

pubs.acs.org/OrgLett Letter

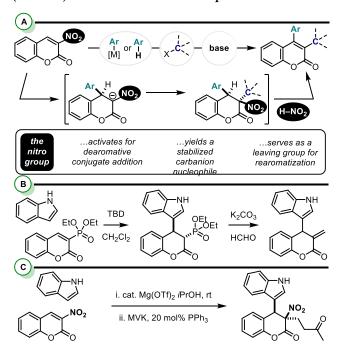
Three-Component cine, ipso-Disubstitution of Nitrocoumarins

Vincent Vedovato, Anghelo J. Gangano, Ion Ghiviriga, and Alexander J. Grenning*

Cite This: Org. Lett. 2024, 26, 647–652

ACCESS I

Metrics & More


Article Recommendations

Supporting Information

ABSTRACT: The development of a three-component *cine,ipso*-disubstitution of nitrocoumarins is reported. The reaction leverages the electrophilicity of nitrocoumarins, the nucleophilicity of nitronates, and the leaving group ability of nitrite (NO_2^-) to yield complex polyfunctionalized biaryls that often display stable axial chirality.

he three-component synthesis of complex (hetero)biaryls is controllably and rapidly critical considering the prominence of this pattern in pharmaceuticals. Examples related to this include the Catellani reaction, 1 iterative crosscoupling transformations,²⁻⁴ and aryne chemistry.⁵ We surmised that nitrocoumarins may serve as valuable starting materials for controlled, 3-component (hetero)aromatic difunctionalization. Specifically, the nitro group could be harnessed 3-fold (Scheme 1A): (1) as an activator for dearomative nucleophilic addition, 6,7 (2) as a carbanion for diastereoselective alkylation, $^{8-10}$ (3) and as a leaving group (e.g., p K_a of nitrous acid (HNO₂) = 3.4). These three fundamental steps are understood, but their utility in sequence is surprisingly understudied (Scheme 1A). 12,13 For example, the most similar examples to what we aimed to realize and draw attention to are summarized in Scheme 1B,C. Deredas and co-workers ¹² found that 3-diethoxyphosphorylcoumarins can react with indole under base mediated conditions. The phosphonate can then react to yield exocyclic methylene by Horner-Wadworth-Emmons (HWE) with formalin (Scheme 1B). Notably, the phosphonate serves critical roles in each individual step. Tang and co-workers¹³ found that Mg(OTf)₂ could catalyze the addition of indoles to 3-nitrocoumarin, the addition of catalytic triphenylphosphine and methyl vinyl ketone yielded the disubstituted dihydrocoumarin (Scheme 1C). Related three-component aromatic substitution reactions by Zhou¹⁴ and Maes^{15,16} also inspires and precedes our work. Additional chemistry of note includes vicarious 17,18 and cine¹⁹⁻²¹ nucleophilic aromatic substitution (including a photocatalytic variant²²) and nitroarene cycloaddition²³⁻²⁵ and cyclization²⁶ reactions. Herein we describe a strategy that harnesses the reactivity described in Scheme 1A and often results in axially chiral biaryls yielding products of high

Scheme 1. (A) *cine,ipso*-Disubstitution of Nitrocoumarins; (B and C) Select Related Three-Component Reactions

Received: November 27, 2023
Revised: January 4, 2024
Accepted: January 11, 2024
Published: January 12, 2024

Scheme 2. (A) Scope of Three-Component Biaryl Synthesis; (B) Re-examination of the Elimination Step

^a Et₃N <u>not needed</u> for conjugate addition. ^b Et₃N <u>needed</u> for conjugate addition. ^c yield over two steps; allylation product isolated and resubjected to reaction conditions ^d TMG added to faciliate elimination step ^e products labeled "(+/-)" have stable chirality and were prepared racemically. The remaining substrates may or may not have stable chirality.

functional, structural, and often chiral complexity. ^{27,28} Included in this study is an initial method, point-to-axial chirality transfer studies, ²⁹ and forays beyond the initial method.

