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Heat and pressure are ultimately transmitted via quantized degrees of freedom, like gas particles
and phonons. While a continuous Brownian description of these noise sources is adequate to model
measurements with relatively long integration times, sufficiently precise measurements can resolve
the detailed time dependence coming from individual bath-system interactions. We propose the use
of nanomechanical devices operated with impulse readout sensitivity around the “standard quantum
limit” to sense ultra-low gas pressures by directly counting the individual collisions of gas particles
on a sensor. We illustrate this in two paradigmatic model systems: an optically levitated nanobead
and a tethered membrane system in a phononic bandgap shield.

Mechanical objects placed in imperfect vacuum are
subject to heat and pressure from their environments.
While measurements of the motion of the mechanical
object over long timescales will detect these thermal
backgrounds as continuous random Brownian motion of
the system [1, 2], measurements at very fast timescales
can be sensitive to the individual microscopic system-
environment interactions [3–5], a regime in which the
continuous Brownian description breaks down.

In this paper, we suggest methods to detect gas pres-
sure at this single-quantum limit using mechanical sen-
sors operated at or near the quantum readout regime
[6–8]. This would represent pressure sensing at its fun-
damental limit, relevant in ultra-low pressure environ-
ments with small devices. This level of environmental
isolation is of increasing importance in a diverse array
of contexts, ranging from searches for dark matter [9–12]
and other fundamental physics targets [13–16] to trapped
ion quantum computers [17]. In particular, development
of pressure sensors capable of operating in extreme high
vacuum (XHV, P ≤ 10−9 Pa [18]) is an open frontier in
precision metrology [19].

To estimate the regime where the continuous thermal
noise model breaks down, consider a small mechanical el-
ement of mass ms and cross-sectional area A in a dilute
ideal gas with pressure P and temperature T . The am-
bient gas particles, with mass mg, collide with the sensor

and impart momentum kicks of order ∆pT ≈
√
mgkBT .

These kicks occur at an average rate of order

Γ =
PA

∆pT
≈ 3 Hz×

(
P

10−10 Pa

)(
A

0.1 µm2

)
. (1)

In the low pressure, small sensor regime, we see this rate
can be on the order of one to 100 collisions per second.
Here, we used the Boltzmann distribution to compute the
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typical velocity of the gas particles, taken to be diatomic
hydrogen mg ≈ 2 u at room temperature T = 300 K. To
resolve such a kick, the sensor needs to be operated with
sensitivity ∆p . ∆pT ≈ 7 keV/c and with a bandwidth
1/τ > Γ where τ is the integration time for a measure-
ment of a single kick.

We now ask: can these weak kicks be resolved by a
macroscopic sensor? One simple answer is given by com-
paring with the standard quantum limit (SQL) for im-
pulses [20, 21],

∆pSQL =

√
~ms

τ
≈ 0.8 keV/c×

(
ms

1 fg

)1/2(
1 ms

τ

)1/2

.

(2)

The sensor mass ms in this example is benchmarked
against a 50 nm radius silica sphere for comparison with
(1). We note that simple numerical differentiation of a se-
ries of position measurements at the position SQL yields
the impulse SQL, a limit which has been achieved to good
approximation in a number of nanomechanical devices
[22, 23]. Taken together, these numbers indicate that
quantum-limited nanomechanical devices [6–8] in ultra-
high (UHV) or extreme-high vacuum (XHV), monitored
for impulses at sub-second integration times and with
near-SQL sensitivity, could be sensitive to discrete kicks
from the ambient gas, as suggested in [12, 21, 24].

