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Abstract. Fuzzy extractors derive stable keys from noisy sources non-
interactively (Dodis et al., SIAM Journal of Computing 2008). Since
their introduction, research has focused on two tasks: 1) showing se-
curity for as many distributions as possible and 2) providing stronger
security guarantees including allowing one to enroll the same value mul-
tiple times (reusability), security against an active attacker (robustness),
and preventing leakage about the enrolled value (privacy).

Existing constructions of reusable fuzzy extractors are direct and do not
support as many distributions as the best non-reusable constructions.
Constructions of robust fuzzy extractors require strong assumptions even
in the CRS model.

Given the need for progress on the basic fuzzy extractor primitive, it is
prudent to seek generic mechanisms to transform a fuzzy extractor into
one that is robust, private, and reusable so that it can inherit further
improvements.

This work asks if one can generically upgrade fuzzy extractors to achieve
robustness, privacy, and reusability. We show positive and negative re-
sults: we show upgrades for robustness and privacy, but we provide a
negative result on reuse.

1. We upgrade (private) fuzzy extractors to be robust under weaker
assumptions than previously known in the common reference string
model.

2. We show a generic upgrade for a private fuzzy extractor using multi-
bit compute and compare (MBCC) obfuscation (Wichs and Zirdelis,
FOCS 2017) that requires less entropy than prior work.

3. We show one cannot arbitrarily compose private fuzzy extractors. It

is known one cannot reuse an arbitrary fuzzy extractor; each enroll-
ment can leak a constant fraction of the input entropy.
We show that one cannot build a reusable private fuzzy extractor
by considering other enrollments as auxiliary input. In particular,
we show that assuming MBCC obfuscation and collision-resistant
hash functions, there does not exist a private fuzzy extractor se-
cure against unpredictable auxiliary inputs strengthening a negative
result of Brzuska et al. (Crypto 2014).
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1 Introduction

Fuzzy extractors [BBR88, DRS04, DORS0S, ST005, HAD06, DKRS06, FMR13,
CFP*16,FRS16,ACEK17,ABCT18,FP19,WLH18,WL18,DFR21,ACF*22,FRS20,
Ful23] derive stable keys from noisy sources. They are used on devices to derive
keys from biometrics, physical unclonable functions and quantum information.
They also are used in interactive protocols such as distributed key agreement
and password-authenticated key exchange. [BBCS91, DKRS06, BG11, EHKM11,
DKK™'12,BCP13,BDCG13,DCH*16, DHP*18]. A fuzzy extractor is a pair of
algorithms called generate (Gen) and reproduce (Rep) with two properties:

Correctness For all w,w’ € M such that dist(w,w’) < t, let (key,pub) «+
Gen(w) where pub is a public helper value used to provide correctness. Then
it should be the case that key <— Rep(w’, pub).

Security Let W be a probability distribution of noisy values. For (key, pub) <
Gen(W) it should be the case that key is indistinguishable from uniform even
knowing pub.

Security is defined relative to the statistics of the probability distribution. The
most common and useful of which is fuzzy min-entropy [FRS16,WCD 17, FRS20]
which measures the adversary’s success when provided with the functionality of
reproduce. For security to be possible, it must be the case that a negligible
fraction of the weight of W lies within any ball of radius ¢. Fuzzy min-entropy
measures the adversary’s success when providing the fixed “best” point w* to
the reproduce functionality. Even after 25 years of research, the design of fuzzy
extractors for distributions with fuzzy min-entropy is an unsettled problem with
advancements yet to be made.

There are constructions for distributions with high entropy, where bits are
independent, or display additional statistical properties (see [DFR21] for an
overview of considered properties). There are two known methods to build a
fuzzy extractor for all such distributions, using virtual grey box obfuscation
for NC1 evasive circuits [BCKP17]* or with a new subset-product assump-
tion [GZ19]. Both of these assumptions require additional study before deploy-
ment.

Fuzzy extractor security is also insufficient for many applications. There are
three primary augmentations to the definition that exist in the literature:

Reusability [Boy04] One can enroll the noisy source multiple times with dif-
ferent devices. Crucially, the multiple enrollments are subject to noise. In
prior work [Boy04, CFP116], this noise is controlled by an adversary.

Robustness [BDK05] If an attacker modifies pub to a related value pub’,
this behavior is detectable. That is, Rep(w’, pub’) should only output the
original key or L.

4 Virtual gray box obfuscation of all evasive programs implies virtual gray box obfusca-
tion for all programs [BBC™ 14]. Virtual gray box and virtual black box obfuscation
are equivalent in the distributional setting for evasive circuit families [BCKP17].



Scheme |Model Distribution Reuse|Robust |Private
[Boy04] RO* High entropy Shift v X
[DS05] Plain High entropy X X v
[CFPT16] Avg. Subsets Entropy|Correlation X X
[ACEK17] Independent Shift X X
[BCKP17]| Plain All X X v
[WLH18] | CRS High entropy Shift X X
[WL18] CRS High entropy Shift v X
[WLG19] | CRS High entropy Shift v X
(GZ19] All X X v
[DFR21] MIPURS|Correlation X X

Table 1. Previous constructions of fuzzy extractors that are reusable, robust, or pri-
vate. See Demarest, Fuller, and Russell [DFR21] for descriptions of distributional prop-
erties. “High entropy” is used when the construction relies on an information-theoretic
error correction component. Such constructions usually require the input source W to
have entropy of at least ha(t/n), see [CFP'16, Proposition 1]. For Boyen’s [Boy04]
work, the RO model is only required for insider security, when keys are seen from other
enrollments.

Privacy [DS05] Privacy ensures no information is leaked about the enrolled
value. More specifically, it ensures that no predicate of the enrollment value
can be guessed better after seeing pub.

Table 1 summarizes prior constructions of fuzzy extractors with at least one
of these additional properties. No previous construction that is reusable or robust
supports all distributions with fuzzy min-entropy. The prior gray-box obfusca-
tion [BCKP17] and subset product constructions [GZ19] are obfuscations of the
fuzzy extractor functionality; they are by definition private. Given the unsettled
nature of constructing fuzzy extractors for distributions with fuzzy min-entropy,
it is prudent to seek generic mechanisms to transform a fuzzy extractor into a
reusable, robust, and private one.

1.1 Owur Contribution

We present three contributions, 1) an upgrade for privacy 2) an upgrade for
robustness that preserves privacy, and 3) a negative result for reusability.

Privacy We show how to construct a private fuzzy extractor from either a secure
sketch or a non-private fuzzy extractor. Our contribution is a strengthening of the
previous upgrade from a secure sketch to a private secure sketch using multi-
bit compute and compare obfuscation (MBCC) [WZ17]. We support a wider
family of distributions with lower entropy than prior work [WZ17]. We first
introduce Wichs and Zirdelis’ [WZ17] construction and then the advantages of
our construction.

Both our work and prior work is based on the the notion of a secure sketch.
A secure sketch recovers the original value w rather than deriving a random key.
It is a pair of algorithms (Sketch, Rec) such that



Correctness For all w,w’ € M such that dist(w, w’) < t, then Rec(w’, Sketch(w)) =
w.