To demonstrate the value of the cine,ipso-disubstitution of nitroarenes, we explored the reaction of nitrocoumarins 1 with nucleophilic indoles 2 and allylic electrophiles 3 promoted by a base additive. The isolated products 6, prepared via intermediates 4 and 5, are indole-coumarin biaryls with an alkene functional handle; valuable products considering the ubiquity of indoles³⁰ and coumarins³¹ in drug discovery. The Supporting Information contains optimization studies related to this three-component coupling. Scheme 2 describes the scope studies. First studied was indole substitution on the benzene ring (6a-6h). Electron withdrawing groups at the 5position of indole were well tolerated (6b-6d) including often sensitive aldehydes (6c) and boronic acids (6d). Product 6e bearing a 4-bromo group yielded the desired product but in modest yield. This was a steric problem associated with the conjugate addition step between nitrocoumarin 1a and indole 2e. Electron donating groups at the 5-position were also well tolerated (6f, 6g). Notably, a free phenol was incorporated into the biaryl scaffold (6g). We were also able to prepare product

6h bearing a basic nitrogen from 7-azaindole. N-Methylindole also was a competent coupling partner, yielding product 6i. Indoles bearing various 2-functional groups were competent coupling partners, generally speaking. For example, methyl (6j), phenyl (6k), ester (6l), amides (morpoline (6m), glycinate (6n), and allyl (6o) containing) and aldehyde (6p) functional groups were tolerated at the 2-position, though the 2-ester indole (21) was a noticeably poorer nucleophile. Also, all the 2-EWG-substituted indoles required the addition of Et₃N to promote the conjugate addition (e.g., $2l-2p \rightarrow 5l-$ 5p). With respect to the allyl acetate starting material, we were able to make products 6q-6s derived from cinnamyl acetate, and the acetates of 2-methylenepropane-1,3-diol and cisbutene-1,4-diol, respectively. The last examples in Scheme 2 show that substitution on the nitrocoumarin is also tolerated at many positions. We prepared products containing a bromofunctional handle at the 5-8-positions of coumarin (6t-6x)and examined electron-rich coumarins (6y). Notably, the 5substituted coumarins suffer from inefficient H-NO2 elimination chemistry (Scheme 2A,B). For this elimination to occur, the respective intermediates 5t and 5u were first isolated (88% and 74% yield, respectively), and then the elimination step was

reoptimized, resulting in 1,1,3,3-tetramethylguanidine (TMG) being identified as the superior base. Considering that the *N*-Me substrate **5u** reacted more efficiently, we suspected that the free indole *N*-H was hindering the elimination step. Indeed, it was found that **5t**, upon *in situ* protection and TMG-promoted elimination, yielded the N-Boc-protected analogue 7 in improved yield compared to **6t**.

The products 6 from the three-component coupling clearly display axial chirality (enantiotopic allylic signals in 1 H NMR). On this line, no signal coalescence was observed for 6a via VT-NMR up to 130 $^{\circ}$ C in DMSO- d_{6} and an enantioenriched sample of 6j was found to be conformationally stable. As such, we wished to examine the possibility of a point-to-axial chirality transfer in this type of system. Point-to-axial chirality transfer would be possible if the potential indole rotamers (5j-rotamers A and B, Scheme 3A) displayed significant energy

Scheme 3. Point-to-Axial Chirality Transfer Depends on the Energetics of Rotamerization and Elimination

differences or if the rates at which the rotamers undergo HNO_2 elimination are significantly different (or both). Interestingly, it was found that 5j (er = >99:1; enantiomers separated via chiral supercritical fluid chromatography (SFC)) undergoes an

elimination with 62–71% enantiospecificity (up to 85:15 er) (Scheme 3B). While imperfect, this result is a proof of concept for accessing unique axially chiral biaryls via *cine,ipso*-disubstitution. Understanding more deeply the impact of rotamer-biasing and the elimination step will be key.