In what follows, we provide more detailed calcula-
tions and proposals toward achieving such measurements.
Our primary concern will be on feasibility of achiev-
ing the relevant limits above, especially the bandwidth
requirements: the quantum noise (2) scales favorably
with longer measurement time, but this must be bal-
anced against common technical noise sources with flat
power, which lead to ∆ptech ∼

√
τ . As practical ex-

amples, we study the possible use of levitated optome-
chanical nanospheres as well as tethered membranes in
a phononic bandgap shield as a pair of complementary
platforms.
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FIG. 1. Schematics of the basic detection scheme, with ei-
ther a levitated nanoparticle (left) or tethered membrane in
the unit cell of a phononic bandgap shield (right). When an
environmental gas particle collides with the mechanical ele-
ment, it deposits momentum ∆p, which can be detected by
continuously monitoring the position x(t) of the element.

I. MECHANICAL IMPULSE SENSING

We will consider opto- or electro-mechanical devices
operated as impulse sensors. These devices consist of a
mode of a mechanical element of mass ms, which we ap-
proximate as executing harmonic motion at frequency ωs,
continuously monitored by an optical or microwave field.
Typically one monitors the position x(t) of the mechan-
ics; assuming we have knowledge of the linear response
of the device to an input force x(ν) = χ(ν)F (ν), where
χ(ν) is a response function in the frequency domain, we
can infer the applied force time series F (t). See Fig. 1.

First, consider optically monitoring the center-of-mass
motion x(t) of a levitated dielectric bead [25–27]. Levi-
tation of dielectric beads with radii ranging from 50 nm
to 10 µm and oscillation frequencies in the 0.1 kHz to
1 MHz range has been demonstrated. In particular, very
recently, a pair of experiments have demonstrated feed-
back cooling to the center-of-mass ground state in opti-
cally levitated beads with radius around 100 nm, trapped
at around ωs/2π ≈ 100 kHz [22, 23]. This feedback cool-
ing mechanism operates by continuously monitoring the
bead’s position fluctuations and applying feedback kicks
in order to drive it to the ground state. To reach the
ground state this way requires precisely that one can
monitor the fluctuations near the SQL, corresponding to
the ground state uncertainty ∆xSQL =

√
~/msωs of the

mass. Thus these systems are already operating in the
SQL regime, although at two orders of magnitude higher
frequency than the optimal integration time assumed in
(2). Even at this sensitivity, they should be capable of
sensing the high-energy tail of the Boltzmann distribu-
tion [24].

Alternatively, one could consider a clamped system like
a membrane. In this approach, the center-of-mass of the
membrane is fixed, and one monitors the amplitude of
the vibrations, for example of the fundamental mode [28].
These vibrational modes tend to be of higher frequency
than center-of-mass motion, and so obtaining the same

SQL sensitivity will require lower-mass devices. For ex-
ample, a square graphene monolayer around 20 nm on
each side would have a mass around ms ≈ 10−3 fg, and
thus could achieve the required sensitivity if its funda-
mental mode could be tuned to around ωs/2π ≈ 1 MHz
[29]. One could also consider membranes constructed
from non-conductive materials like silicon nitride [30, 31].

Either the clamped membrane or levitated bead can
be continuously operated as a detector of sharp impulse
signals

Fsig(t) ≈ ∆pδ(t− t0). (3)

As described above, one monitors the position x(t) as
a time series; an impulse will appear as a kick followed
by a ring-down in this data stream. Individual collisions
can then be resolved if the size ∆p of these kicks is large
compared to the continuous noise acting on the device.
We will describe this noise through its power spectral
density (PSD), denoted SFF (ν), which has dimensions
of force2 per frequency. To estimate the amplitude of a
signal Fsig(t) in a given data time series F (t), the strategy
that minimizes the estimator variance is to convolve the
data with a matched filter f(t), which weights frequen-
cies by signal-to-noise. For an impulse signal described
by a flat spectrum versus frequency, f(ν) ∼ 1/SFF (ν).
With this filter, the signal-to-noise ratio of an impulse
∆p compared to the noise is given by [21]

S

N
=

√∫ ∞
0

dν
∆p2

SFF (ν)
. (4)

In other words, the best sensitivity is achieved by min-
imizing the integrated noise PSD. The integral is domi-
nated by a bandwidth ∆ν, which in turns sets the tem-
poral width τ ∼ 1/∆ν of the filter f(t).