Security Let W be a probability distribution of noisy values. Given Sketch(W),
W has high min-entropy. (One can also use computational notions of security
using pseudoentropy or unpredictability [FMR20].)

Wichs and Zirdelis use MBCC program obfuscation at the core of their
scheme. MBCC program has three values f,y,z. On input x it computes f(z),
if f(x) =y then it outputs z otherwise it outputs L. In their prior construction
they showed how to obfuscate a family of such programs where y has pseudoen-
tropy [HILL99] conditioned on f and z. They show how to upgrade a secure
sketch into a private one by obfuscating h(Rec(:, ss)) where h is a pairwise in-
dependent hash function. They have to choose the output length of the hash
function based on the entropy of the input, which keeps the construction from
working for all distributions with sufficient entropy for the MBCC obfuscation
to be secure.

In our work, we use a secure sketch to construct a private fuzzy extractor to
directly analyze the construction without h, making the same construction work
for any distribution where the secure sketch retains (a super-logarithmic amount
of) min-entropy. By removing the hash function, we also reduce the amount of
entropy required as one doesn’t “leak” the hash value in the security analysis.
We also show a similar upgrade from fuzzy extractors to private fuzzy extractors.
There are stronger negative results on constructing secure sketches [DORSO0S,
FRS16, Ful23], so direct constructions from fuzzy extractors may yield better
parameters.

The privacy definition of Wichs and Zirdelis [WZ17] considers predicting
predicates of the source w in contrast to Dodis and Smith [DS05] who consider
functions. We call this weak-privacy to distinguish from Dodis and Smith’s def-
inition. Restriction to predicates is standard in the obfuscation literature as an
obfuscation itself is a function that a simulator cannot hope to reproduce.

Robustness We provide a simpler construction of robust fuzzy extractors than
prior work. Our result only requires the existence of true simulation extractable
NIZKs [DHLAW10]. Prior work of Feng and Tang [FT21] also required the ex-
istence of extremely lossy functions or ELFs [Zhal9].> Additionally, our result
shows that this transform preserves privacy, which was not considered by any
prior robustness upgrade.

Reuse One cannot expect reuse of arbitrary fuzzy extractors. Each value of pub
can leak a constant fraction of the entropy in the source w while remaining
secure. However, a (weakly) private fuzzy extractor cannot “leak” on input w.
There are multiple private fuzzy extractors (see Table 1) that are not known to
be reusable. The most natural approach for a reusable private fuzzy extractor

® Feng and Tang’s primary goal was to construct robust extractors, not robust fuzzy
extractors. Unlike Feng and Tang we work in the standard CRS model, they allow
the source W to depend on the CRS.



Upgrade |Scheme |ModellAny FE Tools|Err.
Reusability[[ABCT 18] | Plain v composable DL [BC10]| t
[BDKT05]] RO X RO| ¢
[CDF*08]| CRS X IT| 2t
[DKK*12]| Plain X Tt
Robustness| FT21 | CRS® v ELFS [Zhal9] +| 2t
true sim. extract NIZK [DHLAW10]
[ACF*22] | Plain X|comp.” DL [BLMZ19, Assumption 3]+| 2t
true sim. extract NIZK [DHLAW10]
This work| CRS v'| true sim. extract NIZK [DHLAW10]| 2t
private  |WZ17] | Plain v LWE + ELFS [Zhal9]| ¢t
This work| Plain v LWE + ELFS [Zhal9]| ¢t

Table 2. Previous upgrades of fuzzy extractors. If there is an X in the Any FE. column
the construction requires the use of the syndrome secure sketch. As mentioned in
Table 1 this places a lower bound on entropy of the distribution W. CRS* is the CRS
model where the distribution W being enrolled can depend on the CRS. Err. column
describes how many errors the underlying primitive is required to correct. Multiple
robust constructions require a secure sketch or fuzzy extractor that corrects 2t errors
to be able to extract a value from the adversary.

is to construct a fuzzy extractor for all sources W that are unpredictable in
the presence of auxiliary input available to the adversary. The security analysis
would follow by including other enrollments of the same source in the auxiliary
input.

We show this proof technique is not possible. Namely, we show that the
existence of MBCC obfuscation and collision-resistant hash functions imply
that one cannot construct private fuzzy extractors for all W that are unpre-
dictable conditioned on auxiliary input. We do this by showing that auxiliary-
input secure digital lockers cannot be secure in the presence of MBCC obfus-
cation. We then show that a variant of private fuzzy extractors imply digital
lockers. Brzuska et al. [BFM14] proved an analogous result where auxiliary-
input secure digital lockers were incompatible with indistinguishability obfus-
cation [GGH*13b, GGH13a].¢ Since MBCC obfuscation implies auxiliary-input
secure digital lockers, this shows MBCC obfuscation cannot be safely composed
either.

1.2 Related Work

Reusability Alamelou et al. [ABC™ 18] show how to create reuse for the Hamming
and set difference metrics when the source has symbols that are super polyno-
mial size. However, most natural sources consider small, often binary, alphabets.

5 Their actual result showed the impossibility of auxiliary input universal computa-
tional extractors. This object implies auxiliary-input secure digital lockers



Alamelou et al.’s technique cannot work in this setting.” We note this technique
is applied before the source is input to the fuzzy extractor.

Robustness In the random oracle model, for a fuzzy extractor with output
key, pub and random oracle h one can split key = (key;,key,) and include
h(keys||pub) as part of pub. As needed the random oracle can expand the amount
of available keying material.® Without resorting to random oracles, one can
use algebraic manipulation detection codes [CDF108] and pairwise independent
hashes as one-time MACs. In the CRS model, Feng and Tang [FT21] codify the
security required from the MAC, and show how to generically lift a secure sketch
into a robust fuzzy extractor using a primitive they call a k-MAC that is secure
for low-entropy keys that can be manipulated by an adversary. This upgrade
is agnostic in the underlying secure sketch. Apon et al. [ACFT22] propose a
standard model upgrade that requires the syndrome secure sketch.

Privacy For privacy, if one has a secure sketch that retains superlogarithmic
entropy, one can upgrade it to a private secure sketch using multi-bit compute
and compare (MBCC) obfuscation [WZ17]. Roughly, MBCC allows one to com-
pute a function on some input and compare the result with a target value. If
the output of the function matches the target, the MBCC circuit returns a fixed
value.

1.3 Discussion and Future Work

The privacy upgrade is this work is not yet of practical efficiency. MBCC obfus-
cation has nearly as much overhead as indistinguishability obfuscation. A natural
question is whether an upgrade that preserves privacy must use a type of obfus-
cation and if so, can one use a obfuscation of a weaker class of obfuscation?

Our negative result for reuse does leave open the possibility of upgrading
fuzzy extractors to be reusable. It does not rule out techniques that transform
w to a new metric space [ABCT18]. Furthermore, one may able to use a more
fine grained argument for reuse. As a reminder, our negative result only rules
out private fuzzy extractors secure in the presence of unpredictable auxiliary
input. One may be able to sidestep the result by only showing security when the
auxiliary input is a fuzzy extractor enrollment. We tried to extend our negative
result to this setting but were not successful.

