SPEED-UP OF TRAVELING WAVES BY NEGATIVE CHEMOTAXIS

QUENTIN GRIETTE, CHRISTOPHER HENDERSON, AND OLGA TURANOVA

ABSTRACT. We consider the traveling wave speed for Fisher-KPP (FKPP) fronts under the
influence of repulsive chemotaxis and provide an almost complete picture of its asymptotic
dependence on parameters representing the strength and length-scale of chemotaxis. Our study
is based on establishing the convergence to the porous medium FKPP traveling wave and a
hyperbolic FKPP-Keller-Segel traveling wave in certain asymptotic regimes. In this way, it
clarifies the relationship between three equations that have each garnered intense interest on
their own. Our proofs involve a variety of techniques ranging from entropy methods and decay
of oscillations estimates to a general description of the qualitative behavior to the hyperbolic
FKPP-Keller-Segel equation. For this latter equation, we, as a part of our limiting arguments,
establish a new explicit lower bound on the minimal traveling wave speed and provide a novel
construction of traveling waves that extends the known existence range to all parameter values.

1. INTRODUCTION

In this paper, we are concerned with the problem of front propagation for the Fisher-KPP
(FKPP) equation influenced by a Keller-Segel chemotaxis term:

Uy + x(Vol)y = Upe + U(1 = U)

(1.1) AV — UV

in (0,00) x R,

with the condition V' (¢,-) € L* (to guarantee uniqueness for the second equation in (1.1)). Here
x € R and d > 0 are the strength of the chemotaxis and its length-scale, respectively. In this paper,
we are interested in ‘negative chemotaxis,” which corresponds to x < 0. This is the phenomenon in
which individuals secrete a chemical (chemorepellent) that repels nearby individuals when sensed
by them. To rephrase this slightly, intraspecific interactions manifest as a ‘drift’ that ‘spreads out’
the population. The model (1.1) and others like it have been studied extensively in the past few
decades, see [38] for the original derivation of the Keller-Segel equation and [47,51] for overviews
of its significance in mathematical biology.

In reaction-diffusion systems such as (1.1), one can understand front propagation through the
study of traveling wave solutions, which are special solutions of the form V(t,z) = V(z — ét) and
U(t,x) = U(x —ct) for some ¢ € R, after a slight abuse of notation. We are motivated by ‘invasion
fronts,” so that we consider U(—o0) = 1 and U(+00) = 0. In this case, (1.1) becomes

—eUy + X (VaU), = Ups + U(1 = U)

(12 AV =U —V

in R,
with the additional condition that V' € L*. The existence of these solutions as well as the positivity
of the speed, ¢ > 0, has been proved using routine methods [35].

Our goal is to understand how the behavior of ¢ = ¢, 4 depends on x and d. We seek a precise
description of how the nonlocal drift V. ‘speeds up’ the traveling wave. (It is known that chemotaxis
never ‘slows down’ the traveling wave; that is, ¢, ¢ = 2 for all x, d. See [35, Proposition 1.3]. But as
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2 NEGATIVE CHEMOTAXIS TRAVELING WAVES

we discuss later, it may happen that ¢, 4 = 2 even when —x > 0). As we discuss in the sequel, this
connects to three ongoing threads of research: enhancement of propagation by advection, the role
of nonlinearity in front propagation (i.e., ‘pushed’ and ‘pulled’ fronts), and the effect of nonlocality
in front propagation.

When x/d and d are sufficiently small, it is known that the minimal speed ¢, q = 2, while
the minimal speed satisfies ¢, 4 ~ IX|/2vd when 1 « —x « d [35]. Here we complete the picture,
showing, roughly that there are positive constants ¢, . and c;’iypp, such that

pm,e
(13) ll)CIIi)llI}E, \E/% = C:m,ev
d<—x
where € > 0, and
(1.4) tim inf EX_’C; > oo

where v > 0.
The constants ¢*  _ and cﬁyp - are the minimal wave speeds for, respectively, the porous medium

pm,e ,
FKPP model (PME) and the hyperbolic FKPP-Keller-Segel model (HYP) (see below). The former
is explicit (see (2.5)), taking the value cf; , = 1/v/2 in the case —x — o0, that is, ¢ = 0. The latter

is not explicit; however, we provide a positive lower bound for it.

