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Abstract

Arctic sea ice loss is projected to continue in the future under all emission
trajectories. In this Review, we assess the timing and regional variabil-
ity of early ice-free and consistently ice-free conditions in the Arctic.
Based on the current climate models, early ice-free conditions in the
September monthly mean could occur in the 2020s or 2030s under all
emission trajectories, and are likely to occur by mid-century. However,
daily ice-free conditions in September could occur over a decade before
monthly ice-free conditions, and on average occur 4 years earlier. Future
emission trajectories will determine how often and for how long the Arc-
tic could be ice-free. By 2100, there is potential for ice free conditions
in May-January and August-October under a high and low emission
scenario, respectively. Future research needs to prioritize refining pre-
dictions of ice-free conditions, including of regional ice-free conditions,
while taking into account the irreducible uncertainty due to internal
variability. Ideally this will include dedicated comparisons of different
model selection, recalibration, and constraining methods, as currently
too many things differ between studies to directly compare refinement
methods for ice-free projection. Furthermore, more research is needed
into both the impacts of an ice-free Arctic and the drivers of internal
variability in Arctic sea ice that cause early ice-free conditions in models.
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2 Projections of an ice-free Arctic Ocean

1 Introduction

The Arctic sea ice cover has declined rapidly in all seasons [1], including the
sea ice area [G], sea ice extent [G] [2] and sea ice thickness [3, 4]. Areal summer
sea ice loss in particular has been large, with a sea ice area [5] loss of —0.078
million km? /year between 1979-2023. Spatial and temporal variability in areal
sea ice cover loss is also evident [6], with a sea ice area loss of between 1996
and 2012 that was more than twice the average rate of ice loss over 1979-2023
(—0.17 million km? /year versus —0.078 million km? /year), and the largest sea
ice concentration reductions seen in the shelf seas of the Arctic Ocean [6].

These losses in Arctic sea ice are considered among the earliest clearly
attributable examples of anthropogenic climate change [7-9]. Indeed, climate
models from the late 1970s predicted this decrease in sea ice cover in response
to rising atmospheric greenhouse gases, including the possibility of reaching
ice-free conditions during the summer with sufficient warming [10]. Given the
observed and projected warming across the Arctic[11], which greatly exceeds
the global warming (Arctic amplification), current climate models predict that
an ice-free Arctic in September is likely before mid-century [12].

Complicating the accurate prediction of the likely timing of an ice-free
Arctic, simulations have a large model spread [12], leading to ice-free timing
differences that exceed 100 years [12, 13]. While part of this model spread
can be explained by the approximately 20 year prediction uncertainty due
to internal variability [14, 15], the majority of the model spread is due to
physical differences between the models. To deal with the latter, the so called
model or structural uncertainty, selecting, constraining or re-calibrating model
projections has become common [12, 16-19]. However, the evolving definition
of what exactly an ’ice-free’ Arctic refers to complicates the understanding of
predictions of an ice-free Arctic, as definition differences can lead to ice-free
timing differences of several years to over a decade [15].

Regardless of prediction uncertainties, the predicted changes in the Arctic
signify a regime shift from a perennial sea ice cover to a seasonal sea ice
cover, or from a white summer Arctic to a blue Arctic [20] (Fig. 1) — a change
that has likely not occurred for at least 80,000 years [21] (Box 1) — with
important impacts on the local and global climate and ecological systems.
For instance, the large reduction in albedo [G] when sea ice is replaced by
open water modifies the radiation balance [22], accelerating and amplifying
anthropogenic warming [23], especially in the Arctic [24-27]. Moreover, larger
open water areas and longer periods of ice free conditions allow for larger
fetch [G] [28], increasing wave heights [29, 30] and coastal erosion around the
Arctic Ocean [31, 32]. From an ecosystem perspective, the transition towards
a summer ice-free Arctic has negative impacts on sea ice dependent mammals
such as polar bears and seals [33-35], while concurrently increasing ocean
productivity [36] and allowing the potential migration of some fish species from
the sub polar seas [37]. Economic activity in the Arctic could also increase
owing to increased accessibility for shipping [38] and resource exploration [39].
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Fig. 1 White to Blue Arctic:.a, pan-Arctic [G] September sea ice concentration with a
sea ice area of 5.5 million km?, typical for the 1980s. b, as in a, but for 3.3 million km?,
typical for 2015-2022. c, as in a, but for sea ice area of <1 million km?, referred to as an
ice-free Arctic. d, the climatological seasonal cycle for 1980-1999 for satellite-derived sea ice
area observations [40] (red) and from selected CMIP6 models [12] (black). The red shading
indicates the uncertainty in the observed sea ice area, with sea ice concentration data using
the bootstrap [41] (solid red line) and NASA Team [42] (dashed red line) algorithms. Grey
shading indicates the CMIP6 ensemble spread. To show how the climatological seasonal
cycle changes for an ice-free Arctic, the predicted seasonal cycle from the selected CMIP6
models is shown for a predicted ice-free September in the ensemble mean (blue), with light
blue shading for the CMIP6 ensemble spread. While sea ice area is reduced in all months of
the year in the future, the loss is predicted to be greatest in September, which also means
that winter sea ice returns even after ice-free conditions are reached.

In this Review, we summarize the current understanding of projections
for an ice-free Arctic. We begin by discussing the drivers of sea ice loss that
lead to an ice-free Arctic, followed by a discussion of the various approaches
and uncertainties to assess when the Arctic could become ice free. Next, we
outline likely dates for an ice-free Arctic in September, months beside Septem-
ber, and regional ice-free conditions. Finally, we provide an outlook of future
research needs. To illustrate the discussed approaches and ice-free projections,
we analyze primarily monthly sea ice area from selected [12] CMIP6 [G] [43]
models, supplemented by large ensemble simulations from both CMIP5 and
CMIP6. The criteria for model CMIPG6 selection used here is that observations
fall within each models ensemble spread for two key metrics [12]: the 2005-
2014 September mean sea-ice area, and the observed sensitivity [G] of sea ice
area to cumulative CO2 emissions over 1979-2014 (see Supplemental Table 1
for information on the models and specific ensemble members used).
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4 Projections of an ice-free Arctic Ocean

2 Drivers of Arctic sea ice loss

Arctic sea ice changes are due to a multitude of interconnected processes.
Among the processes affecting Arctic sea ice are changes in the heat transport
into the Arctic in the atmosphere and the ocean (Fig. 2). These transports
can vary due to internal climate variability as well as due to externally forced
changes. Within the Arctic, feedbacks involving the sea ice cover itself [44]
as well as local winds and ocean currents affect Arctic sea ice (Fig. 2). In
the case of forced changes due anthropogenic greenhouse gas emissions, the
fact that the majority of local feedbacks in the Arctic are positive leads to
an amplification of Arctic sea ice loss and Arctic warming. Positive feedbacks
[G] associated with declining sea ice, including the albedo feedback and lapse
rate feedback, dominate in driving Arctic warming, but their magnitude is
uncertain and varies across models [45, 46]. Negative feedbacks [G], such as
the influence of ice thickness on ice growth rates [47], can mitigate ice loss
somewhat but not enough to counteract declining trends. Notably, the strength
of these feedbacks can be climate-state dependent [48, 49] and so their relative
strength are expected to vary as sea ice changes.

The observed Arctic sea ice area loss is generally consistent with simula-
tions from climate models, although the amount of the simulated ice loss varies
considerably across different models [12], and to a smaller extent, across dif-
ferent ensemble members within a single model [15]. The range of simulated
ice loss within single model large ensembles indicates large internal variability
[G] is present even on multi-decadal timescales [8]. Indeed, through compar-
ison of the inter-ensemble range of ice loss with the ensemble-mean change,
large ensembles have been used to conclude that the observed loss of Septem-
ber sea ice is due to forced change from anthropogenic emissions that has been
reinforced by internal variability [8]. Studies that isolate the role of atmo-
spheric winds indicate that internal variability in atmospheric circulation may
have reinforced the observed September ice loss by up to 50% [50, 51] and
that atmospheric variability overall accounts for about 75% of Arctic sea ice
internal variability [52]. Ocean heat fluxes into the Arctic, however, are also
important for the variability in Arctic sea ice, and may have helped stabilize
the September sea ice area between 2007-2023 [53].