7 Alamelou et al. use a pseudoentropic isometry that maps points to a new metric
space while 1) preserving distance and 2) the value in the new metric space doesn’t
reveal the value on the original metric space. For the Hamming metric, the only such
transforms are equivalent to a per-symbol permutation and a permutation of symbol
order. Such a transform can only be one-way if symbols are super-polynomial size.
No pseudoentropic isometric exists for the Hamming metric with polynomial size
symbols.

® Boyen [BDK™05] considers a secure sketch, the same idea works for a fuzzy extractor.



Organization The rest of this work is organized as follows: Section 2 covers
mathematical preliminaries, Section 3 shows our privacy upgrade, Section 4 cov-
ers robustness, and Section 5 covers reuse. Appendix A shows that weak-privacy
does not imply fuzzy extractor security and Appendix B shows that a compos-
able MBCC obfuscation would yield a reusable upgrade (but is ruled out by our
negative result).

2 Preliminaries

Let A be the security parameter throughout this paper. A function ngl()) is
negligible in A if for all @ € Z* we have ngl(A) = o(5%). A function poly(}) is
polynomial in \ if there exists some constant a € Z* such that poly(\) = O(\?).
We use poly(A) and ngl(\) to denote unspecified functions that are polynomial
and negligible in A, respectively. The notation id is used to denote the identity
function: Vz,id(z) = z. For some n € N, [n] denotes the set {1,---,n}. Let

z & S denote sampling x uniformly at random from the finite set S. We say
that distributions X and Y are computationally indistinguishable if for all PPT
(in A) adversaries A, |PrlA(X) = 1] — Pr[A(Y) = 1]| < ngl(A).

2.1 Entropy definitions

Definition 1 (Min-entropy). For a discrete random variable X, the min-
entropy of X is

Hoo(X) = —log (msxPr[X = x])

Definition 2 (Average conditional min-entropy [DORSO08]). For a pair
of discrete random variables X,Y, the average min-entropy of X|Y is

Hoo(X | Y) = —log (Expyey (Q*Hm(x‘y)>) .

Definition 3 (Conditional HILL entropy [HILL99, HLRO7]). Let X,Y
be ensembles of jointly distributed random wvariables. The conditional pseudo-
entropy of X conditioned on'Y', denoted as Hy (X | Y), is greater or equal to
L(N) if there exists some ensemble X' such that (X,Y) and (X',Y) are compu-
tationally indistinguishable and Hoo (X' | Y) > £(N).

2.2 Obfuscation definitions

Definition 4 (Distributional Virtual Black Box (dist-VBB) obfusca-
tion). Let P be a family of programs and Obf be a PPT algorithm that takes
as input a program P € P, a security parameter X € N and outputs a pro-
gram P < Obf(1*, P). Let D be a class of distribution ensembles D = {Dy}ren
which samples (P,aux) < Dy with P € P. Then Obf is an obfuscator for the
distribution class D over the program family P if it satisfies the following:



— Functionality preserving: For all P € P and for all inputs x € {0,1}",
we have

Pr{[P(2) = P(2)] > 1 - ngl(A)
— Polynomial slowdown: For all sufficiently large A € N and for all P € Py,

| P| < poly(|P])

— Distributional Virtual Black-Box: For every PPT adversary A there
exists a non-uniform polynomial size simulator Sim, such that for every dis-
tribution ensemble D = {Dy} € D, and every predicate ¢ : P — {0,1}, we
have

Pr  [A(Obf(1*, P),aux) = ¢(P)]

(P,aux)<—Dx

—  Pr[Sim"(1* 1P aux) = ¢(P)]| < ngl(\)

(P,aux)<+—Dy

where Sim® has black-box access to the program P.

Wichs and Zirdelis [WZ17] build a dist-VBB obfuscator for a-pseudo entropy
distributions (see Definition 6) over multi-bit-compute-and-compare circuits.”

Definition 5 (Multi-bit compute-and-compare circuit). Let n,l,x € N
and consider a function f : {0,1}" — {0,1}*, a target value y € {0,1}* and
some value z € {0,1}*. A multi-bit compute-and-compare circuit is defined for
all inputs = € {0,1}" as

z if f(z)=y

1 otherwise.

MBCCﬁy,Z(CU) = {

Wichs and Zirdelis [WZ17] also define a-pseudo entropy, a specific case of
HILL entropy:

Definition 6 (a-pseudo entropy). For function «(\), the class of a-pseudo-

entropy distributions consists of ensembles D = { Dy} such that (MBCC[f, vy, 2], aux) +

Dy, satisfies HuL(y | f, z,aux) > a(A).

2.3 Fuzzy extractors

Fuzzy extractors allow to generate stable cryptographic keys from noisy sources.
We focus on computational fuzzy extractors.

Definition 7 (Computational Fuzzy Extractor [FMR13, FMR20]). An
(MW, L, L, €)-fuzzy extractor with error 0 is a pair of PPT algorithms (Gen, Rep)
where for all w,w' € M,

9 In an independent and concurrent work, Goyal et al. [GKW17] proposed a similar
object they called lockable obfuscation.



— (key, pub) + Gen(w), where key € {0,1}* and pub € {0, 1}*
— key’ < Rep(pub,w’)

the following properties are true:

1. Correctness : For all w,w’ € M such that dist(w,w’) <,
Pr [key’ = key | (key, pub) < Gen(w), key’ <~ Rep(pub,w’)] > 1§
2. Security : For any PPT distinguisher A and distribution W € W,
|Pr[A(key, pub) = 1] — Pr[A(Uy, pub) = 1]| < ¢

where (key, pub) < Gen(W) and Uy is a uniformly distributed random vari-
able over {0,1}*.

3 Weakly-private fuzzy extractors

Fuzzy extractor security does not prevent leaking information about the value w,
called a template. For example, consider a fuzzy extractor where the public value
leaks a random bit of the template. This can be problematic, especially if the
biometric source is used in different contexts. Preventing such leakage, although
not mandatory to achieve fuzzy extractor security, is thus desirable. Construc-
tions that prevent such leakage are said to be private [DS05]. We adapt Wichs
and Zirdelis [WZ17] privacy definition for secure sketches to fuzzy extractors, we
call this weak privacy. This definition differs from Dodis and Smith’s [DS05] in
that the adversary is restricted to predicting predicates about the value W (in
place of general functions). We start by introducing the definition of a weakly
private fuzzy extractor.