We also obtain partially matching upper bounds. For the limit (1.3), we construct a particular
sequence of traveling waves for which the lower bound is attained in the limit (in the case € = 0).
For the limit (1.4), we construct a sequence of traveling waves that, after scaling, converge to a
discontinuous traveling wave, which is presumed to be the minimal speed wave (see the discussion
in [32]).

Our arguments are based on the convergence of suitably rescaled solutions of (1.2) to the hyper-
bolic FKPP and porous medium FKPP equations mentioned above. This clarifies the relationship
between the three equations and involves the development of novel estimates in settings where
regularity does not arise from ellipticity.

The first step in our analysis is to perform a scaling that allows for the possibility of a nontrivial
asymptotic limit. We define,

° and v= i

VixlI’ X

w(@) =Ulzv/Ix]),  v(@) =V(zvIx]) ¢=
Then, (1.2) yields: u(—o) =1, u(4+00) =0, ve L*, and

(0tt)s = —tigy + u(l — 1)
—cUuy — (Vp) g = —Uge +u(l —u
(TW) |X‘ in R.

— Vg = U —

We use c§ , to denote the minimal speed of traveling wave solutions to (TW) (see (2.4)). We now
recast our goal with the new objects in hand. The two limits (1.3) and (1.4) correspond, now, to
understanding the scaling of the minimal speed ¢} , when, respectively, (—i v) — (£,0) fore =0
and (—%, v) — (0,v) for > 0. We refer to the former limit as the porous medium regime and
the latter as the hyperbolic regime. Notice that in each case, there is a loss of ellipticity in (TW),
and the consequential degeneration of regularity estimates is a major source of difficulty in our
analysis. We now present some heuristics that clarify this terminology and motivate our main
results.

Heuristics and summary of main results. The first asymptotic limit we consider is v — 0
and —y — 1/, for € = 0. Note that the second equation in (TW) suggests that v and v should



NEGATIVE CHEMOTAXIS TRAVELING WAVES 3

approach the same limit in this regime. Using this ansatz along with the formal limits ¢ — cpm
and u,v — Upy, suggests

(PME) —Cpm (Upm)z — ((Upm)zUpm), = €(Upm)zz + Upm(1 — upm) in R.

We establish that this convergence does indeed occur. The main challenge is obtaining enough
compactness to ensure convergence of the nonlinear terms in (TW): namely, the quadratic term
u? and, especially, the term (v,u),. This model, the porous medium FKPP equation, is well
understood, see [4,24,37] and references therein. In particular, it is known that the minimal speed
of (PME) is strictly positive and an explicit expression for this quantity is available; see (2.5) in
Subsection 2.1.1. We use this, together with our convergence result, to deduce a lower bound on
the limiting speed ¢pm, from which the estimate (1.3) follows.

The second asymptotic limit we consider is v — vy, > 0 and —x — o00. In this case, the

limiting equation is expected to be

(HYP)

{_Chyp(uhyp)w - ((Uhyp>w“hyp>w = Unyp (1 — Unyp) .
in R.

~Vhyp(Vhyp)zz = Uhyp — Vhyp

This equation has been introduced and studied in [28-30]. In addition, (HYP) and similar models
are used in modeling tumor growth; see, e.g., [28, 39,40, 52,53]. We prove that, in this regime,
traveling wave solutions to (TW) do indeed converge to those of (HYP). Two key challenges
are that solutions to (HYP) are irregular (in some cases, discontinuous), and that the theory of
solutions to (HYP) is not as well-developed as that for (PME). Thus, a large portion of our
analysis is devoted to characterizing the general behavior of solutions to (HYP) and establishing
a lower bound on the minimal speed cf;yp%yp. We are thus able to establish a lower bound on any
limiting speed cpyp, and from there deduce (1.4).

In addition, for each vy, > 0, we construct solutions of (HYP), called sharp traveling waves,
and show that, as vhyp — 0, these special solutions converge to those of (PME) with ¢ = 0. We
use this to deduce partially matching upper bounds on the speeds.

We postpone the rigorous statements of our main results until the next section. For the conve-
nience of the reader, we summarize them here:

Theorem 2.1: Traveling wave solutions of (TW) converge, as v — 0 and %x — ¢, fore =0,
to those of (PME). Moreover, the limiting speed is bounded from below away from zero.