Although internal variability has likely reinforced the observed summer
Arctic ice loss, the magnitude of loss would not have been possible without
anthropogenic greenhouse gas emissions [54] (Supplementary Fig. 1). Histor-
ical model simulations which apply subsets of external forcings (only natural
forcings, only anthropogenic aerosol forcings, only greenhouse gas forcing) have
enabled the attribution of forced changes in the climate. These show that
greenhouse gas emissions drove considerable ice loss which was modestly offset
by the cooling effects of anthropogenic aerosol emissions [55]. While CO5 emis-
sions were the most impactful for Arctic sea ice, other greenhouse gases have
also contributed. For example, the radiative effects of chlorofluorocarbons have
been found to account for about 48% of forced September sea ice loss from
1979-2005 [56]. Hence, the phasing out of these chemicals due to the Montreal
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Protocol has delayed the occurrence of the first ice-free Arctic by about 10
years [57]. Thus, while observed sea ice loss has a roughly linear relationship
with global mean surface temperature [58, 59] and with the cumulative carbon
dioxide emissions [60], these relationships might not hold for the future given
changes in the mix of external forcings that contribute to forced changes in
regional Arctic warming and Arctic sea ice loss.

Textbook 1: The history of ice-free conditions in the Arctic

The Arctic Ocean was not always covered by sea ice. In the distant past (over
70 million years ago during the Cretaceous) early ancestors of tropical plants
and crocodiles thrived in the Arctic [61-63]. Hence, ice-free conditions are
not a first for the Arctic when assessed over the geological record. However,
sea ice has been a defining feature of the Arctic Ocean for the last 47 million
years [since the Eocene 21]. Perennial sea ice likely first appeared during the
Miocene around 14-13 million years ago [64, 65], based on multiple lines of
paleo evidence [see 21, 66, for detailed reviews of the reconstructed sea ice and
climate of the Arctic]. After perennial sea ice first appeared, several periods
of a return to seasonal sea ice have likely taken place [21, 67]. For example,
paleo proxy evidence suggests that during the late Miocene (approximately
5 million years ago) ice free summer conditions re-occurred in the central
Arctic Ocean [68], with several other periods of summer ice free conditions
identified in the paleo record [21].

The last time ice-free conditions likely occurred in the Arctic was during
the warmest period of the warmest interglacials during the Quaternary, the
Eemian. Specifically, ice-free conditions occured during the so called Marine
Isotope stage MIS 5e (between 130,000 and 115,000 years ago) as well as
potentially also to the end of MIS5, MIS 5a (around 80,000 years ago). At
these times, with paleo evidence stronger for the MIS 5e than for 5a, proxy
records indicate open water north of Greenland [69-73] as well as a northward
shift of the tree line by hundreds of km in Alaska and Russia [66, 74]. In
contrast, during the current interglacial that started 11,000 years ago, the
Holocene, the Arctic Ocean likely retained its perennial sea ice cover [67, 75].
However, there is evidence for regionally ice-free conditions in the Arctic
during the mid Holocene warm period that peaked around 6000 years BP,
in particular in the shelf seas of the eastern Arctic [21, 75, 76]. Thus, the
perennial sea ice was likely much reduced in the summer during the mid-
Holocene, and restricted to north of Greenland [75], where the oldest and
thickest ice is found today [77, 78].

Thus, when pan-Arctic ice-free conditions occur again in the next few
decades, it will likely be a first for at least 80,000 years [70, 71], if not for
over 115,000 years [73]. The occurrence of pan-Arctic winter ice-free condi-
tions, predicted to occur in the 23rd century under extreme warming [79],
would be a first for 47 million years, since the Arctic became sea ice covered
in the Eocene. [21].
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6 Projections of an ice-free Arctic Ocean
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Fig. 2 Schematic of processes driving Arctic sea ice loss. Processes that drive Arctic
sea ice melt in response to large-scale changes in the radiative forcing are themselves affected
by the Arctic sea ice loss, illustrating that the climate system is highly coupled.

The preponderance of positive feedbacks in the Arctic have led some to
posit that a tipping point [G] might exist with regards to sea ice loss [80].
Simple climate models did show evidence of a tipping point in Arctic sea ice
[81, 82]. However, more complicated systems show no indication that a sea ice
tipping point exists [83-85]. This lack of a tipping point in Arctic sea ice was
found to be due to the stabilizing influence of the annual cycle of solar inso-
lation and meridional heat transport as included in more complex modeling
systems [86]. Hence, if climate forcing such as increased CO5 is removed in com-
plex climate models, the sea ice recovers within several years as temperatures
decrease [83-85].

The combined influence of anthropogenic forcing, strong positive feedbacks,
and substantial internal variability has the potential to lead to large multi-
year changes in the Arctic sea ice, commonly referred to as Rapid Ice Loss
Events (RILEs) [87]. As Arctic sea ice thins, large areas of the ice pack are
susceptible to melt out, resulting in increased summer ice area variability [88,
89] and a higher likelihood of RILEs. These RILE events are influenced by
ocean heat transport variations [87, 90|, atmospheric circulation anomalies
[91], or a combination of the two [92]. The surface albedo feedback and fall
cloud feedbacks reinforce these events [93]. Notably, periods of limited ice loss
are also possible when internal variability counteracts anthropogenically forced
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change [8]. The evolution of these high and low ice loss events affects the
trajectory by which summer ice free conditions are reached within the Arctic,
and allow for the possibility of reaching ice-free conditions within a few years
when starting from the average sea ice cover in the early 2020s.

3 Methods for the prediction of an ice-free
Arctic

Predictions of an ice-free Arctic can be based on different definitions, as well
as using different methods, each with their own inherent uncertainties. Hence,
to better understand existing predictions of an ice free Arctic (Table 1), the
different definitions and methods used for their predictions are now discussed.
This will be followed by a discussion of the different kinds of uncertainties
important for ice-free predictions.

3.1 Different definitions of an ice-free Arctic

The exact definitions of what an “ice-free Arctic” refers to has varied. Early
on, it was usually defined as the nearly complete disappearance of all sea ice,
as measured by zero sea ice extent [10, 87, 94]. As the thickest sea ice north
of Greenland and the Canadian Arctic Archipelago remains for over a decade
after the rest of the Arctic Ocean is free of sea ice in September [87, 95], it
became common to use a sea ice extent threshold of 1 million km? to refer to
ice-free conditions [54].

When the 1 million km? threshold is used for sea ice area rather than ice
extent [12, 60, 96], an ice-free Arctic occurs earlier than using sea ice extent [97]
(Fig. 3a). Specifically, for the selected CMIP6 models [12], using sea ice area
rather than extent leads to ice free conditions between 0 and 47 years earlier,
with a mean of 8 years, a mode of 3, and a standard deviation of 10 years. Note
also that while sea ice area is commonly defined as the sea ice concentration
times the grid area, sometimes sea ice area calculations used for projections
additionally used a minimum threshold of 15% sea ice concentration [17, 98],
which leads to even earlier ice-free dates than using sea ice area.

Ice-free conditions have also been based on smoothed timeseries or ensem-
ble means of the sea ice cover [13, 16, 99] or have used the unsmoothed monthly
sea ice data[15, 54, 100-103]. This diversity of definitions of ice-free conditions
causes challenges in comparing existing ice-free predictions (Table 1), as defini-
tion differences of an ice-free Arctic can affect the timing of ice-free conditions,
ranging from a few years to well over a decade (Fig. 3a).

When assessing what predictions are actually predicting by using different
definitions of an ice-free Arctic, two clear categories emerge: predictions of the
“earliest ice-free conditions”, obtained using monthly sea ice timeseries with
a large influence of internal variability. And predictions of ice-free conditions
due to the forced response, based on smoothed data, which will be referred to
here as “consistently ice-free conditions”.
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8 Projections of an ice-free Arctic Ocean

The category of “consistently ice-free conditions” it not a homogeneous
category, but includes a variety of different definitions. This category is chosen
to separate predictions of the earliest possible ice-free Arctic, which could be a
single occurrence caused by internal variability once the mean sea ice state is
low enough, from approaches focused on detecting ice-free conditions based on
the forced response. Thus, consistently ice-free conditions represent the time
after which ice-free conditions are likely to occur in a given year. Methods used
to calculate consistently ice-free conditions include using timeseries smoothed
by 5+yr running means [58, 94, 104, 105], using ensemble means [96], the use
of 5 consecutive ice-free years [13, 15, 101, 106], or “likely” ice free conditions
based on cumulative probabilities [18, 107]. Through all of these methods, the
predicted occurrence of first ice-free conditions is delayed (Fig. 3a) compared
to using unsmoothed monthly data, shifting the focus to the likely occurrence
of ice-free conditions based on the forced response rather than the earliest
possible occurrence of ice-free conditions.

The difference between earliest ice-free dates and consistently ice-free dates
varies based on the strength of the forcing applied: The stronger the forcing,
the closer the time of a possible first ice-free Arctic will be to the time of con-
sistently ice-free conditions (Fig 3a). For example, while the difference between
predictions of first ice-free conditions and consistently ice-free conditions are
only a few years for SSP5-8.5, it is around 15 years for SSP1-2.6 (Fig 3a).