The chemistry developed herein yields complex and functionalized indole-coumarin biaryls. Notably, indoles and coumarins are both common to drugs and drug discovery efforts, though biological/pharmaceutical studies on their biaryl conjugates are minimal. 32,33 It is possible that the bioactivity of indole-coumarins has remained understudied due to the lack of methods capable of constructing diverse and complex (structural, functional, and chiral complexity) analogues. As such, this work represents a direct and simple entry into novel and complex indole-coumarin biaryls. On this line, the indole-coumarin 8a bearing four distinct functional groups (indole N-H, aldehyde, alkene, and Csp2-Br functional groups) was prepared on the gram-scale (Scheme 4A). In unoptimized studies, using standard conditions from the literature, 8a was successfully derivatized via imine formation (8b), Sonogashira cross coupling (8c), ozonolysis (8d) (with NaBH₄ workup), cross metathesis (8e), and Suzuki cross coupling (8f). Thus, from commercial sources, products 8a-8f are prepared in two to three steps, showcasing that diverse, axially chiral indole-coumarins are readily accessible.

In terms of the methodology, indole, allyl-cine, ipso-disubstitution of nitrocoumarins is a proof-of-concept study: In principle, coupling partners can be exchanged, accessing an even greater diversity of chemical space. In this regard, we examined the coupling of a nucleophilic benzothiophene (Scheme 4B, eq 1) and an arylBF₃K salt (Scheme 4B, eq 2) as well as electrophilic SelectFluor (Scheme 4B, eq 3) and ethyl acrylate (Scheme 4B, eq 4) with nitrocoumarin. Somewhat surprising was that benzothiophene did not react similarly to indole. Neutral conditions (benzothiophene + nitrocoumarin) did not promote the dearomative conjugate addition reaction. However, 1 equiv of AlCl₃ promoted this step as a 2:1

Scheme 4. (A) Functional Group Reactions; (B) Other Coupling Partners for cine,ipso-Disubstitution of Nitrocoumarins

inseparable mixture of benzothiophene isomers 9a and iso-9a. Utilizing tandem Rh(I) and Pd(0) catalysis, it was found that the arylallylcoumarins could be prepared. The Rh(I) catalyst first promotes the addition of dearomative conjugate addition. Then Pd(0) and TMG promotes the allylation and eliminative aromatization to 10 in modest, unoptimized 18% yield. By swapping allyl acetate/Pd(0) for SelectFluor, we were able to prepare indole, fluoro-disubstituted coumarin 11 in 35% yield.³⁴ We were also able to perform an indole-alkylation of nitrocoumarin using PPh3 to promote both the Michael addition³⁵ and the eliminative rearomatization step. In this case, indole-coumarin biaryls 12 now contain a carboxylate functional group in place of the alkene from the standard protocol (Scheme 2). These results suggest that there are many ways to consider difunctionalizing nitrocoumarins via a cine,ipso-disubstitution approach.

One final methodological deviation that yielded interesting results was the cine,ipso-disubstitution of nitrocoumarins with phenolic nucleophiles (Scheme 5). It was observed that treating nitrocoumarins and phenols with AlCl₃ in CH₂Cl₂ followed by allyl acetate, Pd(PPh₃)₄, and Et₃N yielded unexpected isomeric products as the major products (iso-14) and the "originally anticipated" products 14 in minor amounts (Scheme 5A). The p-methoxylphenol nucleophile resulted in good yields of iso-14a (40% yield) and iso-14b (55% yield). The minor products, 14a and 14b, could not be isolated cleanly but were observed during analysis of crude materials. When p-chlorophenol was used as the nucleophile, a 27% yield of iso-14c was achieved along with isolable and characterizable minor product 14c. After careful experimentation and NMR analysis (including ¹H, ¹³C, gHMBC, and NOE analyses), it was determined that the products 14/iso-14 are arising via two distinct trans-lactonizations (Scheme 5B). The dearomative Michael addition yielded 13c and iso-13c. Data supports that 13c with trans-stereochemistry is stable, but the cisdiastereomer undergoes goes trans-lactonization to iso-13c via a tetrahedral intermediate [Int-A]. Pd-catalyzed allylation of 13c/iso-13c yields separable regioisomers allyl-13c and isoallyl-13c with a cis-relationship between the allyl and the phenolic group, likely due to a phenolic directing effect. When subjected to pyridine- d_5 , the aromative elimination reaction took place to yield iso-14c and 14c, respectively, via a translactonization to establish the necessary stereochemistry for E2 elimination. Finally, products 14 clearly display stable axial chirality as determined by ¹H NMR and chiral HPLC analyses.

