof of Proposition 4.6. We start with the breakup

E[Xk] = E[Xk1X≤μq N (1−q1/6)] + E[Xk1X>μq N (1−q1/6)]
≤ (μq N )k exp(−q1/6k) + E[Xk1X>μq N (1−q1/6)].

Next we estimate E[Xk1X>μq N (1−q1/6)]. Using the fundamental theorem of calculus

and Fubini’s theorem to write E[Xk1X>s] = ∫ ∞
0 ktk−1

P(X > max(s, t)) dt ,

E[Xk1X>μq N (1−q1/6)] =
∫ ∞

0
ktk−1

P

(
X > max(μq N (1 − q1/6), t)

)
dt

= (μq N (1 − q1/6))kP
(
X ≥ μq N (1 − q1/6)

)

+
∫ ∞

μq N (1−q1/6)

ktk−1
P (X > t) dt

≤ (μq N )k exp(−q1/6k) + (q1/6k)(μq N )k

∫ ∞

−1
(1 + q1/6s)k−1

P

(
X ≥ μq N (1 + q1/6s)

)
ds,

performing a change of variable t �→ μq N (1 + q1/6s) in the last line and using 1 − x ≤
exp(−x).

We focus on the second term in the previous display. The tail probability in the
integrand behaves differently for s ∈ (−1, 0) and s > 0, as captured in Propositions 4.4
and 4.5, and so we break up the integral into two parts on this basis. Doing so, and doing
a change of variable s �→ −s in the resulting first integral, we obtain that the second
term in the previous display equals

(q1/6k)(μq N )k
∫ 1

0
(1 − q1/6s)k−1

P

(
X ≥ μq N (1 − q1/6s)

)
ds

+ (q1/6k)(μq N )k
∫ ∞

0
(1 + q1/6s)k−1

P

(
X ≥ μq N (1 + q1/6s)

)
ds. (26)

We start with the first term. Using that 1 − x ≤ exp(−x) and Proposition 4.4 (note
that this proposition requires ε > N−2/3, which necessitates the further break up below),

(q1/6k)(μq N )k
∫ 1

0
(1 − q1/6s)k−1

P

(
X ≥ μq N (1 − q1/6s)

)
ds

= (q1/6k)(μq N )k
∫ N−2/3

0
(1 − q1/6s)k−1

P

(
X ≥ μq N (1 − q1/6s)

)
ds

+ (q1/6k)(μq N )k
∫ 1

N−2/3
(1 − q1/6s)k−1

P

(
X ≥ μq N (1 − q1/6s)

)
ds
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≤ (q1/6k)(μq N )k N−2/3
P

(
X ≥ μq N (1 − q1/6N−2/3)

)

+ (q1/6k)(μq N )k
∫ 1

N−2/3
s3/2 exp(−q1/6sk) ds

≤ C(q1/6k)(μq N )k
[
N−5/3 + (q1/6k)−5/2

]
.

Now we turn to the second term of (26). By applying the bound on the tail probability
from Proposition 4.5 (in the two cases of s < q1/3 and s > q1/3) and using that
1 + x ≤ exp(x), we obtain that the second term of (26) is upper bounded by

C(q1/6k)(μq N )k
[
N−3/2

∫ q1/3

0
s−3/4 exp

(
q1/6ks − cs3/2N

)
ds

+ q−1/4N−3/2
∫ ∞

q1/3
(1 + q1/6s)k−1−cN ds

]
. (27)

We write k in the exponent as αN and perform Laplace’s method to bound the
first integral, with f (s) = q1/6αs − cs3/2, s0 = argmaxs f (s) = 4

9c
−2q1/3α2 and

f ′′(s0) = − 3
4cs

−1/2
0 , to obtain that the first term (i.e., the first integral times its complete

coefficient) of the previous display is upper bounded by (also using that α = k/N )

C(μq N )kq1/6k · N−3/2(N | f ′′(s0)|)−1/2 · s−3/4
0 · exp(N f (s0))

= C(μq N )kq1/6k · N−3/2(Nq−1/6α−1)−1/2 · q−1/4α−3/2 · exp

(
Nq1/2 k3

N 2

)

= CN−1(μq N )k exp

(
Cq1/2 k3

N 2

)
. (28)

Under the condition that k ≤ cN/2, the second term in (27) is upper bounded (using
that k ≤ N and (1 + q1/2)−1 ≤ 1 for the displayed inequality) by

C(q1/6k)(μq N )k · q−1/4N−3/2 · q
−1/6(1 + q1/2)−cN/2

cN
≤ q−1/4k−3/2(μq N )k .

Putting it all together, we have shown that

E[Xk] ≤ C(μq N )k
[
2 exp(−q1/6k) + (q1/6k)N−5/3 + 2(q1/6k)−3/2

+N−1 exp

(
Cq1/2 k3

N 2

)]
.

Clearly exp(−q1/6k) ≤ C(q1/6k)−3/2. The condition that k ≤ q−1/6N 2/3 implies
that (q1/6k)N−5/3 ≤ (q1/6k)−3/2 and N−1 ≤ (q1/6k)−3/2. Thus we obtain that the
RHS in the previous display is upper bounded by

C(q1/6k)−3/2(μq N )k exp

(
Cq1/2 k3

N 2

)
,

completing the proof. ��
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4.4. The lower bound on E[Xk]. Here is the lower bound statement we prove:

Proposition 4.7. Let X be distributed according to νq,N as defined in (10) and μq be as
in (7). Then there exist positive constants c, C, α0, N0, and k0 such that, for any N ≥ N0,
k0 ≤ k ≤ α0N, and q ∈ [k−2, 1),

E[Xk] ≥ c(q1/6k)−3/2(μq N )k exp

(
−Cq1/2 k3

N 2

)
.

The basic idea is to combine Lemma 4.2 with Theorem 3.1. Recall that the lower
bound from Lemma 4.2 has the term E[(X)k] − E[(X)k1X≥βN ]. While the first term
can be lower bounded using Theorem 3.1, we do not currently have an estimate for
the second term. To handle this we will again make use of the fundamental theorem
of calculus and Fubini’s theorem and make use of Proposition 4.5 (upper bound on the
upper tail of X ), as in the proof of Proposition 4.7.

Here too the fact that we need estimates on polynomial moments E[Xk] with k
up to order N creates technical difficulties. For smaller values of k, e.g. up to order
N 2/3, one can upper bound E[(X)k1X≥βN ] by E[Xk1X≥βN ]. The latter is less than
E[X2k]1/2

P(X ≥ βN )1/2 by Cauchy–Schwarz, and this can be bounded using the
already proved upper bound on the polynomial moments and a crude upper bound on
the tail probability. This strategy works for smaller k because, when X = �(N ) as
is typical, Xk and (X)k differ only by a constant factor; the same certainly does not
hold when k = �(N ). It is for this reason that we must follow the more delicate path
outlined above, making use of a variant of the layer cake formula for E[(X)k1X≥βN ]
and essentially sharp upper tail bounds for X throughout the tail.

Proof of Proposition 4.7. We will takeβ = μq(1+q1/2) and ultimately apply Lemma 4.2.
So we need to lower bound E[(X)k] − E[(X)k1X>μq N (1+q1/2)], in particular, to show
that the second term is much smaller than the first. We start with lower bounding the first
term using Theorem 3.1, which says that, for N ≥ N0, k0 ≤ k ≤ 1

2 N , and q ∈ [k−2, 1),

E[(X)k] ≥ C ′(q1/6k)−3/2(μq N )k exp
(
N

[
hα(μq) − C ′α3q1/2

])
, (29)

where recall from (22) that hα(x) = (α − x) log(1 − α
x ) − α and α = k/N .

We need to show that E[(X)k1X≥μq N (1+q1/2)] is smaller than the previous display by
at least a constant factor. The idea will be, as in the arguments in Sect. 4.3, to use the
fundamental theorem of calculus and Fubini’s theorem to write this expectation as an
integral against the tail probability.

E[(X)k1X≥μq N (1+q1/2)] =
∫ ∞

0

d

dx
(x)k · P

(
X > max

(
x, μq N (1 + q1/2)

))
dx

=
∫ μq N (1+q1/2)

0

d

dx
(x)k · P

(
X > μq N (1 + q1/2)) dx

+
∫ ∞

μq N (1+q1/2)

d

dx
(x)k · P (X > x) dx

= (
μq N (1 + q1/2)

)
k · P(

X > μq N (1 + q1/2)
)

+
∫ ∞

μq N (1+q1/2)

d

dx
(x)k · P (X > x) dx .
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Now, we can write the derivative of (x)k as (ψ(x + 1) − ψ(x − k + 1)) · (x)k , where
ψ is the digamma function (as can be verified by using the product rule to differentiate
(x)k and the recursive relation ψ(x + 1) = ψ(x) + x−1 that ψ satisfies). The digamma
function satisfies the inequalities, for x > 1

2 ,

ψ(x) ∈ (
log(x − 1

2 ), log x
)
,

so that, when x > k − 1
2 ,

ψ(x + 1) − ψ(x − k + 1) ≤ log(x + 1) − log(x − k + 1
2 ) = − log

(
1 − k + 1

2

x + 1

)

≤ k + 1
2

x + 1
.

if k < x/2 (which holds in our situation since k < 1
2 N and x > μq N with μq > 1).