Definition 8 (Weakly Private Fuzzy Extractor). Let FE = (Gen, Rep) sat-
isfy the correctness condition of Definition 7 for parameters t and 6. We say
that FE is n-weakly-private if for all adversary A, there exists a simulator Sim
such that for every source W over W and every predicate ¢ : {0,1}* — {0,1},
we have

Pr[A(pub, key) = ¢(W) | (key, pub) + FE.Gen(W)]

— Pr[Sim(1*, 1lPubl 1lkeyly — g ()] | <7
Fuzzy extractors were originally built following a sketch-then-extract ap-
proach. First, a secure sketch [DRS04] is used to recover the enrolled w from
a close value w’, then a randomness extractor is used to derive the secret key.
We add the definition for secure sketches:

Definition 9 (Secure sketch). Let A be a security parameter. Let W = W,
be a family of random variables over the metric space (M, dist) = (M, disty).
Then (Sketch, Rec) is a (M, W, £, t,§)-secure sketch if the following hold:



— Correctness: For all w,w' € M such that dist(w,w’) < t,
Pr[Rec(w’, Sketch(w)) = w] > 1 — 4.
— Security: For all distributions W € W it is true that

H (W | Sketch(W)) > ¢.

We propose two weakly private fuzzy extractors constructions using dist-
VBB obfuscation for multi-bit-compute-and-compare (MBCC) circuits. The first
construction builds on a non-private fuzzy extractor whereas the second builds
on a non-private secure sketch.

Intuitively, we can build weakly private fuzzy extractors as follows: we first
build an MBCC circuit for function f, , ; that outputs target value y on input w’
only when dist(w, w’) < t and we set the output value z to be sampled uniformly
at random. We then set pub to be the obfuscated MBCC program and key to be
z. Note that in this case, since z is sampled independently from all other values,
the entropy requirement for the MBCC circuit to be obfuscable can be simplified
to

Huw(y | f,aux) > a.

3.1 Weakly private FE from FE and MBCC obfuscation

Our first construction builds weakly-private fuzzy extractors from non-private
fuzzy extractors and MBCC obfuscation.

Construction 1 (Weakly Private FE from MBCC obfuscation and FE)
Let FE be an (M, W, £, t,s,€)-fuzzy extractor and Obf be an obfuscator for (-
pseudo-entropy distributions over multi-bit compute-and-compare circuits. We
can build an (MW, k,t, s, €)-fuzzy extractor PFE as follows:

— (key’, pub’) < PFE.Gen(w):

Compute (key, pub) < FE.Gen(w).

Sample key' & {0,1}"%.

Define the circuit foun(-) := FE.Rep(-, pub).

Compute pub’ + Obf(lA7 MBCCfPub,ke%key/).

Output (key', pub’).

— key’ < PFE.Rep(pub’,w’): Interpret pub’ as an obfuscated program and re-
turn key' < pub’(w’).

SABRSNCEE T

Theorem 1. Construction 1 is a secure and weakly-private (M, W, K, t,s,¢€)-
fuzzy extractor.

Proof (Theorem 1).

10



Correctness: Recall that pub’ is an obfuscated MBCC circuit such that
pub’(w’) = Obf (11, MBCCy, , keykey) (W)
= MBCCfpubvkeY7key/ (w,)
B {key’ if foun(w') = key

1 otherwise.

) key" if FE.Rep(w’,pub) = key
L otherwise.

Then since FE is a fuzzy extractor, it is true that

Pr [PFE.Rep(pub’, w’) = key’ | (pub’, key’) <— PFE.Gen(w) and dist(w, w') < ¢]
= Pr [FE.Rep(pub, w’) = key | (pub, key) <+ FE.Gen(w) and dist(w,w") < ]
>1-946

and PFE is thus correct.

Security: We proceed by contradiction. Suppose PFE is not a secure fuzzy ex-
tractor, then there exists some PPT adversary A and polynomial p(A) such that

|Pr[A(key’, pub’) = 1] — Pr[A(U,, pub’) = 1]| > 1/p(})

where (key’, pub’) <= PFE.Gen(W) and U, & {0,1}*. Now note that pub’ =
Obf(1*,MBCCy, , key.key) is distributional VBB secure. Define r(A) = 3p(A) and
let Sim be the simulator of A for polynomial 7(\). Then we have

‘Pr[A(pub’, key) = 1] — Pr[Simp“b,(l’\, 11Pub’l ey) = 1]‘ < ﬁ (1)

g

Note that the above is also true if key is replaced by U, a uniform random
variable over {0,1}*. In other words, we have

‘Pr[A(pub’,UH) = 1] — Pr[SimP*® (1}, 1Pl 17,) = 1]‘ < %(A)' (2)

We adapt Canetti et al.’s lemma [CFP*16, Lemma 2]:

Lemma 1. Let U, denote the uniform distribution over {0,1}*, then

Pr[SimMBCCIRepus kevkey'] (12 | MBCC[Rep,,p, key, key']

Jkey') =1]

— Pr[SimMBCCReprus kevskey] (12 |MBCC[Rep,yy, key, key']| , Us) = 1]'
1

=30

11



Proof (Lemma 1). Fix any u € {0,1}"*, the lemma will follow by averaging over
all u. The information about whether the key value, denoted V', is key or u can
only be obtained by Sim through the query responses. First, we modify Sim to
quit immediately when it gets a response not equal to L. Such Sim is equally
successful at distinguishing between key and wu since the first non-_1 response
tells Sim if its input is equal to key. Subsequent responses add nothing to this
knowledge. Since Sim can make at most ¢ queries, there are g+ 1 possible values
for the view of Sim on a given input. Of those, ¢ views consist of some number
of non-_1 responses followed by a L response, and one view consists of all ¢
responses equal to L. Then by [DRS04, Lemma 2.2b],

Hoo (V|View(Sim),aux) > Hoo (V) — log(q + 1)
> a —log(q+1).
where aux = (JMBCC[Rep,,, key, key']|).
Thus, at each query, the probability that Sim gets a non-1 response and
guesses V is at most (¢ 4+ 1)/2%. Since there are g queries of Sim, the overall

probability is at most ¢(g + 1)/2%. Then since 2% is negligible in A, there exists
some Ag such that for all A > Ao, ¢(q +1)/2% < 1/(3p(N)).

We know continue the proof of Theorem 1, from Lemma 1, we have

’ ’ / / ]_
Pr[SimP® (11, 1Pl key’) = 1] — Pr[SimP** (12, 1P ) = 1]| < ——
[ Pr(sim™( ) = 1] = Pr{Sim™®'( )= 1< 305
Using the triangle inequality on Equations 1, 2 and 3 we obtain
1
| Pr[A(pub’, key/) =1] - Pr[A(pub'7 Us) = 1] | < W
p

which is a contradiction and ends the proof of security.

Weak privacy: Let FE be an (M, W, £, t, €)-computational fuzzy extractor. Con-
sider random variables W, aux, and Uy, the uniform distribution over ¢ bit strings,
and (key, pub) < FE.Gen(W). Then by definition, for any PPT adversary A, we
have

|Pr[A(key, pub) = 1] — Pr[A(U;, pub) = 1]| < ¢

which implies
HH||_|_(key | pub) = /.

Since key’ is sampled independently from key,
Huiii (key | (FE.Rep(-, pub), key’, aux)) = Hyiii (key | (FE.Rep(:, pub), aux))
= HuiL (key | pub)
>/

Let Obf be a distributional VBB secure obfuscator for ¢-pseudo-entropy distri-
butions. Then
pUb/ = Obf(lAv MBCCFE.Rep(-,pub),key,key’)

12



can be simulated and for every A, there exists a simulator Sim such that for
every predicate ¢ we have:

Pr[A(publ, aux) = gb(pub/)] — PI‘[S]mMBCCFE-ReP('wPUb)‘key,kEy’ (1)" param, aux) = ¢(pub/)]
< ngl(A).

