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Abstract

Fuzzy extractors convert noisy signals from the physical world into reliable cryp-
tographic keys. Fuzzy min-entropy measures the limit of the length of key that a
fuzzy extractor can derive from a distribution (Fuller, Reyzin, and Smith, IEEE
Transactions on Information Theory 2020). In general, fuzzy min-entropy that is
superlogarithmic in the security parameter is required for a noisy distribution to
be suitable for key derivation.
There is a wide gap between what is possible with respect to computational
and information-theoretic adversaries. Under the assumption of general-purpose
obfuscation, keys can be securely derived from all distributions with super-
logarithmic entropy. Against information-theoretic adversaries, however, it is
impossible to build a single fuzzy extractor that works for all distributions (Fuller,
Reyzin, and Smith, IEEE Transactions on Information Theory 2020).
A weaker information-theoretic goal is building a fuzzy extractor for each proba-
bility distribution. This is the approach taken by Woodage et al. (Crypto 2017).
Prior approaches use the full description of the probability mass function and
are inefficient. We show this is inherent: for a quarter of distributions with

fuzzy min-entropy and 2k points there is no secure fuzzy extractor

that uses less 2Θ(k) bits of information about the distribution.

We show an analogous result with stronger parameters for information-theoretic
secure sketches. Secure sketches are frequently used to construct fuzzy extractors.
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1 Introduction

Information reconciliation and privacy amplification are the two fundamental tasks
for key derivation from noisy sources. Roughly speaking, information reconciliation
takes two correlated distributions w and w′ and maps them to the same value
while minimizing what is leaked about that value. Privacy amplification converts the
uncertainty in this mapped value to a uniform value suitable for cryptography. Appli-
cations areas include quantum key agreement, biometrics, and physically uncloneable
functions [1, 2].

We focus on non-interactive versions of these problems [2] as defined by secure
sketches, which perform information-reconciliation, and fuzzy extractors, which per-
form both information-reconciliation and privacy amplification. A Secure Sketch
consists of a pair of algorithms (SS,Rec) where:
1. SS(w) = ss should reveal as little information as possible about w; and
2. SS(w) = ss should allow one to reconstruct w from a nearby w′. That is, it should

be the case that for all nearby w′,Rec(w′, ss) = w. In the above, “nearby” is w′

such that dis(w,w′) ≤ t for distance metric dis and distance t.
These two properties are in tension because allowing recovery of w requires informa-
tion about w. The most natural (inefficient) construction is for ss to be a pairwise
independent [3] hash h of w [4–7]. The hash h should be long enough so that
{w|h(w) = y ∧ w′s.t. dis(w,w′) ≤ t} = 1 and short enough so {w|h(w) = y} is large.
Efficient constructions are also known based on error-correcting codes. This is achieved
by writing down the coset of w with respect to an error-correcting code with distance
t [2]. In fact, upper bounds on the unpredictability of w|ss are related to the size of
the best error-correcting codes [2, 8]. Given a good information reconciliation, one
can achieve privacy amplification using an average-case randomness extractor [9] to
convert w into a uniform value.

Fuzzy extractors perform both information reconciliation and privacy amplifica-
tion. They consist of a pair (Gen,Rep). Intuitively, Gen converts a value w into a
uniform value, denoted as r and Rep reproduces that value for any nearby w′. Nota-
tionally, (r, p) ← Gen(w) should be indistinguishable from (u, p) where u is a truly
random value. On the correctness side, it should be the case that for all w′ such that
dis(w,w′) ≤ t then Rep(w′, p) = r. Both SS and Gen are allowed to have private
internal randomness.

Since noisy sources come from the physical world, an important goal is to be able
to support as many distributions W as possible. This goal is the focus of this work.
Throughout the Introduction, we use the notation of fuzzy extractors and note when
there are material differences for secure sketches. Fuller, Reyzin, and Smith [5, 7]
identified the notion of fuzzy min-entropy, Hfuzz

t,∞ (W ), which measures the adversary’s
success when given oracle access to Rep(·, p) but is unable to learn anything from the
value p. Fuzzy min-entropy quantifies the weight of the heaviest ball in the probability
mass function of W . That is,

Hfuzz
t,∞ (W ) := −log

(

max
w′

∑

w

Pr[W = w|dis(w,w′) ≤ t]

)

.
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Ideally, one would build a single fuzzy extractor that works for the family of all distri-
butions Wall

fuzz = {W |Hfuzz
t,∞ (W ) = ω(log(λ))} for some security parameter λ. We call

such a fuzzy extractor universal as it simultaneously works for any secureable distribu-
tion W . If one desires computational security, a universal fuzzy extractor is achievable
using general obfuscation [10–12] or under specific number-theoretic assumptions [13].

The situation for information-theoretic security is more complicated.1 Fuller,
Reyzin, and Smith [7] showed that it is impossible to build a universal fuzzy extrac-
tor with information-theoretic security. More precisely, they constructed a family of
distributions W and showed that any fuzzy extractor (Gen,Rep) must be insecure for
an average member of W. Let z be a string that indexes the family W. We use Z to
describe a uniformly chosen index for the family W. We use the notation z ← Z to
indicate this choice. We use the notation WZ to indicate sampling W uniformly from
W with Z being a random variable that describes the choice of W ∈ W. For all z, the
goal is to build a good fuzzy extractor for Wz. The impossibility result shows a fam-
ily W where any (Gen,Rep) is insecure for an average z chosen according to Z. The
model tells the adversary the outcome Z = z but not the individual point w ← Wz

that is input to Gen.
On the positive side, multiple works [5–7, 19–24] presented a construction that

works for each Wz ∈ W
all
fuzz. This is called the distribution-sensitive setting as Gen

also knows the entire probability mass function described by z, denoted as
Genz,Recz. All constructions in this line are computationally inefficient; for an input
point w they look up the probability that Pr[Wz = w] and the probability of points
w′ where dis(w,w′) ≤ t. We show this inefficiency is unavoidable:

Any distribution-sensitive information-theoretic fuzzy extractor requires an

exponential amount of information about the distribution Wz.

Our results are for the Hamming metric over {0, 1}n. Below we present the two
informal theorems for fuzzy extractors (see Theorem 6) and secure sketches (see
Theorem 11) respectively. For a value p ∈ [0, 1] let h2 be the binary entropy of p.
Both secure sketches and fuzzy extractor are frequently parameterized by an error
parameter δ which controls the maximum probability they get the wrong value. We
consider δ = 0 for the fuzzy extractor setting and δ > 0 for the secure sketch setting.
(Discussion in Section 1.2.)
Theorem 1 (Informal Theorem 6). Consider {0, 1}n and t < n/2 be a distance
parameter. Let Wγ = {W |Hfuzz

t,∞ (W ) = γ}. Let c > 0 be a constant and suppose that

γ ≤ n ·min

{

(1− h2(t/n)) + o(1),
1−Θ(c)− h2(1/2− t/n)

3

}

.

For a quarter of W ∈ Wγ there is no fuzzy extractor that simultaneously has
1. no error,
2. is of size at most 2γ+cn, and

1Fuzzy extractors were first designed as an information-theoretic primitive because of strong connections
to randomness extraction and coding theory. An important application is in quantum key agreement which
does not allow computational assumptions. Many computational constructions use an information-theoretic
secure sketch [14, 15]. (Exceptions exist such as the universal constructions listed above and constructions
for distributions with statistical properties beyond fuzzy min-entropy [8, 16–18].)

3



Fig. 1 The region of error rate t/n (x-axis) and fuzzy entropy rate γ/n (y-axis) pairs for which
the two negative results apply. The six curves are maximum fuzzy min-entropy γ/n = (1− h2(t/n)),
Theorem 6, Theorem 11 with δ = .25, Theorem 11 with δ = 0, [7, Theorem 5.1] and [7, Theorem 7.2].
The parameter δ is how frequently the secure sketch is allowed to be incorrect. We consider fuzzy
extractors with perfect correctness where δ = 0.

3. extracts keys of length ω(log(n)) that are within statistical distance 1/3− ngl(n)
to a uniform key.

Theorem 2 (Informal Theorem 11). Consider {0, 1}n and t < n/2 be a distance
parameter. Let Wγ = {W |Hfuzz

t,∞ (W ) = γ}. Let δ < 1/4 be the error of the secure
sketch, let c > 0 be a constant and suppose that

γ ≤ n ·min {(1− h2(t/n)) + o(1), cδh2(t/n)−Θ(c)} .

where 1/3 ≤ cδ ≤ 2/3 and depends on h2(δ). For 2−5 fraction of W ∈ Wγ there is no
secure sketch of size of at most 2γ+cn that retains unpredictability of w|ss of at least 5.