We recall that, by the second case of Proposition 4.5, P(X > μq N (1 + q1/2)) ≤
q−1/4N−3/2(1 + q1/2)−cN .

Using these facts and performing the change of variable x �→ μq N (1 + q1/2y), we
see that

E[(X)k1X≥μq N (1+q1/2)] ≤ C
(
μq N (1 + q1/2)

)

k
· q−1/4N−3/2(1 + q1/2)−cN

+ Cμq Nq1/2
∫ ∞

1

k

μq N
(μq N (1 + q1/2y))k

· P
(
X > μq N (1 + q1/2y)

)
dy. (30)

We next estimate the falling factorial terms in the above expression. We know from
(23) that, for any ε > 0 and k = αN , (recalling hα(x) = (α − x) log(1 − α

x ) − α from
(22))

(
μq N (1 + ε)

)
k ≤ C(μq N (1 + ε))k exp

(
Nhα(μq(1 + ε))

)

≤ C(μq N )k(1 + ε)k exp
(
N

[
hα(μq) + Cα2(μ−1

q ε ∧ 1)
])

≤ C(μq N )k(1 + ε)k exp
(
N

[
hα(μq) + Cα2(ε ∧ 1)

])
,

the second inequality using Lemma 4.3 and third using μq ≥ 1.
Substituting this bound on the falling factorial into (30) and using the bounds on the

tail probability from the second case of Proposition 4.5, we obtain that
E[(X)k1X≥μq N (1+C1q1/2)] is upper bounded by

C̃(μq N )k exp

(
N

[
(α − μq) log

(
1 − α

μq

)
− α

])
· q−1/4N−3/2

×
[

exp
(
−N

[
c log(1 + q1/2) − Cα2q1/2

])

+ kq1/2
∫ ∞

1
exp

(
−N

[
c log(1 + q1/2y) − Cα2

(
1 ∧ (q1/2y)

)])
dy

]
. (31)
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To ensure that the coefficient of N in the exponential is negative in both the terms on
the second and third lines of the previous display, we will need to restrict how big α can
be. More precisely, since α < α0 with α0 an absolute constant which we are free to set,
we set it such that, for all x ∈ [0, 1]

1

2
c log(1 + x) > Cα2

0x .

Then the second line of (31) is upper bounded by

(1 + q1/2)−
1
2 cN ≤ 1

2 ,

using that q ≥ N−2.
Similarly the third line of (31) is upper bounded by

kq1/2
∫ ∞

1
(1 + q1/2y)−

1
2 cN dy = Ck

(1 + q1/2)−cN

N
≤ 1

2 .

Thus overall we see that there is a C such that

E[(X)k1X≥μq N (1+C1q1/2)] ≤ Cq−1/4N−3/2(μq N )k

exp

(
N

[
(α − μq) log

(
1 − α

μq

)
− α

])
.

Then, recalling the lower bound on E[(X)k] from (29),

E[(X)k1X≥μq N (1+C1q1/2)]
E[(X)k] ≤ C(C ′)−1

[
(q1/6k)3/2

(q1/6N )3/2

]
≤ C(C ′)−1α

3/2
0 ≤ 1

2
,

the last inequality by reducing α0 further if necessary and using that k ≤ α0N and
q ≥ k−2.

Now applying Lemma 4.2 with β = μq(1 + q1/2) ≥ 1 and α ≤ 1
2 (and noting that

thus (β − α)−1 ≤ 2), using the previous display and (29), we get

E[Xk] ≥ 1

2
E[(X)k] · exp

(
N

[
(β − α) log

(
1 − α

β

)
+ α

]
− 1

2 (β − α)−1
)

≥ c(q1/6k−3/2)(μq N )k exp
(
−Cα3q1/2N

)
.

��

5. Concentration Inequalities and the Proof of Theorem 1.1

In this section we combine Theorem 1.4 (on the uniform tail for geometric LPP) with the
representation of the position xN (N ) of the first particle in q-pushTASEP in terms of the
LPP value in an infinite periodic strip of inhomogeneous geometric random variables,
and so obtain an upper bound on the lower tail of xN (N ). Recall from the proof outline
given in Sect. 1.6 that the main idea is to lower bound the LPP value by a sum of
independent LPP values, each one in an N × N square; the parameter of the geometric
random variables is the same within each single such square, but varies across different
ones.



The Lower Tail of q-pushTASEP Page 35 of 55 64

For this argument we need one final ingredient: a concentration inequality for a sum
of independent random variables that takes into account the possibly varying scales of
the summands. Indeed, we will be considering a sum of geometric LPP values where
the parameter of the geometric is qi for varying i ; the scale of fluctuation for fixed i is
qi/6/(1 − qi ) ≈ i−1(| log q|)−1qi/6. Such a concentration inequality is recorded next,
and, as its proof is fairly routine, will be proven in Appendix C.

Theorem 5.1. Let I ∈ N∪ {∞} and suppose X1, . . . , XI are independent, and assume
that there exists C1 < ∞ and ρ1, . . . , ρI > 0 such that each Xi satisfies

P (Xi ≥ t) ≤ C1 exp(−ρi t
3/2)

for all t > 0. Let σ2 = ∑I
i=1 ρ−2

i and σ2/3 = ∑I
i=1 ρ

−2/3
i . Then there exist positive

absolute constants C and c such that, for t > 0,

P

(
I∑

i=1

Xi ≥ t + C · C1σ2/3

)
≤ exp

(
−cσ−1/2

2 t3/2
)

.

Using Theorem 5.1 we may give the proof of the main result, Theorem 1.1. We will
need a simple lower bound on the coefficient rescaling the fluctuations in the definition
(4) of X sc

N .

Lemma 5.2. For q, u ∈ (0, 1),

(−ψ ′′
q (logq u))1/3(log q−1)−1 ≥ u1/3

(1 − q)1/3(1 − u)2/3 .

Proof. By [MS09, Eq. (1.6)], ψ ′′
q (x) = (log q)3 · ∑∞

n=1
n2qnx

1−qn . Taking x = logq u =
log u/ log q yields that

(1 − q)(−ψ ′′
q (logq u))(log q)−3 =

∞∑

n=1

n2un(1 − q)

1 − qn
=

∞∑

n=1

n2un

1 + q + · · · + qn−1 .

Since the denominator is upper bounded by n and
∑∞

n=1 nu
n = u/(1 − u)2, we

obtain the lemma. ��
This bound is not sharp. Indeed, since (−ψ ′′

q (logq u))(log q)−3 = ∑∞
n=1 n

2un/(1 −
q)n , in the q → 0 limit it equals

∑∞
n=1 n

2un = u/(1 − u)3 which is of larger order than
u/(1 − u)2 in the u → 1 regime.

Proof of Theorem 1.1. We have to upper bound, for θ > θ0 = θ0(q),

P

(
xN (N ) ≤ fq N − (−ψ ′′

q (logq u))1/3(log q−1)−1θN 1/3
)

, (32)

where we recall that fq is defined in (2) as

fq = 2 · ψq(logq u) + log(1 − q)

log q
+ 1.



64 Page 36 of 55 I. Corwin, M. Hegde

By Lemma 5.2, with σu,q = u1/3(1 − q)−1/3(1 − u)−2/3, (32) is upper bounded by

P

(
xN (N ) ≤ fq N − σu,qθN

1/3
)

. (33)

We define f̃q = fq − 1. By Theorem 1.3, we know that L + N
d= xN (N ), where L

is the LPP value from the topmost site to ∞ in the infinite periodic environment defined
in Sect. 1.4. Let L(i)

N be the last passage time from the top to the bottom of the i th large
square on the vertical line from the top (which has i.i.d. Geo(u2q2i ) random variables
associated to each small square). Then clearly

∑∞
i=0 L

(i)
N ≤ L , so

(33) = P

(
L ≤ f̃q N − σu,qθN

1/3
)

≤ P

( ∞∑

i=0

L(i)
N ≤ f̃q N − σu,qθN

1/3

)
.

We next add and subtract the law of large numbers term of L(i)
N , which as we see from

Theorem 1.4 is 2Nuqi (1 − uqi )−1, as this is the term by which the random variables
are centered to yield the tail bounds in the same theorem. So we can write the right-hand
side of the previous display as

P

( ∞∑

i=0

(
L(i)
N − 2N · uqi

1 − uqi

)
≤ f̃q N −

∞∑

i=0

2N · uqi

1 − uqi
− σu,qθN

1/3

)
. (34)

We have already evaluated the LLN sum in the proof ideas section. So we recall from
(5) and (6) that

∞∑

i=0

2N · uqi

1 − uqi
= 2N · ψq(logq(u)) + log(1 − q)

log q
= f̃q N .

Putting this back into (34), we see that

(34) = P

( ∞∑

i=0

(
L(i)
N − 2N · uqi

1 − uqi

)
≤ −σu,qθN

1/3

)
. (35)

In the remainder of the proof we will invoke the concentration bound from Theo-
rem 5.1 to upper bound the previous display.

