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A wide range of mechanical systems have gaps, cracks, in-
termittent contact or other geometrical discontinuities while
simultaneously experiencing Coulomb friction. A piecewise
linear model with discontinuous force elements is discussed
in this paper that has the capability to accurately emulate
the behavior of such mechanical assemblies. The mathemat-
ical formulation of the model is standardized via a universal
differential inclusion and its behavior, in different scenar-
ios, is studied. In addition to the compatibility of the pro-
posed model with numerous industrial systems, the model
also bears significant scientific value since it can demon-
strate a wide spectrum of motions, ranging from periodic
to chaotic. Furthermore, it is demonstrated that this class
of models can generate a rare type of motion, called weakly
chaotic motion.

After their detailed introduction and analysis, an effi-
cient hybrid symbolic-numeric computational method is in-
troduced that can accurately obtain the arbitrary response of
this class of nonlinear models. The proposed method is capa-
ble of treating high dimensional systems and its proposition
omits the need for utilizing model reduction techniques for a
wide range of problems. In contrast to the existing literature
focused on improving the computational performance when
analyzing these systems when there is a periodic response,
this method is able to capture transient and non-stationary
dynamics and is not restricted to only steady state periodic
responses.

*Address all correspondence related to ASME style format and figures
to this author.

1 Introduction

The existence of gaps, pre-stress, intermittent contact,
cracks, and other geometrical discontinuities has the capabil-
ity to fundamentally alter the dynamical behavior of mechan-
ical assemblies [1-3]. Consequently, accurate modelling of
these discontinuities plays a crucial role in correct estimation
of their behavior and facilitates the capturing of the entirety
of the assembly’s dynamics. To propose adequate mathemat-
ical models that accurately represent natural systems or engi-
neered structures, discontinuous models are often required.
Mathematical models with piecewise linear (PWL) nonlin-
earities are known to be an excellent choice and form a sig-
nificant class of such models [4-7].

Nonetheless, despite the enhanced accuracy of PWL
models, they often fail to precisely emulate the behavior of
the mechanical assemblies that they intend to model. There
are a number of reasons for this incompatibility, but the main
reason for the shortcoming of these PWL models is con-
cealed in the omittance of dry friction [8]. The relative mo-
tion of mechanical components unavoidably gives rise to the
emergence of Coulomb friction [9-11]. An alternative rea-
son for this incompatibility lies in the modelling of the con-
tacting material. The study by Saito et al. [12] examines the
vibration of PWL systems and demonstrates a difference be-
tween the data obtained from the simulation of PWL models
and experimental data. The experimental setup of the afore-
mentioned study covers the masses with relatively thick vis-
coelastic sheets but the dynamic model of these sheets are not
accounted for in the PWL model. These viscoelastic sheets
are known to demonstrate fractional order behavior [13] and
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the study by Homaeinezhad and Shahhosseini [14] reports
that the omittance of the fractional elements can severely al-
ter the dynamical behavior.

To obtain a complete model for the discontinuous sys-
tems of interest, the corresponding PWL models must in-
clude a complete set of discontinuities including the one in-
duced by Coulomb friction. This new model is piecewise
linear with discontinuous force elements (PWLDFE) where
the discontinuous force elements are intended to model
the multi-valued forces. In addition to the application of
PWLDFE models in mechanical, civil and aerospace engi-
neering’s real world problems [15, 16], these models also
possess significant scientific importance [17]. Such mathe-
matical models are capable of illustrating a wide spectrum
of motion, ranging from periodic to fully chaotic [18,19] . It
is noteworthy to mention that the PWLDFE models can also
demonstrate a rare type of motion called (slowly) weakly
chaotic motion, which is very infrequently encountered in
the world of engineering and will be further discussed later
in this paper.

Owing to the widespread application of PWLDFE mod-
els, it is essential to utilize methods that can evaluate their
response efficiently and accurately. The inherent nonlinear-
ity of this class of models precludes the utilization of con-
ventional linear techniques and consequently, nonlinear tech-
niques are required [20]. The existing methods of the lit-
erature were initially focused on estimating the steady-state
response of nonlinear systems and were limited in terms
of applicability. The proposition of the harmonic balance
method can be considered as a cornerstone of this class
of methodologies [21]. Numerous subsequent studies have
been conducted on this foundation that attempted to modify
this method to make it further compatible with different non-
linear systems, such as PWL systems [22,23]. Alternative
techniques have since been introduced that employed dif-
ferent approaches [7]. The study by Saito [24] proposed a
novel technique that relied on an alternating time and fre-
quency domain analysis to obtain the steady-state character-
istics of PWL systems. The studies by Tien and D’Souza
[25-28] have also introduced novel methodologies that ex-
ploit the limited linearity of PWL systems to obtain the
steady-state response of systems with either intermittent con-
tact or Coulomb friction. These methods employ a fusion of
numerical and analytical methods to accurately construct the
steady-state response and are proven to be very effective for
high dimensional systems. In spite of all the advancements
in the literature, the problem of analyzing the steady-state be-
havior of general PWLDFE systems with complex responses
remained open. In addition to the deficiency of this class
of methods in treating general PWL systems with complex
steady-state responses, they also fail to provide insight on
the transient and non-stationary response of PWL systems.

To get further acquainted with this class of nonlinear
systems, it is beneficial to delve into the mathematical foun-
dations of PWLDFE systems. PWLDFE systems are in
fact differential equations with multi-valued mappings on
the right-hand side where these mappings usually attempt
to represent the effects of geometrical or inherent disconti-

nuities (e.g. intermittent contacts). This class of problems
is in fact a generalization of differential equations and is
known as differential inclusions and the corresponding sys-
tems are known as Filippov systems. They are extensively
explored in study Filippov [29] and it is known that no an-
alytical solution exists for the general case in such prob-
lems. It is noteworthy to mention that even simple prob-
lems of differential inclusions might not have an analytical
solution. Consequently, numerical integration (NI) methods
are typically employed to obtain the transient or steady-state
responses. Conventional NI methods, such as Runge-Kutta
or Adams-Bashforth [30,31] are usually used in this context
and have proven effective for the case of simple PWL sys-
tems. Nonetheless, with increased complexity, the NI meth-
ods are known to require a very small step size [32] and this
will inevitably result in large computational costs. Addition-
ally, due to numerical errors, NI methods may not capture the
correct response of PWL systems especially when it comes
to stick-slip cases [33]. Tien and D’Souza [18] discuss an-
other drawback of NI methods which occurs when the PWL
system begins to illustrate signs of chaos. In that case, the
numerical errors of NI methods cause a systematic failure
in obtaining the accurate response of the PWL systems and
the acquired response will quickly diverge from the true re-
sponse [34,35].