The size of the fuzzy extractor (resp. secure sketch) refers to the amount of infor-
mation the algorithm has about z, it is not a restriction on the running time of the
algorithm, our results hold for unbounded time algorithms. The relevant parameter
regimes of impossibility are shown in Figure 1. The two most important parameters
are the noise rate t/n and the fuzzy entropy rate γ/n. The area under the curves
represents parameters where the construction is impossible for the fraction of distri-
butions in the informal theorems unless one has algorithms of 2Θ(n) size. In spirit, our
result rules out constructions that do not have a full description of the probability
mass function written in their description.
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Our results use only first and second-moment bounds. Our theorems are crucial
for the future of information-theoretic fuzzy extractors and secure sketches.
To prove security for an efficient construction one must either restrict to
sources with high fuzzy min-entropy or use properties of a noisy source
beyond fuzzy min-entropy. We discuss this more in Section 1.2.

1.1 Proof Techniques

Our results are information-theoretic. We consider a family of distributionsW = {Wz}
indexed by a string z. We let Z denote the set of possible z and let Z denote the
uniform distribution over Z. Lastly, we use w ← Wz to denote sampling a point
from the distribution indexed by z. We show the impossibility of two types of fuzzy
extractors:

Def. 8 (Universal) Fuzzy extractors with distributional advice. This is a triplet of algo-
rithms (advice,Gen,Rep) designed to work for all Wz ∈ W for a fixed error tolerance t.
The fuzzy extractor is given information about z through a function advice = advice(z)
which is input to both Gen and Rep. The value of advice specializes (Gen,Rep) to the
distribution described by z.

Define w ←Wz and (r, p)← Gen(w, advice), it should be true that

(r, p, z) ≈ (u, p, z).

where u is uniformly and independently sampled. Since advice(·) is a function, advice
is available to the adversary.
Def. 6 Fuzzy extractors for a specific distribution Wz ∈ W that are required to have
a bounded size description of (Gen,Rep).

We show impossibility of building a fuzzy extractor with distributional advice of
length ` for W implies impossibility of building a space bounded fuzzy extractor for
length ` for a constant fraction of W (Lemma 4). The core of our negative results is
to show the impossibility of building fuzzy extractors with distributional advice.

We review Fuller, Reyzin, and Smith’s [7] impossibility result. Fuzzy extractor
correctness says that for (r, p) ← Gen(w) for all w′ close to w the correct key is
reproduced, i.e., Rep(w′, p) = r. As such, for each value of p, one can partition the
input space {0, 1}n by what value of r the point v ∈ {0, 1}n produces. Values v that
could have produced r will be at least distance t from the boundary of this partition,
we call the set of such v, Viabler,p. Viabler,p can be bounded geometrically using the
isoperimetric inequality [25]. This bound applies for any distribution over the inputs
w.

Consider the following simple distinguisher for a triple r, p, z. One computes the
key partition described above and the set Viabler,p. If Viabler,p∩Wz = ∅ output the
key is random, otherwise output key is real. The core of Fuller, Reyzin, and Smith’s
impossibility was to build a family WFRS with two properties:
1. The distribution was 2-universal [3], so the remainder of the distribution was

unknown conditioned on the input w.
2. Distributions Wz ∈ W

FRS shared few points and had fuzzy min-entropy.
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These two properties meant that for any partition p created after seeing w for most
distributions Wz where Pr[Wz = w] > 0 have few parts with nonempty interiors.
Thus, the above distinguisher works.

The family is as follows: let C be a linear error-correcting code with distance t, let
H be its syndrome, let c be a coset. Then each z = (H, c) and a distribution Wz=(H,c)

is the uniform distribution over the set of all points {w | Hw = c}.

1.1.1 Moving to the distributional advice setting

To set notation for the distributional advice game, we consider the following game for
a tuple of algorithms (advice,Gen,Rep):
1. A uniform sample z ← Z which picks Wz ∈ W.
2. A bounded length advice = advice(z) is computed.
3. Sample w ←Wz.
4. The algorithm computes (r, p)← Gen(w, advice).
5. The adversary is given either (r, p, z) or (u, p, z) for a uniform u.
In [7], the only information that Gen has about z was the input point w. In

our setting, Gen gets advice. Fuller, Reyzin, and Smith’s family had a short descrip-
tion so advice allows Gen to align Viable with points in Wz. Thus, extending the
result requires a long description that can’t be compressed. We consider the natural
candidate: the set Wγ of all distributions with fuzzy min-entropy at least γ.

We use the notation Wn,k = {W |W has support size 2k}. For a positive integer γ,
If one considers k = γ + cn for some c > 0 there are few distributions Wz ∈ Wn,k

where Hfuzz
t,∞ (W ) < γ. As long as |advice| is shorter than 2k, most points in the support

of Wz are unpredictable conditioned on advice.
The techniques for the secure sketch setting are similar, however, there are stronger

geometric bounds on the number of viable points because secure sketches imply Shan-
non error correcting codes [2, 8]. Our result considers a secure sketch that retains
smooth min-entropy instead of min-entropy. This is so we can use Wn,k throughout
the proof and “smooth” to a family where every distribution has fuzzy min-entropy
γ. Our final result also applies to secure sketches that retain non-smooth conditional
min-entropy.

Importantly, both results operate generically in the size of the maximum number
of viable points for the relevant primitive. Such bounds have been well established
in the literature due to their connections with coding theory. This means if one can
provide a new bound on fuzzy extractor or secure sketch quality this can be directly
used in our results.

1.2 Discussion

Avoiding the result Lemma 4 shows the impossibility of efficient constructions
for a constant fraction of the family. This means it may be possible to secure all
low-entropy distributions of practical interest. However, new designs or analyses are
required. One must use statistical properties beyond fuzzy min-entropy. Demarest,
Fuller, and Russell [26] provide a summary of statistical properties in addition to fuzzy
min-entropy used in low-entropy computationally secure constructions, such as small,
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random subsets of bits having high entropy. Simhadri et al. provide a discussion on
the current state of biometric cryptosystems and their limited security [27]. Current
information-theoretic constructions fall into three categories: 1) requiring high min-
entropy, such as the coset construction from Dodis et al. [2] 2) requiring bits of w to be
i.i.d. [28–32] and 3) inefficient constructions that use the whole probability distribution
such as Woodage et al. [6].

We provide some intuition for why high entropy distributions are easier to secure.
First, from the construction perspective if the distribution has at log(|Bt|)+ω(log(λ))
bits of entropy, one can write down enough bits to uniquely determine the original w
from a nearby w′ without removing all entropy of w (assuming a perfect error correct-
ing code). Second, from an impossibility perspective, impossibility results (both ours
and prior results) require the construction to choose Viable points in the construction
and have some side information about the distribution to reduce the size of this set.
The larger the support of the distribution the harder it is for this side information to
reduce the entropy of this set. For example, Fuller, Reyzin, and Smith [7] distributions,
W ∈ WFRS , were lines that overlapped at one point, upper bounding their size.

The two natural directions stemming from this research are 1) can one use natural
statistical properties to provide information-theoretic security and 2) can one compress
inefficient information-theoretic constructions to not require the whole probability
distribution of Wz.
Perfect Correctness Our result for fuzzy extractors considers perfect correctness.
We do not think this is a fundamental limitation but we briefly explain the issue. As
mentioned above, in the case of perfect correctness, one includes a point w in Viabler,p
if it is distance t from any point that produces a different r′. Once one allows imperfect
correctness, there is no immediate test for whether a point w should be considered
viable. It seems possible that one could argue for a point to be viable when most
points around w produce the same key. We were not able to apply the isoperimetric
inequality in this setting. If one finds a clean argument for viable points with imperfect
correctness, it directly replaces Lemma 8. The rest of our argument then applies. On
the other hand, for a secure sketch, one can easily bound the size of the set of points

{

w

∣

∣

∣

∣

{w′|Rec(w′, p) = w ∧ dis(w,w′)}

{w′|dis(w,w′)}
≥ 1− δ

}

,

this set forms a Shannon error correcting code [7, Lemma 7.3]. This is the viable set
in the secure sketch case.
Differences from prior work Our fuzzy extractor result requires that |r| =
ω(log(n)). This is in contrast to Fuller, Reyzin, and Smith [7] who showed an impos-
sibility for a key length of 3.2 This change comes because advice can supply a lot of
information about a small number of points in Wz, allowing Gen to ensure that some
Viabler,p are nonempty. Furthermore, all bounds are weaker than those of Fuller,
Reyzin, and Smith. The core of the difference is that in WFRS the adversary received
entirely new information by the leftover hash lemma [33, 34]. In our setting, we argue

2Our result for secure sketches requires them to retain at least 5 bits of min-entropy about the input in
comparison with [8] which required the sketch to maintain 3 bits of entropy.
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about the expected number of points in the support of Wz that are included in the
Viable region.