Now, L(i)
N is the LPP value in an N ×N square with i.i.d. geometric random variables

of parameter u2q2i . We know from Theorem 1.4 that there exist positive constants c, t0,
and N0 such that, when u2q2i ∈ (0, 1), t > t0, and N > N0,

P

(
L(i)
N − 2N · uqi

1 − uqi
≤ −t · u1/3qi/3

1 − u2q2i N
1/3

)
≤ exp(−ct3/2).

Equivalently, there exist positive constants c, C1, and N0 such that, when u2q2i ∈
(0, 1), t > 0 (i.e., not t0), and N > N0,

P

(
L(i)
N − 2N · uqi

1 − uqi
≤ −t · u1/3qi/3

1 − u2q2i N
1/3

)
≤ C1 exp(−ct3/2).
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Letting σ ′
i,q,u = u1/3qi/3(1 − u2q2i )−1, we see that, for t > 0,

P

(
L(i)
N − 2N · uqi

1 − uqi
≤ −t N 1/3

)
≤ C1 exp

(
−c(σ ′

i,q,u)
−3/2t3/2

)
.

We next want invoke Theorem 5.1 with I = ∞ and (from the previous display)
ρi = (σ ′

i,q,u)
−3/2. Now, since q ∈ (0, 1),

σ2 =
∞∑

i=0

ρ−2
i =

∞∑

i=0

(σ ′
i,q,u)

3 =
∞∑

i=0

uqi

(1 − u2q2i )3 ≤ u

(1 − q)(1 − u2)3

and σ2/3 =
∞∑

i=0

ρ
−2/3
i =

∞∑

i=0

σ ′
i,q,u =

∞∑

i=0

u1/3qi/3

1 − u2q2i ≤ u1/3

(1 − q1/3)(1 − u2)
.

With these estimates, we obtain from Theorem 5.1 that there exist positive C and c
such that, for all t > 0 (and using that 1 − u2 = �(1 − u)),

P

( ∞∑

i=0

(
L(i)
N − 2N · uqi

1 − uqi

)
≤ −t N 1/3 − C

u1/3

(1 − q1/3)(1 − u)

)

≤ exp
(
−cu−1/2(1 − q)1/2(1 − u)3/2t3/2

)
.

So, putting in t = 2σu,qθ = u1/3(1 − q)−1/3(1 − u)−2/3θ , we obtain that, for
θ > C(1 − q)1/3/((1 − q1/3)(1 − u)1/3) with C as in the last display, (35) is bounded
as

P

( ∞∑

i=0

(
L(i)
N − 2N · uqi

1 − uqi

)
≤ −σu,qθN

1/3

)
≤ exp

(
−c(1 − u)1/2θ3/2

)
.

Note that (1 − q)1/3/(1 − q1/3) ≤ C ′ ∨ (log q−1)−2/3 by writing q = exp(−ε) for
some C ′. Thus we obtain the desired bound (33) with θ0(q, u) = C(1 − u)−1/3(1 ∨
(log q−1)−2/3). ��
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Appendix A: Proof of the LPP-q-Whittaker Connection

In this appendix we give the proof of Theorem 1.3 relating the observable xN (T ) to
an infinite last passage problem in a periodic and inhomogeneous environment. As
mentioned, the proof goes through an equivalence to the q-Whittaker measure, and we
start by introducing it.

A.1 q-Whittaker polynomials and measure.

Definition A.1 (q-Whittaker polynomial). For a skew partitionμ/λ, the skewq-Whittaker
polynomial in n variables Pμ/λ(x1, . . . , xn; q) is defined recursively by the branching
rule

Pμ/λ(x1, . . . , xn; q) =
∑

η

Pη/λ(x1, . . . , xn−1; q)Pμ/η(xn; q),

where, for a single variable z ∈ C (recalling the q-binomial coefficient defined in (1)),

Pμ/η(z; q) = 1η≺μ

∏

i≥1

zμi−ηi

(
μi − μi+1

μi − ηi

)

q
.

For a partition μ, the q-Whittaker polynomial Pμ is given by the skew q-Whittaker
polynomial Pμ/λ with λ taken to be the empty partition. The q-Whittaker polynomial
is a special case (t = 0) of the Macdonald polynomials, for which a comprehensive
reference is [Mac98, Section VI].

For a partition μ, we also define bμ(q) by

bμ(q) =
∏

i≥1

1

(q; q)μi−μi+1

.

Definition A.2 (q-Whittaker measure). The q-Whittaker measure W(q)

a;b, first introduced
in [BC14], is the measure on the set of all partitions given by

W
(q)

a;b(μ) = 1

�(a; b)bμ(q)Pμ(a; q)Pμ(b; q),

where a = (a1, . . . , an) and b = (b1, . . . , bt ) satisfy ai , b j ∈ (0, 1), and �(a; b) is a
normalization constant given explicitly by

�(a; b) =
n∏

i=1

t∏

j=1

1

(aib j ; q)∞
.

We may now record the important connection between xN (T ) and the q-Whittaker
measure which holds under general parameter choices and general times, when started
from the narrow-wedge initial condition:

Theorem A.3 (Section 3.1 of [MP16]). Let a, b be specializations of parameters re-
spectively (a1, . . . , aN ) ∈ (0, 1)N and (b1, . . . , bT ) ∈ (0, 1)T . Let μ ∼ W

(q)

a;b and let
x(T ) be a q-pushTASEP under initial conditions xk(0) = k for k = 1, . . . , N. Then,

xN (T )
d= μ1 + N .
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q-Whittaker to LPP. Next we give the proof of Theorem 1.3, which was explained to
us by Matteo Mucciconi. As indicated in Sect. 1.5, the proof we give relies heavily on
the work [IMS21]. Before proceeding we introduce some terms that will be needed.
First, a tableaux is a filling of a Young diagram with non-negative integers. It is called
semi-standard if the entries in the rows and columns are non-decreasing, from left to
right and top to bottom respectively. A vertically strict tableaux is a tableaux of non-
negative integers in which the columns are strictly increasing from top to bottom, but
there is no constraint on the row entries. A skew tableaux is a pair of partitions (λ, μ)

such that the Young diagram of λ contains that of μ, and should be thought of as the
boxes corresponding to λ \ μ. A semi-standard skew tableaux is defined analogously to
the semi-standard tableaux.

As we saw, Theorem A.3 on the relation between xN (T ) and the q-Whittaker measure
reduces the proof of Theorem 1.3 to proving the equality in distribution of the LPP value
L and the length of the top row of a Young diagram λ sampled from the q-Whittaker
measure. In fact, we will prove a stronger statement which relates all the row lengths
of λ to appropriate last passage percolation observables. For this, we let L( j) be the
maximum weight over all collections of j disjoint paths, one path starting from (i, 1)

for each 1 ≤ i ≤ j and all going to ∞ downwards, where the weight of a collection of
paths is the sum of the weights of the individual paths.

Theorem A.4. For 1 ≤ j ≤ min(N , T ), let L( j) be as defined above in the environment
defined in Sect. 1.4 and let μ ∼ W

(q)

a;b with ai , b j ∈ (0, 1) for all (i, j) ∈ {1, . . . , N } ×
{1, . . . , T }. Then, jointly across 1 ≤ j ≤ min(N , T ),

L( j) d= μ1 + · · · + μ j .

Theorem 1.3 follows immediately from combining the j = 1 case of Theorem A.4
with Theorem A.3.

Proof of Theorem A.4. We prove this in the case T = N . It is easy to see that the same
proof applies to the T < N case by setting m(i, j);k = 0 (in the same notation as below)
for j = T + 1, . . . , N , and similarly for N < T .

We will make use of two bijections. The first, known as the Sagan–Stanley cor-
respondence and denoted by SS, is a bijection between the set of (M, ν) and the
collection of pairs (P, Q) of semi-standard tableaux of general skew shape, where
M = (m(i, j);k)1≤i, j≤N ,k=0,1,... is a filling of the infinite strip by non-negative integers
which are eventually all zero and ν is a partition. The second is a bijection ϒ introduced
in [IMS21] between the collection of such (P, Q) and tuples of the form (V,W ; κ, ν),
where V,W are vertically strict tableaux of shape μ (which is a function of P , Q) and
κ ∈ K(μ) is an ordered tuple of non-negative integers with certain constraints on the
entries depending on μ, encoded by the set K(μ). We will not need the definition of
K(μ) for our arguments, but the interested reader is referred to [IMS21, Eq. (1.22)] for
it.

If one applies SS to (M, ν) and then ϒ to the result, the ν in the resulting output
(V,W, κ; ν) is the same as the starting one (see the line following [IMS21, Theo-
rem 1.4]). Thus the ν can be factored out, yielding a bijection between the set of M and
the set of (V,W, κ); we call this ϒ̃ , as in [IMS21].

Now, [IMS21, Theorem 1.2] asserts that L( j)(M) is equal to μ1 + · · · + μ j , the sum
of the lengths of the first j rows in the partition μ from the previous paragraph, for all
1 ≤ j ≤ N (this is a deterministic statement for L defined with respect to any fixed



64 Page 40 of 55 I. Corwin, M. Hegde

entries of the environment). So we need to understand the distribution of μ under the
map ϒ̃ when the entries m(i, j);k of M are distributed as independent Geo(qkaib j ), in

particular, show that it is W(q)
a,b.