To overcome the aforementioned shortcomings of the
existing methods, a novel method was proposed by Tien
and D’Souza [36] with the capability of obtaining the arbi-
trary response of PWL systems. The introduced method was
a combination of numerical methods with analytical tech-
niques that permitted efficient and accurate obtainment of
the total response of PWL systems. Their studies [18, 36]
demonstrate the computational efficiency of this method and
illustrate its superior performance for high dimensional sys-
tems. However, their work is only valid for a particular class
of PWL systems and fails to treat general PWLDFE systems.

The present work introduces a novel method that can
capture the entirety of PWLDFE systems’ dynamics, regard-
less of their complexity. In addition to the aforementioned
capabilities, the new method is faster and more accurate than
current techniques. It is a hybrid symbolic-numeric com-
putational (HSNC) method that mathematically manipulates
the PWLDFE models to cast them into a temporary linear
formulation and then exploits this temporary linearity to em-
ploy fast linear techniques. A numerical scheme is then
used to compute the nonlinear response of PWLDFE mod-
els by combining the linear techniques and a switch detec-
tion method. This hybrid method provides an efficient and
reliable tool for analyzing these systems.

Since numerical integration remains as the only alterna-
tive universally implementable method, it is crucial to elu-
cidate the fundamental difference of HSNC from numerical
integration. A number of studies [37, 38] thoroughly exam-
ine different numerical methods that are employed to treat
this class of systems and classify such methods as either
time-stepping or event-driven numerical integration. Con-
trary to any numerical integration scheme, the methodology
of HSNC is not based on a stepwise evaluation of the sys-
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tem and the response is computed in a vectorwise manner.
The algorithm then only searches for dynamical switches in
the obtained response that are known as events in the lit-
erature [37,39]. In event-driven numerical integration, the
methodology makes use of additional variables called event
variables. Event variables are an indication of the active
regime of motion (e.g., if the system is moving toward left or
right in the case of Coulomb friction force) and are checked
at every step. Upon an alteration in the event variables, an
event is detected and the numerical solver switches to the ap-
propriate governing equation of motion. The nature of such
methods is still stepwise, and the event-driven algorithms are
solely employed to increase the computational accuracy [35].
The only similarity between HSNC and event-driven numer-
ical integration is in their search of events in their obtained
response, which is an absolute necessity in treating any Fil-
ippov system regardless of the methodology.

Since HSNC uses an analytical approach in its response
evaluation step, it is hundred to thousands of times faster
than any numerical scheme while being as, if not more, ac-
curate. In addition to the novelty and computational superi-
ority of the current method relative to all its counterparts, its
extendibility to all Filippov systems (that can be solved ana-
lytically in their intervals of continuity) is also an important
characteristic of the methodology. Due to its computational
efficiency, the methodology of this paper paves the way for
real-time health monitoring of mechanical systems and en-
ables a new more efficient analysis for many industrial appli-
cations.

To elucidate the HSNC method and to demonstrate its
effectiveness, a number of PWLDFE systems are presented
and analyzed in this paper. Although this work focuses
on mechanical systems (i.e., a general mass-spring-damper
plant with intermittent contact and Coulomb friction), it
is important to note that the method is applicable to any
PWLDFE system that can be analytically solved in its lim-
ited intervals of continuity.

The remainder of the paper is organized as follows. Sec-
tion 2 is focused on introducing preliminary concepts and de-
lineating the methodology. It primarily attempts to elucidate
the problem and identify possible scenarios. Afterwards, it
describes HSNC and its structure in detail. Section 3 presents
a number of PWLDFE systems and demonstrates the effec-
tiveness of HSNC. Section 4 concludes the paper and offers
a discussion of the new method.

2 Methodology

The proposition of a standard mathematical formulation
for PWLDFE systems is an essential step in efficient analy-
sis and treatment of this class of nonlinear systems. Conse-
quently, the first part of this section is primarily concerned
with introducing a general formulation. It attempts to de-
lineate the possible scenarios that can affect the PWLDFE
systems’ formulation. Since this paper is focused on me-
chanical systems, the general formulation of the PWLDFE
systems takes the form of a general vibrating mechanical as-
sembly. It should also be stated that the method works on
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Fig. 1: Standard configuration of PWLDEFE systems consist-
ing of connected subsystems with intermittent contact

all other PWLDFE systems that can be solved analytically in
their limited intervals of continuity.

Owing to the analytical nature of the proposed method-
ology and its reliance on the obtainment of a symbolic solu-
tion, it is essential to meticulously examine each regime of
motion from a mathematical point of view and extract the
cause and trigger of the dynamical switches (event). Conse-
quently, a thorough discussion on the mathematics of vibra-
tional systems with intermittent contact and Coulomb fric-
tion is offered in this section.

2.1 Standard formulation of PWLDFE system

The standard formulation of the PWLDFE systems is
presented in this subsection. Consider the nonlinear dynam-
ics of a set of connected mass-spring-damper systems with
intermittent contacts and Coulomb friction as depicted in
Fig. 1.

The individual masses, addressed as subsystems in this
work, can have intermittent contact with other subsystems.
The contact pair consists of a spring and a damper that are
proportionally related. The contact pairs can have contact or
no contact depending on the system’s position and will be
further discussed in subsection 2.1.2. Equation (1) mathe-
matically represents the general n degree-of-freedom (DOF)
PWLDFE system as

MK(r) + Cx(r) + Kx(r) — Fsin(ox) € D(x(1),x(¢)), (1)

where x(¢), X(¢) and X(¢) are the position vector, velocity vec-
tor and acceleration vector, respectively; M, C and K repre-
sent the mass, damping and stiffness matrices, respectively;
and F represents the magnitude of the excitation and ® rep-
resents the frequency of excitation. The proportional damp-
ing also corresponds to the relation (C=BK). The sign € is
the mathematical notation used to express differential inclu-
sions and D represents the collective mapping of all the dis-
continuous elements and consists of the multi-valued kinetic
Coulomb friction vector, the multi-valued intermittent con-
tact vector and the multi-valued staticity force vector. The
nature and genesis of each of the aforementioned vectors will
be discussed in detail in the coming subsections.
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2.1.1 Multi-valued Kkinetic and static Coulomb friction
force

The Coulomb friction causes the exertion of a multi-
valued force to each subsystem and the direction of this force
is based on the subsystem’s motion or direction of the static
loads if the subsystem is stationary. Upon the movement of
the subsystem, the value of this force is constant and its di-
rection opposes motion. Alternatively, upon having staticity
(when a subsystem sticks), the value of the Coulomb fric-
tion is equal in magnitude and opposite to the direction of
the sum of all the acting forces until reaching the maximum
static friction force. The kinetic multi-valued force vector,
for the j subsystems in motion, can be mathematically ex-
pressed as

—wem gsign(xy(¢))
K(x(t)) = —ugMysign(X;(t)) = : @
—pm;gsign(;(t))

where gy is the coefficient of kinetic friction and sign repre-
sents the sign function, and, M; and X; represent the mass
matrix and the velocity vector for the j moving subsys-
tems. Upon encountering staticity in a subsystem, the ki-
netic Coulomb friction force changes to the static Coulomb
friction as

Si = |Sum of all acting forces| < psm;g, 3)

where u; represents the coefficient of static friction.