When predictions of an ice-free Arctic are given in terms of cumulative
probabilities [101, 103, 107, 108], one can infer both the occurrence of the first
possible ice-free Arctic (any % above 0) and of consistently ice-free conditions.
For the latter, there are different thresholds that one could use to define a
consistently ice-free conditions. Based on the mean of other definitions for
forced ice-free conditions, consistently ice-free conditions correspond to the
start of the “likely” cumulative probability, at >66% (Fig. 3a versus c¢). Due
to the ability to provide predictions of both categories of ice-free conditions,
cumulative probabilities are therefore a useful way to display predictions of
first ice-free conditions in a comprehensive manner.

3.2 Different prediction methods

The most common ice-free predictions for the Arctic have been made based
on projections from climate models [10, 12, 17-19, 54, 57, 94, 97, 98, 100,
101, 103, 109, 110]. Climate models explicitly simulate the evolution of sea
ice, including dynamical and thermodynamical processes, albeit always in an
incomplete way due to limitations on our understanding of the climate system
and computational constraints. Climate models can provide both predictions
of early and consistently ice-free conditions, based on how the mode output is
analyzed.

Statistical methods have also been used to provide predictions of an ice-
free Arctic. These include projections based on the observed linear relationship
between global temperature or CO4 and sea ice cover [1, 58, 111, 112], and the
use of more complex statistical models [107, 113]. Note that these statistical
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methods typically assume that observed relationships will continue into the
future, which may or may not be accurate. Furthermore, as statistical method
usually rely on linear relationships that represent that response of sea ice to
forcing, they lead to predictions of consistently ice-free conditions. In order
to also provide early ice-free predictions, some statistical ice-free predictions
have included a statistical representation of internal variability [107, 111, 112].
As the statistically added internal variability is usually based on standard
deviations from observations or models, the kinds of rare sea ice loss events,
such as RILEs or single year events like 2012, that are including depends
strongly on how the internal variability is estimated. Using +30 [107] accounts
for 99.7% of the internal variability, and hence only truly rare events (0.3%)
are not accounted for. However, if £1o0 [111] or +20 [112] are used to add
internal variability to statistical predictions, this means that 32% or 5% of the
full internal variability range is not captured, likely delaying the prediction of
early ice-free conditions.

3.3 Inherent uncertainties of predictions

For predictions of any kind to be useful, it is paramount to understand the
limits of predictability, so as not to confuse precision with accuracy. For
climate model predictions, the prediction uncertainty is due to three main
causes: Internal variability uncertainty, model uncertainty, and scenario uncer-
tainty [114]. For statsitical methods, the prediction uncertainty is due to four
main causes: Observational uncertainties [111], uncertainties in the observed
relationships, scenario uncertainty and internal variability uncertainty (or
neglecting internal variability uncertainty).

Internal variability prediction uncertainty is caused by the chaotic nature
of the climate system [115] and as such is irreducible. Hence, even with
improvements in models and/or methodology, predictions of the ice-free Arc-
tic will always have an internal variability uncertainty range. The magnitude
of this internal variability uncertainty for predictions of a first ice-free Arc-
tic is around 20 years [14, 15], but can be even larger for some models [116]
(Supplementary Fig. 2). For consistently ice-free conditions, the internal vari-
ability uncertainty range is usually slightly reduced (Supplementary Fig. 2), as
some internal variability is averaged out. The only way to possibly reduce but
not eliminate internal variability uncertainty is related to understanding the
underlying drivers of the internal variability, and refining predictions based on
the potential predictability of those drivers [117]. Furthermore, as the time of
an ice-free Arctic comes closer, initial-value predictability [G] of sea ice might
allow for more precise predictions, but this predictability is limited to seasonal
to interannual timescales [118].

Scenario uncertainty is due to the uncertainty about the evolution of net
future emissions of greenhouse gases, from all sectors including land use. As
such, it is an uncertainty that is not reducible as it depends on the future
decisions of societies and policy makers. To provide predictions that do not
depend on the specific emission scenario used, predictions of an ice-free Arctic
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can be provided in terms of degrees of global warming [12, 58, 59, 103, 112]
(Fig. 3d) or cumulative CO4 emissions [12, 60] instead of time.

Observational uncertainties in regards to the large-scale sea ice products
used for projections of ice-free conditions relate to the uncertainties intro-
duced through the remote sensing techniques compared to the actual sea ice
conditions being observed. Depending on the methodology used to retrieve
information about Arctic sea ice, the source of these uncertainties can be due
to atmospheric interference, algorithmic uncertainties, and the spatial reso-
lution of sensors [119]. One way to quantify the magnitude of observational
uncertainty is to compare different products [12, 111, 119] (Fig. 1d).

Uncertainties in the observed relationships can be due to short timeseries
[120] and/or due to uncertainty in whether historical relationships on which
predictions are based will continue into the future. An example of the chal-
lenges associated with using short observational timeseries for predictions is
the use of the linear trend in the observed sea ice volume over 12 years (1996—
2007), which when extrapolated into the future led to a prediction of the
earliest possible ice-free Arctic in 201643 years [121]. This prediction was not
realized because the observed rate of sea ice decline is not constant in time. This
example illustrates why linear extrapolation, especially of short timeseries, is
not a reliable prediction method.

Model uncertainty is due to the structural differences in climate models,
that is the different choices that are made in building individual climate model
components. The structural uncertainty is the largest source of uncertainty
for predictions of an ice-free Arctic and sea ice projections in general [12, 13,
122]. Tt is also the source of uncertainty that has the largest potential for
reductions, as models are improved in the future and as methods to re-calibrate
and constrain model projections are being developed. For the timing of ice-
free conditions, the prediction range due to model uncertainty in non-refined
projections is over a hundred years [12, 13] (Fig. 3b). Noteably, this large multi-
model spread has persisted for close to two decades [12], despite improvements
in sea ice model physics over that time. The persistence of the large model
spread in sea ice simulations illustrates that while there is potential to reduce
the model uncertainty by improving climate models, improving model physics
does not always yield immediate improvements in predictions.

Efforts to reduce the large multi-model spread in projections of an ice-free
Arctic have used model selection [12, 13, 16, 17, 54, 100, 123], model weight-
ing [96, 122, 124], emergent constraints [98, 105], and model recalibration or
constrained estimation [18, 19, 59]. For all of these, there currently is no one
established set of metrics to use, as no consensus exists yet on which met-
rics have the most important impact on the future evolution of Arctic sea ice
[13, 59].

For model selection or weighting, primarily sea ice variables such as the
mean sea ice area or extent, the climatological seasonal cycle of sea ice area
or extent, and sea ice trends have been used, together with rates of warm-
ing or cumulative CO2 emissions [12, 13, 54, 122]. However, using April sea
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Fig. 3 Influence of different ice-free definitions and model selection on the tim-
ing of the prediction of an ice-free Arctic. a, year of the earliest ice-free conditions in
September for different definitions in the ’selected CMIP6 models’ (selection based on their
performance over the historical period [12], see Supplementary Table 1). ”Early ice-free con-
ditions” use unsmoothed monthly sea ice area (same method as used in b—e) or monthly sea
ice extent data; ”consistently ice free conditions” refers to definitions using 5yr smoothed
sea ice area, using 20yr smoothed sea ice area, or using the unsmoothed sea ice area but
looking at the first year after which the Arctic is ice-free for 5 years. The numbers on the
right y axis indicate the number of models that do not go ice-free by 2100 for a given model,
definition, or scenario. b the fraction of CMIP6 models that have reached ice-free conditions
at least once in the monthly mean September sea ice area by a given year under a given
SSP [G] forcing scenario — the cumulative probability of first ice-free conditions — and their
likelihood according to IPCC definitions. c, as in b, but for the selected CMIP6 models also
shown in a. d, as in ¢, but showing the fraction of selected CMIP6 models that are ice-free
for a given temperature anomaly (using a 5 year smoothed mean to reflect the level of forced
warming rather than individual year temperatures), with the anomaly calculated relative to
each models 1850-1899 global temperature. e, as in ¢, but showing the fraction of selected
CMIP6 models that are ice-free in a given year, smoothed by a 20yr running mean.