The noise power spectrum of an optomechanical device
contains a number of factors with different frequency de-
pendencies. The quantum noise term is what leads to
the SQL scaling (2). In general, the quantum noise con-
sists of a term corresponding to shot noise (e.g., phase
noise in the readout laser) and a term corresponding to
backaction noise (e.g., random radiation pressure exerted
on the mechanics by the readout laser). By tuning the
readout system appropriately, one can choose a specific
fixed frequency ω0 where Sshot

FF (ω0) = Sba
FF (ω0). We can

illustrate this with the example of a levitated free-space
optomechanics system, in which [21]

SQ
FF (ν) = ~|χm(ω0)|

[
1

|χm(ν)|2
+

1

|χm(ω0)|2

]
(5)

in terms of the mechanical response function χm(ν) =
[ms(ν

2 − ω2
s − iγsν)]−1, where γs is the damping rate

of the mechanics. The usual SQL result (2) comes from
choosing ω0 = ωs, in which case the noise is sharply mini-
mized on the mechanical resonance ωs, see the solid curve
in Fig. 2. In this case, one has SFF ≈ 2~msγsωs within a
mechanical linewidth γs. Using (4), this means we need a
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ringdown

free particle (ω0=10 ωs)

free particle (ω0=100 ωs)

103 104 105
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10-14
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SNR contributions: levitated bead

FIG. 2. Example contributions to the integrand of the total
impulse signal-to-noise (4), here shown for a 100 nm levitated
bead, trapped at ωs/2π = 1 kHz. The noise is assumed to be
dominated only by quantum readout. In the ringdown proto-
col, the laser power is tuned so that shot noise and backac-
tion are equal at the mechanical resonance ω0 = ωs. In the
free particle examples, these noise terms are instead tuned to
equality at frequencies ω0 � ωs above the resonance. Here
we use ∆p = 7 keV/c, corresponding to collisions with di-
atomic hydrogen gas at 300 K. The integrated SNR ≈ 2 for
the ringdown case and ≈ 1.5 for the ω0 = 10ωs free particle
case.

measurement at this narrow bandwidth, i.e. a ringdown
measurement with τ ∼ 1/γs � 1/ωs, to achieve (2).

However, in practice, such a long measurement is not
practical. In particular, with a damping rate γs . 1 Hz,
multiple gas signals would pile on top of each other [see
Eq. (1)]. More fundamentally, in addition to quantum
noise, there are technical noises which act as effective
heating sources. For example, jittering of the trapping
laser in a levitated system or exchange of phonons be-
tween a membrane and its support structure will act as
approximately white noise sources in a gas collision mea-
surement. These can be approximated as Ohmic heat-
ing by a bath with temperature TB , leading to a white
noise contribution Stech

FF ∼ γkBTB , where γ is typically no
smaller than the mechanical damping rate. This places
a fundamental restriction on achievable bandwidth: they
act as a noise with ∆ptech =

√
4mskBTBγτ , leading to

an upper bound on the integration time τ .

There are two strategies to overcome this bandwidth
requirement. One is to apply time-dependent cold damp-
ing, where the damping coefficient γs is periodically in-
creased using a noiseless feedback system, so that the
signal is distributed over a wider bandwidth (while the
signal-to-noise in that bandwidth remains constant), and
readout can be performed with a shorter integration time
[32, 33]. Another is to tune the laser so that ω0 > ωs+γs.
In this case, SQ(ν) ≈ ~msω

2
0(1 + ν4/ω4

0) near ν ≈ ω0; in-
serting this into (4) then gives (2) with τ = 1/ω0. See
the dashed curves in Fig. 2. Crucially, however, the in-
tegral is here dominated by a band of order ω0, which
corresponds to a much narrower time domain filter. Un-
like the ringdown measurement, this protocol essentially

treats the mechanical system as a free particle, where the
entire impulse and measurement process is faster than a
mechanical period. With either the cold damping scheme
or above-resonance quantum noise scheme, the key point
is that the effective Ohmic heating can be limited to an
integration time of order τ ∼ 1/ω0, much less than the
ringdown measurement where τ ∼ 1/γs.