2.1.2 Multi-valued intermittent contact force

The occurrence of intermittent contact alters the dynam-
ics of the system and consequently affects the governing
equation of motion as presented by Eq. (1). Before pre-
senting a detailed discussion on the mathematical aspect of
intermittent contacts, it is necessary to understand its behav-
ior in depth. Assume that the /" and (i + 1) subsystems
have intermittent contact. Then the two subsystem’s inter-
mittent contact pair has two distinct states (open or closed)
and these states are contingent upon the numerical value of
the gap function.

Definition 1. The gap function is used to determine the
status of the intermittent contact of each contact pair. It can
be mathematically represented as

Gi(t) = xiy1(t) — xi(t) + s, 4

The status of each intermittent contact pair is contingent
upon the position of the two engaged subsystems and the
constant configuration parameter ¢. It must be noted that the
constant parameter ¢ is the distance from the i/ mass to the
next adjacent intermittent contact pair when all the subsys-
tems are in equilibrium. Next, the “open” and “closed” states
will be defined for clarity.

Definition 2. The status of an intermittent contact pair
is considered “open” if the value of the corresponding gap
function is positive; the contact pair will then not experi-
ence contact and the intermittent contact pair’s dynamics will
not be involved in the dynamics. In contrast, if the value of
the corresponding gap function is negative, then the intermit-
tent contact pair’s status is “closed”, experiences contact, and
henceforth is included in the dynamics. Figure 2 illustrates
these two states.

To elucidate the mathematics of this subsection, let us
assume that the system has one intermittent contact pair be-
tween the i and (i + 1) subsystems. Initially, the intermit-
tent contact pair’s status is open, and therefore, the stiffness
and damping associated with the contact are not involved
in the dynamics of the system. Consequently, the defining
matrices of the system are as initially defined by Eq. (1).
After the change in status of the intermittent contact pair
to “closed”, the dynamics of the system changes and sub-
sequently, the corresponding stiffness and damping matrices
change. In other words, the involvement of the intermittent
contact pair in the system’s dynamics increases the stiffness
and damping between the two subsystems. Mathematically
speaking, matrices C and K change to

C=C+|- -5 -~ -
T
\ \ \
! ! !
AC
RN
/ [+k*1—k*|
R T STk Sty R
A AN
AK

where the demonstrated rows and columns are related to
the corresponding subsystems (i’ and (i + 1)"” in this case),
and k* and ¢* represent the spring stiffness and damping co-
efficient of the intermittent contact pair, respectively. It is
noteworthy to state that only changing the C and K matri-
ces does not fully capture the involvement of the intermittent
contact pair in physical systems. In fact, as the intermittent
contact pair engages, the spring force begins to rise from
zero. However, the sole alteration of the K matrix would
induce a shock force that is not what would physically hap-
pen. To better explain this matter, consider expressing the
intermittent contact pair’s spring force as Fj

Fy = £k* (xi(1) = xiv1 (1) = 0 ). (6)
—_— =~

inconstant constant
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Fig. 2: Graphical representation of the two possible states of
the intermittent contact pair

Equation (6) shows that the force can be separated into
two parts that are fundamentally different. The first part is
inconstant and is accounted for by changing the matrix K.
In contrast, the second part is constant and its function is to
make the spring force rise from zero as it physically does.
This second part leads to the need to construct the constant
part of the multi-valued intermittent contact force vector. If
the status of the intermittent contact changes from open to
closed, then the force vector that accounts for the constant
part of the spring force is represented as

I=[' =k (—0) +k*(—0)--]", )

where the demonstrated elements are the i’ and (i +1)". Al-
though one may think that a change in matrices C and K, in
the left hand side of Eq. (1), is the better choice and is com-
patible with reality, to stay consistent with the mathematical
notions of discontinuous mappings, these changes are made
in the right hand side. That is, matrices C and K will never
change directly and the left hand side of Eq. (1) remains
single-valued throughout the occurrence of intermittent con-
tact. Nonetheless, the multi-valued intermittent contact force
will be constructed in a manner that resembles the change of
Eq. (5). Mathematically speaking, the occurrence of inter-
mittent contact can be presented as

MXx(t) + Cx(r) + Kx(7) — Fsin(ot) € +1—
ACk(t) — AKx(1) + D/, (8)

where D' represents the other multi-valued force vectors (the
multi-valued Coloumb friction in the context of the examples

of this paper). The collective effects of the mappings of Eq.
(5,7) defines the occurrence of intermittent contact with pre-
cision as illustrated in Eq. (8).

Remark 1. It should be noted that the existence of the
multi-valued force vectors (I,ACx(z) and AKx(#)) depends
on the status of the intermittent contact pairs. Eq. (8) il-
lustrates the switch from open to closed. The switch from
closed to open will translate into the elimination of the afore-
mentioned vectors.

2.1.3 Staticity and the corresponding multi-valued
force vector

The presence of Coulomb friction can cause the occur-
rence of the sticking phenomena. The sticking of a subsys-
tem has the capability to alter all the defining matrices (mass,
stiffness and damping) and also add constant forces to the
new dynamics. This subsection is devoted to the detailed ex-
amination of the effects of the sticking of a subsystem on the
vibration of PWLDFE systems.

Assume that the i/ subsystem’s velocity reaches zero.
This event means that the subsystem is no longer dynamic
and to examine its motion, a force analysis is required. If the
sum of all the acting forces on the static subsystem can over-
come the maximum static Coulomb friction (usm;g), then the
subsystem will only be instantaneously motionless and the
subsystem will return to movement. Conversely, if the sum
of all the acting forces on the static subsystem cannot over-
come the maximum static Coulomb friction, then the sub-
system sticks and remains static. This event, referred to as
staticity in this paper, fundamentally alters the dynamics of
the PWLDFE systems.