For this task we will need certain weight preservation properties of ϒ̃ which we
record in the next lemma.

Lemma A.5. For an infinite matrix M and (V,W ; κ) as above, define weight functions

W1(M) =
(∑

k

∑

j

m(i, j);k
)

1≤i≤N

W2(M) =
(∑

k

∑

i

m(i, j);k
)

1≤ j≤N

W3(M) =
∑

k

∑

i, j

km(i, j);k .

and, with #(U, i) being the number of times the entry i appears in the vertically strict
tableaux U,

W̃1(V,W, κ) = (
#(V, i)

)
1≤i≤N

W̃2(V,W, κ) = (
#(W, j)

)
1≤ j≤N

W̃3(V,W, κ) = H(V ) + H(W ) +
∑

i

κi ,

whereH is the “intrinsic energy function”. Its definition is complicated and not strictly
needed for our purposes, so the interested reader is referred to [IMS21, Definition 7.4]
for a precise definition.

Then, if M and (V,W, κ) are in bijection via ϒ̃ , it holds that, for i = 1, 2, 3,

Wi (M) = W̃i (V,W, κ).

We will prove this after completing the proof of Theorem 1.3. We wish to calculate
P(L(k)(M) = ∑k

i=1 μi for all1 ≤ k ≤ n) where M is distributed according to inde-
pendent geometric random variables as above, and show that this is equal to the first k
row lengths marginal of the q-Whittaker measure. We will instead show the stronger
statement that the law of the shape of V (or W ) obtained by applying ϒ̃ to M with
m(i, j);k ∼ Geo(qkaib j ) is the q-Whittaker measure. Then marginalizing to the lengths
of the first k rows will complete the proof. Denoting the V obtained by applying ϒ̃ to
M by V (M) and by vst(μ) the set of vertically-strict tableau of shape μ,

P (V (M) ∈ vst(μ)) ∝
∑

M :V (M)∈vst(μ)

∏

i, j,k

(qkaib j )
m(i, j);k

=
∑

M :V (M)∈vst(μ)

q
∑

i, j,k km(i, j);k
∏

i

a
∑

j m(i, j);k
i

∏

j

b
∑

i m(i, j);k
j

=
∑

M :V (M)∈vst(μ)

qW3(M)aW1(M)bW2(M).
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By applying the bijection ϒ̃ and Lemma A.5, and recalling the definitions of W̃i , we
see that the previous line equals (letting xV = ∏

i x
#(V,i)
i )

∑

V,W∈vst(μ)
κ∈K(μ)

qW̃3(V,W,κ)aW̃1(V,W,κ)bW̃2(V,W,κ)

=
∑

κ∈K(μ)

q |κ| ×
∑

V∈vst(μ)

qH(V )aV ×
∑

W∈vst(μ)

qH(W )bW .

Now it is known that the first factor is bμ(q) (see for example [IMS21, Eq. (10.5)]),
while the second and third factors are Pμ(a; q) and Pμ(b; q) (see [IMS21, Proposi-

tion 10.1]). Thus the RHS is the unnormalized probability mass function of W(q)
a,b at μ,

as desired. ��
Proof of Lemma A.5. That W3(M) = W̃3(V,W, κ) follows by combining Eq. (1.23) in
[IMS21, Theorem 1.4] (on the conservation of the quantity under ϒ) with Eq. (4.15) in
[IMS21, Theorem 4.11] (on its conservation under SS).

For Wi (M) for i = 1, 2 we will similarly quote separate statements for its conserva-
tion under SS and ϒ . Under SS, this is a consequence of [SS90, Theorem 6.6] (which
is also the source of [IMS21, Theorem 4.11] mentioned in the previous paragraph), i.e.,
it holds that W1(M) = (#(P, i))1≤i≤N and W2(M) = (#(Q, j))1≤ j≤N . For ϒ this
preservation property is not recorded explicitly in [IMS21], but it is easy to see it from
its definition. Indeed, as described in [IMS21, Sections 1.2 and 3.3], the output (V,W )

of ϒ is obtained as the asymptotic result of iteratively applying a map known as the skew
RSK map to (P, Q), and it is immediate from the definition of this map that it does not
change the number of times any entry i appears in P or Q (only possibly the location
of the entries and/or the shape of the tableaux). Thus this property carries over to ϒ . ��

Appendix B: Asymptotics for the Sum in the Factorial Moments Formula

Here we obtain upper and lower bounds (with the correct dependencies on q and k) on
the sum in (20), which we label S, i.e., (recall H(x) = −x log x − (1 − x) log(1 − x))

S :=
k∑

i=0

1
i
k (1 − i

k )
exp

[
N

{
i
N log q−1 +

2k

N
· H(i/k)

+

(
1 − i + 1

N

)
log

(
1 +

k + 1

N − i − 1

)
+
k + 1

N
log

(
1 +

k − i

N

)
− k + 1

N

}]
. (36)

As indicated, the idea behind the analysis is simply Laplace’s method, but it must be
done carefully and explicitly here since we need to obtain the estimates uniformly in q.
We start with the upper bound, and turn to the lower bound in Sect. B.2.

B.1 The upper bound.

Proposition B.1. There exist positive constants C, k0, and N0 such that for all N ≥ N0,
k0 ≤ k ≤ N, and q ∈ (0, 1), there exists x0 = 1 − �(q1/2) such that

S ≤ Cq−1/4k1/2

[(
1 + q1/2

)2

q

]k

exp

(
N

[
(α − μq) log

(
1 − α

μq

)
− α + Cq1/2α3

])
.
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Proof. Recall that α is defined by k = αN . Also recall the definition of fα, g : [0, 1] →
R from (19) by

fα(x) = αx log q−1 + 2αH(x) + α log(1 + α(1 − x))

+ (1 − αx) log

(
1 +

α

1 − αx

)
− αg(x) = (x(1 − x))−1 . (37)

Then the sum S is

S =
k−1∑

i=1

g(i/k) exp
(
N fα(i/k)+)(1)

)
;

the O(1) term is to account for the stray ±1 we have ignored when going from the
definition of S to its form in terms of fα .

The first step is to identify the location x0 where fα is maximized.

f ′
α(x) = α log q−1 + 2α log

(
1 − x

x

)
− α log

(
1 +

α

1 − αx

)

+ (1 − αx) · 1

1 + α
1−αx

· α

(1 − αx)2 · α

+ α · 1

1 + α(1 − x)
· (−α)

= α log q−1 + 2α log

(
1 − x

x

)
− α log

(
1 +

α

1 − αx

)
.

Therefore we see that f ′
α(x) = 0 is equivalent to

x−1 − 1 = q1/2
(

1 +
α

1 − αx

)1/2

. (38)

Observe that the LHS tends to ∞ as x → 0 and equals 0 when x = 1. Further the
LHS is decreasing while the RHS is increasing in x , and both are continuous in x . Thus
there is a unique x0 ∈ (0, 1) satisfying (38).

Further, the same observations yield (by evaluating the RHS of (38) at x = 0 and
x = 1 and solving for x on the LHS) that

x0 ∈
[

1

1 + q1/2(1 + α)1/2 ,
1

1 + q1/2(1 − α)−1/2

]
=: Iq,α. (39)

We further see that the size of Iq,α is

O
(
q1/2

[
(1 − α)−1/2 − (1 + α)1/2

])
= O

(
q1/2α2

)
. (40)

As a result, if x ∈ Iq,α , and since | f ′
α(x)| = O(α) for such x , the mean value theorem

implies that | fα(x) − fα(x0)| = O(q1/2α3).
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Evaluating fα(x0). Using these estimates we may obtain an estimate of fα(x0). Let us
first evaluate the first three terms from (37) at

x = x∗ :=
(

1 + q1/2 exp( 1
2α)

)−1
.

(Note that since 1 + x ≤ exp(x) ≤ (1 − x)−1, x∗ ∈ Iq,α .) We see that the three terms
evaluated at x∗ equal

αx∗ log q−1 − 2α(x∗ log x∗ + (1 − x∗) log(1 − x∗)) + α log
(
1 + α(1 − x∗)

)

= αx∗ log q−1 − 2α

[
x∗ log x∗ + (1 − x∗) log

q1/2 exp( 1
2α)

1 + q1/2 exp( 1
2α)

]

+ α log
(
1 + α(1 − x∗)

)

= αx∗ log q−1 − 2α
[
x∗ log x∗ + 1

2 (1 − x∗) log (q exp(α)) + (1 − x∗) log
1

1 + q1/2 exp( 1
2α)

]

+ α log
(
1 + α(1 − x∗)

)
.

We recognize (1+q1/2 exp(α/2))−1 to be x∗, which results in a cancellation with the
x∗ log x∗ term. With this, and writing log(1+α(1−x∗)) = α(1−x∗)±O(α2(1−x∗)2),
we see that the previous display equals

αx∗ log q−1 − 2α
[
log x∗ + 1

2 (1 − x∗) log q + 1
2 (1 − x∗)α

]

+ α · (α(1 − x∗)) ± O(α3(1 − x∗)2)

= αx∗ log q−1 − 2α log x∗ − α(1 − x∗) log q ± O(α3(1 − x∗)2)

= α log
(
q−1(1 + q1/2 exp( 1

2α))2
)

± O
(
α3q

)

= α log
(
q−1(1 + q1/2)2

)
+ α2 q1/2

1 + q1/2 ± O(α3q1/2),

where we performed a Taylor expansion of exp(α/2) as well as of the logarithm in the
last step.