As an important numerical example, consider a teth-
ered membrane system, with which we want to detect
gas collisions. Phonons from the clamping substrate can
leak into and out of the mechanical element; these will
appear as an Ohmic heating background. To see an in-
dividual gas collision, we require that the heating from
these phonons is subdominant to the collision signal:

∆pT
∆ptech

=

√
mgTgas

msTB

Q

ωsτ
& 1, (6)

where Q = γ/ωs is the quality factor of the membrane
mode. Consider an integration window τ ≈ 1/ωs, and
our nominal 400 nm2 monolayer device detecting di-
atomic hydrogen gas. For Tgas = TB = 300 K, we need
Q ∼ 107. If the substrate can be made smaller, or held at
lower temperatures, the requirements are reduced. With
the same mass, but TB = 4 K we need Q ∼ 105; similarly,
detecting the Tgas ≈ 4 K helium atoms boiling off the
walls of a dilution refrigerator TB ≈ 10 mK would again
require Q ∼ 105. The high Q values required with hot
substrates could potentially be obtained with phononic
bandgap shielding [34, 35], as depicted schematically in
Fig. 1. We note also that with sufficiently fast measure-
ments (τ . Q/~kBTB) one could try to resolve individual
thermal phonons rather than treat them as a continuous
background, a task of relevance for example in searches
for light dark matter [36].

II. GAS COLLISION SPECTRUM

Collisions of the ambient gas with a mechanical sen-
sor produce a spectrum of impulse signals. Because the
thermal de Broglie wavelength of H2 at 300 K is approx-
imately 70 pm, much smaller than the 10 nm typical size
of an impulse sensor, we can treat the gas-sensor colli-
sions classically. The background gas can scatter both
diffusely and specularly (perfectly reflectively) from the
mechanical sensor [37–40]. When the thermal de Broglie
wavelength of the background gas is small compared to
the sensor’s surface roughness, which will not be the case
for atomically flat tethered devices, diffuse scattering will
dominate the impulse spectrum. We therefore include
both specular and diffuse scattering to calculate a differ-
ential event rate in terms of the momentum transfer in
each event:

dΓ

d∆p
=
ngA∆p

4m2
g

fB

( ∆p

2mg

)[
(1− α) + α ξ

( ∆p

mgv

)]
. (7)

Here, ng is the number density of the gas with mass mg, A
is the total surface area of the sensor, fB(v) is the Boltz-
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mann distribution for velocity v at temperature T , and
v =

√
kBT/mg is the root-mean-square thermal velocity.

The momentum accommodation coefficient 0 ≤ α ≤ 1
is the fraction of background molecules that scatter dif-
fusely from the sensor. The factors before the brackets
in (7) represent specular reflection; the effect of diffuse
reflection is encapsulated by the O(1) factor

ξ(x) =
√
πx

(
1− 2

x2

)
erf
(x

2

)
e−x

2/8 + 2e−3x2/8, (8)

where x = ∆p/mgv is a dimensionless measure of the mo-
mentum transfer, and erf is the Gaussian error function.
An example is plotted in Fig. 3.

The total detectable event rate Γ(∆pmin) can be de-
rived from the differential event rate by integrating over
∆p from our detection threshold ∆pmin to infinity. This
gives

Γ(∆pmin) =
ngAv√

2π

[
(1− α)ηs

(∆pmin

mgv

)
+ αηd

(∆pmin

mgv

)]
,

(9)
where the detectable momentum cutoffs for specular scat-
tering ηs and diffuse scattering ηd are given by

ηs(xmin) = e−x
2
min/8 (10)

and

ηd(xmin) = e−x
2
min/2+

√
π

2
xminerf

(xmin

2

)
e−x

2
min/4, (11)

respectively. In (10) and (11), xmin = ∆pmin/mgv. In
the ∆pmin → 0 limit, we have ηs, ηd → 1, and Eq. (9)
simplifies to the standard result from kinetic gas theory
(Γ = nAv/