306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

Springer Nature 2021 BTEX template

12 Projections of an ice-free Arctic Ocean

ice thickness and its relation to summer sea ice area has been shown to nar-
row the CMIP6 projection uncertainty of an ice-free Arctic more than any of
previously used sea-ice based metrics [17]. Hence, sea ice thickness should be
considered as a commonly used metric to select models. Furthermore, using
the northward ocean heat flux as model selection parameter moved the predic-
tion of ice-free conditions 10 years earlier compared to using only sea ice based
parameters [16]. The transition to an ice-free Arctic can also be affected by the
Arctic Ocean hydrography, in particular the stratification of the upper Arctic
Ocean [125]. Given the biases in the CMIP6 model’s in regards to the Arctic
stratification [126, 127] and the properties of the underlying warm Atlantic
water [126, 128], the importance of including oceanic variables in the model
weighting and selection should be further assessed.

Complicating the understanding of ice-free predictions, different refinement
methods appear to lead to differences in the projected timing of ice-free condi-
tions. Different recalibration methods influence the projected timing of ice-free
conditions, as demonstrated by earlier ice-free dates when scaling the simu-
lated STA response to greenhouse gas forcing [18], whereas a recalibration of
the SIE sensitivity to atmospheric circulation leads to later ice-free dates [19].
However, due to differences in the underlying data and the definitions of ice-
free, as well as different numbers of CMIP6 models used, it is currently not
clear what the pure effect of the different recalibration methods is.

The inability to compare the effect of different model selection or refinement
methods on ice-free projections directly, due to differences in the underlying
data and the definition of ice-free condition’s used, highlights the need for dedi-
cated inter-comparison studies to assess the different proposed model selection
and recalibration methods. Such an effort has the potential to advance the
field, by creating a common set of metrics to use to select and/or refine sea
ice projections, as well as establish a common ice-free definition to use going
forward.

4 Predictions of an ice-free Arctic

Taking into account the discussed prediction uncertainties and definition dif-
ferences, the following section will discuss pan-Arctic ice-free predictions for
September, ice-free conditions for months outside of September, and regional
ice-free conditions.

4.1 Pan-Arctic predictions for September

Current predictions using a variety of models and methods suggest that an
early first ice-free Arctic could occur potentially in the 2020s to 2030s, and is
likely to have occurred by 2050 [12] (second column in Table 1 and Fig. 3c).
In terms of temperature, early ice-free conditions could occur for any warming
above 1.3°C and are likely to occur for global warming of 1.8 °C above pre-
industrial temperatures (Fig. 3d and Table 1). However, there is a large range of
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early ice-free predictions, ranging from the 2010s to past 2100 [12, 13] and 0.9
3.2°C [12] (Table 1). Refined projections, through model selection, weighting,
adjusting, and constraining, reduce the projections of early ice-free conditions
to 2015 to the 2050s or 1.3-2.9 °C for the CMIP5 and CMIP6 models ([12, 18,
96, 100]). Which refined projection is the most accurate is an important open
research question. It can currently not be answered, as too many variables
differ between different existing refined ice-free predictions (as discussed in
detail at the end of the previous section).

There is no influence of future emission scenarios on these predictions of
early first ice-free conditions (Fig. 3¢ and d)[12, 96, 97], due to the short lead-
time and the resulting small difference between the trajectories till then [129,
130]. Thus, the occurrence of an early first ice-free Arctic will be determined
by internal climate variability [15], once the sea ice has retreated enough that
ice-free conditions can be reached within the range of internal variability. For
example, conditions similar to those that caused the observed record minimum
Arctic sea ice cover in September in 2007 [131] and 2012 [132] could lead to
the drop of sea ice below the 1 million km? threshold once the mean sea ice
area is around 2 million km? or less. Early ice-free conditions could also be
the result of a multi-year RILE [87, 90]. Such large single-year or multi-year
ice-loss events could lead to ice-free conditions considerably earlier than when
consistently ice-free conditions are expected [15]. However, as noted earlier,
internal variability can both enhance the forced response or oppose it [8].
Hence, internal variability could also delay the occurrence of the first ice-
free Arctic, so that the first ice-free Arctic potentially occurs later than when
consistently ice-free conditions are expected [15].

Despite no impact of emission scenarios on the timing of an early first
ice-free Arctic, there remains a small (<10%) yet non-zero chance to avoid
ice-free conditions all together if warming is limited to below 1.5°C [101-103,
108, 111, 133] (Fig. 3d), or only exceed 1.5°C for a short period of time. The
latter is the case in SSP1-1.9, where the multi-model mean global temperature
anomaly stays below 2°C and decreases again after mid-century [134], with
not all models reaching any ice-free conditions (Fig. 3b, c, d).

How frequently ice-free conditions re-occur after a first ice-free September,
however, depends very strongly on the future emission scenarios and the asso-
ciated global warming [101, 103] (Fig. 3e). If ice-free conditions do occur for
warming of 1.5°C or less, they would likely not re-occur for several decades
[101, 133]. For global warming of 2°C , however, ice-free conditions in Septem-
ber would likely re-occur every two to three years after a first ice-free Arctic
[101, 103, 133]. And for warming above 3°C , they would occur again almost
every year in September [101, 103], comparable to what is seen for the selected
CMIP6 models under the SSP2-4.5 and SSP5-8.5 scenarios (Fig. 3e). Notably,
if temperatures decrease again, probabilities of ice-free conditions in a given
year will also decrease, as can be seen for SSP1-1.9 (Fig. 3e).

Consistently ice-free conditions are expected by mid century (column two
in Table 1). In terms of warming, consistently ice-free conditions begin to
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14 Projections of an ice-free Arctic Ocean

occur for warming of 1.8°C or more based on the literature (see column two
in Table 1). The projection uncertainty for consistently ice-free conditions is
lower than for early ice-free conditions, as the influence of internal variability
on averaged is reduced (Supplementary Fig. 2). Nonetheless, predictions range
between 2023 and 2085 (Table 1), with refined projections from CMIP5 and
CMIP6 models showing consistently ice-free conditions between 2035-2067.
As for the early ice-free conditions, comparisons of the different refinement
methods are needed to understand the exact impact of different projection
refinement methods.

The occurrence of consistently ice-free conditions signifies the transition to
a new regime in the Arctic, where the Arctic is typically no longer covered
by sea ice year-around and instead is frequently seasonally ice-covered. Hence,
in terms of impacts, the transition to a consistently ice-free state is arguably
the more meaningful date compared to early ice-free conditions. Nonetheless,
early ice-free conditions will receive large attention if and when they occur,
and hence the possibility of their occurrence and their predicted timing are
important to determine and communicate.

All previous predictions of ice-free conditions used monthly means. Yet, the
very first time the sea ice area dips below the 1 million km? ice-free thresh-
old will be detected in the daily satellite observations. Based on calculations
from the CESM2-LE [135], a large ensemble with a CMIP6 model, the first
occurrence of daily ice-free conditions happens on average 4 years before the
September monthly mean is first below 1 million km? (Supplementary Fig.
3), with a range of 0-18 years. In 56% of the CESM2-LE members the daily
ice-free conditions occur earlier than the monthly ice-free conditions (Supple-
mentary Fig. 3b), while for 44% of the CESM2-LE members, daily and monthly
ice-free conditions first occur during the same year. Differences of 10 years or
more thereby occur in 20% of the CESM2-LE members, with the largest differ-
ences occurring for ensemble members that have relatively late monthly-mean
ice-free conditions (Supplementary 3b). Hence, it is important to note that
ice-free conditions in the daily observations could occur even earlier than the
likely dates for an ice-free Arctic based on the monthly analysis of the CMIP6
models, and hence even earlier than in the 2030s or 2040s (Fig. 3c). Note that
these predictions are based on sea ice area, which leads to earlier ice-free dates
than using sea ice extent (Fig. 3a).

4.2 Seasonality of reaching ice free conditions

Ice-free conditions in the Arctic can occur not just in September, but given
a large enough warming, also for other months of the year [1, 101, 111, 112].
Generally, the larger the warming, the more months can be ice-free, expanding
around September (Fig. 4). Ultimately, that means that the Arctic can also
become ice-free year-around. That said, model simulations show that consis-
tently ice-free winter conditions wont occur until atmospheric CO4 levels reach
around 1900 ppm [79], which is not expected until the 23rd century under even
the strongest emission scenarios.