Our secure sketch result also considers an object that retains smooth conditional
min-entropy [35]. Smooth conditional min-entropy is the necessary and sufficient
condition for privacy amplification using a randomness extractor.

1.2.1 Organization

The rest of this work is organized as follows, Section 2 covers preliminaries including
the relevant definitions of fuzzy extractors and secure sketches. Section 3 presents the
negative result for fuzzy extractors including a proof outline, and Section 4 presents
the negative result for secure sketches.

2 Preliminaries

For distributions X,Y over the same discrete domain χ,

∆(X,Y )
def
=

1

2

∑

x∈χ

|Pr[X = x]− Pr[Y = y]| .

For a metric space (M, dis) let Bt(x) = {y|dis(x, y) ≤ t}. If the size of Bt(x) is the
same for all points x we use |Bt| to denote this quantity. This is the case for the
Hamming metric. All logarithms are base 2. For a set X, let UX denote the uniform
distribution over that set. For a distribution W , let Supp(W ) denote the support of
the distribution.

2.0.1 Indexing and sampling from a family of distributions

This work considers the possibility of constructing fuzzy extractors from a finite family
of distributions that we will call W. Throughout, we will need the ability to describe
a particular value in this family. We let Z be an index for the family W. Each string
z ∈ Z describes a distributionWz ∈ W. We use Z to describe the uniform distribution

UZ , that isWZ
d
= UW . We use w ←Wz to denote a sample fromWz where w ∈ {0, 1}

n.
Where appropriate we use w ←WZ to denote the two-stage process of sampling z ← Z
and then sampling w ←Wz.

2.1 Notions of Entropy

For a random variable X whose outcomes are in {0, 1}, let Pr[X = 1] = p. The binary
entropy of X is h2(X) := H(X) = −p · log(p) − (1 − p) · log(1− p) . For a discrete
random variable X, min-entropy is H∞(X) := −log(maxxi

Pr(X = xi)).
Definition 1 (Average Min Entropy). Let X be a discrete random variable and let
Y be a random variable. The average min-entropy of X|Y is

H̃∞(X|Y ) := −log

(

E
y←Y

[

max
x

Pr[X = x | Y = y]
]

)

.

8



Definition 2 (Smooth Conditional Min Entropy). The smooth conditional min
entropy, denoted H̃ε

∞(X|Y ) for two random variables X and Y is

H̃ε
∞(X|Y ) := max

(X′,Y ′)|∆((X′,Y ′),(X,Y ))≤ε
H̃∞(X ′|Y ′) .

The above definition combines prior definitions [2, 35–37]. Renner and Wolf’s def-
inition considers the worst case Y . We focus on the average case Y . We also replace
the condition when considering statistical distance similar to Gentry and Wichs [37].

2.2 Fuzzy Min-Entropy and Hamming Balls

Definition 3 (Fuzzy min-entropy [7]). For a distribution W and a distance parameter
t, the fuzzy min-entropy of W , denoted Hfuzz

t,∞ (W ) is

Hfuzz
t,∞ (W ) := −log

(

max
w∗

(

∑

w

Pr[W = w|dis(w,w∗) ≤ t]

))

.

Proposition 3. For all distributions W over a metric space (M, dis), Hfuzz
t,∞ (W ) ≤

log(|M|)− log(|Bt|) .
For M = {0, 1}n and the binary Hamming metric, Using Ash [38, Lemma 4.7.2,
Equation 4.7.5, p. 115] one has

nh2(t/n)− 1/2log(n)− 1/2 ≤ log(|Bt|) ≤ nh2(t/n). (1)

and thus,

Hfuzz
t,∞ (W ) ≤ log(|M|)− log(|Bt|) ≤ n

(

1− h2

(

t

n

))

+
log(n)

2
+ 1/2.

We now introduce the notion of β-density which measures the size of a Hamming ball
in comparison to the whole metric space.
Definition 4. Let (M, dis) be a metric space where the size of balls is center
independent. The β density is

β := log

(

|M| − |Bt|

|Bt|

)

Claim 1. For n, t ∈ Z
+ with t < n/2 for the Hamming metric over {0, 1}n

β ≥ n

(

1− h2

(

t

n

))

− 1.

Proof. By Equation 1 one has:

β ≥ log
(

2n(1−h2( t
n )) − 1

)

≥ log
(

2n(1−h2( t
n ))−1

)

≥ n(1− h2(t/n))− 1.
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2.3 Fuzzy Extractors and Secure Sketches

Definition 5 (Secure Sketch [2]). For metric space (M, dis) and distribution Wz, a
(M, m̃, t, ε, `, δ)-secure sketch is a pair of algorithms (SSz,Recz) with the following
properties
1. Correctness For all w,w′ such that dis(w,w′) ≤ t, then

Prss←SS(w)[Recz(w
′, ss) = w] ≥ 1− δ.

2. Security H̃ε
∞(Wz|SSz(Wz)) ≥ m̃.

3. Space Bounded The circuits SSz and Recz require at most ` bits to describe.
That is, |SSz|+ |Recz| ≤ `.

The use of smooth min-entropy In the above definition, the secure sketch
retains smooth conditional min-entropy of Wz. Many definitions consider ε = 0 or
average min-entropy. The ε-smooth min-entropy can be used to bound the average
min-entropy [2, Appendix B].

Definition 6 (Fuzzy Extractor [2]). For metric space (M, dis) and probability distri-
bution Wz, a (M, κ, t, ε, `)-fuzzy extractor is a pair of algorithms (Genz,Repz) with
the following properties
1. Correctness For all w,w′ such that dis(w,w′) ≤ t, then

Prr,p←Gen(w)[Rep(w
′, p) = r] = 1.

2. Security Let R,P ← Genz(Wz) and Uκ be a uniformly distributed random
variable over {0, 1}κ, ∆((R,P ), (Uκ, P )) ≤ ε.

3. Space Bounded The circuits Genz and Repz require ` bits to describe. That is,
|Gen|+ |Rec| ≤ `.

We now define fuzzy extractors and secure sketches with advice. This is an intermediate
definition that will be used in proofs throughout. Let Wn,k be a family of distribu-
tions. As we show in Lemmas 4 and 5, the impossibility of building a fuzzy extractor
(resp. secure sketch) with advice for the uniform distribution of Wn,k,Z from family
Wn,k implies the impossibility of building a fuzzy extractor (resp. secure sketch) for
a constant fraction of Wz ∈ Wn,k.
Definition 7 (Secure Sketch with distributional advice). Let W be a family of
distributions indexed by z and let Z denote the set of such z. Let Z be a ran-
dom variable describing the uniform selection of a Wz ∈ W. For metric space
({0, 1}n, dis), a ({0, 1}n,W, m̃, t, ε, `, δ)-secure sketch with distributional advice is a
triplet of algorithms (Gen,Rep,Advice) with the following properties:
1. Correctness For all w,w′ such that dis(w,w′) ≤ t, let Prss←SS(w)[Rec(w

′, ss) =
w] ≥ 1− δ.

2. Security Let Advice be a function with output in {0, 1}`. For all distributions
Wz ∈ W, define advicez := Advice(z) and let SS ← SS(Wz, advicez). Then,
Ez←Z [H̃

ε
∞(Wz|SS,Z = z)] ≥ m̃.

Definition 8 (Fuzzy Extractor with distributional advice). Let W be a family of dis-
tributions indexed by z. Let Z be a random variable describing the uniform selection of
a Wz ∈ W. For metric space ({0, 1}n, dis), a ({0, 1}n,W, κ, t, ε, `)-fuzzy extractor with
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distributional advice is a triplet of algorithms (Gen,Rep,Advice) with the following
properties:
1. Correctness For all w,w′ such that dis(w,w′) ≤ t, Pr(r,p)←Gen(w)[Rep(w

′, p) =
r] = 1.

2. Security Let Advice be a function with output in {0, 1}`. For a distribution Wz ∈
W, define advicez := Advice(z), let (Rz, Pz) ← Gen(W, advicez) and Uκ be a
uniformly distributed random variable over {0, 1}κ it holds that

∆((RZ , PZ , Z), (Uκ, PZ , Z)) = E
z←Z

∆((Rz, Pz, z), (Uκ, Pz, z) ≤ ε.

Lemma 4. Let W be a distribution family indexed by set Z. Suppose that no
(M,W, κ, t, ε, `)-fuzzy extractor with distributional advice exists. For all familiesW ′ ⊆
W indexed by Z ′ ⊆ Z where |Z ′|/|Z| ≤ 1 − ζ. There is some z ∈ Z ′ such that there
is no ({0, 1}n, κ, t, (ε− ζ))/(1− ζ), `) fuzzy extractor (Genz,Repz).