To mathematically formulate the effects of staticity, it
is necessary to highlight its characteristics. The staticity of
the " subsystem means that the i row and column of the
governing equation of motion, which represents the dynam-
ics of the i subsystem, must be eliminated. Nevertheless,
the elimination of the i’ column that represents the effect of
the i’ subsystem on the rest of the dynamics is not straight-
forward and the purely static i’ subsystem continues to af-
fect the overall system dynamics. To elucidate this matter,
it’s beneficial to express the situation mathematically. In the
case of staticity, ¥;(¢) = x;(t) = 0 and this denotes that the ac-
celeration and velocity of the static subsystem cannot affect
the dynamics of the rest of the system. This can be verified
by careful examination of Eq. (9).
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Faamping = Cii %) =0
| Cnt -+ Cni -+ Con Xn (1)
Cli

i'" subsystem’s effect
%

ci | X%(1), (9)
Cni
where the highlighted column corresponds to the i column

and its multiplication by %;(¢) = O results in no damping forc-
ing from the /" subsystem due to its staticity. However,
x;(t) = constant and consequently, the multiplication of the
elements of the i column of the stiffness matrix produces a
nonzero force vector that affects the system’s dynamics and
cannot be neglected. Accordingly, and contrary to i;(¢) and
xi(t) , the effects of the position of the static subsystem must
be accounted for in the new reduced dynamics. This static
forcing can be seen by inspecting Eq. (10) where the effect
of the position of the i subsystem, on the rest of the dy-
namic system, is shown.

kip - g ki ] ()
Fspring = | - kii xi(t) = éonstant
ot - i+ o ()
ky;
i subsystem’s effect k:ii < x; (t), (10)
k;’li

where Fy,ing represents the spring force vector of the dy-
namics. To further elucidate this effect, consider the specific
portion of a PWLDFE system, represented by Fig. 3 where
the i subsystem experiences staticity.

The static force results from the elongation or compres-
sion of the connecting springs in the adjacent subsystems.
Note that no additional static forces result for the case where
the i’ subsystem is stuck at x; = 0. As the i row and col-
umn of the governing equation of motion must be eliminated
when the i subsystem is stuck, a new constant force vector
has to be added to take this into consideration. This elim-
ination is due to the fact that that the i"" row describes the

m; is stuck and x; # 0

Xi-1 Xi

Xit+1
—

Kit1,Civq Kis2, Cit2

(a) Mechanical view of the seperated section

Static forces are applied to the neighboring masses when x; # 0
ki1 (x|+1

l c'(f/.’ ] x' 1) I CI+1(XI+1 /) l

(b) Only spring and damping force are illustrated
Fig. 3: The staticity of the i’ subsystem and the correspond-
ing spring and damping forces

motion of the i subsystem. The corresponding multi-valued
(yet constant) force vector can be defined as

T
Feni (n—1)x1 X

S =—[kii - k)i Kgrnyi - (1)

Note that the only difference between Eq. (11) and the sepa-
rated section of Eq. (10) is in the elimination of the i row of
Eq. (10). This elimination is done to account for the staticity
of the i subsystem.

2.2 Switch definition, classification and detection
2.2.1 Preliminary concepts and definitions

The previous subsections attempted to acquaint readers
with the fundamentals of PWLDFE systems and express dif-
ferent events that can alter their formulation. These alternat-
ing events cause the discontinuities in the governing equation
of motion and the multi-valued mapping D is updated on the
basis of their occurrence. An important step in understand-
ing and efficient treatment of PWLDFE systems lies in the
detection of these events. Before further advancement in this
topic, it is necessary to provide a number of useful defini-
tions.

Remark 2. A switch is defined as any event that causes a
discontinuity in the governing equation of motion. Staticity,
alteration of the direction of motion, and the change in the
status of intermittent contact pairs are examples of switches
for the systems considered in this work.

Switches can fundamentally alter the behavior of
PWLDFE systems. Consequently, understanding their na-
ture and corresponding effects facilitates the analysis and
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evaluation of PWLDFE systems. Next, the switches encoun-
tered in the PWLDFE systems presented in this work are dis-
cussed and classified.

Definition 3. Major switches form a class of switches
that alter the underlying dynamical characteristics of the sys-
tem such as natural frequencies or damping ratios. The ma-
jor switches presented in this paper are triggered as a result
of staticity or intermittent contact.

Definition 4. Minor switches form a class of switches
that do not alter the dynamical characteristics of the system.
The minor switches presented in this paper are triggered as
a result of the change in the direction of motion (where no
staticity occurs).

Remark 3. Minor switches do not alter the underlying
dynamical characteristics of the system but this should not be
confused with their capability to alter the dynamical behavior
of the system, which they in fact do.

2.2.2 Triggering conditions

The definition and classification of switches enables the
discussion of triggering conditions and their effects on the
governing equation of motion.

Kinetic Coulomb friction: This type of switch stems
from an alteration in the direction of motion of a subsys-
tem. Consequently, it is trivial that a change in the sign of
the velocity can be interpreted as the requirement for the oc-
currence of this type of switch. Mathematically speaking,
the condition to trigger this switch is

Xi(k+1)x%(k) <0 and

|sum of acting forces on i subsystem| > ugm;g, (12)

where k represents the k' step in time. It is important to note
that the sole occurrence of the first part of Eq. (12) does not
necessarily result in a switch of this kind and as discussed
previously, a force analysis is required. If the subsystem that
reaches zero velocity jumps out of it instantaneously, then the
switch is of this kind. Otherwise, the switch is causing static-
ity. The sole effect of this switch on the system is causing a
change in the sign of the kinetic Coulomb friction force be-
cause this force is defined as —sign(%;)um;g. Although this
change seems small, it should be noted that it can affect the
general behavior of the system and impair the employment
of numerous techniques.

Intermittent contact: This type of switch stems from the
alteration of the status of an intermittent contact pair. To
check for the occurrence of switches that are related to in-
termittent contact pairs, it is only necessary to monitor their
corresponding gap function, as defined by Eq. (4). A change
in the sign of the gap function results in a change in the status
of the intermittent contact pair.

To mathematically formulate the triggering condition of
this switch, it can be said that

Gi(k+1)x Gi(k) <0, (13)

which indicates the sign of the gap function has changed.