Theorem 2.5: Traveling wave solutions of (TW) converge, as %X — 0 and v — vpyp, for
Vnyp > 0, to those of (HYP). Moreover, the limiting speed is bounded from below away
from zero.

Theorem 2.6 and Theorem 2.8: There exist sharp traveling wave solutions to (HYP),
and they converge, as vhyp, — 0, to those of (PME) with € = 0. This yields an upper
bound on the minimal speed of traveling wave solutions to (TW) in the }X — 0 and
V — Vpyp limit.

2. BACKGROUND AND MAIN RESULTS

This section is devoted to rigorously stating our main results and describing their proofs and
significance. In the first subsection, we state several preliminary facts and fix notation. Then,
in Subsection 2.2, we discuss our results on the porous medium regime; in particular, we state
Theorem 2.1. Subsection 2.3 is devoted to our work on traveling wave solutions for (HYP). Then,
in Subsection 2.4, we state Theorem 2.5, which concerns the limit of solutions to (TW) in the
hyperbolic regime, and describe its proof. Our work on the matching lower bounds for the speeds,
Theorems 2.6 and 2.8, is then discussed in Subsection 2.5. Finally, Subsection 2.6 is devoted to
discussion of related work.
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2.1. Preliminaries. Before precisely stating and discussing our results, it is useful to make some
basic observations about traveling wave solutions (u,v) to (TW). First, we note that v is given by
the convolution of u and a kernel:

(2.1) v(z) = (Ky = u)(x) where K, (z) = %IC (%) and K(z) = %67”‘.

Second, using (2.1), a simple comparison principle argument shows that
(2.2) 0<u,v<l.

Finally, note that the first equation in (TW) may also be written as

(2.3) —(c+ vz)uy = 1um+u<ij— (V+1>u>.

x| v

This is often useful in the sequel.

2.1.1. Discussion of minimal speeds. Here, we discuss and fix notation for minimal speeds of trav-
eling waves for the various problems that we work with in this paper. We begin with,

(2.4) ¢y, = inf{c: there is a traveling wave solution (¢, u,v) to (TW)}.

In analogous models, there is an infinite half-line of speeds admitting traveling waves. We believe
that this property holds here: a traveling wave solution (¢, u,v) to (TW) exists for all c € [c} ,, ).
We do not prove this here, although we believe that the proof is straightforward. Instead, we
simply note that [33, Theorem 1.2] and (2.1) imply that

" 2

U=

while an easy compactness argument yields that the infimum in (2.4) is attained. In this sense,
the term minimal speed for c;‘;y is justified, although we caution the reader that this is often used

in the context of having a half-line of speeds.
Next, we denote,

Cpm,e = inf{c: there is a traveling wave solution (¢pm,Upm) to (PME)}

This quantity, and the corresponding traveling wave solutions, are well-understood. For instance,
in the case ¢ = 0, it is known [4] that no traveling wave solutions to (PME) exist with speed cpm €
[0, ¢} 0); that the traveling wave with speed ¢, , is sharp (which means {upm > 0} = (w, +o0)
for some finite w); and that if cpy, > c§m70, then upy, is positive on all of R. Moreover, we have

the following expression, [4,24,37]

1 .
L4 V2 if 1> 2,
(2.5) R .

2\/e if 1< 2e,

which may be found (upon carrying out the appropriate rescaling) in [37, Eq (32)] and [4, Section
2] for e = 0.
Finally, we will denote,

Chypony, = inf{c: there is a traveling wave solution (hyp, Unyp, Uhyp) to (HYP)}.

In our work, we consider solutions to (HYP) in the sense of Definition 2.2. In [30,32] specific
traveling wave solutions to (HYP) have been constructed and estimates on their speeds obtained.
However, the behavior of arbitrary traveling waves has not, to our knowledge, been studied before.
In particular, to our knowledge, no lower bounds exist in the literature for cijpwu.
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2.2. The porous medium regime. Our main result on this limit is:

Theorem 2.1. Fiz any € > 0.
(i) The minimal speeds have the asymptotics:

*

= Cpm,z-:'

liminf ¢

%
—x—1,0-0 v
(i) Consider any sequence (Xn,Vn) and any corresponding traveling wave solutions (Cp,Un,Vy)
of (1.2). Iflimsupe, < o, then there exists (c,u) solving (PME) and a subsequence indezed
by ng such that, under the normalization
(2.6) min uy, () = u,(0) =6

=<0
for some fized 6 € (0,1), the following convergence of (Cn,, ,Un,,Vn,,) to (c,u) holds:

o o gyl
Cny, — €  Up, —uin L., and v, — uin Hj,.