Proof of Lemma 4. We proceed by contrapositive. Let W ′ be some subset of W with
relative size at least 1− ζ where for every Wz ∈ W

′ there exists an ({0, 1}n, κ, t, (ε−
ζ)/(1−ζ), `)-fuzzy extractor. We denote these algorithms by (Genz,Repz) respectively.
We now describe how to build the fuzzy extractor (Gen,Rep, advice) with distributional
advice. Let

advice(z) =

{

(Genz,Repz) z ∈ Z ′

⊥ otherwise.

In both cases, advice(z) has length at most `. Then define Gen(x,C) as follows: if C =⊥
sample a random key r output (r, r), otherwise interpret C as two circuits Gen′,Rep′

and output Gen′(x). Define Rep(x, p, C) interpret C if C =⊥ output p, otherwise parse
C as two circuits Gen′,Rep′ and output Rep′(x′, p). Then

∆((RZ , PZ , Z), (Uκ, PZ , Z)) = ∆((RZ , PZ , Z), (Uκ, PZ , Z)|Z ∈ Z
′) Pr[Z ∈ Z ′]

+ ∆((RZ , PZ , Z), (Uκ, PZ , Z)|Z 6∈ Z
′) Pr[Z 6∈ Z ′]

≤
ε− ζ

1− ζ
∗ (1− ζ) + 1 ∗ ζ = ε.

Recall that Z denotes the uniform random variable over the set Z. (Gen,Rep, advice)
is a (M,W, κ, t, ε, `) fuzzy extractor with distributional advice.

Interpretation In the setting when ε = Θ(1) then setting ζ = ε/2 implies that for all
subsetsW ′ ⊆ W where Pr[Z ∈ Z ′] ≥ 1−ε/2 = 1−Θ(1) there is no ({0, 1}n, κ, t, ε/(2−
ε), `)-fuzzy extractor for some element of W ′. This shows that at least ε/2 = Θ(1)
fraction of elements in W do not have ({0, 1}n, κ, t, ε/(2− ε), `)-fuzzy extractors.

Lemma 5. Let W be a distribution family indexed by Z and suppose that no
({0, 1}n,W, m̃, t, ε, δ, `)-secure sketch with distributional advice exists. For all families
W ′ ⊆ W indexed by Z ′ ⊆ Z where |Z ′|/|Z| ≥ 1− 2−ζ there is some z′ ∈ Z ′ for which
no ({0, 1}n, m̃+ 1, t, ε, δ, `)-secure sketch (SSz′ ,Recz′) exists if ζ ≥ m̃+ 1.

11



Proof. The proof of Lemma 5 follows the structure of the proof of Lemma 4. That is,

advice(z) =

{

(Genz,Repz) z ∈ Z ′

⊥ otherwise.

SS(w,C) =

{

(w,w) C =⊥

SS′(w) C = SS′,Rec′.

Rec(w′, p, C) =

{

p C =⊥

Rec′(w′, p) C = SS′,Rec′.

Then consider the following equation for computing the remaining smooth conditional
min-entropy.

E
z←Z

[H̃ε
∞(Wz|SS(Wz), z)] = −log

(

Pr[Z ∈ Z ′]E
Z
2−H̃

ε
∞(WZ |ss,Z∈Z

′) + Pr[Z 6∈ Z ′]E
Z

[

2−H̃
ε
∞(WZ |ss,Z 6∈Z

′])
])

≤ −log
(

1 · 2−m̃ + 2−ζ · 1
)

≤ min{m̃+ 1, ζ} − 1 ≤ m̃.

Interpretation Setting ζ = max{m̃, 1} shows that at least 2−m̃ of the distributions
have no secure sketch. Later in this work, we consider m̃ = Θ(1) which suffices to that
show that a constant fraction of distributions have no secure sketch.

3 Fuzzy Extractors

Before introducing our main theorem we introduce two families of distributions that
are used for our negative results. Consider the following index sets:

Zn,k =
{

z ⊆ {0, 1}n
∣

∣|z| = 2k
}

,

Zn,k,t,γ =
{

z ⊆ {0, 1}n
∣

∣|z| = 2k,Hfuzz
t,∞ (Uz) ≥ γ

}

.

That is, Zn,k,t,γ and Zn,k are sets of sets. Throughout, we use α := log
(

(

2n

2k

)

)

= |Zn,k|.

In either case, one can specify the particular choice of z by listing the 2k points. We
use the notation

Wn,k = {Wz|z ∈ Zn,k ∧ ∀w ∈Wz,Pr[Wz = w] = 1/2k},

Wn,k,t,γ = {Wz|z ∈ Zn,k,t,γ ∧ ∀w ∈Wz,Pr[Wz = w] = 1/2k}.

Wn,k is the family of uniform distributions Wz over a set z, |z| = 2k. Wn,k,t,γ adds
the requirement that Hfuzz

t,∞ (Wz) ≥ γ. We use Zn,k to denote the uniform distribution
over Zn,k and Wn,k,Z to denote the uniform choice of some Wz where z ← Zn,k,
similarly, we use Zn,k,t,γ to denote the uniform distribution over Zn,k,t,γ andWn,k,t,γ,Z

12



Notation Meaning
k log size support of input distribution
` Length of advice and circuit size of fuzzy extractor

m̃ Residual min-entropy of fuzzy extractor conditioned on helper
n Dimension of input points
t Distance for correction

Bt Hamming Ball of radius t
U Uniform distribution

ε
Statistical Distance Parameter for fuzzy extractor,
Smoothness parameter for min-entropy of secure sketch

α = log
(

(

2
n

2k

)

)

Log size of number of distributions in Wn,k.

β Ratio of Metric Space Size to Size of Hamming Ball (Def 4)
γ lower bound on fuzzy min-entropy of distributions
κ key length of fuzzy extractor
ν Number of points that adversary “describes” in advice

µ = n · h2

(

1

2
− t

n

)

Bound on log of maximum number of viable points (Lem 8)

Wn,k Set of all distributions with k points
Zn,k Set of indices for Wn,k

Zn,k Uniform choice of z ← Zn,k

Wn,k,Z Uniform choice of Wz from Wn,k

Wn,k,t,γ Restriction of Wn,k to distributions Wz with Hfuzz
t,∞(Wz) ≥ γ

Zn,k,t,γ Set of indices for Wn,k,t,γ

Zn,k,t,γ Uniform choice of z from Zn,k,t,γ

Wn,k,t,γ,Z Uniform selection of Wz from Wn,k,t,γ

Table 1 Summary of notation.

to denote the uniform choice of some Wz where z ← Wn,k,t,γ,Z . For z = (z1, ..., z2k)
let wz1 , ..., wz

2k
denote the support of Wz. We also summarize notation in Table 1.

Theorem 6. Let γ, n, κ, t, `, ν, γ ∈ Z
+ be parameters where t < n/2. Denote

α := log
(

(

2n

2k

)

)

, µ := n · h2
(

1
2 −

t
n

)

. For a 1/4 of the values z ∈ Zn,k,t,γ there is no

({0, 1}n,Wz, κ, t, ε, `)-fuzzy extractor for ε < 1/3− (ε1 + ε2 + ε3)/3. For

log(ε1) := −

(

κ+
α− `

2k
− µ− 2k + log(ν)

)

,

ε2 :=
ν + 1

2κ−1
,

ε3 :=
(

e2γ−β
)2k−γ

2n−1.

Lemma 4 states that to show the hardness of building an efficient fuzzy extractor
(Definition 6) for a constant fraction of Wz ∈ Wn,k,t,γ it suffices to show the hardness
of building a fuzzy extractor with distributional advice (Definition 8) for the family
Wn,k,t,γ . The proof of Theorem 6 focuses on the distributional advice setting using
the following structure:
1. We show that few elements in Zn,k are not in Zn,k,t,γ . Lemma 7 shows that the

statistical distance between Wn,k,Z and Wn,k,t,γ,Z is small. This shows that the
hardness of building a fuzzy extractor with distributional advice for the family

13



Wn,k implies hardness for Wn,k,t,γ . For the remainder of the proof, we consider
Wn,k.

2. Lemma 9 shows one cannot build a fuzzy extractor with distribution advice for
Wn,k. Proving this requires several steps
(a) Lemma 8 which bounds the number of “viable” points for most public values

p. This lemma bounds the total number of points and holds even if Gen,Rep
have access to an arbitrary advice string. We switch to considering a fixed
value of advice. At the end of the proof we average across the distribution of
advice.