We have developed a strategy for the three-component cine,ipso-disubstitution of nitrocoumarins with various nucleophiles and electrophiles. The primary focus in this work was on three-component coupling with indoles and allylic electrophiles, though other nucleophiles and electrophiles were also examined. Further, point-to-axial chirality transfer can be accomplished, though additional design of substrates will need to be considered to improve the stereospecificity. This work will open broad possibilities: (1) What other nitroarenes can participate in cine,ipso-disubstitution? (2) What other nitrocoumarin-disubstitution reactions can be developed (3) Can point-to-axial chirality be improved and understood for enantioselective synthesis? We plan to study these questions and anticipate that we and others may find this strategy useful for streamlining complex biaryl synthesis.

Scheme 5. (A) *cine,ipso*-Disubstitution with Concomitant *trans*-Lactonization; (B) Proposed Mechanism

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.3c03996.

Experimental procedures, characterization data, and ¹H NMR, ¹³C NMR, HRMS spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Alexander J. Grenning — Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States; orcid.org/0000-0002-8182-9464; Email: grenning@ufl.edu

Authors

Vincent Vedovato – Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States

Anghelo J. Gangano — Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States;
orcid.org/0000-0002-5577-5503

Ion Ghiviriga — Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States; orcid.org/0000-0001-5812-5170

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.3c03996

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the National Institute of General Medical Science (R35 GM137893-01) and the National Science Foundation (NSF CAREER 1844443). We thank the Mass Spectrometry Research and Education Center and their funding source: NIH S10 OD021758-01A1.

REFERENCES

- (1) Della Ca', N.; Fontana, M.; Motti, E.; Catellani, M. Pd/Norbornene: A Winning Combination for Selective Aromatic Functionalization via C-H Bond Activation. *Acc. Chem. Res.* **2016**, 49, 1389–1400.
- (2) Zhang, L.; Meng, T.; Fan, R.; Wu, J. General and Efficient Route for the Synthesis of 3,4-Disubstituted Coumarins via Pd-Catalyzed Site-Selective Cross-Coupling Reactions. *J. Org. Chem.* **2007**, 72, 7279–7286.
- (3) Dobrounig, P.; Trobe, M.; Breinbauer, R. Sequential and Iterative Pd-Catalyzed Cross-Coupling Reactions in Organic Synthesis. *Monatsh. Chem.* **2017**, *148*, 3–35.
- (4) Palani, V.; Perea, M. A.; Sarpong, R. Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups. *Chem. Rev.* **2022**, *122*, 10126–10169.
- (5) García-López, J.-A.; Greaney, M. F. Synthesis of Biaryls Using Aryne Intermediates. *Chem. Soc. Rev.* **2016**, *45*, 6766–6798.
- (6) Versleijen, J. P. G.; van Leusen, A. M.; Feringa, B. L. Copper(I) Phosphoramidite Catalyzed Asymmetric Conjugate Addition of Dialkylzinc Reagents of α,β -Unsaturated Nitroacetates; an Enantioselective Route to β -Aryl-Nitroalkanes. *Tetrahedron Lett.* **1999**, 40, 5803–5806.
- (7) Feofanov, M. N.; Anokhin, M. V.; Averin, A. D.; Beletskaya, I. P. The Friedel–Crafts Reaction of Indoles with Michael Acceptors Catalyzed by Magnesium and Calcium Salts. *Synthesis* **2017**, 49, 5045–5058
- (8) Kim, R. S.; Dinh-Nguyen, L. V.; Shimkin, K. W.; Watson, D. A. Copper-Catalyzed Propargylation of Nitroalkanes. *Org. Lett.* **2020**, 22, 8106–8110.
- (9) Jung, W.-O.; Mai, B. K.; Spinello, B. J.; Dubey, Z. J.; Kim, S. W.; Stivala, C. E.; Zbieg, J. R.; Liu, P.; Krische, M. J. Enantioselective