We make three notes. First, the normalization (2.6) is not a restriction: the system (TW) is
translation invariant and u is a continuous function connecting 1 and 0, so (2.6) holds after a
suitable translation.

Second, due to the Sobolev embedding theorem, the convergence of v,, occurs in C'IZZ. Surpris-
ingly, this is stronger than the notion of convergence of u,, . This is related to the main difficulties
and the method of proof, see below.

Finally, we note that Theorem 2.1.(i) follows directly from Theorem 2.1.(ii). Indeed, by simply
taking a sequence X, and v, such that corresponding speed c,, attains the limit inferior of C;k(,w the
convergence in Theorem 2.1.(ii) implies that the limiting speed ¢ is larger than Chm - We describe
this more precisely in the proof of Theorem 2.1 (see Section 4).

We now describe the difficulties inherent in proving Theorem 2.1.(ii). First, we note the possible
issue of degeneracy of v,, as v, — 0. Indeed, the second equation in (TW) together with (2.2)

yield the immediate bound,
[(Wn)e] L < O(/ver).

Since the right-hand side approaches infinity as v,, approaches zero, one cannot rely simply on the
relative compactness of C! in L®. Further, examining (TW), it is clear that, even in the & > 0
case, one cannot rely on elliptic regularity theory to provide strong enough estimates on u,, to take
the limit in Theorem 2.1, as a priori the v,-coefficients may blow up like O(1/v,,).

A naive first attempt to prove Theorem 2.1 might be to use the L*-bounds in (2.2) to pass to a
weak-# limit in L*. This, however, will fail due to the quadratic terms. Even the u? term in (TW)
is problematic, as weak-* convergence in L® is not sufficient to guarantee that the weak-* limit of

u? is u?. More worrisome is the ((v,)yun), term. Hence, one requires greater regularity of u, or

n
Uy, uniform in n, to pass to the limit.

Since we are performing a ‘vanishing viscosity’ limit, a second possible approach might be to
take inspiration from the robust theory of viscosity solutions [22] that was developed to solve
vanishing viscosity problems and attempt to perform a half-relaxed limit [7], which requires only
L*-regularity of the involved functions. One’s optimism for this approach grows when consid-
ering the analogy with numerical schemes, which were proven to converge via visocity solution

methods [8], due to the similarity of v, to a discrete derivative of u:
u(x + V) —u(x — \/v)
vy (z) & ;
23/v
at least in an averaged sense. This approach, however, does not work, as the work in [8] requires

the assumption that the scheme is ‘monotone.” This, roughly, translates to (TW) admitting a
comparison principle, which it does not. As such, this approach does not work.
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To overcome these difficulties, we combine two major ingredients. The first is an energy estimate,
Lemma 4.1: by multiplying (TW) by log u, integrating by parts, and using that K, = ¢, = ¢, for
some ¢ (see (3.5)), we find,

J‘SOV * (un)m‘Qdf <c

Since ¢, is ‘nice enough,’ this estimate leads to a uniform H'-bound and Hélder continuity of v,,.
Hence, we can take a weak limit of v,, in H', which is sufficient regularity to pass to a limit with
the ((vn)gun), term in (TW). Unfortunately, it is does not immediately help with the u? term
in (TW).
The next major ingredient, Lemma 4.3, is a decay of oscillations estimate, which states, roughly,
a — i <Ok).
[ach}f/I;w)iml/‘L] o [zfui%l7tvn+ui/4] i (Vn )
Note that this is not enough to provide a uniform bound in any Hoélder space, but it is enough,
along with the regularity of v, to imply that

Hun - UnHLOO < O(Vrlz/s)'

This, along with the convergence of vy, is enough to understand the convergence of u2. The
key Lemma 4.3 is established by using the regularity of v, and a partial monotonicity result
(Lemma 3.2).

2.3. Traveling wave solutions of (HYP). As described in the introduction, a key part of our
work is understanding solutions of (HYP) and bounds on the traveling wave speeds. This subsec-
tion is devoted to describing our main results on this.