(b) Claim 3 shows the majority of the support of Zn,k|Advice = advice is difficult
to predict and thus unlikely to be included in the set of viable points. We
call such points Hard Points. There are some points that the adversary has
a large amount of information on that we call Free Points.

(c) Corollary 10 puts together the above two steps to show that the adversary
includes a small number of points from the particular distribution Wz in the
viable set.

Since the construction cannot align the viable points with the distribution there
exists a distinguisher that can distinguish a uniform triple from a key triple.

The rest of this section is organized as follows:

Section 3.1 We present and prove Lemmas 7 and 9,
Section 3.2 We present the proof of Theorem 6 combining Lemmas 7 and 9, and
Section 3.3 We present our preferred setting of parameters.

3.1 Main Technical Lemmas and Proofs

Lemma 7. Fix n, t, k, γ ∈ Z
+ where t < n/2, then ∆(Wn,k,Z ,Wn,k,t,γ,Z) ≤

(

e2γ−β
)2k−γ

2n.

Proof of Lemma 7. We first show the fraction of items in Zn,k that are not in Zn,k,t,γ

is at most
(

e2γ−β
)2k−γ

2n. A string z ∈ Zn,k \ Zn,k,t,γ if and only if there exists some
point y such that there are at least 2−γ2k = 2k−γ points within distance t of y. Fix
some arbitrary y∗. The point y∗ defines a set Ay∗ of all points within distance t and
note that |Ay∗ | = |Bt|. We now show that the probability that a value in z ← Zn,k

has a large intersection with Ay∗ is small.

Claim 2. Let n, k, a ∈ Z
+ where log(a) < k. Let a∗ = a/(1 − a2−k). Let Zn,k be

the uniform distribution over Zn,k. Let A be a fixed subset of size a · 2n−k. Then
E[|Zn,k ∩A|] = a and any ζ > 0,

Pr[|Zn,k ∩A| ≥ a
∗(1 + ζ)] ≤

[

eζ

(1 + ζ)1+ζ

]a∗

.

Proof. For the purposes of bookkeeping, arrange the elements of A in an arbitrary
order and note that |A| = a2n−k < 2k2n−k = 2n so A ⊂ {0, 1}n, and let

X1, . . . , Xa2n−k

14



be indicator random variables so that Xi = 1 if and only if the ith element of A lies
in Zn,k. Note that for any individual i, Pr[Xi = 1] = a2n−k/2n = a2−k and thus
E[|Zn,k ∩ A|] =

∑

i E[Xi] = 2k E[Xi] = 2k(a2−k) = a by linearity of expectation.
Observe that under any conditioning on the variables X1, . . . , Xt,

Pr[Xt+1 = 1] ≤
2k

2n − a2n−k
=

2k

2n(1− a2−k)
.

Let Yi be a sequence of i.i.d. random variables (with the same index set) for which

Pr[Yi = 1] =
2k

2n(1− a2−k)
.

It follows that the random variable
∑

iXi is stochastically dominated by the random
variable

∑

i Yi. Observe that E[
∑

Yi] = a∗. Applying a standard Chernoff upper tail
bound to the Yi then yields the result. This completes the proof of Claim 2.

We now continue using the notation of Claim 2, let

a∗ =
2k|Bt|

2n − |Bt|
= 2k−β .

Fix the value of ζ such that

1 + ζ =
2−γ(2n − |Bt|)

|Bt|
≥ 2β−γ .

then the probability Zn,k intersects with Ay∗ in at least 2k−γ places is at most

Pr[|Zn,k ∩Ay∗ | ≥ a∗(1 + ζ)] ≤

Pr[|Zn,k ∩Ay∗ | ≥ 2k−γ ] ≤

(

(

e2γ−β
)2β−γ

)2k−β

=
(

e2γ−β
)2k−γ

Now we consider a union bound across all y∗. That is

Pr
z←Zn,k

[Hfuzz
t,∞ (Wz) ≥ γ] =

(

e2γ−β
)2k−γ

2n.

The difference betweenWn,k,Z andWn,k,t,γ,Z is exactly the set of z ∈ Zn,k that are
not present in Zn,k,t,γ . This probability mass is uniformly distributed in both cases,
thus

∆(Wn,k,Z ,Wn,k,t,γ,Z) ≤
(

e2γ−β
)2k−γ

2n.

completing the proof of Lemma 7.
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Fuller, Reyzin, and Smith [5, 7] bound the number of points that could have pro-
duced the output of a fuzzy extractor. Such points are called viable. We present a
stronger version of their lemma that is contained in their proof. The difference is we
bound the union of viable points across different values of key while they only bound
the size of a single key corresponding to the true point. Their argument is purely geo-
metric, so it also applies to fuzzy extractors with distributional advice. We state the
stronger version of [7, Lemma 5.2].
Lemma 8. For n ∈ Z

+, suppose M is {0, 1}n with the Hamming Metric and κ ≥ 2,
0 ≤ t ≤ n/2, ε > 0, ` ∈ Z

+. Suppose (Gen,Rep) is a (M,W, κ, t, `, ε)-fuzzy extractor
with distributional advice for some distribution family W over M. For any fixed p,
for any value advice ∈ {0, 1}`, there is a set GoodKeyp ⊆ {0, 1}

κ of size at least 2κ−1

such that,

µ :=
∑

key∈GoodKeyp

(log(|{v ∈M|(key, p) ∈ supp(Gen(v, advice))} |)) ≤ n · h2

(

1

2
−
t

n

)

.

We now present our main technical lemma and its proof.
Lemma 9. SupposeM is {0, 1}n with the Hamming Metric, κ ≥ 2, 0 ≤ t ≤ n/2, ε >
0, ` ∈ Z

+. For the familyWn,k there is no (Gen,Rep) that is a (M,Wn,k, κ, t, `, ε)-fuzzy
extractor with distributional advice for

ε < 1/2− (ε1 + ε2)

where

ε1 = 2−κ−
α−`

2k
+1+µ+2k−log(ν),

ε2 =
ν + 1

2κ
,

µ ≤ n · h2

(

1

2
−
t

n

)

,

α = log

((

2n

2k

))

.

Furthermore, there exists an algorithm D that always outputs 1 when given samples
of the form r, p, z that are correctly generated by the fuzzy extractor.

Proof of Lemma 9. Before proceeding we introduce some additional notation. Let
(Gen,Rep,Advice) be a fuzzy extractor with distributional advice. Let a be some string.
For a tuple (v, p, r, a) define

Viable(v, p, r, a) =

{

1 Pr[Gen(v, a) = (r, p)] > 0

0 otherwise
.
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Recall that |Zn,k| = 2α =
(

2n

2k

)

. Let A be a random variable denoting Advice(Zn,k).
Thus,

H∞(Zn,k) = α,

H̃∞(Zn,k|A) ≥ α− `.

Define

2−αa,w : = Pr
z←Zn,k|A=a

[w ∈ Supp(Wz)],

2−αa : = 2−H̃∞(Zn,k|A=a) = max
W⊆{0,1}n||W |=2k

(

∏

w∈W

2−αa,w

)

.

Note that
−log

(

E
a←A

(

2−αa
)

)

= H̃∞(Zn,k|A) ≤ α− `.

Define the notation HViable(w, p, key, a, E) :
1. 0 if w ∈ E or ∀z ∈ Supp(Zn,k|A = a), w 6∈ Supp(Wz),
2. Prz←Zn,k|A=a [Viable(w, p, key, a) = 1 ∧ w ∈ Supp(Wz)] otherwise.
Claim 3 bounds how much information a fixed a contains about the points in the

distribution (we consider the expectation across a ∈ A after Corollary 10).

Claim 3. Let µ and GoodKey be defined as in Lemma 8. Let A be a distribution and
let a be a fixed value such that H∞(Wn,k|A = a) = αa. Fix some value w and some
value p. Define GoodKeyp as in Lemma 8. Each value w∗ ∈ {0, 1}n defines a set Ea,w∗

where |Ea,w∗ | ≤ ν + 1 such that

log





∑

key∈GoodKeyp

HViable(w, p, key, a, Ea,w∗)



 ≤ −
αa

2k
+ 1 + µ+ k − log(ν) .

Proof of Claim 3. Let A be an random variable over {0, 1}`. Fix some value a. Let
w1,a, ..., w2k,a denote an arbitrary subset of {0, 1}n of size 2k. Then

2k
∑

i=1

αa,wi,a
≤ αa.

Then one has that
E

i←U
{0,1}k

(

αa,wi,a

)

≤
αa

2k
.

We need an elementary lemma which states that not too many of αa,wi
are much

larger than αa/2
k:
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Claim 4. Define Ea ⊂ {w1,a, ..., w2k,a} as

Ea =
{

w
∣

∣

∣
αa,w ≥

αa

2k
− (k − log(ν))

}

.