- Iridium-Catalyzed Allylation of Nitroalkanes: Entry to β-Stereogenic. α-Quaternary Primary Amines. J. Am. Chem. Soc. **2021**, 143, 9343–9349.
- (10) Gietter-Burch, A. A. S.; Devannah, V.; Watson, D. A. Trifluoromethylation of Secondary Nitroalkanes. *Org. Lett.* **2017**, 19, 2957–2960.
- (11) Liu, P.; Bao, X.; Naubron, J.-V.; Chentouf, S.; Humbel, S.; Vanthuyne, N.; Jean, M.; Giordano, L.; Rodriguez, J.; Bonne, D. Simultaneous Control of Central and Helical Chiralities: Expedient Helicoselective Synthesis of Dioxa[6]Helicenes. *J. Am. Chem. Soc.* **2020**, *142*, 16199–16204.
- (12) Deredas, D.; Krawczyk, H.; Huben, K. An Efficient Synthesis of 3-Diethoxyphosphoryl-4-(1H-Indol-3-YI)-3,4-Dihydrocoumarins: A Convenient Approach to 3-Methylene-4-(Indol-3-YI)-3,4-Dihydrocoumarins. *Arkivoc* **2019**, *2018*, 120–133.
- (13) Ye, M.-C.; Yang, Y.-Y.; Tang, Y.; Sun, X.-L.; Ma, Z.; Qin, W.-M. Diastereoselective Tandem Michael Additions of Indoles to 3-Nitrocoumarin Derivatives and Methyl Vinyl Ketone. *Synlett* **2006**, 2006, 1240–1244.
- (14) Guo, R.-N.; Cai, X.-F.; Shi, L.; Chen, Z.-P.; Zhou, Y.-G. Synthesis of Fluorinated Heteroaromatics through Formal Substitution of a Nitro Group by Fluorine under Transition-Metal-Free Conditions. *Chem.—Eur. J.* **2014**, *20*, 8343–8346.
- (15) Mampuys, P.; Moseev, T. D.; Varaksin, M. V.; De Houwer, J.; Vande Velde, C. M. L.; Chupakhin, O. N.; Charushin, V. N.; Maes, B. U. W. Synthesis of Functionalized Pyrazin-2(1H)-Ones via Tele-Nucleophilic Substitution of Hydrogen Involving Grignard Reactants and Electrophiles. *Org. Lett.* **2019**, *21*, 2699–2703.
- (16) Verhelst, T.; Verbeeck, S.; Ryabtsova, O.; Depraetere, S.; Maes, B. U. W. Synthesis of Functionalized Pyridazin-3(2H)-Ones via Nucleophilic Substitution of Hydrogen (SNH). *Org. Lett.* **2011**, *13*, 272–275.
- (17) Antoniak, D.; Barbasiewicz, M. Alkylation of Nitropyridines via Vicarious Nucleophilic Substitution. *Org. Lett.* **2022**, *24*, 516–519.
- (18) Khutorianskyi, V. V.; Klepetářová, B.; Beier, P. Vicarious Nucleophilic Chloromethylation of Nitroaromatics. *Org. Lett.* **2019**, 21, 5443–5446.
- (19) Suwiński, J. W. Cine- and Tele-Substitution Reactions: Review of Work from 2002–2016. *Arkivoc* **2017**, 2017, 402–435.
- (20) Yuan, W.-C.; Zhou, X.-J.; Zhao, J.-Q.; Chen, Y.-Z.; You, Y.; Wang, Z.-H. Catalytic Enantioselective Dearomatization/ Rearomatization of 2-Nitroindoles to Access 3-Indolyl-3'-Aryl-/Alkyloxindoles: Application in the Formal Synthesis of Cyclotryptamine Alkaloids. Org. Lett. 2020, 22, 7088–7093.
- (21) Berger, F.; Alvarez, E. M.; Frank, N.; Bohdan, K.; Kondratiuk, M.; Torkowski, L.; Engl, P. S.; Barletta, J.; Ritter, T. Cine-Substitutions at Five-Membered Hetarenes Enabled by Sulfonium Salts. *Org. Lett.* **2020**, 22, 5671–5674.
- (22) Sun, B.; Wang, Y.; Wang, J.; Chen, M.; Zhong, Z.; Wang, J.; Jin, C. Photoredox-Catalyzed Redox-Neutral Decarboxylative C–H Acylations of Coumarins with α -Keto Acid. *Org. Lett.* **2023**, 25, 2466–2470.
- (23) Fujii, Y.; Nakao, R.; Sugihara, S.; Fujita, K.; Araki, Y.; Kudoh, T.; Hayakawa, I.; Mizoguchi, H.; Sakakura, A. Enantioselective Diels—Alder Reaction of 3-Nitrocoumarins Promoted by Chiral Organo-ammonium Salt Catalysts. *Synlett* **2020**, *31*, 2013—2017.
- (24) Rkein, B.; Bigot, A.; Birbaum, L.; Manneveau, M.; Paolis, M. D.; Legros, J.; Chataigner, I. Reactivity of 3-Nitroindoles with Electron-Rich Species. *Chem. Commun.* **2021**, *57*, 27–44.
- (25) Yuan, W.-C.; Chen, X.-M.; Zhao, J.-Q.; Zhang, Y.-P.; Wang, Z.-H.; You, Y. Ag-Catalyzed Asymmetric Interrupted Barton—Zard Reaction Enabling the Enantioselective Dearomatization of 2- and 3-Nitroindoles. *Org. Lett.* **2022**, *24*, 826–831.
- (26) B. Manjappa, K.; Lin, J.-M.; Yang, D.-Y. Construction of Pentacyclic Lamellarin Skeleton via Grob Reaction: Application to Total Synthesis of Lamellarins H and D. *J. Org. Chem.* **2017**, *82*, 7648–7656.