Staticity: This type of switch stems from the sticking of
a subsystem due to static Coulomb friction. The detection of
this type of switch is similar to “kinetic Coulomb friction”. A
change in the sign of the velocity of the i’ subsystem means
that the subsystem’s velocity has reached zero. At this point,
it is necessary to conduct a force analysis and if the sum of
all acting forces on the i subsystem cannot overcome the
maximum static Coulomb friction, then this type of switch
has occurred. Mathematically speaking, if

Xi(k+1)x%i(k) <0 and

|sum of acting forces on i’ subsystem| < ugm;g, (14)

then the i subsystem sticks and the dynamics is altered as
discussed in subsection 2.1.3. It is important to note that
the stuck subsystem, which is eliminated from the dynamic
equations, should not be forgotten and must be continuously
monitored to see if the sum of all acting forces on that sub-
system overcome the maximum static Coulomb friction. In
that case, the corresponding constant force vectors must be
eliminated and the deleted i"" row (and column) must be re-
stored.

The triggering conditions and corresponding effects of
the switches on the governing equation of motion has been
carefully studied in this section. Now, it is possible to discuss
HSNC in detail and how it can be used to evaluate responses
of PWLDFE systems.

2.3 HSNC
2.3.1 Fundamentals of HSNC

Before delving into the detailed mathematical structure
of HSNC, it is beneficial to present a brief overall picture.
As discussed in the previous section, it can be observed that,
apart from the constant force vectors, the equations of motion
are linear at all times. That is, the equations of motion can be
presented by single-valued linear differential equations (with
constant forces) until a switch occurs. The occurrence of a
switch alters the equation of motion but the new equation of
motion can again be presented by another single-valued lin-
ear differential equation (with constant forces that will differ
from the previous case). In fact, the differential inclusion
can be thought of as a number of different differential equa-
tions that are stitched together. HSNC exploits this property
and its foundation is based on the fact that the problem can
be reformulated as a number of linear differential equations
that produce a continuous response despite being discontin-
uous themselves. It initially manipulates the starting differ-
ential equation of motion to cast it into a fully linear formu-
lation. Then, it applies modal transformation and decouples
the coupled dynamics to facilitate the analytical solving of
the set of differential equations. It then, obtains the response
of the system. It is critical to bear in mind that the obtained
results are valid until the occurrence of the earliest switch.
This is because after the occurrence of the earliest switch,
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the governing equations of motion are no longer valid and
the multi-valued mappings (right-hand side) of the equations
of motion will change. It is important to note that the HSNC
method can incorporate multiple numerical techniques to in-
crease its computational efficiency. Consequently, a hybrid
numerical analytical method is obtained. The following sub-
sections will detail each part of this algorithm.

2.3.2 Temporary disposable coordinates

As stated in the previous subsection, the first step is
to cast the differential equations with constant force vectors
into a fully linear formulation. This casting process should
be performed for the time interval in which the governing
equation of motion remains continuous and no switches oc-
cur. To perform this casting process, in the limited time in-
terval, it is beneficial to mathematically manipulate the dif-
ferential equation to remove the constant forces. This can be
done by introducing a new set of coordinates. The intention
of this set of coordinates is to eliminate the constant force
vectors upon substitution. Consequently, the new temporary
set of coordinates is defined as x'(¢) = x(¢) —y where Y is de-
termined based on the mapping D. Depending on the status
and velocity of the subsystems, the value of the 7y vector can
have numerous distinct values. The mathematical definition
of y can be stated as

Yy=K!'xD. (15)

Utilizing 7y and the newly defined coordinates, it is pos-
sible to reduce the general formulation of Eq. (1) to

ME/(1) + C¥' (1) + Kx'(1) - Esin(or) = 0. (16)

Equation (16) is fully linear and allows a modal trans-
formation to decouple the coupled equations of motion. The
modal coordinate is proposed as x' () = yq(r) with respect to
the literature [40] . By applying the modal coordinates to Eq.
(16), the decoupled differential equations will be obtained as

W M(r) + ' Cyd(r) + v Kyq(r) =y’ Fsin(er), (17)
Or alternatively as

qi(l‘) + 2&,,’0),,[6},'(1‘) + mgiQi(t) = fiSiI'l((,l)l‘)7 i=1,---,n.
(18)
Note that the damping matrix C is diagonalizable using the
modal transformation if the system is proportionally damped
and the decoupled differential equations can now be solved
analytically and the response is obtained in modal coordi-
nates. The response can then be transformed back to the
original physical coordinate x(¢) by using the relation x'(¢) =
yq(r) and X' (r) = x(r) — . It is important to note that the ob-
tained response is valid up to the occurrence of the earliest

switch. Consequently, the next step consists of checking for
the occurrence of a switch.

As discussed in subsection 2.3.1, the HSNC algorithm
consists of stitching the obtained responses together. To fol-
low this procedure, it is necessary to present the final value
of the current interval (which is the point where the earliest
switch occurs) as the initial value of the next interval.

2.3.3 Switch detection

The next part of the HSNC algorithm consists of finding
the earliest switch. The triggering conditions of all switches
has been discussed in subsection 2.2 and it is only necessary
to check for their occurrence. This can be done by evaluat-
ing the response of the system up to a rational predetermined
value (the period of excitation can be considered as an ad-
equate choice). All the triggering conditions (subsystem’s
velocities, gap functions and force analysis of static subsys-
tems) of every subsystem must then be assessed and the ear-
liest switch must be identified. The time that corresponds
to this switch, referred to as the critical switch, must be ex-
tracted and the response of the system, up to that point, must
be stored as the response up until the critical switch. The
rest of the obtained response should be discarded since the
occurrence of the critical switch will alter the dynamics and
the mapping D.

Remark 4. An additional reason for separating the
switches into major and minor becomes apparent in the de-
tection step. To check for the occurrence of major switches
it is necessary to reconstruct the initial physical coordinates
(x(¢)) but minor switches can be detected directly in modal
coordinates.

2.3.4 Detection mechanism and the critical subsystem
tracker

The detection of the switches is achieved by obtaining
the response of the system and assessing the triggering con-
ditions. Contrary to NI methods, this response obtainment is
not executed in a stepwise manner but using a vectorwise ap-
proach. This vectorwise evaluation is the fundamental com-
putational advantage of the HSNC algorithm. Nonetheless,
the step size of the utilized time vector dictates the accu-
racy of finding the location of the critical switch. The idea of
choosing an extremely small step size can be dismissed since
it imposes a heavy computational burden to the processing
unit and undermines one of the fundamental advantages of
HSNC. However, large step sizes can result in the missing of
switches and result in an erroneous critical switch detection.