Then
|Ea| ≤ ν.

Proof of Claim 4. By Markov’s inequality

Pr
i←U

{0,1}k

[

Pr
z←Zn,k|A=a

[wi,a ∈ Supp(Wz)] ≥ β E
i

Pr
z←Zn,k|A=a

[wi,a ∈ Supp(Wz)]

]

=

Pr
i←U

{0,1}k

[

Pr
z←Zn,k|A=a

[wi,a ∈ Supp(Wz)] ≥ β2
−αa,w

]

≤ 1/β.

Setting β = 2k/ν implies the statement of the Claim.

We now continue with the proof of Claim 3. By Claim 4 it is true that there exists
a set Ea ⊆ {0, 1}

n of size at most ν where such that for all w 6∈ Ea is true that
αa,w < αa/2

k + (k − log(ν)). Let w∗ denote the point that will be given to Gen that
is (key, p)← Gen(w∗, a). We define the set Ea,w∗ = Ea ∪ {w

∗}. Then,

Pr
z←Zn,k|A=a∧key∈GoodKey,p

[w ∈ Supp(Wz)|w 6∈ Ea,w∗ ] ≥

Pr
z←Zn,k|A=a∧w∗∈Supp(Wz)

[w ∈ Supp(Wz)|w 6∈ Ea,w∗ ] ≥ 2−(
αa

2k
−k+log(ν)−1).

This is because conditioning on a single bit that w∗ ∈ Supp(Wz) increases the pre-
dictability of an random variable by at most a factor of 2. We now proceed to bounding
HViable(w, p, key, a, Ea,w∗). By Lemma 8 we know that there are at most 2µ points in
Viable(w, p, key, a). Thus, by union bound over the set of viable points,

HViable(w, p, key, a, Ea,w∗) ≤ 2−
αa

2k
+1+µ+k−log(ν).

This completes the proof of Claim 3.

Corollary 10. Let µ and GoodKey be defined as in Lemma 8. Fix an arbitrary point
w∗ ∈ {0, 1}n and some a and define Ea,w∗ as in Claim 3. By Claim 3 on average
across z ← Zn,k|A = a (by union bound across the points in Wz) one has that:

E
z←Zn,k|A=a

∣

∣

∣

∣

∣

∣

∣











w

∣

∣

∣

∣

∣

∣

∣

w ∈ Supp(Wz)

w 6∈ Ea,w∗

∃key ∈ GoodKeyp, Viable(w, p, key, a)











∣

∣

∣

∣

∣

∣

∣

≤ 2−
αa

2k
+1+µ+2k−log(ν).
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Then on average across a ∈ A (using the fact that Ea←A (2−αa) = 2−(α−`)) one has

E
a←A






E

z←Zn,k|A=a

∣

∣

∣

∣

∣

∣

∣











w

∣

∣

∣

∣

∣

∣

∣

w ∈ Supp(Wz)

w 6∈ Ea,w∗

∃key ∈ GoodKeyp, Viable(w, p, key, a)











∣

∣

∣

∣

∣

∣

∣






≤ 2−

α−`

2k
+1+µ+2k−log(ν).

And finally,

E
a←A

(

E
z←Zn,k|A=a

∣

∣

∣

∣

∣

{

w

∣

∣

∣

∣

∣

w ∈ Supp(Wz)

∃key ∈ GoodKeyp, Viable(w, p, key, a)

}∣

∣

∣

∣

∣

)

≤ 2−
α−`

2k
+1+µ+2k−log(ν) + ν + 1.

With Corollary 10 in hand we are ready to prove Lemma 9. Consider the following
distinguisher D for triples of the form r, p, z:
1. If r 6∈ GoodKeyp output 1,
2. If

∑

w∈Supp(Wz)
Viable(w, r, p, advice(z)) = 0 output 0,

3. Else output 1.
First note that by perfect correctness it is always the case that when given key, p, z
that D outputs 1. We proceed to bound the probability that D outputs 1 when given
Uκ, p, z. Note that the probability that Pr[Uκ ∈ GoodKeyp] ≥ 1/2 by the definition of
GoodKeyp.

We bound the number of parts with at least one point in viable. We begin by
assuming that all points in viable are in different values r so the bound on the size of

{

w

∣

∣

∣

∣

∣

w ∈ Supp(Wz)

∃key ∈ GoodKeyp, Viable(w, p, key, a)

}

gives a bound on the number of keys for which D could output 1. By Corollary 10

E
a←A

(

E
z←Zn,k|A=a

∣

∣

∣

∣

∣

{

w

∣

∣

∣

∣

∣

w ∈ Supp(Wz)

∃key ∈ GoodKeyp, Viable(w, p, key, a)

}∣

∣

∣

∣

∣

)

≤ 2−
α−`

2k
+1+µ+2k−log(ν)+ν+1.

Thus, the fraction of non-empty parts in Goodkeyp on average is at most

2−
α−`

2k
+1+µ+2k−log(ν) + ν + 1.

Thus, the probability that D outputs 0 when given Uκ, p, z is at least 1/2− (ε1 + ε2)
where

ε1 : = 2−κ−
α−`

2k
+2+µ+2k−log(ν),

ε2 : =
ν + 1

2κ−1
.

This completes the Proof of Lemma 9.
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3.2 Proof of Theorem 6

Proof of Theorem 6. Define the pair of random variables (RZn,k
, PZn,k

) ←
Gen(Wn,k,Z , advice(Zn,k)). Restating Lemma 9 one has that

∆((RZn,k
, PZn,k

, Zn,k, (Uκ, PZn,k
, Zn,k)) ≥ 1/2− (ε1 + ε2).

Let D be one distinguisher that always outputs 1 on any value key, p, z for any
distribution Wz, then

Pr[D((RZn,k
, PZn,k

, Zn,k)) = 1] = 1

Pr[D(Uκ, PZn,k
, Zn,k) = 1] ≤ 1/2 + (ε1 + ε2).

Recall that ∆(Wn,k,Z ,Wn,k,t,γ,Z) ≤ ε3 by Lemma 7 . Define the pair of random
variables

(RZn,k,t,γ
, PZn,k,t,γ

)← Gen(Wn,k,t,γ,Z , advice(Zn,k,t,γ)).

by the information processing lemma it is thus true that

Pr[D(RZn,k,t,γ
, PZn,k,t,γ

, Zn,k,t,γ) = 1] = 1,

Pr[D(Un, PZn,k,t,γ
, Zn,k,t,γ) = 1] ≤ 1/2 + (ε1 + ε2 + ε3).

Finally, the theorem follows by application of Lemma 4 with the setting of ζ = 1/4.

3.3 Analysis of parameters

We separately consider ε1, ε2 and ε3. We refer to these three terms as hard points,
free points, and distributional closeness respectively. This is because ε1 describes how
much information the advice has about hard points inWz, ε2 considers a small number
of points that are more thoroughly described by advice, and ε3 controls the statistical
distance between Wn,k and Wn,k,t,γ . We consider parameters in order of simplicity.

3.3.1 Free Points - ε2

For ε2 to be negligible it suffices that ν/2κ = ngl(λ). Meaningful security requires
κ = ω(log(n)). We set

Condition 1 ν = 2cκκ for some constant 0 < cκ < 1 yielding

ε2 =
ν + 1

2κ−1
= 2(cκ−1)κ−κ+1 = ngl(n).

3.3.2 Distributional Closeness - ε3

Recall that ε3 :=
(

e2γ−β
)2k−γ

2n+1. Consider the following settings:

Condition 2 That γ ≤ β − log(2e), which implies 2γ−β ≤ 1
2e , and

Condition 3 For constant 0 < c|k| < 1, we set k = γ + c|k|n which implies 2k−γ ≥
n+ 1 + ω(log(n)).

20



Together, these settings imply that

ε3 =
(

e2γ−β
)2k−γ

2n+1 ≤

(

1

2

)n+ω(log(n))+1

2n+1 = 2−ω(log(n)) = ngl(n).

Discussion By Proposition 3 for any W in {0, 1}n it is true that

Hfuzz
t,∞ (W ) ≤ n

(

1− h2

(

t

n

))

+
log(n)

2
+ 1/2.

Thus, the additional constraint that

Hfuzz
t,∞ (W ) := γ ≤ β − log(2e) ≤ n

(

1− h2

(

t

n

))

+
log(n)

2
+

1

2
− log(2e) .

imposes an additive log(2e) impact on the maximal fuzzy min-entropy that can be
supported.