- (27) Toenjes, S. T.; Gustafson, J. L. Atropisomerism in Medicinal Chemistry: Challenges and Opportunities. *Future Med. Chem.* **2018**, 10, 409–422.
- (28) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. Assessing Atropisomer Axial Chirality in Drug Discovery and Development. *J. Med. Chem.* **2011**, *54*, 7005–7022.
- (29) Nguyen, T. T. Traceless Point-to-Axial Chirality Exchange in the Atropselective Synthesis of Biaryls/Heterobiaryls. *Org. Biomol. Chem.* **2019**, *17*, 6952–6963.
- (30) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. *J. Med. Chem.* **2014**, *57*, 10257–10274.
- (31) Scott, K. A.; Cox, P. B.; Njardarson, J. T. Phenols in Pharmaceuticals: Analysis of a Recurring Motif. *J. Med. Chem.* **2022**, 65, 7044–7072.
- (32) Guo, T.; Liu, Y.; Zhao, Y.-H.; Zhang, P.-K.; Han, S.-L.; Liu, H.-M. Palladium-Catalyzed Coupling Reactions of 4-Coumarinyl Triflates with Indoles Leading to 4-Indolyl Coumarins. *Tetrahedron Lett.* **2016**, *57*, 4629–4632.
- (33) Kamath, P. R.; Sunil, D.; Ajees, A. A.; Pai, K. S. R.; Das, S. Some New Indole—Coumarin Hybrids; Synthesis, Anticancer and Bcl-2 Docking Studies. *Bioorg. Chem.* **2015**, *63*, 101–109.
- (34) Kwiatkowski, J.; Lu, Y. Asymmetric Michael Addition of α-Fluoro-α-Nitro Esters to Nitroolefins: Towards Synthesis of α-Fluoro-α-Substituted Amino Acids. *Org. Biomol. Chem.* **2015**, *13*, 2350–2359.
- (35) Gimbert, C.; Lumbierres, M.; Marchi, C.; Moreno-Mañas, M.; Sebastián, R. M.; Vallribera, A. Michael Additions Catalyzed by Phosphines. An Overlooked Synthetic Method. *Tetrahedron* **2005**, *61*, 8598–8605.