To overcome these competing issues, it is possible to
interlace the analytical structure of the HSNC with efficient
numerical methods. HSNC can be used to identify the lo-
cation of the critical switch between two consecutive steps.
Figure 4 illustrates this matter and considers the gap func-
tion of a subsystem to be of interest. Once the region where
the critical switch occurs has been identified, it is possible to
the employ a numerical nonlinear solver to identify the pre-
cise time of the critical switch. The simulations in this work
employed MATLAB?’s fzero nonlinear solver to acquire the
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The exact location of the switch

Gap function
(=
n

Time [s]

Fig. 4: The solid line corresponds to the gap function and the
red triangles indicate the evaluted points; the switch occurs
when the gap function changes sign and is placed between
two points

precise location of the critical switch since this solver is fast
and reliable. The fzero nonlinear solver also uses the upper
and lower bounds for solving the exact transition time, which
is readily computed by HSNC. Nonetheless, HSNC does not
limit the users to any specific nonlinear solver and alternative
solvers can also be employed with HSNC.

The addition of the nonlinear solver to the structure of
HSNC engenders certain issues, and if not properly man-
aged, can cause its systematic failure. The issue with the
nonlinear solver lies in its numerical nature. When a sub-
system causes a critical switch (let us assume an intermit-
tent contact), the value of the function that corresponds to its
triggering condition (gap function in this example) should be
equal to zero at that precise instant. Nevertheless, due to the
numerical nature of the nonlinear solver, the obtained value
for the critical switch’s time corresponds to a near zero value
for that function (€ where € represents a very small value)
and not exactly zero. Since the triggering conditions depend
solely on sign changes, the fact that the value of the trigger-
ing function that corresponds to the subsystem that experi-
enced the critical switch does not equal exactly zero at the
first step of the next iteration can cause false switch detec-
tions. To elucidate this matter, assume that a subsystem ex-
periences an intermittent contact and its status changes from
closed to open. The value of the corresponding gap function
at the first step of the next iteration should be equal to zero,
but, due to the numerical nature of the nonlinear solver, this
value is obtained to be —10713. As the system is now open,
the value of the second step of the corresponding gap func-
tion will be positive. The algorithm will then detect that a
sign change has occurred between the first and second step
of this gap function and this fact translates into the occur-
rence of another switch. However, this is a false detection
and consequently, this issue should be resolved.

To overcome this issue, the critical subsystem tracker
mechanism was introduced. The underlying idea of this
mechanism is to track the subsystem that experiences the
critical switch and to automatically equate the first step of
the triggering function that experienced the critical switch in
its previous iteration to zero in the subsequent iteration. In
fact, this method rectifies the numerical error of the nonlin-

ear solver and prevents the HSNC algorithm from detecting
false switches.

Note that upon finding any switch, the final point of the
time vector is changed from their predetermined value to the
earliest switch found. The logic behind this idea is to tighten
the search space because, as stated previously, the rest of the
data are incorrect since they employ the inaccurate equations
of motion.

The final point that might appear ambiguous to the read-
ers is the significant difference between NI methods’ run-
time and HSNC’s. There exist two fundamental causes for
this matter and the first one is the dependency of NI's accu-
racy on the selected time step. In many cases of PWLDFE
systems, the selection of a large (or in some cases, even rela-
tively small) time steps results in the failure of the NI method
in capturing the entirety of the system’s dynamics and con-
sequently, excessively small time steps are required. In con-
trast, this is never the case in HSNC and the time step’s size
can be quite large. This is due to the fact that HSNC searches
for switches and does not evaluate the response in a stepwise
manner. The second reason is that NI methods are required to
calculate each step after the previous one but HSNC allows
the vectorwise evaluation of the response since the analytical
solution is used. Figure 5 illustrates the overall structure of
the HSNC algorithm.

3 Results and discussion

Results of employing the HSNC algorithm for two dif-
ferent mechanical assemblies are simulated and presented in
this section. The presented systems are of interest for a num-
ber of reasons. First, the assembly can be used as a model
for a wide range of industrial applications. Second, by tun-
ing the parameters, it is possible to obtain weakly chaotic
responses. Such a motion is very rarely encountered in non-
linear dynamics and therefore, requires attention and special
care. Finally, the second assembly of this section is a high
dimensional system and is presented here to further illustrate
the capabilities of HSNC. High dimensional mechanical as-
semblies with piecewise linear nonlinearities and Coulomb
friction are frequently seen in turbomachinery applications
and due to their complexity and high dimensionality, new ef-
ficient tools to handle PWL systems are needed.

3.1 Two DOF mechanical system

The first system consists of a two DOF mass-spring-
damper system with intermittent contact between the two
masses and Coulomb friction as depicted in Fig. 6.

This system is simulated for three different scenarios.
The system is harmonically excited and the parameters, for
all scenarios, are presented in Table 1.

The first scenario is selected to illustrate the effective-
ness of HSNC relative to NI methods when the system has a
conventional periodic response. The NI method of this work
is the fourth order Adams-Bashforth method that is known
for its accuracy and stability. Figure 7 illustrates the response
of the system.
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Start HSNC

A
Motion Identification:

The motion of every subsystem is checked
and subsequently categorized as

1. In motion
2. Instantaneously static
3. Stuck

A

Critical Index Tracker:

The final point of the system’s response is
introduced to the HSNC algorithm as the
initial condition for the next iteration after
applying the critical index tracker
mechanism.

Valid Result Obtainment:

The response of the system is evaluated up
to the critical switch and the system’s
condition and status, in that specific point,
is calculated.

Critical Switch Detection:
Based on the analytical response in modal
and physical coordinates, subsystems are

switches. The earliest switch’s data,
considering all subsystems, is saved as the
critical switch.

Major switch

v

Discontinuous Element Identification:

Based on the motion and status of every subsystem, the
existence and numerical value of constant force vectors
are identified and the mapping D is formed. The value
of mapping D can be found using Eq. (2,7,11) at every

iteration

Temporary Disposable Coordinate:

To eliminate the multi-valued mapping D that
transforms into a single-valued force vector at every
iteration, the temporary disposable coordinates should
be employed to cast the mathematical representation of
the problem to a fully linear formulation. This is
achieved by utilizing the parameter y as defined in Eq.

(15).
v

Response Obtainment in Modal Coordinate:

Modal transformation is applied and the analytical
response of the system is obtained in modal coordinates ===
using Eq. (16-18). The detection of minor switches are
possible in modal coordinates using Eq. (12).

examined to detect the occurrence of all j@———Minor switch

y

Response Obtainment in Physical Coordinates:

The modal response is returned to the original physical
coordinate system to assess the system for the
occurrence of any major switches using Eq. (13,14).