436

437

438

Springer Nature 2021 BTEX template

Projections of an ice-free Arctic Ocean 15

Method Earliest Consistently
ice-free ice-free Reference ‘

Projections in terms of time
CMIP3 models 2050 to >2100 [136]
selected & adjusted CMIP3 models 2018-2074# 2037 [54]
recalibrated CMIP3 2070*# [58]
selected & adjusted CMIP5 models 2021-2043 2035 [100]
selected CMIP5 2041-2060 [13]
weighted CMIP5 models 2032-2046* 2039-2045* [96]
CMIP5 2045-2070 [106]
weighted CMIP5 2062 [122]
CMIP5 large ensembles 2023-2079 [104]
selected CMIP5 2044-2067 [105]
constrained estimation of CMIP5 2056—-2060 [137]
CESM1-LE 2032-2053 2040-2056 [15]
CESM2 2010-2042 [97]
CMIP6 <2014t0;2100* [12]
selected CMIP6 2015-2052* [12]
selected CMIP6 2035* [16]
selected CMIP6 2043* [17]
observationally-constrained CMIP6 2030s-2050s* 2040*# [18]
statistical model using CMIP3 & observations 2066—2085 [94]
statistical model, CMIP6 & obs. 2036—-2056* [107]
statistical model 2039 [113]
Projections in terms of global warming
recalibrated CMIP3 & obs. sea ice sensitivity 2.8°C *# [58]
observed sea ice sensitivity 1.8°C # [138]
sea ice sensitivity & MPI-ESM 1.5°C* 2.0°C* [111]
bias corrected CESM1-LE 1.5°C 2.5°C # [101]
constrained CanESM2 1.5°C [103]
CMIP6 0.9°C - 3.2°C * [12]
selected CMIP6 1.3°C-29°C* [12]
observed sea ice sensitivity 1.5°C * <2°C * [112]

Table 1 Predictions of an ice-free Arctic from the literature, for the high emission
scenario from each CMIP (SSP5-8.5 for CMIP6; RCP8.5 for CMIP5; A1B for CMIP3).
“Earliest ice-free” refers to ice-free conditions diagnosed from unsmoothed timeseries, with
a large impact of interannual variability. “Consistently ice-free” refers to ice-free conditions
that exist in the ensemble mean or in the multi-year running mean or for several years in a
row, and hence reflect when ice-free conditions occur due to the forced response. Results
with a * indicate that the study used sea ice area, which leads to an earlier ice-free Arctic
than using sea ice extent. Also note that some studies using sea ice area exclude areas of
sea ice with less than 15% [17] while more commonly all sea ice present is included in the
sea ice area calculation [12, 16, 18, 107, 111, 112]. Excluding areas with sea ice
concentration below 15% leads to earlier ice-free years than when all sea ice is included in
the sea ice area. Results marked with a # indicate years that were not explicitly stated in
the respective study, and were instead read of figures or calculated relative to a different
baseline; as such, years with # might differ by a few years from the values that could be
obtained from the data underlying the cited publications. The first part of the table shows
estimates in terms of time; the second part shows estimates in terms of global temperature
anomalies to pre-industrial.

The length of the ice-free period matters, as the longer the Arctic is ice-free,
the larger the impacts will be. Due to the seasonal cycle of the solar radiation
north of the Arctic circle, ice-free conditions that begin earlier in the summer
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Fig. 4 Probability of ice-free conditions in all months of the year based on the
selected CMIP6 models. a, The probability of ice-free conditions in a given year and
month without any smoothing for selected CMIP6 models [12] forced with SSP1-1.9. The
probability is given using the IPCC terms and percentage values. b, as in a, but for SSP1-2.6.
¢, as in a, but for SSP2-4.5. d, as in a, but for SSP5-8.5. There are large differences between
scenarios in terms of how likely an ice-free Arctic is to occur in a given year’s months, with
the possibility of ice-free conditions limited to three months a year in SSP1-2.6 and SSP1-1.9
but extending to 5 months under SSP2-4.5 and 9 months under SSP5-8.5.

lead to more solar radiation uptake by the ocean and a stronger surface albedo
feedback [49] as well as a larger impact on ocean productivity. Furthermore,
the increased heat uptake by the ocean due to larger early open water areas
delays the fall freeze up [139], leading to the extension of the ice-free season
into the late fall [1, 101, 112].

Looking at predictions beyond September, there is a possibility for first ice-
free conditions in August even if warming is kept to 2°C [101, 111] (even in
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SSP1-1.9Fig. 4). As warming increases further, additional months can experi-
ence first ice-free conditions (Fig. 4), for example in July, August, September
and October for more than 2.5 °C global warming [111], and for November for
over 3.5°C [101]. In the selected CMIP6 models analysed here, some models
even show first ice-free conditions for December and January as well as for May
and June during second half of the 21st century under the SSP5-8.5 scenario
(Fig. 4), when the CMIP6 multi-model warming is over 3.5°C [134].

Consistently ice-free conditions in August could occur for 2.5°C [111] to
3°C of warming [101], similar to what is found here for the selected CMIP6
models with “likely” ice-free conditions in August after mid century under
SSP2-4.5 (Fig. 4). Ice-free August’s could be followed by consistently ice-free
October’s if warming reaches over 3.5°C [101] or under SSP2-4.5 in the last
decades of the 21st century in CMIP6 (Fig. 4). If warming exceeds 4°C ,
likely ice-free conditions could also occur in Novembers [101], with ice-free
conditions in July to October becoming very likely or virtually certain based
on CMIPG6 (Fig. 4). In terms of additional CO9 emissions, predictions are that
consistently ice-free conditions would begin to occur for July to October for
an additional 1400 Gt COsy emissions and for November for around 3000 Gt
CO3 [1, 112]. In a few of the CMIP6 models, ice-free conditions even become
likely in December at the end of the 21st century under SSP5-8.5 (Fig. 4), but
not under the other emission scenarios.

In summary, there is a large scenario impact on how long the Arctic could
be ice-free in a given year, with a possible range of 3 to 9 months of ice-free
conditions possible by the end of the 21st century depending on the amount
of future emissions.

4.3 Regional variations of ice-free Arctic conditions

Not many explicit predictions of regional ice-free conditions exist so far. In the
predictions that exist [106, 140], the focus has been on consistently ice-free pre-
dictions. Comparing the results from CMIP5 and CMIP6 models, it is apparent
that regional ice-free conditions occur on average earlier in CMIP6 models [140]
than CMIP5 models [106], but with generally the same progression around the
Arctic [140].

In both CMIP5 and CMIP6 models it has been found that the first entire
seas to become consistently ice-free in September are predicted to be the on
the Eurasian side of the Arctic, including the Kara Sea and the Laptev Sea
[106, 140]. Ice-free conditions on the eastern side of the Arctic are predicted to
be followed by ice-free conditions on the Pacific side, starting in the Chukchi
Seas, followed by the East Siberian Sea and Beaufort Sea [106, 140]. The central
Arctic is predicted to become ice-free last, if at all, depending on the scenario
[106, 140, also see Fig. 5].

However, both CMIP5 [106] and CMIP6 [140] based regional ice-free pre-
dictions have uncertainties that are even larger than for the pan-Arctic. This
larger uncertainty for regional predictions is due to the fact that they rep-
resent averages over smaller regions, which means that they are subject to
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larger internal variability as well as a smaller chance for compensating biases
[106, 140]. Thus, given regional biases in climate simulations, the range of
projected dates of regional ice-free conditions are quite dependent on which
models are used as well as whether model selection was performed [106, 140].

In agreement with previous analysis, the spatial distribution of the timing
of the first consistently ice-free conditions based on the selected CMIP6 models
(Fig. 5) shows that the shelf seas become ice-free during the summer under all
scenarios [140]. However, scenario differences have a big impact on when and
if the central Arctic Ocean loses its sea ice cover in the CMIP6 ensemble mean
in September by 2100 (Fig. 5) [140]. Furthermore, how much of the Arctic
will not be ice-free during months beside September also has a strong scenario
dependence. In particular, how much of the central Arctic will become ice-free
in August and October is very dependent on the future emissions (Fig. 5),
with implications for navigability of the transpolar sea route.