Note that if we set aux = key’ and since key’ is drawn randomly and indepen-
dently, it is true that

|Pr[A(pub’, key’) = ¢(pub’)] — Pr[Sim(1*, param, key') = ¢(pub’)]|
= |Pr[A(pub’, key’) = p(W)] — Pr[Sim(1*, param) = p(W)]|
< ngl(\)

which concludes the proof that PFE is a weakly private fuzzy extractor.

3.2 Weakly private FE from secure sketch and MBCC obfuscation

Our second construction builds weakly-private fuzzy extractors from non-private
secure sketches and MBCC obfuscation. Although this construction relies on a
secure sketch, like Wichs and Zirdelis’s private secure sketch scheme, we show
that the pairwise independent hash function they use isn’t necessary. This re-
duces the amount of entropy required and allows support of a wider family of
distributions. However, we build a fuzzy extractor not a secure sketch, some
constructions may rely on the functionality of a secure sketch.

Construction 2 (Weakly Private Fuzzy Extractor from SS and MBCC)
Let (Sketch, Rec) be an (M, W, {,t,0)-secure sketch and Obf be an obfuscator
for £-pseudo-entropy distributions over multi-bit compute-and-compare circuits.
Then we can build an (M, W, kK, t, s, €)-fuzzy extractor PFE as follows:

— (key, pub) < PFE.Gen(w):

Compute SS < Sketch(w).

Sample key & {0, 1}".

Define the circuit fss(-) := Rec(+,SS).

Compute pub < Obf(l)‘7 MBCCfs&w’key).

Output (key, pub).

— key < PFE.Rep(pub,w’): Interpret pub as an obfuscated program and return
key + pub(w’).

Gris o o=

Theorem 2. Construction 2 is a secure and weakly private (M, W, k,t,s,¢€)-
fuzzy extractor.

Proof (Theorem 2).

13



Correctness : Recall that pub’ is an obfuscated MBCC circuit such that

pub(w’) = Obf (1%, MBCC fsg 1 key ) (W)
= MBCCfssﬂU,key(w/)

_ {key if fss(w') =w

1 otherwise.

_ Jkey if Rec(w’,SS)=w
)L otherwise.

Then since (Sketch, Rec) is a secure sketch, it is true that

Pr [PFE.Rep(pub,w’) = key | (pub, key) <= PFE.Gen(w) and dist(w,w") < ]
= Pr[Rec(w’,SS) = w | SS + Sketch(w) and dist(w,w’) < ]
>1-4

and PFE is thus correct.
Security: This proof is the same as the security proof of Theorem 1.

Weak privacy: Let (Sketch,Rec) be an (M, W, ¢ t,§)-secure sketch. Then for
random variables W, aux, and SS <— Sketch(W') we have

Hy (W | SS) > ¢
Since key is sampled independently from all other values,
HH||_|_ (w | Rec(~,SS), key,aux)) = HH||_|_ (w | Rec(~,SS))
= Hu (w | SS) > ¢

Let Obf be a distributional VBB secure obfuscator for ¢-pseudo-entropy distri-
butions. Then
pub’ = Obf (1%, MBCCRec(.,55),u key)

can be simulated and for every A, there exists a simulator Sim such that for
every predicate ¢ we have:

‘Pr[.A(pub, aux) = ¢(pub)] — Pr[SimMBCCrec(- 59 wker (12 param, aux) = qS(pub)]‘ < ngl(}N)

Note that if we set aux = key and since key is drawn randomly and independently,
it is true that

‘Pr[A(pub, key) = ¢(pub)] — Pr[Sim(1*, param, key) = (Z)(pub)])

Pr[A(pub, key') = ¢(W)] — Pr[Sim(1*, param) = (;S(W)]’ < ngl(A\)

which concludes the proof that PFE is a weakly private fuzzy extractor.
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4 Robustness

We first define robustness of a fuzzy extractor.

Definition 10 (Robust Fuzzy extractor). Let FE be an (M, W, { t,s,€)-
fuzzy extractor with error & as defined above. FE is a robust fuzzy extractor if for
all W,W' € W, such that

Pr [dist(w,w') <t] =1,
(w,w”)«—(W,W")
and for all adversaries A, the advantage of A in the following experiment is at
most ngl(\):

1. Sample (w,w') + (W, W’).
2. Compute (key, pub) <— FE.Gen(w) and send it to A.
3. A outputs pub’ and wins if pub’ # pub and FE.Rep(pub’,w’) & { L, key}.

We propose a generic technique to upgrade a fuzzy extractor and achieve ro-
bustness. This method relies on non-interactive zero-knowledge (NIZK) [DHLAW10].
We also show that this technique preserves privacy of the underlying fuzzy ex-
tractor. This yields a robust, weakly-private fuzzy extractor construction in the
common reference string (CRS) model.

Definition 11 (True simulation extractable NIZK). Let R be an NP rela-
tion on pairs (xz,w) with corresponding language Lr = {x : Jw such that (x,w) €
R}. A true-simulation extractable non-interactive zero-knowledge (NIZK) argu-
ment for a relation R consists of three algorithms

(Setup, Prove, Verify) with the following syntaz:

— (crs, TK,EK) < Setup(1}): creates a common reference string crs, a trap-
door TK, and an extraction key EK.

— 7 < Prove(crs,z,w): creates an argument 7 that R(x,w) = 1.

— 0/1 < Verify(crs, x, m): verifies whether or not the argument m is correct.

For presentation simplicity, we omit crs in the Prove and Verify. We require
that the following three properties hold:

— Completeness. For any (v,w) € R, if (crs, TK,EK) « Setup(1*), 7 <«
Prove(z,w), then Verify(z, ) = 1.

— Soundness. For any PPT adversary A, the following probability is negligi-
ble: for (crs, TK,EK) « Setup(1?), (z*,7*) + A(crs) such that z* ¢ Lp
but Verify(z*, 7*) = 1.

— Composable Zero-knowledge. There exists a PPT simulator Sim such
that for any PPT A, the advantage (the probability A wins minus one half)
is negligible in the following game.

o The challenger samples (crs, TK,EK) < Setup(1*) and sends (crs, TK)
to A
e A chooses (x,w) € R and sends to the challenger.
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e The challenger generates mo < Prove(x,w), w1 < Sim(z, TK), and then
samples a random bit b <— {0,1}. Then he sends m, to A.
o A outputs a guess bit V', and wins if b’ = b.

— Extractibility. Additionally, true simulation extractability requires that there
exists a PPT extractor Ext such that for any PPT adversary A, the proba-
bility A wins is negligible in the following game:

o The challenger picks (crs, TK,EK) < Setup(1*) and sends crs to A.

o A is allowed to make oracle queries to the simulation algorithm
Sim’((z,w), TK) adaptively. Sim’ first checks if (z,w) € R and returns
Sim(z, TK) if that is the case.

o A outputs a tuple x*, L*, 7*.
e The challenger runs the extractor w* <+ Ext(L*, (z*,7*), EK).
o A wins if 1) the pair (z*, L*) was not part of the simulator query, 2) the

proof ™ wverifies, and (3) R(x*,w*) = 0.