A

search space

Resetting the endpoint of the,
time vector as to minimize the[%

Fig. 5: Overview of the HSNC algorithm

i Coulomb

x1 friction "x,

Fig. 6: Two DOF PWLDFE system

Both methods obtain very similar responses for each
mass, which verifies the accuracy of HSNC with a traditional

NI method; however, the difference between their computa-
tional costs are considerable. The runtime of HSNC is about
1766 times faster than NI. The exact runtime of each method
for all of the scenarios is presented in Table 2.

It is important to note that NI's time step size was se-
lected to be i = 10° to produce accurate results. It is evident
that despite its better computational efficiency, the results of
HSNC are more reliable due to its analytical nature. To em-
phasize the accuracy of HSNC, the parameters of the system
from scenario 2 are used. This simulation demonstrates the
effectiveness of HSNC in treating systems where NI meth-
ods struggle with conventional time step sizes. The system
is solved via NI with two different time steps and the results
illustrate a significant difference. The results of HSNC match
with the results of the NI method with the smaller time step.

The response obtained via the NI method demonstrates
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Fig. 8: Time evaluation of the 2-DOF system with second

scenario parameters and the comparison of the obtained re-

sults

significant error when the time step is selected to be a con-
ventional value (h = 1073) and a much smaller time step
is required to obtain the response with acceptable accuracy
(h = 107°). The runtime of the methods are also compared
and it is observed that the HSNC is about 45 times faster for
this scenario.

Remark 5. The significant difference between the per-
formances of HSNC in the previous scenarios might puzzle
the readers since, in the first scenario, the HSNC is about
1766 times faster but in the second case it is only 45 times
faster. To understand this, the structure of HSNC must be
revisited in detail. As discussed in subsection 2.3.4, the
response of the system is obtained via an analytical solu-
tion and a critical switch detection algorithm. A significant
decrease in the distance between switches results in an in-
crease in the number of response evaluations and a multitude
of changes in the governing equation of motion. This phe-
nomenon pushes the nature of HSNC from a vectorwise al-
gorithm to a semi stepwise algorithm since the consecutive
switches are very close. This causes an increase in the run-
time of HSNC but it is critical to state that even in such a
case, HSNC is much faster.

An alternative point that should be noted from the pre-
vious simulation is the challenges placed on NI methods in
treating PWLDFE systems. The mathematical representa-
tion of PWLDEFE systems is swarmed with swifches and the
detection of such switches using NI methods, that employ a
stepwise evaluation scheme, is intertwined with algorithmic

—x_ using HSNC
using HSNC
- .x_ using NI
using NI

......

Amplitude [m]
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(b) Magnified view

Fig. 9: The weakly chaotic response of the PWLDFE system

and computational difficulties. Consequently, even for the
simple case of this simulation, the NI methods exhibit their
fundamental drawbacks.

The third scenario is meant to illustrate the weakly
chaotic motion that can be obtained in PWLDEFE systems.

As demonstrated in Fig. 9, the motion of the system is
not periodic and seems to be chaotic. The phase portrait of
the system indicates the existence of a strange attractor as
presented by Fig. 10 and the system does not settle at any
trajectories. The runtime of the HSNC is about 432 times
faster in this case.

Nonetheless, as illustrated in Fig. 11, the divergence of
two infinitesimally close trajectories is not exponential at all
and the trajectories seem to diverge very slowly. The ini-
tial distance between the initial values (the position of the
second mass only) is § = 1073, Such weakly chaotic mo-
tions have not been reported in mechanical systems prior to
this research and were limited to a very specific class of mo-
tions [41]. The slow divergence of two infinitesimally close
trajectories is also demonstrated in the phase plane in Fig.
12.

An interesting discussion can be held on the accuracy of
HSNC relative to NI methods for the case of weakly chaotic
motions. It is evident that due to the reliance of both methods
to numerical techniques, the response of both methods will
diverge from the true response in infinite time. Nonetheless,
the dependency of NI methods on numerical methods occurs
in a stepwise manner and at each step, a numerical error is
added that will accelerate the divergence from the true re-
sponse. In contrast, HSNC’s only source of numerical error
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Table 1: The numerical value of the first simulated system for all scenarios

Scenario m; my ki kp k3 |3 Ui Mg Fi P (O] k* (|)1
1 1 2 5 10 40 0.1 0.6 0.75 225 -150 1.75515 100 0.2
2 1 2 5 10 40 0.1 0.6 0.75 22500 -15000 175.5151 100 0.2
3 1 2 5 10 40 O 0.6 0.75 225 150 17.5515 100 0.2
30 2
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(a) The phase portrait of the first subsystem and its weakly chaoti
motion

1 1 1
0.5 1 15

(b) The phase portrait of the second subsystem and its weakly chaotic
motion

Fig. 10: The phase portrait of the third scenario and its
weakly chaotic motion

is in the exact identification of the switch’s time when in this
work it employs the fzero solver. Consequently, the response
of HSNC, in the case of weakly chaotic motion is closer to
the true response for an extended amount of time and subse-
quently, its accuracy is superior to NI methods regardless of
their time step size. This higher accuracy is in addition to the
fact that HSNC is considerably faster.

3.2 High dimensional mechanical system

The second system of interest is a higher dimensional
mechanical system with intermittent contacts and Coulomb
friction. Higher dimensional mechanical systems with a
large number of nonlinearities are common in engineered
structures such as turbomachinery, which have a number of

L
03

(b) Magnified view

Fig. 11: The slow divergence of two infinitesimally close tra-
jectories for weakly chaotic motion; the trajectories are very
close at the beginning and start to diverge non-exponentially

different damping technologies that are often incorporated
based on friction damping [42-45] . These systems are often
exceedingly complex and use a number of reduction tech-
niques to handle small and large mistuning [46, 47], aeroe-
lastic effects [48], multistage rotors [49], rotational speed ef-
fects [50], and nonlinearity [S0]. The system discussed in
this section is not as large as these very high dimensional
systems; however many of the model reduction methods that
are used to lower the dimensionality of the linear degrees of
freedom can be integrated with HSNC in a similar manner
to how BAA was integrated with turbomachinery [26, 51].
Therefore this example is focused on demonstrating how the
method can effectively analyze a system with a large number
of connected nonlinearities with each degree of freedom hav-
ing Coulomb friction as well as having multiple intermittent
contact pairs.