3.3.3 Hard Points - ε1

We now turn to our analysis of ε1. Recall log(ε1) := −
(

κ+ α−`
2k
− µ− 2k + log(ν)

)

and that

(n/k)k ≤

(

n

k

)

< ((ne)/k)k

µ ≤ nh2(1/2− t/n),

α = log

((

2n

2k

))

≥ log
(

2n2
k

/2k2
k
)

= (n− k)2k,

Recall that ν = 2cκκ. This implies that

−log(ε1) = κ+
α− `

2k
− µ− 2k + log(ν)

≥ κ+
α− `

2k
− nh2(1/2− t/n)− 2k + log(ν) ,

≥ κ+
(n− k)2k − `

2k
− nh2(1/2− t/n)− 2k + cκκ,

≥ (1 + cκ)κ+
(n− k)2k − 2k2k − `

2k
− nh2(1/2− t/n)

> (1 + cκ)κ+
(n− 3k)2k − `

2k
− nh2(1/2− t/n).

We now focus on parameters when ψ := (n−3k)2k−`
2k

− nh2(1/2− t/n) ≥ 0.
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Condition 4 Let 0 < c` < 1 be a parameter such that ` ≤ 3c`n2
k,

Condition 5 Suppose that

γ ≤
n(1− 3c|k| − c` − h2(1/2− t/n))

3
.

Then it holds that

ψ : =
(n− 3k)2k − `

2k
− nh2(1/2− t/n)

≥
(n− 3k)2k − c`n2

k

2k
− nh2(1/2− t/n)

≥
n(1− 3(γ/n+ c|k|)− c`2

k)

2k
− nh2(1/2− t/n)

≥ n(1− 3c|k| − c`)− 3γ − nh2(1/2− t/n) ≥ 0

which suffices to ensure that

log(ε1) ≤ − ((1 + cκ)κ+ ψ) ≤ −(1 + cκ)κ = −ω(log(n)).

3.3.4 Overall Parameters

Combining Conditions 2 and 5 one obtains a negligible statistical distance as long as
for constants cκ, c|k|, c` ∈ (0, 1) one has:

ν = 2cκκ,

k = γ + c|k|n,

` ≤ 3c`n2
k,

0 ≤
γ

n
≤ min

{

(1− h2(t/n)) +
log(n) + 1− 2log(2e)

2n
,
1− 3c|k| − c` − h2(1/2− t/n)

3

}

.

4 Secure Sketches

This section creates an upper bound on the quality of efficient secure sketches. This
bound is stronger than Theorem 6 due to the stronger geometry established by the
secure sketch correctness requirement.
Theorem 11. Let n, t, `, γ, ν, m̃ ∈ Z

+, ε, δ ∈ [0, 1] be parameters where t < n/2 and
denote µ := (n(1−h2(t/n))+h2(2δ))/(1−2δ). For a 2−m̃ fraction of the distributions in
the familyWn,k,t,γ (indexed by z ∈ Zn,k,t,γ) there is no ({0, 1}n,Wz, m̃, t, ε

′, δ, `)-secure
sketch for

m̃ ≥ 2− log(1− 2ε) + 2max

{

−
α− `

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}

.
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where ε′ = ε−
(

e2γ−β
)2k−γ

2n.

Proof of Theorem 11. Good secure sketches are bounded in size as they imply good
Shannon error correcting codes [7, Lemma 7.3]. This is true if one considers a secure
sketch that retains smooth min-entropy with no loss in parameters because it only
relies on the correctness of the secure sketch (not the security property).

Lemma 12. Let n, t, m̃ ∈ Z
+, ε, δ ∈ [0, 1] be parameters where t < n/2 and denote

µ := (n(1 − h2(t/n)) + h2(2δ))/(1 − 2δ). Let Wn,k be a family indexed by set Zn,k

and let Zn,k denote the uniform distribution over Zn,k. Suppose (SS,Rec,Advice) is
a ({0, 1}n,Wn,k, m̃, t, εSS, `, δ)-secure sketch with distribution advice. For every v ∈
{0, 1}n and any value a ∈ {0, 1}` there exists a set GoodSketchv,a where Pr[SS(v, a) ∈
GoodSketchv,a] ≥ 1/2 and for any fixed ss,

µ := log(|{v ∈ {0, 1}n|ss ∈ GoodSketchv,a}|)

≤
n− log(|Bt|) + h2(2δ)

1− 2δ
≤
n(1− h2(t/n)) + h2(2δ)

1− 2δ
.

Define α := H∞(Zn,k) and note that H̃∞(Zn,k|A) ≥ α − ` and define αa :=

H̃∞(Zn,k|A = a). Note that

E
a←A

(

2−αa
)

= 2−H̃∞(Zn,k|A) ≥ 2−(α−`).

For a triplet (v, ss, a) define Viable(v, ss, a, z) = 1 if
1. Pr[SS(v, a) = ss] > 0,
2. ss ∈ GoodSketchv,a, and
3. v ∈ Supp(Wz).

Otherwise set Viable(v, ss, a, z) = 0. Define Viable(v, ss, a) =
Prz←Zn,k|A=a[Viable(v, ss, a, z) = 1]. Define HViable(v, ss, a, E) = Viable(v, ss, a) if
v 6∈ E and 0 otherwise. We present an analog of Claim 3 adapted to the secure sketch
setting.

Claim 5. Let µ and GoodSketch be defined as in Lemma 12. Let A be a distribution
and let a be a fixed value such that H∞(Wn,k|A = a) = αa. Fix some value v. Each
value w∗ ∈ {0, 1}n defines a set Ea,w∗ where |Ea,w∗ | ≤ ν + 1 such that

log

(

∑

ss

HViable(v, ss, a, Ea,w∗)

)

≤ −
αa

2k
+ 1 + µ+ k − log(ν) .

The proof of Claim 5 follows the structure of the proof of Claim 3 and is omitted.
Claim 5 suffices to bound how many points are “viable” from the output of the secure
sketch.
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Corollary 13. Let µ be defined as in Lemma 12. Fix an arbitrary point w∗ ∈ {0, 1}n,
some ss and some a. Define Ea,w∗ as in Claim 5. By Claim 5 on average across
z ← Zn,k|A = a (by union bound across the points in Wz) one has that:

log

(

E
z←Zn,k|A=a

∣

∣

∣

∣

∣

{

w

∣

∣

∣

∣

∣

w 6∈ Ea,w∗

Viable(w, ss, a, z)

}∣

∣

∣

∣

∣

)

≤ −
αa

2k
+ 1 + µ+ 2k − log(ν) .

Then on average across a ∈ A (using the fact that Ea←A (2−αa) = 2−(α−`)) one has

log

(

E
a←A

(

E
z←Zn,k|A=a

∣

∣

∣

∣

∣

{

w

∣

∣

∣

∣

∣

w 6∈ Ea,w∗

Viable(w, ss, a, z)

}∣

∣

∣

∣

∣

))

≤ −
α− `

2k
+ 1 + µ+ 2k − log(ν) .

And finally,

E
a←A

(

E
z←Zn,k|A=a

|{w|Viable(w, ss, a, z)}|

)

≤ 2−
α−`

2k
+1+µ+2k−log(ν) + ν + 1.

Lemma 14. Let all parameters be as in Corollary 13 with ν ∈ Z
+. For the family

Wn,k,Z there is no ({0, 1}n,Wn,k,Z , m̃, t, ε, `, δ)-secure sketch with distributional advice
if

m̃ > −log(1− 2ε) + 1 + 2max

{

−
α− |advice|

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}

.

Furthermore, there exists an algorithm D that always outputs 1 when given samples
of the form w, ss, z that are correctly generated by the secure sketch.

Proof of Lemma 14. First recall for every v ∈ {0, 1}n and advice string a there exists
a set GoodSketchv,a where Pr[SS(v, a) ∈ GoodSketchv,a] ≥ 1/2. We first need an
elementary claim which says that just predicting w when the sketch is in good sketch
implies a predictor for the full setting with only a single bit of loss.

Claim 6. Let (X,Y ) be a pair of random variables and, S(X,Y ) be a set, let f be a
randomized function taking inputs on the domain of (X,Y ). Then

H̃ε
∞(X|Y, f(X,Y ) ∈ S(X,Y )) ≥ H̃ε

∞(X|Y ) + log(Pr[f(X,Y ) ∈ S(X,Y )]) .

Proof of Claim 6. Let X ′, Y ′ be a distribution such that ∆((X,Y ), (X ′, Y ′)) ≤ ε. By
[7, Lemma 7.8] for any event η

H̃∞(X ′|Y ′, η) ≥ H̃∞(X ′|Y ′) + log(Pr[η]) .