Construction 3 (Robust, weakly-private fuzzy extractor) LetFE be a weakly-
private fuzzy extractor and (Setup,Prove, Verify) be a NIZK system for lan-
guage £ = {pub | FE.Gen(w;r) = (pub,key)}. Here, the statement is pub =
FE.Gen(w;r) and the witness is the pair of values (w,r), where w is the original
reading and r the internal randomness of Gen.

— (key, pub™) < FE'.Gen(w):
1. Sample (crs, TK, EK) < Setup(1?).
2. Compute (key, pub) < FE.Gen(w;r).
3. Compute  + Prove(crs, pub,w,r) and set pub® = (pub, ).
4. Output (key, pub®).
— key’ < FE'.Rep(pub®,w’):
1. Run b < Verify(crs, pub,7) and output L if b =0.
2. Output key’ <+ FE.Rep(pub,w’).

Theorem 3. Let FE be an weakly-private, (M, W, £, 2t, s, €)-fuzzy extractor and
(Setup, Prove, Verify) be a NIZK system. Then FE' as described in Construction
3 is a weakly-private, robust, (M, W, £, t,s,€)-fuzzy extractor.

Note that in this theorem the underlying fuzzy extractor FE corrects 2t errors
while the resulting fuzzy extractor FE' corrects only t errors. This is important
for the corresponding proof to work. This requirement was present in some prior
robustness upgrades for fuzzy extractors, see Table 2.

Proof (Theorem 3).

Correctness: Correctness is straightforward from the correctness of the underly-
ing fuzzy extractor and the completeness of the NIZK system.

Security: Security is straightforward from the security of the underlying fuzzy
extractor and the zero-knowledge property of the NIZK system.
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Privacy: Privacy is straightforward from the privacy of the underlying fuzzy
extractor and the zero-knowledge property of the NIZK system. We provide a
short sketch below.

Let Sim denote a simulator for the underlying weakly private FE. Suppose
FE' is not weakly private, then there exists an adversary A’, such that for any
simulators Sim’(|pub|, |7, |key|), we have

‘Pr[A’(pub,w, key) = 1] — Pr[Sim’(|pub], ||, |key|) = 1]’ > ngl(}\)

We note that Sim’(|pub|, ||, |key|) = Sim(|pub], |key|) is one such valid simu-
lator.
Then we can build an adversary A for FE,

1. Receive inputs pub and key.

2. Run NIZK setup (TK, EK) ¢ Setup(1*).

3. Run the NIZK simulator 7 < Simnizk (pub, TK).
4. Run the FE" adversary b < A’(pub, 7, key).

5. Return b.

Then
|Pr[A(pub, key) = 1] — Pr[Sim(|pub], [key|) = 1]| > ngl(})

which is a contradiction of FE’s weak privacy.

Robustness: We proceed by contradiction. Suppose FE' is not a robust fuzzy
extractor, that is, for distributions W, W’ such that dist(W, W’) < t, there exists
a PPT adversary Afg such that

Verify(crs, pub’, 7’) = 1 (key, pub) + FE.Gen(w)
( )PI('WW ) A FE.Rep(pub’,w’) # {key, L}| < Prove(crs, pub, key,w)| > ngl(}).
w,w’)«—(W,W/’
A (pub’ # pub vV 7’ # )| (pub’, 7") < Apre(key, pub, )
We can then build a PPT distinguisher A for the fuzzy extractor security
game as follows:

1. Receive (pub,key,) from the challenger, where for w < W, (pub, key) «
FE.Gen(w;7) and for b € {0,1}, key; = key and key, = Up.

. Sample (crs, TK, EK) « Setup(1*) from the NIZK proof system.

. Run the NIZK simulator 7 < Sim(pub, TK).

. Send (key,, pub, 7) to Afg and receives back (pub’, 7).

. Run the NIZK extractor (w*,r*) < Ext(pub’, 7/, EK).

. Run key’ < FE.Rep(pub, w*).

. If key’ = key, return 1, otherwise return 0.

~N O O W N

Recall that a break in robustness requires (pub’, 7’) # (pub, 7) and 7’ to be
a valid proof. Suppose pub’ = pub, then dist(w,w*) < t and FE.Rep(pub,w*) =
key. So FE'.Rep(pub’||7’,w*) = key, which does not count as a break of the
robustness property.
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So it must be true that pub’ # pub. In this situation, Afg outputs the pair
(pub’, ") such that for some w’, with dist(w,w’) < t, FE'.Rep(pub’||7’,w’) =
key™ # key. Then the NIZK extractor outputs point w* such that FE.Gen(w*; r*) =
(key™, pub’||7"). So dist(w, w’) < t and dist(w*, w’) < t, which means that dist(w, w*) <
2t. Finally, since FE corrects 2t errors, when b = 1, key’ = FE.Rep(pub, w*) =
key = key; and

[Pr[A(pub, key) = 1] — Pr[A(pub, Uy) = 1]| > ngl(X)

which concludes our proof.

5 Reuse

In this section, we show that one cannot hope to compose MBCC obfuscation
with an auxiliary input secure digital locker. We then show this implies a im-
possibility of a variant of private fuzzy extractors that can be constructed from
MBCC obfuscation. This variant never outputs a value outside of the ball of the
enrolled value.

Definition 12. Let (Gen,Rep) be an (M, W, {,t,€)-fuzzy extractor with error
0 (Definition 7). The pair is perfectly correct if for all w,w' € M such that
dist(w,w’) > t:

Pr[L« Rep(pub,w’) | (key, pub) + Gen(w)] > 1 — ngl(\).

We assume that any randomness for Rep is included in the string pub so this
probability statement is only over the randomness of Gen.

We now define digital lockers, which have the same functionality as perfectly
correct fuzzy extractors for ¢ = 0. Digital lockers [CTKVW10] are also a specific
case of MBCC obfuscation where the function is the identity function, f(z) =
id(z) = .

Definition 13 (Digital Locker). An (W, n)-digital locker is a pair of PPT
algorithms (lock, unlock) where for all val € D* and key € {0,1}",

— unlock < lock(val, key)
— key’ + unlock(val’)

such that the following properties are true:

1. Completeness: For all val € D*, key € {0,1}" it holds that
Priunlock(-) = Ll key () | unlock < lock(val, key)] > 1 — ngl(X),

where the probability is over the randomness of lock. Here Ll key 5 a function
that returns key when provided input val, otherwise Iy, ey Teturns L.
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2. Virtual Black Box Security: For all PPT A and p = poly()\), 3Sim and
q(A) = poly(A\) such that for all large enough A € N, Vval € Dy, key €
{0,1}™",P: D, x {0,1}" — {0,1},

1

p(\)’

where Sim is allowed q(\) oracle queries to I key and the probabilities are
over the internal randomness of A and lock, and of Sim, respectively.