√
2π) or scattering theory (Γ = n〈σv〉, where

〈· · · 〉 denotes a thermal average). Our result (9) assumes
detectability of impulses on all three spatial axes; if one
is monitoring only one or two axes there is an additional
geometric factor, given in detail in the supplemental ma-
terial.

diffusive

hard sphere

1 5 10 50 100
Δp (keV)

10-4

10-3

10-2

10-1

dΓ/dΔp (Hz/keV)

FIG. 3. Example spectrum of collision events, expressed as
a differential rate dΓ per given impulse value ∆p. The black
lines label the nominal detection threshold ∆pmin = ∆pSQL,
with a solid sphere of radius 50 nm, trapped at either ωs/2π =
1 kHz (left) or 100 kHz (right). We again assume the gas is
dominated by diatomic hydrogen at 300 K, and we show the
predictions for pure hard sphere scattering as well as diffusive
scattering corrections.

III. APPLICATIONS

A. Primary pressure sensing

Direct detection of background gas molecules through
collision counting opens the possibility of primary pres-
sure sensing in the ultra-high vacuum (UHV, 10−9 Pa
≤ P < 10−6 Pa) and extreme-high vacuum (XHV,
P < 10−9 Pa) regimes using mechanical systems [19].
Prior mechanical vacuum sensors have been based on
damping measurements and therefore limited to the high
vacuum range (HV, 10−6 Pa ≤ P < 10−1 Pa) [40–43].
We can use the ideal gas law and invert Eq. (9) to find the
measurement equation for the pressure of the mechanical
collision sensor

P = Γ(∆pmin)

√
2πkBT

Av[(1− α)ηs(xmin) + αηd(xmin)]
. (12)

At first, the presence of an accommodation coefficient
in Eq. (12) appears to prevent an optomechanical col-
lision sensor from operating as a primary gauge, since
α depends on the surface roughness of the sensor and
may vary significantly from sensor to sensor. However,
the accommodation coefficient drops out when the op-
tomechanical system detects all background gas colli-
sions (ηs, ηd → 1). Because ηs increases more slowly
than ηd, we estimate that ηs > 0.99, which occurs when
∆pmin < mgv/4 ≈ 1.7 keV/c for H2 at 300 K, is suffi-
cient for the collision sensor to be primary. Even when
detectable momentum cutoffs are significantly less than
one, pseudo-primary operation can be recovered in two
ways. First, collisions of xenon with a nanosphere with
1 nm surface roughness will be approximately 98% dif-
fuse [44]. Second, collisions of H2 or helium with an ul-
traflat tethered 2D material will be greater than 99%
specular [45]. In either case, template momentum spec-
tra for other gases can be built up ratiometrically [19].

Eq. 12 contains two constants (kB and mg) and three
measured quantities (Γ(∆pmin), A, and T ). It is there-
fore traceable to the second, meter, kilogram, and kelvin.
Assuming the measurement of Γ(∆pmin) is limited by
molecule arrival shot noise, the nanosphere sensor plot-
ted in Fig. 3 would reach 1% statistical uncertainty ap-
proximately 400 times faster than a deployable primary
vacuum sensor based on laser-cooled atoms [46]. The
surface area of a nanosphere can be determined by com-
bining an in-situ mass measurement with prior scanning
electron microscope characterization [47], while the area
of a tethered device can be measured during fabrication.
Calibrated or primary contact thermometers can mea-
sure the gas temperature and the surface temperature
of a tethered sensor [48]. The surface temperature of a
nanosphere can be estimated from the gas temperature
by heat transfer modelling or be measured using an in-
frared thermometer [49, 50]. We note that thermal equi-
librium between the gas and the sensor is not strictly re-
quired provided that ηs ≈ ηd ≈ 1 can be maintained. We
believe that a mechanical collision counter can achieve
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a total (statistical and non-statistical) pressure measure-
ment uncertainty at the few percent level, which is com-
petitive with cold-atom vacuum standards [46].