SSP1-1.9 4,

o

2020 2030 2040 2050 2060 2070 2080 2090 2100

Fig. 5 Regional dates of first consistently ice-free conditions under different
SSPs. a, regional consistently ice-free dates for July to November for SSP1-1.9, calculated
as the first time the sea ice concentration in a grid box is below 15% in a given month in the
average of the selected CMIP6 models[12] for each SSP. Bright white areas indicate regions
that remain ice covered with more than 15% SIC in 2100 in the average of the selected
CMIP6. Dark blue colors indicate areas that became ice-free before 2020 in the average of
the selected CMIPG6 or that never had ice cover. b, as in a, but for SSP1-2.6. c, as in a, but
for SSP2-4.5. d, as in a, but for SSP5-8.5. Consistently ice-free dates occur last in the central
Arctic Ocean. Regions that do not reach consistently ice-free conditions are largest in the
SSP1-1.9 simulations, and are not expected to exist at all between July and November by
2090 in SSP5-8.5 simulations.
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5 Summary and future perspectives

Based on various prediction approaches, an early first sea ice-free Septem-
ber might occur in the 2020s or 2030s, and is likely to occur by mid-century
[12]. The possibility of early ice-free conditions in September is independent
of emission scenario, as early ice-free conditions occur under all scenarios and
warming levels assessed [12, 18, 101, 103], due to the short time to occurrence,
so emission scenario differences are small [129, 130]. Due to the influence of
internal variability, there only remains a small probability (<10%) that a first
occurrence of an ice-free Arctic can still be avoided under the lowest warming
scenarios where warming remains well under 2°C [12, 101, 103]. However, it
is important to highlight that greenhouse gas mitigation does affect ice-free
conditions in the Arctic. Future levels of greenhouse gas emissions, and the
associated degree of 21st century anthropogenic global warming will determine
how often and for how long the Arctic will lose its sea ice cover. In partic-
ular under the low warming scenarios (SSP1-2.6), ice-free conditions could
remain an exception rather than the new normal [101]. Furthermore, it has
been repeatedly shown that sea ice recovers quickly when temperatures drop,
for example in response to reductions in greenhouse gas concentrations [83—
85]. Hence, Arctic sea ice does not have a tipping point, when such a tipping
point is defined as an irreversible process or a system with multiple stable equi-
libria that the system can rapidly switch between. However, the absence of a
tipping point for Arctic sea ice does not mean Arctic sea ice loss is not occur-
ring rapidly or is not of importance. Changes in the Arctic sea ice have local
as well as global implications, so the impacts of the loss of Arctic summer sea
ice will not stay limited to the Arctic.

As the possible earliest date of an ice-free Arctic is approaching, its pre-
diction and associated uncertainties need to be clearly communicated to set
realistic expectations. Predictions of an ice-free Arctic should differentiate
between predictions of “consistently ice-free conditions” or “likely” (>66%)
ice-free conditions due to the forced response and predictions of the “earli-
est possible ice-free conditions”, which can occur earlier over a decade earlier
due to the influence of internal variability. A good way to provide both types
of ice-free projections is to use cumulative probabilities (Fig. 3b, ¢, d) or the
probability of ice-free conditions in a given year (Fig. 3e). Additionally, this
clearly shows that ice-free predictions are always probabilistic, which is impor-
tant to remember and communicate. Furthermore, it is also important to be
aware that existing predictions of ice-free conditions (1) vary in whether they
use a 1 million km? threshold in sea ice extent or area, with definitions using
sea ice area leading to earlier ice-free conditions compared to those using sea
ice extent [97] (Fig. 3a).

It also needs to be clearly communicated that currently published ice-free
predictions focus on monthly averaged values. Ice-free conditions could occur
even earlier when daily values are considered. In one model, the first day with
a sea ice area of less than 1 million km? occurred on average 4 years before
first monthly ice-free conditions, but with some ensemble members showing an
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earlier occurrence of daily ice-free conditions by over 10 years. Further work
on predictions of daily ice-free conditions in the Arctic is needed to provide
predictions of daily ice-free conditions and to assess whether models agree on
the offset between daily and monthly ice-free conditions shown here based on
one model.

Most predictions of ice-free conditions have been focused on pan-Arctic
ice-free conditions. However, the transition to pan-Arctic ice free conditions
occurs as regions progressively lose ice. Thus, strong regional impacts will take
place prior to the Arctic reaching 1 million km? of sea ice. So far regional ice-
free predictions have been rare [106, 140], and additional research is needed,
in particular to develop methods to attempt to better constrain regional sea
ice projections, which have even larger uncertainties than pan-Arctic ice-free
projections [106, 140]. For example, it should be assessed how well existing
model selection, recalibration, and observational constraints perform for sea
ice projections in different regions of the Arctic. Based on the results of such
analysis, new methods might need to be developed to better constrain regional
sea ice projections from climate models, always accounting for the irreducible
internal variability uncertainty.

Furthermore, as the first ice-free Arctic approaches, it is important to
ensure that seasonal sea ice predictions have the skill needed to predict first
ice-free conditions. Seasonal prediction of an early ice-free Arctic are likely to
be particularly challenging, as sea ice predictions often perform least well when
the decline in a given year is far from that expected from the long-term trend
[141]. Seasonal prediction experiments initialized with climate model condi-
tions several months prior to a simulated early ice-free state could provide
useful insights on the predictability of these events. These prediction assess-
ments of course have their limitations, in particular in terms of resolution and
because climate models might lack processes that are important in the real
world. Nonetheless, a test of seasonal prediction systems aimed at predictions
of a first impending ice-free September could be very valuable to better under-
stand which processes could lead to such events and to test existing seasonal
prediction capabilities.

Another important issue to consider as an ice-free Arctic approaches is
related as to when the Arctic sea ice community will consider having reached
an ice-free Arctic. Deciding on this now is prudent, given that even for a given
definition of ice-free, there is observational uncertainty in the satellite-derived
sea ice area and sea ice extent products, as reflected by the difference between
various observational sea ice concentration products (for example, Fig. 1d).
As such, it is likely that the 1 million km? ice-free threshold will be crossed in
some sea ice area or extent products but not others. Clarity on how this will
be handled will facilitate communication around the occurrence of the first
ice-free Arctic when it occurs.

To better constrain predictions of an ice-free Arctic, and of Arctic sea
ice loss in general, dedicated intercomparisons of different model selection,
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recalibration and constraining methods would be very helpful to better under-
stand the differences in their performance. Such a dedicated intercomparison
is needed as currently too many parameters differ (models, ensemble members,
emission scenarios, ice-free definitions) to identify the impact of an individ-
ual approach. Furthermore, defining a best practice for skillfully reducing the
sea ice projection uncertainty would be very valuable for the community. In
that process, further analysis should be performed to decide on the best met-
rics to base such methods on, so that they do not just reduce the projection
uncertainty but in fact are likely to actually improve projection accuracy. Con-
sidering sea ice thickness [17] and ocean heat fluxes [16] as selection criteria
should be part of that discussion. Additionally, biases in models should be used
as an opportunity to better understand the real world [142]. For example, by
studying what drives features not seen in models but present in observations,
progress can be made on improving models.

Finally, there is an urgent need to gain a better understanding of both the
impacts of an ice-free Arctic and the processes that could lead to an early
ice-free Arctic. For the latter, research aimed at understanding the drivers of
the internal variability ensemble spread of ice-free conditions are needed. Such
research could provide answers as to what what is predictable and what is not
predictable in regards to ice-free conditions, regionally and in the pan-Arctic
mean. In terms of impacts of an ice-free Arctic, a more detailed understanding
of the impacts of an ice-free Arctic, for example, on marine ecosystems, the
global energy budget, wave height, and coastal erosion, are needed to better
prepare for these impacts. Both kinds of research are timely given that ice-
free conditions seem very likely to occur at least once by the middle of this
century. In particular, understanding the nuances of the drivers and impacts of
occasional daily ice-free conditions versus frequent monthly ice-free conditions
versus ice-free conditions that occur for several months a year are needed to
assess the true impact of what the transition of the Arctic sea ice cover into
its new seasonal sea ice regime means in a warming world.

Glossary

® sea ice area: This term is used to refer to the total area of sea ice present,
without any thresholds. It is calculated as follows: sea ice concentration
times grid area summed over all grid boxes [40]. Note that sometimes, sea
ice area is also calculated only for grid cells with at least 15% sea ice cover
[17, 98, 143], but that is not how it is used here.

® sea ice extent: This is the term used to describe the area of all grid boxes
that have at least 15% sea ice concentration. It is calculated as follows: for
all grid boxes that have at least 15%, sea ice concentration is multiplied by
the grid box area and then summed over all grid boxes with 15% or more
sea ice concentration

® internal variability: The variability in the climate system due to the
chaotic nature of the climate system
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® albedo: Albedo is a term describing the fraction the incoming shortwave
solar radiation that is reflected by a surface. It ranges between 0 and 1. Snow
and ice have a high albedo, meaning a large percentage of the incoming
shortwave solar radiation is reflected by the snow and ice. The ocean has a
low albedo, meaning it absorbs a large percentage of the incoming shortwave
solar radiation.

e SSP=Shared Socioeconomic pathway. A forcing scenario that is part of the
ScenarioMIP of CMIP6.

® sea ice sensitivity: the change in sea ice area divided by the change in
global or Arctic temperature or cumulative CO2 emissions over the same
time period.

e fetch: in oceanography, fetch refers to the horizontal distance over which
wave generating winds blow

® positive feedbacks: Amplifying feedbacks in the climate system, enhancing
an initial perturbation.

® negative feedbacks: Dampening feedbacks in the climate system, reducing
an initial perturbation.