Next we must move from this calculation done at x∗ to x0. Observe that the derivative
with respect to x of both the first three terms in (37) of fα (which we will refer to as
f (1)
α below) gives an expression with a common factor of α. By the mean value theorem,

we therefore have that, for some y ∈ [x0, x∗] (or y ∈ [x∗, x0] depending on which is
greater),

| f (1)
α (x0) − f (1)

α (x∗)| = |x0 − x∗| · |( f (1)
α )′(y)| = O(1)α3q1/2,

the last equality using that |( f (1)
α )′(y)| = O(α) and |x0 − x∗| = O(α2q1/2) from (40)

and since x0, x∗ ∈ Iq,α .

Putting back in the the remaining two terms of fα not included in f (1)
α , overall we

have shown that

fα(x0) = α log
(
q−1(1 + q1/2)2

)
+ (1 − αx0) log

(
1 +

α

1 − αx0

)
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− α + α2 q1/2

1 + q1/2 ± O
(
α3q1/2

)
.

This can be simplified further using the following cancellation, which we prove in
Sect. B.3.

Lemma B.2. Let x0 = x0(α) be the maximizer of fα over [0, 1]. For α ∈ (0, 1
2 ] (and

adopting the convention that O(1) refers to a quantity whose value is upper bounded by
an absolute constant)

(1 − αx0) log

(
1 +

α

1 − αx0

)
+ α2 · q1/2

1 + q1/2 + (μq − α) log

(
1 − α

μq

)

= ±O(1)q1/2α3. (41)

This yields that

fα(x0) = α log
(
q−1(1 + q1/2)2

)
+ (α − μq) log

(
1 − α

μq

)
− α ± O

(
α3q1/2

)
.

(42)

Performing Laplace’s method. For future reference we also record that

f ′′
α (x) = − 2α

x(1 − x)
− α3

(1 − αx)2 + α(1 − αx)
�⇒ f ′′

α (x0) = −�(αq−1/2) (43)

since x0 = 1 − �(q1/2). To apply Laplace’s method, we need to have bounds on fα
over its domain, which we will obtain by Taylor approximations. We will expand to third
order as we need to include the just calculated second order term precisely. So next we
bound the third derivative of fα .

Fix c > 0. We observe that there exists C such that for x ∈ [ 1
4 , 1 − cq1/2] and

α ∈ (0, 1
2 ],

f ′′′
α (x) = −2α

(
1

(1 − x)2 − 1

x2

)
− α4 (2(1 − αx) + α)

(
(1 − αx)2 + α(1 − αx)

)2 ≥ −Cαq−1. (44)

So by Taylor’s theorem, we see that, if ε > 0 is such that x0 −εq1/2 ∈ [ 1
4 , 1−cq1/2],

then for some y ∈ [x0 − εq1/2, x0],
fα(x0 − εq1/2) = fα(x0) − εq1/2 f ′

α(x0) + 1
2ε2q f ′′

α (x0) − 1
6ε3q3/2 f ′′′(y)

≤ fα(x0) − εq1/2 f ′
α(x0) + 1

2ε2q f ′′
α (x0) + 1

6Cαq1/2ε3

= fα(x0) + 1
2ε2q f ′′

α (x0) + 1
6Cαq1/2ε3

since f ′
α(x0) = 0. We may pick ε0 a constant depending only on C such that, if 0 < ε <

ε0, then (recalling that f ′′
α (x0) < 0)

1
6Cαq1/2ε < 1

4q| f ′′
α (x0)|;
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that ε0 can be taken to not depend on q or α follows from the fact that | f ′′
α (x0)| can

be lower bounded by an absolute constant times αq−1/2, due to (43). Similarly, since
f ′′′(x) < Cα for x > 1

4 , it holds for ε > 0 that (since x0 > 1
4 always)

fα(x0 + εq1/2) ≤ fα(x0) + 1
2ε2q f ′′

α (x0) + 1
6Cαε3q3/2 ≤ fα(x0) + 1

4ε2q f ′′
α (x0),

the last inequality for ε < ε0 for some absolute constant ε0 by similar reasoning as
above.

So, for −ε0 < ε < ε0,

fα(x0 + εq1/2) ≤ fα(x0) − 1
4ε2q| f ′′

α (x0)|. (45)

The above controls fα inside [x0 − εq1/2, x0 + εq1/2], where 0 < ε < ε0. We will
also need control outside this interval, which we turn to next. We observe that, since fα
is concave on (0, 1) and f ′

α(x0) = 0, it holds for 0 < ε < ε0 and x ∈ (0, x0 − εq1/2]
that

fα(x) ≤ fα(x0 − εq1/2) + (x − x0 − εq1/2) f ′(x0 − εq1/2)

≤ fα(x0) − 1
4ε2q| f ′′(x0)| − (x0 − x) f ′(x0 − εq1/2)

≤ fα(x0) − (x0 − x)Cεα. (46)

the last inequality using again that | f ′′
α (x0)| = �(αq−1/2) and using Taylor’s theorem

for f ′
α around x0 to obtain f ′

α(x0 − εq1/2) = f ′
α(x0) − εq1/2 f ′′

α (y) for some y ∈
[x0 − εq1/2, x0] and using (43) to then obtain that f ′

α(x0 − εq1/2) ≥ Cεα.
Similarly, since fα is concave, f ′(x0) = 0, and (45), it follows for x ∈ [x0 +εq1/2, 1]

that

fα(x) ≤ fα(x0 + εq1/2) ≤ fα(x0) − 1
4qε2| f ′′

α (x0)| ≤ fα(x0) − Cαq1/2ε2. (47)

We next analyze the actual sum S. We break up S into three subsums S1, S2, and
S3. Let 0 < ε < ε0 be fixed. S1 corresponds to i = 1 to i = �k(x0 − εq1/2)�, S2 to
i = �k(x0 − εq1/2)� + 1 to �k(x0 + εq1/2)�, and S3 to �k(x0 + εq1/2)� + 1 to k − 1.

We start by bounding S1 using the above groundwork. Recall that g(x) = (x(1 −
x))−1. Recall that g(i/k) = k2/(i(k−i)). We drop the �� in the notation for convenience.
Using (46), that q ≤ 1, and that αN = k,

S1 =
k(x0−εq1/2)+1∑

i=1

g(i/k) exp (N fα(i/k))

≤ eN fα(x0)

k(x0−εq1/2)+1∑

i=1

k2

i(k − i)
exp

(
−Cε(kx0 − i)

)

= eN fα(x0)

kx0−1∑

j=kεq1/2−1

k2

(kx0 − j)(k(1 − x0) + j)
exp

(
−Cε j

)
.

It is easy to see that the sum is bounded by Cq−1/2 for an absolute constant C
depending on ε, as this is the behaviour near j = kεq1/2 (using that x0 = 1 −�(q1/2)).
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At the same time, it is easy to check that for k ≥ 2 and 1 ≤ j ≤ k − 1, g(i/k) ≤ 2k, so
that S1 is also upper bounded by Ck exp(N fα(x0)). Thus

S1 ≤ C min(q−1/2, k)eN fαx0 ≤ Cq−1/4k1/2eN fα(x0).

Next we bound S3. We apply (47) and use again that g(i/k) ≤ 2k and x0 = 1 −
�(q1/2) to see that

S3 =
k−1∑

i=k(x0+εq1/2)+1

g(i/k) exp (N fα(i/k))

≤ eN fα(x0) · 2k · k(1 − x0 − εq1/2) exp(−Cε2Nαq1/2)

≤ CeN fα(x0) · k2 · q1/2 exp(−Ckq1/2).

Now k2q1/2 = q−1/4k1/2 · (kq1/2)3/2 and, since x �→ x3/2 exp(−cx) is uniformly
bounded over x ≥ 0, this implies from the previous display that

S3 ≤ Cq−1/4k1/2eN fα(x0).

Finally we turn to the main sum, S2, which consists of the range i
k ∈ [x0 −εq1/2, x0 +

εq1/2]. We first want to say that, for x in the same range, g(x) ≤ Cg(x0) for some
absolute constant C . Observe that g blows up near 1 (and x0 can be arbitrarily close to
1), and it is to avoid this and thereby be able to control g on the mentioned interval that
its upper boundary is of order q1/2 above x0.

Lemma B.3. There exists an absolute constant C such that for x ∈ [x0 − εq1/2, x0 +
εq1/2], g(x) ≤ Cg(x0).