The system under study is a 34-DOF mass-spring sys-
tem with Coulomb friction and multiple intermittent con-
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Table 2: Runtime comparison of HSNC with NI for simulated systems

Runtime [s] Scenario 1 Scenario 2 Scenario 3 High Dimensional
HSNC 0.600 0.462 1.382 10.03
NI 1059 20.85 597.5 2333

Response with small
perturbation

Initial point

Response without initial
perturbation

-0.5 0

0.5 1 15 2

2

Fig. 12: Non-exponential trajectory divergence in weakly
chaotic motion

tacts. The corresponding numerical values of this system’s
parameters are presented in Appendix A for convenience.
Figure 13 illustrates the response obtained using HSNC and
NI and demonstrates the accuracy of HSNC. The runtime of
HSNC is also about 232 times faster in this scenario and the
runtime, for each method, is presented in Table 2. Note that
this is a very complex scenario where many stick slip transi-
tions can occur in rapid succession.

3.3 Limitations

Despite the noted advantages, the presented methodol-
ogy of this paper is constrained in use by certain limitations.
Primarily, HSNC can only be used for PWLDFE systems
that can be solved analytically in their intervals of continuity.
Since a major class of models in mechanical vibration are lin-
ear or can be adequately approximated by linear or piecewise
linear components, the applicability of this methodology is
widely preserved. Nevertheless, for heavily nonlinear sys-
tems with inherently nonlinear components, the attainment
of an analytical solution is not possible and consequently,
the employment of HSNC will be impossible.

The second major limitation of the proposed HSNC lies
in its inability to treat continuous systems that form an alter-
native class of vibrational systems. Bear in mind that HSNC
relies on using analytical solutions of ODEs in their intervals
of validity to compute the response of the system. In con-
trast, continuous systems are modeled via partial differential
equations (PDEs) and are therefore fundamentally different.
Nevertheless, it is possible to extend the concepts of HSNC
to continuous systems by applying the same principles to
PDEs. However, since the analytical solutions of PDEs are

even harder to obtain, the complexity of the methodology
will increase significantly.

3.4 Potential Applications

It is beneficial to further discuss the real-world applica-
tions of HSNC. The applications of this new methodology,
apart from introducing a new computationally superior ap-
proach, lie within the speedy evaluation of engineering sys-
tems. The dynamics of many engineering systems, from
civil structures to turbomachinery equipment, are known to
be best modeled via PWLDFE systems. In numerous cases,
these systems have to be constantly monitored to ensure their
structural health. Study [52] discusses several different ap-
proaches in the structural health monitoring of systems. In-
terestingly, a key component of monitoring the behavior of
a healthy structure is the capability to predict the motion of
the structure in different circumstances and identify mistun-
ing [53] or irregularities (such as cracks) [36, 54] in a fast
manner. In this case, the computational efficiency and speed
of HSNC can considerably improve the quality of the mon-
itoring system and avoid possible damage. Study [12] ex-
plores the validity of this class of solvers experimentally and
verifies their accuracy and applicability.

4 Conclusion

This paper primarily discusses systems that are piece-
wise linear with discontinuous force elements (PWLDFE)
as accurate models for numerous physical phenomena and
then offers a standard formulation and analysis tool for such
models. The mathematics of the PWLDFE systems are dis-
cussed in detail for systems with intermittent contact and
Coulomb friction and all of its variations are studied and
classified. The PWLDEFE systems are not only important
from an industrial point of view, but also bear scientific sig-
nificance. They are known to model the behavior of numer-
ous real world systems and also demonstrate a wide range
of motions. The weakly chaotic motion is observed in the
response of PWLDFE systems and this type of motion has
never been reported in mechanical assemblies before. In ad-
dition to a thorough examination of the mathematics of such
systems, a novel efficient hybrid symbolic-numeric compu-
tational (HSNC) method is presented that is capable of ob-
taining the total response of this class of systems efficiently
and accurately. The new method highlights its advantage in
both simple and complex nonlinear systems, and can be read-
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Fig. 13: Response of the High dimensional system obtained via both HSNC and NI; solid color lines indicate HSNC’s
response while dashed blacked lines are NI's response

ily combined with a number of model reduction techniques
to handle high dimensional complex nonlinear systems, such
as those found in turbomachinery. In addition to its speed,
HSNC is also very accurate since it employs an analytical
approach in obtaining the response of the system.
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A Numerical values of the high dimensional system’s

parameters

Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value
k1 10 k29 18 mj> 1.97 F16 300
k 20 k3o 15 mo3 2.2 Fi7 240
k3 15 k31 17 moy 2.5 Fig 150
ky 20 k3 16 mos 1.93 Fio 300
k5 10 k33 20 mye 1.82 F20 450
k6 21 k34 21 my7y 1.35 F21 -300
k7 13 k35 18.5 myg 1.6 F22 600
kg 24 nj 1 N9 1.9 F23 -300
ko 20 my 1.1 m3g 1.4 Fou 285
k1o 21 ms3 2 ms3y 2.2 Fs -750
k11 23 nmgy 1.5 ms3p 3.2 F26 450
k12 24 ms 1.6 ms33 1.3 F27 150
k]3 25 meg 1.4 ms34 1.2 Fzg -600
k14 13 ny 2.3 F] 300 F29 1050
kis 16 mg 2.5 F -150 F3g -1200
k16 17 mog 1.9 F3 225 F31 300
k17 18 nio 1.5 F4 210 F32 -300
k18 14 i1 1.8 F5 300 F33 450
kig 15 mip 1.3 Fg -525 F3y -600
ko 13 mis 1.54 B 600 Uk 0.6
k21 12 miq 1.8 Fg 300 Mg 0.75
koo 15 mis 1.7 Iy 525 ® 1.7552
k23 12 mie 1.5 F10 900 8 9.81
k24 14 niy 1.9 F]] 300 B 0
k25 10 nig 1.6 F]2 -270
kog 14 mio 1.5 Fi3 300
k27 10 ny 1.5 F14 360
kzg 13 nmoy1 1.17 F15 300

Note that k; represents the spring that connects the
(i — 1)"* mass to the i"" mass; m; represents the mass of the
i subsystem; F; corresponds to the excitation force acting
on the i mass; ® represents the excitation frequency; and 3
is the proportionality ratio for the damping. All units are in
S.I.. The first and the second mass and also the second and
the third mass have intermittent contact and the correspond-
ing values of the intermittent contact pairs are given in the

following table.

Parameter | Value
ky 100
k3 50
01 0.2
(02 0.5
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