® pan-Arctic: used to refer to the whole Arctic.

e CMIP6= Climate Model Intercomparison project 6. There have been five
different phases of CMIP so far, CMIP, CMIP2, CMIP3, CMIP5, and
CMIP6.

® tipping point: An irreversible change in an environmental condition. Here
used in regards to sea ice loss, so a tipping point would mean that decreasing
the applied forcing does not reverse the sea ice loss seen under increasing
forcing.

® initial-value predictability: refers to the predictability that arises from
knowledge of an initial state.
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Supplementary Figure 1 Probability distribution of 41 year sea ice area trends
for September, from the selected CMIP6 models for 1850-1920 (black) and 1979-2019
(grey) as well as from the 1979-2019 satellite-derived sea ice area data (red) [1], based on sea
ice concentration data using the bootstrap [2] (solid red line) and NASA Team [3] (dashed
red) algorithms. The shift in the two CMIP6 distributions show that that there has been a
clear forced signal in the trends over 1979-2019 compared to 1850-1920, with more negative
trends in 1979-2019. The observed trend over 1979-2019 does not fall within the CMIP6
ensemble spread for 1850-1920, but solidly within the CMIP6 ensemble spread for 1979-2019.
Thus, this analysis supports that the observed sea ice loss has had a forced component.
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Supplementary Figure 2 Internal variability uncertainty for consistently versus
first ice-free conditions in September. The comparison between the consistently ice-
free ranges (red) and the first ice-free ranges (black) for different large ensembles (a-f)
shows that that the internal variability uncertainty is generally reduced when going from
the first ice-free conditions to consistently ice-free conditions, except for the GFDL-CM3,
where the range increases (by 1 year). Furthermore, the distributions of consistently ice-free
conditions are consistently shifted later compared to first ice-free conditions for all models.
The consistently ice-free conditions are here calculated from 5yr running means. The models
shown here are all large ensembles, primarily from CMIP5 models that are part of the
CLIVAR Multi-Model Large ensemble archive [4], as well as from the last 50 members of
the CMIP6 CESM2-LE [5].
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Supplementary Figure 3 Timing of a first ice-free Arctic in daily data versus
monthly data. a, the first ice-free dates in individual ensemble members from members
51-100 of the CESM2-LE [5], showing the difference (green line) between ice-free conditions
occurring in daily sea ice area data (grey) versus monthly mean sea ice area data (navy). b,
The offset in ice-free dates between daily and monthly data from the same member shown
in a (green), plotted over the first ice-free year from monthly data. This analysis shows that
the difference between first daily and monthly ice free years for the same sea ice trajectory
can range of 0-18 years, with the larger differences occurring for members that go ice-free
late compared to the mean from members 51-100 of the CESM2-LE.
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Model name SSP1-1.9 | SSP1-2.6 | SSP2-4.5 | SSP5-8.5
ACCESS-CM2 - rLilplfl r1ilplfl rlilplfl
ACCESS-ESM1-5 - rlilplfl r3ilplfl rlilplfl
CESM2-WACCM - rlilplfl rlilplfl rlilplfl
CNRM-ESM2-1 - - rlilplf2 -
CanESM5 r3ilplfl r7ilplfl r8ilplfl r7ilplfl
EC-Earth3 - rlilplfl rlilplfl rlilplfl
EC-Earth3-Veg r2ilpl1fl r2ilplfl r8ilplfl rlilplfl
HadGEM3-GC31-LL - rlilplf3 rlilplf3 r2i1plf3
IPSL-CM6A-LR rlilplfl r2i1plfl r5ilplfl r3ilplfl
MIROC6 rlilplfl r2ilplfl rlilplfl r3ilplfl
MRI-ESM2-0 rlilplfl rlilplfl rlilplfl rlilplfl
NorESM2-LM - - rlilplfl -
AWI-CM-1-1-MR - rLilplfl rlilplfl rTilplfl
BCC-CSM2-MR - rlilplfl rlilplfl rlilplfl
CAMS-CSM1-0 rlilplfl rlilplfl rlilplfl rlilplfl
CESM2 - r2ilplfl r2ilplfl r2ilplfl
CNRM-CM6-1 — rlilplf2 rlilplf2 rlilplf2
CNRM-CMS6-1-HR - - rlilplf2 rlilplf2
FGOALS-{3-L - - rlilplfl -
FIO-ESM-2-0 - r2ilplfl r2ilplfl r2i1plfl
GFDL-CM4 - - rlilplfl rlilplfl
GFDL-ESM4 rlilplfl rlilplfl rlilplfl rlilplfl
HadGEM3-GC31-MM - rlilplf3 - r2ilp1f3
INM-CM4-8 — rlilplfl rlilplfl rlilplfl
INM-CM5-0 - rlilplfl rlilplfl rlilplfl
MIROC-ES2L rlilplf2 rlilplf2 rlilplf2 rlilplf2
MPL-ESM1-2-HR - r2ilplfl rlilplfl r2i1plfl
MPI-ESM1-2-LR - r2ilplfl r4ilplfl r4ilplfl
NESM3 — rlilplf2 rlilplfl rlilplfl
UKESM1-0-LL rlilplf2 rdilplf2 r3ilplf2 rlilplf2

Supplementary Table 1 Listing of the CMIP6 ensemble members used. The
CMIP6 data is the same as was used in [6] (see Supplementary Tables 2, 3, 4 for data
citations). The ensemble member we used was chosen as the first of all available ensemble
members that showed ice-free conditions in the monthly mean, as the focus of the analysis
was on establishing the date of a possible early ice-free Arctic. The models above the
horizontal line are the twelve selected models, based on [6]
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Model name and experiment

data doi

ACCESS-CM2 historical
ACCESS-CM2 SSP1-2.6
ACCESS-CM2 SSP2-4.5
ACCESS-CM2 SSP5-8.5

10.22033/ESGF /CMIP6.4271[7]
10.22033/ESGF/CMIP6.4319[8]
10.22033/ESGF /CMIP6.4322(9]
10.22033/ESGF/CMIP6.4332[10]

ACCESS-ESM1-5 historical
ACCESS-ESM1-5 SSP1-2.6
ACCESS-ESM1-5 SSP2-4.5
ACCESS-ESM1-5 SSP5-8.5

10.22033/ESGF/CMIP6.4272[11]
10.22033/ESGF/CMIP6.4320[12]
10.22033/ESGF/CMIP6.4322[9]
10.22033/ESGF /CMIP6.4333[13)

CESM2-WACCM historcial
CESM2-WACCM SSP1-2.6
CESM2-WACCM SSP2-4.5
CNRM-ESM2-1 SSP5-8.5

10.22033/ESGF/CMIP6.10071[14]
10.22033/ESGF/CMIP6.10100[15]
10.22033/ESGF/CMIP6.10101[16]
10.22033/ESGF/CMIP6.10115[17]

CanESMS5 historical
CanESM5 SSP1-1.9
CanESM5 SSP1-2.6
CanESM5 SSP2-4.5
CanESM5 SSP5-8.5

10.22033/ESGF/CMIP6.3610[18]
10.22033/ESGF /CMIP6.3682[19)]
10.22033/ESGF/CMIP6.3683[20)]
10.22033/ESGF/CMIP6.3685[21]
10.22033/ESGF /CMIP6.3696[22]

EC-Earth3 historical
EC-Earth3 SSP1-2.6
EC-Earth3 SSP2-4.5
EC-Earth3 SSP5-8.5

10.22033/ESGF /CMIP6.4700[23)]
10.22033/ESGF/CMIP6.4874[24]
10.22033/ESGF /CMIP6.4880[25)
10.22033/ESGF /CMIP6.4912[26]

EC-Earth3-Veg historical
EC-Earth3-Veg SSP1-1.9
EC-Earth3-Veg SSP1-2.6
EC-Earth3-Veg SSP2-4.5
EC-Earth3-Veg SSP4-8.5

10.22033/ESGF /CMIP6.4706[27)
10.22033/ESGF/CMIP6.4872[28]
10.22033/ESGF/CMIP6.4876[29]
10.22033/ESGF /CMIP6.4882[30]
10.22033/ESGF/CMIP6.4914[31]

HadGEM3-GC31-LL historical
HadGEM3-GC31-LL SSP1-2.6
HadGEM3-GC31-LL SSP2-4.5
HadGEM3-GC31-LL SSP5-8.5

10.22033/ESGF/CMIP6.6109[32]
10.22033/ESGF/CMIP6.10849[33)
10.22033/ESGF/CMIP6.10851[34]
10.22033/ESGF/CMIP6.10901[35]