Proof. We have to upper bound g(x)/g(x0) = x0(1−x0)
x(1−x) . When x ∈ [x0 − εq1/2, x0],

this ratio is upper bounded by x0/x ; since x ≥ x0 − εq1/2, and x0 ≥ 1
4 always, if ε < 1

8
say, the ratio is uniformly upper bounded. When x ∈ [x0, x0 + εq1/2], this ratio is upper
bounded by (1 − x0)/(1 − x); since 1 − x ≥ 1 − x0 − εq1/2 ≥ 1

2 (1 − x0) (using
that εq1/2 ≤ 1

2 (1 − x0) = cq1/2 whenever ε is small enough), the ratio is again upper
bounded by a constant. ��

So we see, from Lemma B.3 and (45) that S2 equals

k(x0+εq1/2)∑

i=k(x0−εq1/2)+1

g(i/k) exp (N fα(i/k))

≤ Cg(x0)

k(x0+εq1/2)∑

i=k(x0−εq1/2)+1

exp

[
N

(
fα(x0) − c

(
i

k
− x0

)2

| f ′′
α (x0)|

)]

≤ Cg(x0)e
N fα(x0)

∞∑

i=−∞
exp

[
−cNk−2 (i − kx0)

2 | f ′′
α (x0)|

]

= Cg(x0)e
N fα(x0)

∞∑

i=−∞
exp

[
−cα−1k−1i2| f ′′

α (x0)|
]
.
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Recall that f ′′
α (x0) = −�(αq−1/2), and so the coefficient of i2 is of order c(q1/2k)−1.

We bound the above series using Proposition B.4 ahead, which says, with γ = cα−1k−1

| f ′′
α (x0)| = �((q1/2k)−1), and using that g(x0) = �(q−1/2),

S2 ≤ Cg(x0)(α
−1k−1| f ′′

α (x0)|)−1/2eN fα(x0) ≤ Cq−1/2 · k1/2q1/4 · eN fα(x0)

= Cq−1/4k1/2eN fα(x0).

Note that this estimate holds for all q > 0 and dos not require q ≥ k−2. Thus overall
we have shown that

S = S1 + S2 + S3 ≤ Cq−1/4k1/2eN fα(x0).

Using the expression for fα(x0) from (42) and recalling αN = k completes the proof.
��

The following is the bound on the discrete Gaussian sum, more precisely a Jacobi
theta function, which we used in the proof. It can be proved using the Poisson summation
formula and straightforward bounds.

Proposition B.4 (page 157 of [SS11]). There exists C and, for any M > 0, a constant
cM > 0 such that for 0 < γ ≤ M (for the first inequality) and γ > 0 (for the second),

cMγ −1/2 ≤
∑

i∈Z
e−γ i2 ≤ Cγ −1/2.

B.2 The lower bound. Recall the definition of S from (36).

Proposition B.5. There exist positive constants C and k0 such that for all q ∈ [k−2, 1)

and k0 ≤ k ≤ N,

S ≥ C−1q−1/4k1/2
[
(1 + q1/2)2

q

]k

exp

(
N

[
(α − μq) log

(
1 − α

μq

)
− α − Cα3q1/2

])
.

Proof. As in the proof of Proposition B.1, we focus around the point Nx0, where x0 =
(1 + q1/2 exp( 1

2α))−1 ± O(q1/2α2) satisfies (38). So, for ε, ε′ > 0 to be chosen,

S ≥
k(x0+ε′)∑

i=k(x0−ε)

1
i
k (1 − i

k )
exp

[
N

{
i
N log q−1 +

2k

N
· H(i/k)

+

(
1 − i + 1

N

)
log

(
1 +

k + 1

N − i − 1

)
+
k + 1

N
log

(
1 +

k − i

N

)
− k + 1

N

}]

=
k(x0+ε′)∑

i=k(x0−ε)

g(i/k) exp [N fα(i/k)] ,

where g(x) = (x(1 − x))−1 and fα is as defined in (37). We break into two cases
depending on whether x0 > 1

2 or x0 ≤ 1
2 . We start with the first case.
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In this case the basic issue is that x0 can be arbitrarily close to 1. Thus, since the
contribution of the sum from i = kx0 to i = k − 1 will be small anyway, we will ignore
it and set ε′ = 0. We will also set ε to be an absolute constant. With these values, we
want to show that, for some c > 0 and all x ∈ [x0 − ε, x0], it holds that g(x) ≥ cg(x0).
This is easy to verify by upper bounding g(x)/g(x0) for x in the same range using the
expression for g(x), the value of ε, and that x0 ∈ [ 1

4 , 1]. So, for some absolute constant
c > 0,

S ≥ cg(x0)

kx0∑

i=k(x0−ε)

exp [N fα(i/k)] .

Now as in the proof of Proposition B.1, we Taylor expand fα around x0 to obtain a
lower bound on fα(x) for x ∈ [x0 − ε, x0]:

fα(x) ≥ fα(x0) − (x − x0)
2

2
| f ′′

α (x0)| +
1

6
inf

y∈[x,x0](x − x0)
3 f ′′′

α (y)

= fα(x0) − (x − x0)
2

2
| f ′′

α (x0)| +
1

6
(x − x0)

3 sup
y∈[x,x0]

f ′′′
α (y);

the second equality by noting that, since x − x0 < 0, the infimum is equivalent to
maximizing f ′′′

α (y) over y ∈ [x, x0]. Now, if x ≥ 1
2 , then y ≥ 1

2 in the previous display
and f ′′′

α (y) < 0 by the explicit formula (44), and so the last term in the previous display
is non-negative, i.e., can be lower bounded by zero. If x < 1

2 , we can ensure that ε < 1
4 ,

so that x0 < 3
4 . Then we see that each of | f ′′

α (x0)| and | f ′′′
α (x)| are uniformly bounded

by Cα where C is independent of q, so, by picking ε small enough also independent of
q, we can ensure that |x − x0| f ′′′

α (x) < C f ′′
α (x0) for some absolute constant C .

Thus over all, we have shown that, in the case that x0 ≥ 1
2 , there exists ε > 0 and

C > 0 independent of q such that, for x ∈ [x0 − ε, x0],
fα(x) ≥ fα(x0) − C(x − x0)

2| f ′′
α (x0)|.

Using this we see that

S ≥ cg(x0)e
N fα(x0)

kx0∑

i=k(x0−ε)

exp

(
−CN | f ′′

α (x0)|
(
i

k
− x0

)2
)

= 1

2
cg(x0)e

N fα(x0)

k(x0+ε)∑

i=k(x0−ε)

exp

(
−CN | f ′′

α (x0)|
(
i

k
− x0

)2
)

.

Now it is easy to see that
∑

i :|i−kx0|>kε exp
(−CNk−2| f ′′

α (x0)|(i − kx0)
2
) ≤ C exp

(−cN | f ′′
α (x0)|ε2), so the previous display is lower bounded by (using Proposition B.4

in the third line)

cg(x0)e
N fα(x0)

[ ∞∑

i=−∞
exp

(
−CNk−2| f ′′

α (x0)| (i − kx0)
2
)

− C exp(−cN | f ′′
α (x0)|ε2)

]

= cg(x0)e
N fα(x0)

[ ∞∑

i=−∞
exp

(
−Cα−1k−1| f ′′

α (x0)|i2
)

− C exp(−cN | f ′′
α (x0)|ε2)

]
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≥ cg(x0)e
N fα(x0)

[
α1/2k1/2| f ′′

α (x0)|−1/2 − C exp(−cε2N | f ′′
α (x0)|)

]

≥ cg(x0)e
N fα(x0)

[
q1/4k1/2 − C exp(−cε2kq−1/2)

]
,

using that | f ′′
α (x0)| = �(αq−1/2) and αN = k. This is in turn lower bounded by

cq−1/4k1/2eN fα(x0) since g(x0) = �(q−1/2) since x0 = 1 − �(q1/2).
In the case that x0 ≤ 1

2 , the same proof works after noting that, since also x0 ≥ 1
4 for

all q, α (as can be observed from (39)), quantities like | f ′′(x0)|, f ′′′(x), and g(x) are
all bounded above and below by absolute constants for x ∈ [x0 − ε, x0 + ε] (assuming
ε < 1

8 say) and α ∈ (0, 1
2 ]. ��

B.3 The factorial to polynomial moment cancellation. Here we give the proof of
Lemma B.2. The proof goes by doing a full series expansion of the expression in α

around 0. Performing a Taylor expansion to second order in α of the expression under
consideration for fixed x , and uniformly (over α ∈ (0, 1

2 ) and x = x0 = 1 − �(q1/2))
bounding the third derivative error term by Cq1/2 is also possible but somewhat messier.

Proof of Lemma B.2. To establish this we will utilize the series expansion for the loga-
rithm as well as for (1 − x)−k . We start with the first term: for any x ,

(1 − αx) log

(
1 +

α

1 − αx

)
=

∞∑

j=1

(−1) j−1 α j

j (1 − αx) j−1

= α +
∞∑

j=2

(−1) j−1 α j

j

∞∑

i=0

(αx)i
(
j + i − 2

i

)
.

Collecting the α� terms together, the previous line equals

α +
∞∑

�=2

α�
�−2∑

i=0

(−1)�−i−1

� − i
xi

(
� − 2

i

)
= α − 1

2α2 +
∞∑

�=3

α�
�−2∑

i=0

(−1)�−i−1

� − i
xi

(
� − 2

i

)
.

Invoking Lemma B.6 ahead, the sums in the previous display equals

∞∑

�=3

α�

�(� − 1)

[
(−1 + x)� + �(−1 + x)�−1 − x�

]

=
∞∑

�=3

α�

�(� − 1)

[
(−1 + x)�−1(−1 + x + �) − x�

]
.