Pr[A(lock(val, key)) = P(val, key)] — Pr[Sim™< (1*) = P(val, key)]| <

Construction One can construct a perfectly correct private fuzzy extractor by
applying Construction 2 on a well-formed secure sketch [BDK'05, Definition 4].
A well-formed secure sketch on input w’ never outputs a value with distance > ¢
from w’. One can always construct a well-formed secure sketch with no loss in
parameters by adding a distance check before output.

Since the circuit being obfuscated in Construction 2 only has an output when
the output of the secure sketch is equal to w, these two modifications suffice to
form a (private) perfectly correct fuzzy extractor.

Proposition 1. Perfectly correct private fuzzy extractors with auziliary input
imply digital lockers with auxiliary inputs.

Proof. This proposition easily follows by setting the required distance ¢ equal to
0.

Definition 14 (Collision-resistant Hash function). Consider function h :
{0,1}" — {0,1}™, h is a collision-resistant hash function if the following are
true:

1. Compression: m < n.
2. Collision-resistance: For any PPT adversary A,

Pr[(xo,z1) < A", h) | o # x1 A h(zo) = h(z1)] < ngl(n).

Theorem 4 (Private FE with auxiliary input impossibility). If dist- VBB
obfuscation for MBCC' programs with a-pseudo entropy and collision-resistant
hash functions exist, no perfectly-correct private fuzzy extractor can be secure in
the presence of unpredictability auxiliary inputs.

Proof (Theorem 4). This proof is built from a main lemma (see Lemma 2) which
is then combined with Proposition 1. Lemma 2 shows that digital lockers with
auxiliary input for unpredictable sources cannot exist if dist-VBB obfuscation
for MBCC programs with a-pseudo entropy exists.

Lemma 2 (Digital locker with auxiliary input impossibility). If dist-
VBB obfuscation for MBCC programs with a-pseudo entropy and collision-resistant
hash functions exist, then security for digital lockers with auziliary inputs for un-
predictable sources cannot be achieved.
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Proof (Lemma 2). Let U, denote the universal circuit that takes as input circuit
C' and computes U,(C) = C(x). Define the following MBCC program

MBCC[U,. key, ](C) = {:I: if C' is a well-formed unlock program and C(z) = key.

1 otherwise.

Let h : {0,1}*I = {0,1}™, with m < |z|, be a collision-resistant hash function.
Suppose x and key are independent and let aux = h(x), then we have

H"MY (key | U, z,aux) > a())

which implies that there exists a dist-VBB obfuscator Obf for this MBCC circuit.
We now need to show that X remains unpredictable given Obf(MBCC[Ux, key, x]),
that is

H“"P(X | Obf(MBCC[Ux, key, x]) > w(log \)

In other words, we want to show that if Obf(MBCC[U,,key, z]) is dist-VBB
secure, then for all PPT A, we have

Pr [A (Obf(MBCC[U,, key, z])) = ] < ngl(X).

We proceed by contradiction. Suppose the above is not true and there exists
a PPT A that can predict « from Obf(MBCC[U,, key, z]) with non-negligible
probability. Then we can build a distinguisher for the MBCC obfuscation that
breaks dist-IND security (which is equivalent to dist-VBB for evasive functions
such as MBCC [BC10]). The distinguisher works as follows:

1. Receive P* and aux = h(x) as inputs.
2. Run z* < A(P*).
3. If h(z*) = h(x), return 1, otherwise return 0.

If P* = Obf(1*, P), then A should be able to extract * = z and h(z*) =
h(z). However, if P* + Sim(1*, P.params), A should not be able to extract cor-
rect *. Then the probability that 2* = z is 5~ and when z* # z, h(z*) = h(z)
with negligible probability. This is a contradiction of dist-IND security of the
MBCC obfuscator so we conclude that X remains unpredictable.

We now need to show that that this construction breaks digital locker security.
Recall that digital locker security is VBB, that is for any PPT adversary A and
any polynomial p, there exists a simulator Sim such that

1

Pr [A(unlock, aux) = 1] — Pr [Sim""°*0) (1} aux) = 1| < 0
p

where unlock < lock(val, key).

It is obvious that this does not hold when we set aux = MBCC[U,,y, key, val].
Indeed, A can then run aux(unlock) and retrieve the correct val (and then key
by running unlock(val)), whereas Sim cannot.

By chaining Lemma 2 and the contrapositive of Proposition 1, we obtain
that if dist-VBB MBCC obfuscation exists then private fuzzy extractors with
auxiliary inputs cannot be achieved, which conclude this Theorem’s proof.
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A Privacy vs FE security

Showing that fuzzy extractor security does not imply privacy is straightforward.
Let FE' be a fuzzy extractor for which pub’ = w ||pub, where w; € {0, 1} denotes
the first bit of w and pub is a valid public value such that key < FE.Rep(pub, w*)
when dist(w,w*) < t. Then it is obvious that even though FE is a secure fuzzy
extractor, it is not private.

We will now show that the reverse is also not true.

Theorem 5. Privacy (Definition 8) does not imply fuzzy extractor security (Def-

inition 7).
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Proof (Proof of Theorem 5). We will prove this by presenting a counter example.
Consider the following construction:

— (pub,key) < Gen(w): key is sampled uniformly at random and pub is an
obfuscation of the program p such that, for inputs « € {0,1}* and b € {0, 1},
key if b=1 and dist(w,z) <t
pb,z) =< T if b=0and x = key
1 otherwise.
— key < Rep(pub, b,w’): run pub(1,w’) and return its output.
Notice that for w,w’ € W such that dist(w,w’) < ¢, we have
Pr [key < Rep(pub,w’) | (pub, key) < Gen(w)] > 1 — ngl(\)

which is the expected behavior of a fuzzy extractor. Furthermore, note that this
construction is private since by the obfuscation definition, for any PPT adversary
A, there exists simulator Sim such that for any predicate ¢

Pr[A(pub, key) = ¢(W)] — Pr[Sim(1*, 1/Pupl 1lkevly — o(1)]| < ngl(\)

Now let’s check fuzzy extractor security. Consider the following experiment:
1. Run (key, pub) < Gen(w).
2. Draw b+ {0, 1}.

3. If b = 0, sample U, & {0,1}* and send (Uy, pub) to A. Otherwise, send
(key, pub) to A.
4. A outputs ¥’ € {0,1} and wins if ¥’ = b.

A has a straightforward way of winning this experiment by running pub(0, z),
where © = key or x = U, depending on drawn b. Then A outputs o' = 1 if
pub(0,2) = T and b’ = 0 if pub(0,2) =L. Thus we have

|Pr[A(key, pub) = 1] — Pr[A(Uy, pub) = 1]| > ngl

and we can conclude that this construction, although private, is not a secure
fuzzy extractor.

B Reusability from Composable MBCC Obfuscation

Reusability for Constructions 1 and 2 is achievable when the MBCC obfuscator
is composable. We start by defining reuse.