B. Gas analysis

Up to this point, we have considered background gases
that consist of a single species. In a real vacuum environ-
ment, the background gas will contain a variety of species
and the differential event rate becomes

dΓ

d∆p
=
∑
i

ng,iA∆p

4m2
g,i

fB

( ∆p

2mg,i

)[
(1−α)+α ξ

( ∆p

mg,ivi

)]
,

(13)
where the sum runs over all background gas species i.
Because the peak event rate due to gas i occurs roughly
at ∆p = 2mg,ivi, we can use measurements of the differ-
ential event rate at several resolvable momenta ∆p to ex-
tract all background gas densities ng,i (or, equivalently,
partial pressures Pi). Fully disentangling the overlap-
ping event distributions requires detailed knowledge of
the characteristic momentum spectrum of each gas (using
the ratiometric method discussed in Sec. III A) and rep-
resents a considerable data analysis challenge. However,
the resulting collision counting gas analyzer has three sig-
nificant advantages over conventional quadrupole mass
spectrometers. First, it is primary (see Sec. III A), allow-
ing gas analysis in applications were periodic calibrations
are difficult or impossible. Second, it is intrinsically low
outgassing, permitting analysis deep in the XHV where

quadrupole spectrometers may add large systematic un-
certainty. Finally, it is chip-scale, so leak detection can
be performed in compact, autonomous systems.

IV. OUTLOOK

In a sufficiently good vacuum, the only way to sense
ambient gas pressure is to detect individual gas collisions
with a sensor. Here, we outlined two architectures for
such detection using mechanical sensors operated in the
quantum readout regime. As a practical application, this
would enable a pressure standard capable of operation in
extreme high vacuum, a little-explored but increasingly
important environment. At a fundamental level, such a
device would represent the sensing of pressure at its ulti-
mate limit, where the very concept of continuous pressure
breaks down, and one requires a description in terms of
individual quanta.
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Appendix A: Collision spectrum calculation

We determine the collision spectrum using the kinetic theory of gases. The number of molecular collisions with the
sensor surface element dA in time element dt that have incoming velocity ~vi and outgoing velocity ~vo is [38, 39]

d8Nc(~vi, ~vo) = ng dAdt

(
1

2πv2

)3/2

vi cos θi e
−v2i
/

2v2

× 1

2πv4 vo cos θo e
−v2o
/

2v2 d~vid~vo,

(A1)

where ng is the gas density, vi,o is the magnitude of ~vi,o, v =
√
kBT/mg is the root-mean-square thermal velocity

of the gas, and θi,o is the polar angle between ~vi,o and the surface normal û⊥. Equation A1 assumes that the gas
molecules scatter diffusely from the sensor surface according to the cosine law after thermalizing with it (see Refs. [37–
40]) and that the sensor is in thermal equilibrium with the gas. If the sensor is not in thermal equilibrium with the
gas, which may occur at low background pressure or high optical power [50], then the sensor temperature multiplied
by the thermal accommodation coefficient should replace the gas temperature on the second line of Eq. A1.

To find the number of collisions that impart momentum ∆p perpendicular to the surface, we integrate Eq. A1
subject to the constraint ~vo.û⊥ + ~vi.û⊥ −∆p/mg = 0. After transforming to Cartesian coordinates, we have

d3Nc(∆p) = ng dAdt

(
1

2πv2

)3/2 ∫ ∆p/mg

0

dvi,z

∫∫ ∞
−∞

dvi,xdvi,y vi,z e
−(v2i,x+v2i,y+v2i,z)

/
2v2

× 1

2πv4 dvo,z

∫∫ ∞
−∞

dvo,xdvo,y vo,z e
−(v2o,x+v2o,y+v2o,z)