Now turning to the third term in (41),

(μq − α) log

(
1 − α

μq

)
= −(μq − α)

∞∑

j=1

α j

jμ j
q

= −α +
α2

2μq
+

∞∑

�=3

α�

�(� − 1)μ�−1
q

.

Thus we see overall that the LHS of (41) equals (where x0 is the solution of (38))
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α2
(

−1

2
+

1

2μq
+

q1/2

1 + q1/2

)

+
∞∑

�=3

α�

�(� − 1)

[
(−1 + x0)

�−1(−1 + x0 + �) − x�
0 + μ−(�−1)

q

]
. (48)

We focus on the coefficient of α2 first, which, using that μq = (1 +q1/2)/(1 −q1/2),
simplifies to 0.

Now we turn to the sum in (48). We observe that μq = 1 + �(q1/2) and recall that
x0 = 1 − �(q1/2) (from (39)), so that the expression in the square brackets is equal to

�(1)(−1)�−1�q(�−1)/2 − 1 + �(�q1/2) + 1 − �(�q1/2) = ±O(�q1/2),

implying that the sum in (48) is ±O(1)
∑∞

�=3
q1/2α�

(�−1)
= ±O(1)q1/2α3. This completes

the proof. ��
Lemma B.6. It holds for any x ∈ R and � ≥ 2 that

�(� − 1)

�−2∑

i=0

(−1)i+1

� − i
xi

(
� − 2

i

)
= (−1 + x)� + �(−1 + x)�−1 − x�.

Proof. We do the change of variable i �→ �− i − 2 and use
(n
k

) = n
k

(n−1
k−1

)
twice to write

the LHS as

�(� − 1)

�−2∑

i=0

(−1)�−i−1

i + 2
x�−i−2

(
� − 2

i

)
=

�−2∑

i=0

(−1)i+1(i + 1)x�−i−2
(

�

i + 2

)
.

Now we do a change of variable (i �→ i − 2) and add and subtract the terms corre-
sponding to i = 0 and i = 1 in the new indexing to obtain

�∑

i=0

(−1)i+1x�−i (i − 1)

(
�

i

)
− x�.

Multiplying out over the (i − 1) factor and using the binomial theorem on each of
the resulting terms yields the claim. ��

Appendix C: Concentration Inequality Proofs

Here we prove the concentration inequality Theorem 5.1. As is typical for such inequal-
ities, the main step is to obtain a bound on the moment generating function.

Proposition C.1. Suppose X is such that

P(X ≥ t) ≤ C1 exp(−ρt3/2) (49)

for some ρ > 0, and all t ≥ 0. Then, there exist positive absolute constants C and c > 0
such that, for λ > 0,
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E

[
eλX

]
≤ exp

{
C · C1

[
λρ−2/3 + λ3ρ−2

]}
.

Proof. By rescaling X as ρ2/3X it is enough to prove the proposition with ρ = 1. First,
we see that

E[eλX ] = E

[
λ

∫ X

−∞
eλx dx

]
= E

[
λ

∫ ∞

−∞
eλx1X≥x dx

]
= λ

∫ ∞

−∞
eλx · P(X ≥ x) dx .

Next, we break up the integral into two at 0 and use the hypothesis (49) for the second
term:

λ

∫ ∞

−∞
eλx · P(X ≥ x) dx = λ

∫ 0

−∞
eλx · P(X ≥ x) dx +

∫ ∞

0
eλx · P(X ≥ x) dx

≤ λ

∫ 0

−∞
eλx dx + C1λ

∫ ∞

0
eλx−x3/2

dx

= 1 + C1λ

∫ ∞

0
eλx−x3/2

dx .

We focus on the second integral now, and make the change of variables y = λ−2x ⇐⇒
x = λ2y, to obtain

C1λ

∫ ∞

0
eλx−x3/2

dx = C1λ
3
∫ ∞

0
eλ3(y−y3/2) dy.

We upper bound this essentially using Laplace’s method. We first note that, for all
y > 0, it holds that y − y3/2 ≤ 1 − 1

2 y
3/2. So

C1λ
3
∫ ∞

0
eλ3(y−y3/2) dy ≤ C1λ

3 ·
∫ ∞

0
eλ3(1− 1

2 y
3/2) dy = C1λ

3 · 22/3�(5/3)λ−2eλ3

= C · C1λe
λ3

.

for positive absolute constants C and c. Putting all the above together yields that

E[eλX ] ≤ 1 + C · C1λe
cλ3

.

Now we break into two cases depending on whether λ is less than or greater than 1:
if λ ≤ 1, then, since 1 + x ≤ exp(x) and C ·C1 exp(cλ) ≤ C ·C1 exp(c), we obtain, for
an absolute constant C̃ ,

E[eλX ] ≤ 1 + C · C1 exp(c)λ ≤ exp
(
C̃ · C1λ

)
.

On the other hand if λ ≥ 1, we observe that, since x ≤ exp(x), and by increasing the
coefficient in the exponent,

1 + C · C1λ
3ecλ

3 ≤ ec
′λ3

.

It is easy to see that we may take c′ to depend linearly on C1. Thus overall, since
max(a, b) ≤ a + b when a, b ≥ 0, we obtain, for some universal constant C ,
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E

[
eλX

]
≤ exp

(
C · C1(λ + λ3)

)
.

��
Proof of Theorem 5.1. Following the proof of the Chernoff bound, we exponentiate in-
side the probability (with λ > 0 to be chosen shortly) and apply Markov’s inequality:

P

(
I∑

i=1

Xi ≥ t + C · C1σ2/3

)
= P

(
eλ

∑I
i=1 Xi ≥ eλt+λC ·C1·σ2/3

)

≤ e−λt−λC ·C1·σ2/3

I∏

i=1

E

[
eλXi

]
.

Using Proposition C.1, this is bounded by

exp

(
−λt − λC · C1σ2/3 + C · C1

[
λ

I∑

i=1

ρ
−2/3
i + λ3

I∑

i=1

ρ−2
i

])

= exp
(
−λt + C · C1 · λ3σ2

)
,

the penultimate line using Proposition C.1 for λ > 0 to be chosen soon. Optimizing over
λ and setting it to c′t1/2σ

−1/2
2 for some small constant c′ > 0 now yields that,

P

(
I∑

i=1

Xi ≥ t + C · C1 · σ2/3

)
≤ exp

(
−ct3/2σ

−1/2
2

)
.

��
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[BCFV15] Borodin, A., Corwin, I., Ferrari, P., Vető, B.: Height fluctuations for the stationary KPZ equation.

Math. Phys. Anal. Geom. 18(1), 1–95 (2015)
[BDM+01] Baik, J., Deift, P., McLaughlin, K.D.T., Miller, P., Zhou, X.: Optimal tail estimates for directed

last passage site percolation with geometric random variables. Adv. Theor. Math. Phys. 5(6),
1–41 (2001)

http://arxiv.org/abs/2108.12874


The Lower Tail of q-pushTASEP Page 53 of 55 64

[BF08] Borodin, A., Ferrari, P.: Large time asymptotics of growth models on space-like paths I:
PushASEP. Electron. J. Probab. 13, 1380–1418 (2008)

[BG16] Borodin, A., Gorin, V.: Moments match between the KPZ equation and the Airy point process.
SIGMA. Symmetry Integrability Geom. Methods Appl. 12, 102 (2016)

[BG21] Basu, R., Ganguly, S.: Time correlation exponents in last passage percolation. In: In and Out of
Equilibrium 3: Celebrating Vladas Sidoravicius, pp. 101–123 (2021)

[BGHH22] Basu, R., Ganguly, S., Hammond, A., Hegde, M.: Interlacing and scaling exponents for the
geodesic watermelon in last passage percolation. Commun. Math. Phys. 393(3), 1241–1309
(2022)

[BGHK21] Basu, R., Ganguly, S., Hegde, M., Krishnapur, M.: Lower deviations in β-ensembles and law of
iterated logarithm in last passage percolation. Isr. J. Math. 242(1), 291–324 (2021)

[BGS21] Basu, R., Ganguly, S., Sly, A.: Upper tail large deviations in first passage percolation. Commun.
Pure Appl. Math. 74(8), 1577–1640 (2021)

[BGZ21] Basu, R., Ganguly, S., Zhang, L.: Temporal correlation in last passage percolation with flat initial
condition via Brownian comparison. Commun. Math. Phys. 383, 1805–1888 (2021)

[BHS18] Basu, R., Hoffman, C., Sly, A.: Nonexistence of bigeodesics in integrable models of last passage
percolation. arXiv:1811.04908 (2018)

[BL18] Baik, J., Liu, Z.: Fluctuations of TASEP on a ring in relaxation time scale. Commun. Pure Appl.
Math. 71(4), 747–813 (2018)

[BL19] Baik, J., Liu, Z.: Multipoint distribution of periodic TASEP. J. Am. Math. Soc. 32(3), 609–674
(2019)

[BL21] Baik, J., Liu, Z.: Periodic TASEP with general initial conditions. Probab. Theory Relat. Fields
179(3), 1047–1144 (2021)

[BO17] Borodin, A., Olshanski, G.: The ASEP and determinantal point processes. Commun. Math. Phys.
353(2), 853–903 (2017)

[BO21] Betea, D., Occelli, A.: Peaks of cylindric plane partitions. arXiv:2111.15538 (2021)
[Bor07] Borodin, A.: Periodic Schur process and cylindric partitions. Duke Math. J. 140(3), 391–468

(2007)
[Bor18] Borodin, A.: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys.