Definition 15 (Reusable Fuzzy extractor [CFP16]). Let FE be an (M, W, £,t, s, €)-
fuzzy extractor with error § as defined above. Let (Wr,--- ,W,) be p € N corre-

lated variables such that W; € W. Let adversary A be a PPT adversary, then

for all j € [1,p]:
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1. The challenger samples w; < W; and computes (key;, pub;) < FE.Gen(w).

2. The challenger samples a uniform u & {0,1}¢ and sets Ky = key, and
Kl =1u.
3. The challenger draws b & {0,1} and sends to A

(keyla T 7keyi717 Kba keyi+17 T 7keyp7 pUbla T 7Ppr)

4. A outputs b’ € {0,1} and wins if b’ = b.
We denote the above experiment as Expfif’,fab’e, the advantage of A is
Adv(A) = |Pr[Exp/ss?™® = 1] — Pr[Exp[{5? = 1]|.

FE is a (p, €)-reusable fuzzy extractor if for all A, for alli € [1, p] the advan-
tage of A is at most €.

However, as we show in Section 5 this is not possible without restricting the
class of circuits being obfuscated.

Definition 16 (/-Composable Obfuscation with auxiliary input). Obf is
a £-composable obfuscator for distribution class D over the family of circuits Py
if for any PPT adversary A and polynomial p, there exists a simulator Sim such
that for every distribution ensemble D = {Dx} € D and (P, - , Py,aux) < Dy,
with ¢ = poly(\),

‘ Pr[A(Obf(Py), -, Obf(P;), aux) = 1]
1
p(N)

Theorem 6. Let Obf be a composable dist-VBB obfuscator for MBCC circuits,
then Constructions 1 and 2 are reusable.

— Pr[SimPr PPl 1P ) = 1]‘ <

Proof (Proof of Theorem 6). Suppose PFE is not a reusable fuzzy extractor,
that is, there exists a PPT adversary A and a polynomial p(\) such that for all
I<j<p:

| Pr[A(keylv T keypa pUb17 ) ppr) = 1]
— Pr[A(keyy, - key;_1,Us, key; 1, key,,puby, -+ ,pub,) = 1] | > )
where Uy is a uniform random string in {0, 1}*.

Remember that Obf is a composable obfuscator for MBCC[Rep,,, &, key]. Let
r(A) = 3p(\) and suppose Sim is the simulator for A for 7(\), then we have

} PI‘[A({Obf(l)\, MBCC[Reppub7 kv keYi])}gzh aux) = 1}
1

. Pr[Sim{MBCC[Reppubyk,key'i]}f:l(1>‘) {|MBCC[Reppub, k, keyi]'}f:l’ aux) = 1” < m
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Note that in Construction 1, pub; = Obf(1*, MBCC[Rep, .k, key,]) and set
aux = keyy, - -+ , key, so we have
|PY[A({PUbi}ip:17 {keyz'}le) =1]
1

— Pr(Sim P F =1 (12 {[pub, |}, {key; }0_,) = 1]| < 3p(\) )

Notice that this also holds if we replace key; by an independent uniform random
variable Uy over {0,1}¢. Then for any j € {1, p} we have:

| PrlA({pub,;}/_ key,, - ,key, 1, Us, key; 1, key,) = 1]

— Pr[Sim{p“b"'}f:1 (1, {|pub,|}*_,, key,, - - - , key; 1,Ue, key, 1, key,) = 1” < BOY
(4)

Again we adapt Canetti et al.’s lemma [CFPT16, Lemma 2]:

Lemma 3. Let U; denote the uniform distribution over {0,1}¢, then for 1 <
J=p

Pr{Sim MECCRepon kb Dy (12, { IMBCCIRepyy, ks key |}, fkey}, ) = 1]

— Pr[Sim{MBCC[ReP””b’k’keyi]}f:1 ( >\7 {|MBCC[Reppub7 k, keyi”}le 7{keyi}j71 Uy, {keyz'}f:j-u) = 1]‘

1=1"
1
< -
= 3p(A)

Proof. Fix any u € {0,1}*, the lemma will follow by averaging over all u. The
information about whether the j** key value, denoted Vj, is key; or u can only
be obtain by Sim through the query responses. First, we modify Sim to quit im-
mediately when it gets a response not equal to L. Such Sim is equally successful
at distinguishing between key, and u since the first non-_L response tells Sim if
its input is equal to key,. Subsequent responses add nothing to this knowledge.
Since Sim can make at most g queries, there are ¢ + 1 possible values for the
view of Sim on a given input. Of those, ¢ views consist of some number of non-_1
responses followed by a | response, and one view consists of all g responses equal
to L.

Then by [DRS04, Lemma 2.2b],

H oo (V;|View(Sim), aux) > Hoo(V;) — log(q + 1)
a—lo

>

> g(g+1).

where aux = ({|MBCC[Reppub3 ko key ][}y, keyy, -, key,;_1,key i1, keyp)'
Thus, at each query, the probability that Sim gets a non-1 response and

guesses Vj is at most (¢ + 1)/2%. Since there are ¢ queries of Sim, the overall

probability is at most ¢(g 4+ 1)/2%. Then since 2% is negligible in A, there exists

some Ag such that for all A > Ao, ¢(q +1)/2% < 1/(3p(N)).
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Then from Lemma 3, we have

. ub; }*
|Pr[S|m{p bz}l:l(lAv {Ipub;[}7_1, {key; }7_) = 1]

- Pr[Sim{P'—'bi}le (1>\7 {|pUbi‘}?:1’ key17 T keyj—17 Ufa keyj+17 ] keyp) = lH S #()\)
()
Using the triangle inequality on Equations 3, 4 and 5 we obtain
| Pr[A(key, - ,key,,puby,--- ,pub,) = 1]
1
- Pr[A(key17 ) keyi—l? U@a keyi-‘,—l? T keyp7 pUbla ] ppr) = 1} | < m

which is a contradiction and completes this proof.

Composable MBCC obfuscation Wichs and Zirdelis [WZ17] build obfuscation for
multi-bit compute-and-compare circuits from single bit compute-and-compare by
composing the function f with a strongly injective PRG. By doing so they ensure
that the target values (y1,- - ,y¢) are indistinguishable from uniform, even when
given f,z and aux. Their proof then relies on the security of the obfuscator for
the i circuit by passing all remaining circuits as auxiliary information.

Unfortunately this technique cannot be directly applied to build composable
MBCC obfuscation since it requires keeping track of which parts of the PRG
output have already been used. This is reasonable for their MBCC obfuscation
scheme, where all obfuscated compute-and-compare circuits will be generated at
the same time. However this is not practical in the case of composable obfusca-
tion, where the obfuscator will typically be run at different times and without a
shared state. One could use a PRG with exponential stretch and select a random
part of its output, then the probability of reuse should be low. Another issue is
that in Wichs and Zirdelis’s scheme, the function and the input to the PRG are
always the same. For composability, especially with the goal of building reusable
FE, it would need to handle distinct but possibly correlated functions and val-
ues. It then is unclear what the auxiliary information (i.e. the other obfuscated
programs) may leak on the current obfuscated circuit.
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