/
2v2 ,

(A2)

where vi,z = ~vi.ẑ (with ẑ = û⊥ the unit vector defining the z axis) and so on for the other Cartesian components
of ~vi and ~vo. We impose the momentum transfer constraint by taking vo,z = ∆p/mg − vi,z and dvo,z = d∆p/mg.
Evaluating the integrals over the plane parallel to the surface then yields

d3Nc(∆p) =
ng dAdt

v2

(
1

2πv2

)1/2
d∆p

mg

∫ ∆p/mg

0

dvi,z vi,z(∆p/mg − vi,z) e−
(
v2i,z+(∆p/mg−vi,z)2

)/
2v2 . (A3)

The integral in Eq. A3 can be solved by completing the square and mapping onto known Gaussian integrals. The
result is ∫ ∆p/mg

0

dvi,z vi,z(∆p/mg − vi,z) e−
(
v2i,z+(∆p/mg−vi,z)2

)/
2v2

=
√
πe−∆p2

/
4m2

gv
2

[
1√
π

(vi,zv2

2
− ∆pv2

4mg

)
e−
(
vi,z/v−∆p/2mgv

)2
+

1

2

(∆p2v

4m2
g

− v3

2

)(
1 + erf

(
vi,z/v −∆p/2mgv

))]∆p/mg

0

,

(A4)

where erf is the Gaussian error function. Inserting Eq. A4 into Eq. A3 gives the number of collisions imparting
momentum ∆p per unit area per unit time

d3Nc(∆p)

dAdt
= ng

d∆p

mg

(
1

2πv2

)1/2(
∆p

2mg
e−∆p2

/
2m2

gv
2

+

√
π

2

(
∆p2

2m2
gv
− v
)

erf
(
∆p/2mgv

)
e−∆p2

/
4m2

gv
2

)
.

(A5)

If we rearrange Eq. A5 and integrate over the sensor area, we find the differential event rate

dΓ

d∆p
=
ngA∆p

4m2
g

(
1

2πv2

)1/2

e−∆p2
/

8m2
gv

2

(
2e−3∆p2

/
8m2

gv
2

+

√
π

2

(
2∆p

mgv
− 4mgv

∆p

)
erf
(
∆p/2mgv

)
e−∆p2

/
8m2

gv
2

)
=
ngA∆p

4m2
g

(
1

2πv2

)1/2

e−∆p2
/

8m2
gv

2

ξ
( ∆p

mgv

) (A6)
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where Γ = dNc/dt is the total collision rate and the diffuse scattering correction ξ(∆p/mgv) is the term in parentheses
on the first line of the equation. Taking ξ(∆p/mgv) → 1 yields the differential event rate for elastic scattering. If

we note that the Maxwell-Boltzmann distribution for ∆p/2mg is fB(∆p/2mg) = e−∆p2
/

8m2
gv

2

/
√

2πv2 and include
momentum accomodation, then Eq. A6 becomes Eq. 7 in the main text.

We calculate the total detectable collision rate by integrating Eq. A6 over ∆p from ∆pmin to ∞, where ∆pmin is
the momentum transfer that corresponds to a measurement signal-to-noise ratio of 1 (or a chosen cutoff to ensure no
spurious events). Carrying out the integration yields

Γ
∣∣
∆p>∆pmin

=
ngA

2

(
1

2πv2

)1/2(
v2e−∆p2min/2m

2
gv

2

+

√
π

2

∫ ∞
∆pmin

d∆p

mg

(
∆p2

m2
gv
− 2v

)
erf
(
∆p/2mgv

)
e−∆p2

/
4m2

gv
2

)
.

=
ngA

2

(
1

2πv2

)1/2(
2v2e−∆p2min/2m

2
gv

2

+

√
π∆pminv

mg
erf
(
∆pmin/2mgv

)
e−∆p2min

/
4m2

gv
2

)
.

(A7)

If we rewrite Eq. A7 in terms of the expected total collision rate, we get

Γ
∣∣
∆p>∆pmin

=
ngAv√

2π

(
e−∆p2min/2m

2
gv

2

+

√
π∆pmin

2mgv
erf
(
∆pmin/2mgv

)
e−∆p2min

/
4m2

gv
2

)
.