IPSL-CM6A-LR historical
IPSL-CM6A-LR SSP1-1.9
IPSL-CM6A-LR SSP1-2.6
IPSL-CM6A-LR SSP2-4.5
IPSL-CM6A-LR SSP5-8.5

10.22033/ESGF/CMIP6.5195[36]
10.22033/ESGF/CMIP6.5261[37)]
10.22033/ESGF/CMIP6.5262[38]
10.22033/ESGF /CMIP6.5264[39)
10.22033/ESGF /CMIP6.5271[40]

MIROCS6 historical
MIROC6 SSP1-1.9
MIROC6 SSP1-2.6
MIROC6 SSP2-4.5
MIROC6 SSP5-8.5

10.22033/ESGF /CMIP6.5603[41]
10.22033/ESGF/CMIP6.5741[42]
10.22033/ESGF/CMIP6.5743[43]
10.22033/ESGF /CMIP6.5746[44]
10.22033/ESGF/CMIP6.5771[45]

MRI-ESM2-0 historical
MRI-ESM2-0 SSP1-1.9
MRI-ESM2-0 SSP1-2.6
MRI-ESM2-0 SSP2-4.5
MRI-ESM2-0 SSP5-8.5

10.22033/ESGF /CMIP6.6842[46]
10.22033/ESGF /CMIP6.6908[47]
10.22033/ESGF /CMIP6.6909[48]
10.22033/ESGF/CMIP6.6910[49)
10.22033/ESGF /CMIP6.6929[50]

NorESM2-LM historical
NorESM2-LM SSP2-4.5

10.22033/ESGF /CMIP6.8036[51]
10.22033/ESGF /CMIP6.8253[52]
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AWI-CM-1-1-MR historical
AWI-CM-1-1-MR SSP1-2.6
AWI-CM-1-1-MR SSP2-4.5
AWI-CM-1-1-MR SSP4-8.5

10.22033/ESGF/CMIP6.359 [53]
10.22033/ESGF /CMIP6.2796[54]
10.22033/ESGF /CMIP6.2800[55]
10.22033/ESGF /CMIP6.2817[56]

BCC-CSM2-MR historical
BCC-CSM2-MR SSP1-2.6
BCC-CSM2-MR SSP2-4.5
BCC-CSM2-MR SSP5-8.5

10.22033/ESGF/CMIP6.2948 [57]
10.22033/ESGF /CMIP6.3028[58]
10.22033/ESGF/CMIP6.3030 [59]
10.22033/ESGF /CMIP6.3050[60]

CAMS-CSM1-0 historical
CAMS-CSM1-0 SSP1-1.9
CAMS-CSM1-0 SSP1-2.6
CAMS-CSM1-0 SSP2-4.5
CAMS-CSM1-0 SSP5-8.5

10.22033/ESGF /CMIP6.9754[61]
10.22033/ESGF/CMIP6.11045[62]
10.22033/ESGF/CMIP6.11046[63)]
10.22033/ESGF/CMIP6.11047[64]
10.22033/ESGF /CMIP6.11052 [65]

CESM2 historical
CESM2 SSP1-2.6
CESM2 SSP2-4.5
CESM2 SSP5-8.5

10.22033/ESGF /CMIP6.7627 [66]
10.22033/ESGF /CMIP6.7746[67]
10.22033/ESGF /CMIP6.7748[68]
10.22033/ESGF/CMIP6.7768 [69]

CNRM-CM6-1 historical
CNRM-CM6-1 SSP1-2.6
CNRM-CM6-1 SSP2-4.5
CNRM-CM6-1 SSP5-8.5

10.22033/ESGF /CMIP6.4066[70]
10.22033/ESGF /CMIP6.4184[71]
10.22033/ESGF/CMIP6.4189[72]
10.22033/ESGF /CMIP6.4224[73]

CNRM-CM6-1-HR historical
CNRM-CM6-1-HR SSP2-4.5
CNRM-CM6-1-HR SSP5-8.5

10.22033/ESGF/CMIP6.4067 [74]
10.22033/ESGF /CMIP6.4190[75)
10.22033/ESGF /CMIP6.4225[76]

FGOALS-f3-L historical
FGOALS-f3-L. SSP2-4.5

10.22033/ESGF/CMIP6.3355 [77]
10.22033/ESGF/CMIP6.3468 [78]

FIO-ESM-2-0 historical
FIO-ESM-2-0 SSP1-2.6
FIO-ESM-2-0 SSP2-4.5
FIO-ESM-2-0 SSP5-8.5

10.22033/ESGF /CMIP6.9199 [79]
10.22033/ESGF/CMIP6.9208 [80]
10.22033/ESGF /CMIP6.9209[81]
10.22033/ESGF/CMIP6.9214[82]

GFDL-CM4 historical
GFDL-CM4 SSP2-4.5
GFDL-CM4 SSP5-8.5

10.22033/ESGF /CMIP6.8594[83)]
10.22033/ESGF/CMIP6.9263[84]
10.22033/ESGF /CMIP6.9268[85]

GFDL-ESM4 historical
GFDL-ESM4 SSP1-1.9
GFDL-ESM4 SSP1-2.6
GFDL-ESM4 SSP2-4.5
GFDL-ESM4 SSP5-8.5

10.22033/ESGF /CMIP6.8597[36)]
10.22033/ESGF /CMIP6.8683[87]
10.22033/ESGF/CMIP6.8684 [88]
10.22033/ESGF /CMIP6.8686[89)
10.22033/ESGF/CMIP6.8706[90)]

HadGEM3-GC31-MM historical
HadGEM3-GC31-MM SSP1-2.6
HadGEM3-GC31-MM SSP5-8.5

10.22033/ESGF/CMIP6.6112 [91]
10.22033/ESGF/CMIP6.10850[92)
10.22033/ESGF/CMIP6.10902[93)]

INM-CM4-8 historical
INM-CM4-8 SSP1-2.6
INM-CM4-8 SSP2-4.5
INM-CM4-8 SSP5-8.5

10.22033/ESGF /CMIP6.5069 [94]
10.22033/ESGF/CMIP6.12325[95)
10.22033/ESGF/CMIP6.12327[96)
10.22033/ESGF /CMIP6.12337[97]

INM-CM5-0 historical
INM-CM5-0 SSP1-2.6
INM-CM5-0 SSP2-4.5
INM-CM5-0 SSP5-8.5

10.22033/ESGF /CMIP6.5070 [98]
10.22033/ESGF/CMIP6.12326[99]
10.22033/ESGF/CMIP6.12328[100)]
10.22033/ESGF/CMIP6.12338[101]

MIROC-ES2L historical
MIROC-ES2L SSP1-1.9
MIROC-ES2L SSP1-2.6
MIROC-ES2L SSP2-4.5
MIROC-ES2L SSP5-8.5

10.22033/ESGF/CMIP6.5602[102]
10.22033/ESGF/CMIP6.5740[103]
10.22033/ESGF /CMIP6.5742[104]
10.22033/ESGF /CMIP6.5745[105]
10.22033/ESGF/CMIP6.5770[106]
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MPI-ESM1-2-HR historical
MPI-ESM1-2-HR SSP1-2.6
MPI-ESM1-2-HR SSP2-4.5
MPI-ESM1-2-HR SSP5-8.5

10.22033/ESGF /CMIP6.6594[107]
10.22033/ESGF/CMIP6.4397[108]
10.22033/ESGF /CMIP6.4398[109]
10.22033/ESGF/CMIP6.4403[110)

MPI-ESM1-2-LR historical
MPI-ESM1-2-LR SSP1-2.6
MPI-ESM1-2-LR SSP2-4.5
MPI-ESM1-2-LR SSP5-8.5

10.22033/ESGF /CMIP6.6595[111)
10.22033/ESGF/CMIP6.6690[112]
10.22033/ESGF/CMIP6.6693[113]
10.22033/ESGF/CMIP6.6705[114]

NESMS3 historical
NESM3 SSp1-2.6
NESM3 SSP2-4.5
NESM3 SSP5-8.5

10.22033/ESGF /CMIP6.8769(115)
10.22033/ESGF/CMIP6.8780[116]
10.22033/ESGF/CMIP6.8781[117]
10.22033/ESGF/CMIP6.8790[118]

UKESM1-0-LL historical
UKESM1-0-LL SSP1-1.9
UKESM1-0-LL SSP1-2.6
UKESM1-0-LL SSP2-4.5
UKESM1-0-LL SSP5-8.5

10.22033/ESGF/CMIP6.6113 [119]
10.22033/ESGF/CMIP6.6329[120]
10.22033/ESGF/CMIP6.6333 [121]
10.22033/ESGF /CMIP6.6339 [122]
10.22033/ESGF /CMIP6.6405 [123]

Supplementary Table 4 Continued from Supplementary Table 3: Data
references for the additional CMIP6 models used
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