Let η denote the event that f(X,Y ) ∈ S(X,Y ). The proof completes by noting that
∆((X,Y ), (X ′, Y ′)) ≤ ε implies that

∆((X,Y, f(X,Y )
?
∈ S(X,Y )), (X ′, Y,′ f(X ′, Y ′)

?
∈ S(X ′, Y ′))) ≤ ε
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by the information processing lemma. This is turn implies that

H̃ε
∞(X|Y, f(X,Y ) ∈ S(X,Y )) ≥ H̃ε

∞(X|Y ) + Pr[f(X,Y ) ∈ S(X,Y )].

This completes the proof of Claim 6.

We now proceed with the proof of Lemma 14. Define D(v, ss, z) = 1 if ss 6∈
GoodSketchv or Viable(v, ss,Advice(z), z) = 1. D outputs 0 otherwise. Note that for
w, ss, z correctly generated as the output of SS D always outputs 1. Denote

A := advice(Zn,k)

X :=Wn,k,Z ,

Y := SS(Wn,k,Z , A).

By Claim 6:

H̃ε
∞(X|Y, Z) ≤ H̃ε

∞(X|Y, Z,X ∈ GoodSketchY,A) + 1.

In the above note that A and thus GoodSketchWn,k,A are computable from the pair
Wn,k, Z since Advice is a function. Let X ′, Y ′, Z ′ be a triple of random variables where

∆((X,Y, Z), (X ′, Y ′, Z ′)) ≤ ε.

Our goal is to bound the min-entropy of X ′, Y ′, Z ′|X ′ ∈ GoodSketchY ′,Advice(Z′) by
Claim 6 the smooth min-entropy without conditioning on this event increases by at
most 1. First note that

Pr
(x,y,z)←X′,Y ′,Z′

[D(x, y, z) = 1|X ′ ∈ GoodSketchY ′,Advice(Z′)] ≥ 1− 2ε.

Let A′ := Advice(Z ′). When X ′ ∈ GoodSketchY ′,Advice(Z′) in order for D to output 1
it must be the case that Viable(x′, y′,Advice(z′), z′) = 1. That is, the support of x′

must be drawn from points in W ′z. For any fixed value of y ∈ Y and arbitrary random
variable A′ of length at most ` by Corollary 13 the number of such x′ is at most

2−
α−`

2k
+1+µ+2k−log(ν) + ν + 1. For any fixed support the min-entropy is maximized by

considering the uniform distribution over such points.

H̃∞(X ′|Y ′, Z ′, X ′ ∈ GoodSketchY ′,Advice(Z′),D(X
′, Y ′, Z ′) = 1)

≤ log
(

2−
α−|advice|

2k
+1+µ+2k−log(ν) + ν + 1

)

≤ 2max

{

−
α− |advice|

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}

.

One then has,

2−H̃∞(X′|Y ′,Z′,X′∈GoodSketchY ′,Advice(Z′))
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≥ Pr
x,y,z←(X′,Y ′,Z′)

[D(x, y, z) = |X ′ ∈ GoodSketchY ′,Advice(Z′)]

∗ 2−H̃∞(X′|Y ′,Z′,X′∈GoodSketchY ′,Advice(Z′),D(X′,Y ′,Z′)=1)

+ Pr
x,y,z←(X′,Y ′,Z′)

[D(x, y, z) = 0|X ′ ∈ GoodSketchY ′,Advice(Z′)]

∗ 2−H̃∞(X′|Y ′,Z′,X′∈GoodSketchY ′,Advice(Z′),D(X′,Y ′,Z′)=0)

≥ (1− 2ε)2−H̃∞(X′|Y ′,Z′,X′∈GoodSketchY ′,Advice(Z′),D(X′,Y ′,Z′)=1)

And thus,

H̃∞(X ′|Y ′, Z ′, X ′ ∈ GoodSketchY ′,Advice(Z′)) ≤ −log(1− 2ε) + H̃∞(X ′|Y ′, X ′ ∈WZ).

Define

m̃ := −log(1− 2εSS)+1+2max

{

−
α+−|advice|

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}

.

This implies that H̃ε
∞(Wn,k,Z |SS(Wn,k,Z , A), Zn,k) ≤ m̃. This completes the Proof of

Lemma 14.

We now proceed to the proof of Theorem 11. Let

m̃ := −log(1− 2εSS)+1+2max

{

−
α+−|advice|

2k
+ 1 + µ+ 2k − log(ν) , log(ν + 1)

}

.

Restating Lemma 14 one has that

H̃εSS
∞ (Wn,k,Z |SS(Wn,k,Z , A), Zn,k) ≤ m̃.

Define

A′ := Advice(Zn,k,t,γ),

SS′ := SS(Wn,k,t,γ,Z , A
′),

εWn,k,Z
:=
(

e2γ−β
)2k−γ

2n.

By Lemma 7, ∆(Wn,k,Z ,Wn,k,t,γ,Z) ≤ εWn,k,Z
and thus

H̃εSS−εPCode
∞ (Wn,k,t,γ,Z |SS

′, Zn,k,t,γ) ≤ m̃. Suppose not, then there exists some E,F,G
where

∆((E,F,G), (PCode∗n,k,t,α, SS(PCode
∗
n,k,t,α), ZPCode∗

n,k,t,α
)) ≤ εSS − εPCode.

and H̃∞(E|F,G) > m̃. Thus,

∆((E,F,G), (Wn,k,Z , SS(Wn,k,Z , A), Zn,k))

26



≤ ∆((E,F,G), ((Zn,k,t,γ , SS
′,Wn,k,t,γ,Z)) + ∆(Zn,k, Zn,k,t,γ)

≤ εSS − εPCode + εPCode = εSS.

This contradicts the fact that H̃εSS
∞ (Wn,k,Z |SS(Wn,k), Zn,k)) ≤ m̃. Finally, Theorem 11

follows by application of Lemma 5 with setting ζ = χ and noting that χ ≥ 1.

4.1 Analysis of parameters

We assume that ε ≤ 1/8 and δ < 1/4. As before for
(

e2γ−β
)2k−γ

2n to be negligible it
suffices that

Condition 1 That γ ≤ β − log(2e) .3

Condition 2 Let 0 < ck < 1 be some arbitrary constant and suppose that k = γ+ ckn
which implies that k ≥ γ + log(n+ ω(log(n))).

These two conditions imply that −log(1− 2ε) ≤ 1 and ε′ ≥ 1/8− ngl(λ).

Condition 3 That ν = 1.

Define

χ := −
α− `

2k
+ 1 + µ+ 2k − log(ν)

We now turn to our analysis of χ. Recall that (n/k)k ≤
(

n
k

)

< ((ne)/k)k. Recalling
parameters:

µ ≤
(n(1− h2(t/n)) + h2(2δ))

(2δ)
,

α = log

((

2n

2k

))

≥ log
(

2n2
k

/2k2
k
)

= (n− k)2k,

This implies that

χ = −
α− `− k

2k
+ µ+ 2k + 1

≤ −
α+ log(ν)− `− k

2k
+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 2k + 1,

≤ −
(n− k)2k + log(ν)− `− k

2k
+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 2k + 1,

≤ −
(n− 3k)2k − `− k

2k
+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 1.

We consider two settings for δ one when δ < 1/4 and another when δ = 0.

3As in Section 3.3 the additional constraint that γ ≤ β − log(2e) imposes an additive log(2e) impact on
the maximal fuzzy min-entropy that can be supported.
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4.1.1 Constant error, δ < 1/4

As long as for constants ck, c` one has

` ≤ 3c`n2
k,

δ < 1/4,

0 ≤
γ

n
≤ min

{

(1− h2(t/n)) +
log(n) + 1− 2log(2e)

2n
,
2

3
h2(t/n)−

1

3
−

4ck + c`
3

−
2

3n

}

.

then

χ ≤ −
(n− 3k)2k − `− k

2k
+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 1

≤ −
(n− 3k)2k − `− k

2k
+
n(1− h2(t/n)) + h2(2δ)

1− 2δ
+ 1

≤ −
(n− 3k)2k − `− k

2k
+ 2n(1− h2(t/n)) + 2

≤ −(n− (4ck + c`)n− 3γ) + 2n(1− h2(t/n)) + 2

≤ −n+ (4ck + c`)n+ 3γ + 2n(1− h2(t/n)) + 2

≤ n+ (4ck + c`)n+ 3γ − 2nh2(t/n)) + 2 ≤ 0

then m̃ ≤ 3 + 2max{χ, log(2)} ≤ 5 which implies that 1/32 of the distributions have
no secure sketch.

4.1.2 No error, δ = 0

One has

` ≤ 3c`n2
k,

δ < 1/4,

0 ≤
γ

n
≤ min

{

(1− h2(t/n)) +
log(n) + 1− 2log(2e)

2n
,
1

3
h2(t/n)−

4ck + c`
3

−
2

3n

}

.

yielding m̃ ≤ 5 which implies that 1/32 of the distributions have no secure sketch.
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