=
ngAv√

2π
ηd(∆pmin),

(A8)

where the term in parentheses on the first line defines the detectable momentum cutoff for diffuse scattering

ηd(∆pmin) < 1. The detectable momentum cutoff for specular scattering is ηs(∆pmin) = e−∆p2min/8m
2
gv

2

, which
can be found by taking the ξ(∆p/mgv)→ 1 limit in Eq. A6 and then carrying out the integral in Eq. A7.

Equation A8 and Eq. A6 assume that all motion perpendicular to the sensor surface is detectable by the readout
system. That is to say, the readout system detects all motion along û⊥, which can be the case for tethered devices.
However, motion readout for a levitated sensor will occur along the principle axes of the levitating trap and the details
of the experimental setup may prevent simultaneous readout along all three principle axes [24, 51]. To calculate the
event rate along a trap axis for a levitated nanosphere, we must project the center-of-mass momentum transfer onto
the principle axis of the trap before integrating Eq. A5 over the sensor surface area. Taking the readout axis to be z′

such that û⊥.ẑ
′ = cos θ and substituting for ∆p yields

dΓ

d∆pz′
=
ng∆pz′

2m2
g

(
1

2πv2

)1/2

4πR2

∫ π/2

0

sec2θ sin θ e−∆p2
z′ sec2θ

/
2m2

gv
2

×
(

1 +

√
π

2

(
∆pz′sec θ

mgv
− 2mgv

∆pz′sec θ

)
erf
(
∆pz′sec θ/2mgv

)
e∆p2

z′ sec2θ
/

4m2
gv

2

)
dθ,

(A9)

where R is the nanosphere radius and ∆pz′ is the momentum transfer along the z′ axis. To our knowledge, the
integral in Eq. A9 does not have an analytic expression. Specifically, the term proportional to sec θ must be integrated
numerically. However, we can still calculate the total collision rate by integrating over ∆pz′ and switching the order
of integration. The total collision rate is then

Γ
∣∣
∆pz′>∆pmin

=ng
√

8πR2v

∫ π/2

0

(
e−∆p2minsec2θ/2m2

gv
2

+

√
π∆pminsec θ

2mgv
erf
(∆pminsec θ

2mgv

)
e−∆p2minsec2θ

/
4m2

gv
2

)
sin θ dθ.

=
ngAv√

2π
η′d(∆pmin),

(A10)

where the integral term defines the projected momentum cutoff for diffuse scattering η′d(∆pmin).
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For specular scattering, the integral for event rate along a single trap axis is analytic, so the event rate is given by

dΓ

d∆pz′
=
ng∆pz′

4m2
g

(
1

2πv2

)1/2

4πR2

∫ π/2

0

sec2θ sin θ e−∆p2
z′ sec2θ

/
8m2

gv
2

dθ

= − ng∆pz′

4m2
g

(
1

2πv2

)1/2

4πR2

∫ 0

1

u−2e−∆p2
z′

/
8m2

gv
2u2

du

=
ng∆pz′

4m2
g

(
1

2πv2

)1/2

4πR2

√
2πmgv

∆pz′
erfc

( ∆pz′√
8mgv

)
=
ngπR

2

mg
erfc

( ∆pz′√
8mgv

)
,

(A11)

where erfc is the complementary Gaussian error function. The total collision rate for specular scattering is then

Γ
∣∣
∆pz′>∆pmin

=
ngπR

2

mg

∫ ∞
∆pmin

erfc
( ∆pz′√

8mgv

)
d∆pz′

=
ngπR

2

mg

√
8mgv√
π

e−∆p2min/8m
2
gv

2

=
ngAv√

2π
e−∆p2min/8m

2
gv

2

=
ngAv√

2π
η′s(∆pmin),

(A12)

and we note that η′s(∆pmin) = ηs(∆pmin).
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