59(2), 023301 (2018)
[BP16] Borodin, A., Petrov, L.: Nearest neighbor Markov dynamics on Macdonald processes. Adv. Math.

300, 71–155 (2016)
[BSS14] Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of

the slow bond problem. arXiv:1408.3464 (2014)
[BSS19] Basu, R., Sarkar, S., Sly, A.: Coalescence of geodesics in exactly solvable models of last passage

percolation. J. Math. Phys. 60(9), 093301 (2019)
[CC22] Cafasso, M., Claeys, T.: A Riemann–Hilbert approach to the lower tail of the Kardar–Parisi–Zhang

equation. Commun. Pure Appl. Math. 75(3), 493–540 (2022)
[CCO20] Cohen, P., Cunden, F.D., O’Connell, N.: Moments of discrete orthogonal polynomial ensembles.

Electron. J. Probab. 25, 1–19 (2020)
[CDG23] Cook, N.A., Ducatez, R., Guionnet, A.: Full large deviation principles for the largest eigenvalue

of sub-Gaussian Wigner matrices. arXiv:2302.14823 (2023)
[CG20a] Corwin, I., Ghosal, P.: KPZ equation tails for general initial data. Electron. J. Probab. 25 (2020)
[CG20b] Corwin, I., Ghosal, P.: Lower tail of the KPZ equation. Duke Math. J. 169(7), 1329–1395 (2020)

[CH14] Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. Invent. Math.
195(2), 441–508 (2014)

[CH16] Corwin, I., Hammond, A.: KPZ line ensemble. Probab. Theory Relat. Fields 166(1), 67–185
(2016)

[CHH23] Calvert, J., Hammond, A., Hegde, M.: Brownian structure in the KPZ fixed point. Astérisque
(2023) (To appear)

[Dau23] Dauvergne, D.: Wiener densities for the Airy line ensemble. arXiv:2302.00097 (2023)
[DOV22] Dauvergne, D., Ortmann, J., Virág, B.: The directed landscape. Acta Math. (2022) (To appear)
[DV21a] Dauvergne, D., Virág, B.: Bulk properties of the Airy line ensemble. Ann. Probab. 49(4), 1738–

1777 (2021)
[DV21b] Dauvergne, D., Virág, B.: The scaling limit of the longest increasing subsequence.

arXiv:2104.08210 (2021)
[EGO22] Emrah, E., Georgiou, N., Ortmann, J.: Coupling derivation of optimal-order central moment

bounds in exponential last-passage percolation. arXiv:2204.06613 (2022)
[EJS20] Emrah, E., Janjigian, C., Seppäläinen, T.: Right-tail moderate deviations in the exponential last-

passage percolation. arXiv:2004.04285 (2020)
[EJS21] Emrah, E., Janjigian, C., Seppäläinen, T.: Optimal-order exit point bounds in exponential last-

passage percolation via the coupling technique. arXiv:2105.09402 (2021)

http://arxiv.org/abs/1811.04908
http://arxiv.org/abs/2111.15538
http://arxiv.org/abs/1408.3464
http://arxiv.org/abs/2302.14823
http://arxiv.org/abs/2302.00097
http://arxiv.org/abs/2104.08210
http://arxiv.org/abs/2204.06613
http://arxiv.org/abs/2004.04285
http://arxiv.org/abs/2105.09402


64 Page 54 of 55 I. Corwin, M. Hegde

[FSV14] Flores, G., Seppäläinen, T., Valkó, B.: Fluctuation exponents for directed polymers in the inter-
mediate disorder regime. Electron. J. Probab. 19, 1–28 (2014)

[GH21] Guionnet, A., Husson, J.: Asymptotics of k dimensional spherical integrals and applications.
arXiv:2101.01983 (2021)

[GH22] Ganguly, S., Hegde, M.: Sharp upper tail estimates and limit shapes for the KPZ equation via the
tangent method. arXiv:2208.08922 (2022)

[GH23] Ganguly, S., Hegde, M.: Optimal tail exponents in general last passage percolation via bootstrap-
ping and geodesic geometry. Probab. Theory Relat. Fields 186(1), 221–284 (2023)

[Ham19] Hammond, A.: A patchwork quilt sewn from Brownian fabric: regularity of polymer weight
profiles in Brownian last passage percolation. In: Forum of Mathematics, Pi, vol. 7. Cambridge
University Press (2019)

[Ham22] Hammond, A.: Brownian regularity for the Airy line ensemble, and multi-polymer watermelons
in Brownian last passage percolation. Mem. Am. Math. Soc. 277(1363) (2022)

[Hua21] Huang, J.: Edge statistics for lozenge Tilings of polygons, I: concentration of height function on
strip domains. arXiv:2108.12872 (2021)

[HYZ23] Huang, J., Yang, F., Zhang, L.: Pearcey universality at cusps of polygonal lozenge tiling.
arXiv:2306.01178 (2023)

[IMS21] Imamura, T., Mucciconi, M., Sasamoto, T.: Skew RSK dynamics: Greene invariants, affine crys-
tals and applications to q-Whittaker polynomials. arXiv:2106.11922 (2021)

[IMS22] Imamura, T., Mucciconi, M., Sasamoto, T.: Solvable models in the KPZ class: approach through
periodic and free boundary Schur measures. arXiv:2204.08420 (2022)

[IS16] Imamura, T., Sasamoto, T.: Determinantal structures in the O’Connell–Yor directed random
polymer model. J. Stat. Phys. 163(4), 675–713 (2016)

[Joh00a] Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476
(2000)

[Joh00b] Johansson, K.: Transversal fluctuations for increasing subsequences on the plane. Probab. Theory
Relat. Fields 116(4), 445–456 (2000)

[Joh01] Johansson, K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann.
Math. 153(1), 259–296 (2001)

[KC18] Kuchibhotla, A.K., Chakrabortty, A.: Moving beyond sub-Gaussianity in high-dimensional statis-
tics: applications in covariance estimation and linear regression. arXiv:1804.02605 (2018)

[Led05a] Ledoux, M.: Deviation inequalities on largest eigenvalues. In: GAFA Seminar Notes (2005)
[Led05b] Ledoux, M.: Distributions of invariant ensembles from the classical orthogonal polynimials: the

discrete case. Electron. J. Probab. 10, 1116–1146 (2005)
[LR10] Ledoux, M., Rider, B.: Small deviations for beta ensembles. Electron. J. Probab. 15, 1319–1343

(2010)
[LS22a] Landon, B., Sosoe, P.: Tail bounds for the O’Connell–Yor polymer. arXiv:2209.12704 (2022)
[LS22b] Landon, B., Sosoe, P.: Upper tail bounds for stationary KPZ models. arXiv:2208.01507 (2022)
[Mac98] Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford University Press, Oxford

(1998)
[Mas14] Masoero, D.: A Laplace’s method for series and the semiclassical analysis of epidemiological

models. arXiv:1403.5532 (2014)
[MP16] Matveev, K., Petrov, L.: q-randomized Robinson–Schensted–Knuth correspondences and random

polymers. Ann. Inst. Henri Poincaré D 4(1), 1–123 (2016)
[MS09] Mansour, T., Shabani, A.S.: Some inequalities for the q-digamma function. J. Inequal. Pure Appl.

Math. 10(1) (2009)
[OY01] O’Connell, N., Yor, M.: Brownian analogues of Burke’s theorem. Stoch. Process. Appl. 96(2),

285–304 (2001)
[RRV11] Ramirez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J.

Am. Math. Soc. 24(4), 919–944 (2011)
[Sep12] Seppäläinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann.

Probab. 40(1), 19–73 (2012)
[SS90] Sagan, B.E., Stanley, R.P.: Robinson–Schensted algorithms for skew tableaux. J. Comb. Theory

Ser. A 55(2), 161–193 (1990)
[SS11] Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction, vol. 1. Princeton University Press,

Princeton (2011)
[SS22] Schmid, D., Sly, A.: Mixing times for the TASEP on the circle. arXiv:2203.11896 (2022)

[SSZ21] Sarkar, S., Sly, A., Zhang, L.: Infinite order phase transition in the slow bond TASEP.
arXiv:2109.04563 (2021)

[SV21] Sarkar, S., Virág, B.: Brownian absolute continuity of the KPZ fixed point with arbitrary initial
condition. Ann. Probab. (2021) (To appear)

http://arxiv.org/abs/2101.01983
http://arxiv.org/abs/2208.08922
http://arxiv.org/abs/2108.12872
http://arxiv.org/abs/2306.01178
http://arxiv.org/abs/2106.11922
http://arxiv.org/abs/2204.08420
http://arxiv.org/abs/1804.02605
http://arxiv.org/abs/2209.12704
http://arxiv.org/abs/2208.01507
http://arxiv.org/abs/1403.5532
http://arxiv.org/abs/2203.11896
http://arxiv.org/abs/2109.04563


The Lower Tail of q-pushTASEP Page 55 of 55 64
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