2.3.1. Definition and general properties of hyperbolic traveling waves. The first equation in (HYP)
is degenerate, so, before we can proceed, the notion of solution must be clarified. To motivate the
definition, notice that the first equation in (HYP) may also be written (cf. (2.3)):

Vhyp + Uh Vhyp + 1
(2.7) —(c+ (Vnyp)a) (Unyp)x = Unyp < o P ( . ) UhyD) .
Vhyp Vhyp

This is often useful in the sequel. In particular, we see that unyp satisfies a ‘nice’ ordinary differential
equation away from any zeros of ¢ + (vnyp).. Hence, we can restrict to classical solutions away
from these singular points. This leads to the following:

Definition 2.2. Let cyyp € [0, +0), unyp € L, and vny, € W3®, and denote
Z:={x: cnyp + (Vnyp)e(z) = 0}.

We say (Chyp, Unyp, Vnyp) is a solution to (HYP) if the second equation in (HYP) is satisfied almost
everywhere and uny, is nonnegative, bounded, in CL (Z¢), satisfies (HYP) pointwise on Z¢, and
satisfies

1
(2.8) Uhyp (Vhyp  Uhyp <yhyp i ) uhyp) =0 in Int(2).

Vhyp Vhyp

This definition follows along the lines of previous works [28-30].

Amazingly, despite being a fairly weak notion of solution, Definition 2.2 is strong enough to
prove that, for any traveling wave, Z must either be empty or a single point and, if there is a point
in Z, then there is a jump discontinuity at that point:

Proposition 2.3 (Hyperbolic traveling waves). Suppose that (c,u,v) is a solution of (HYP) in
the sense of Definition 2.2. Consider that u is nonconstant; that is, assume that both {u < 1} and
{u > 0} have positive measure. Then ¢ > 0 and there are two possibilities:

(1) Z =@. In that case, ue CE.(R) is a classical solution to (HYP).
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(2) Z consists of a single point: Z = {x¢}. In that case, u has a single jump discontinuity at
xo, with {u > 0} = (=00, xg). Moreover, u e CIP.(R\{zo}) and u satisfies, at the jump,

Uhyp + (o)
Vhyp +1 ’

u(ay) =

Although this full claim is difficult to prove, the reason that Z is nowhere dense is quite easy to
see. Consider a traveling wave solution (chyp, Unyp, Uhyp) t0 (HYP) with positive speed chyp > 0.
Were Int(Z) to be nontrivial, then

Vhyp + Uhyp  Vhyp T 1

(2.9) 0 = Unyp < uhyp) in Int(2).

Vhyp Vhyp
On the other hand, the definition of Z implies that (vnyp)ze = 0 on Int(Z) so that, by (HYP),
(2.10) Uhyp = Vnyp  in Int(Z).

These two equalities (that is, (2.9) and (2.10)) hold simultaneously only if v = 0 or v = 1. This,
however, is not compatible with the definition of Z, which implies that (Vhyp)e = —Chyp < 0. This
contradiction implies that Z must be nowhere dense.

The proof of Proposition 2.3, which is given in Section 8, is based on a careful analysis of (HYP).
There are three major steps to this: (1) we use the observation from [30, Proof of Lemma 5.4
that u satisfies a formula that is explicit in v on Z¢ (Lemma 8.1); (2) we show a strong maximum
principle type argument: u cannot tend to 0 at some point in Z¢ without being uniformly zero
on the entire maximal interval in Z¢; (3) u cannot tend to positive limits on the endpoints of
a maximal interval of Z due to a technical argument using the convexity of v (coming from the
second equation in (HYP) and the explicit form of the limit coming from (1)) near the endpoints
of the interval.

Then (3) shows that any maximal interval of Z¢ must be half-infinite. This implies that Z is
either empty, a single point, or a closed interval. On the other hand, we have already described
above why Z has an empty interior. It follows that Z is either empty or a single point.

2.3.2. Ezxponential decay. We establish another key property that holds for solutions of (HYP),
(TW), as well as a certain ‘slab problem’ for (TW): namely, once u reaches a critical level v/(v+1),
it decays exponentially. This is stated precisely in Proposition 5.2.

The proof of Proposition 5.2 is quite intricate, but essentially boils down to the fact that if u
were approximately constant on a large interval, then, due to (2.1), v ~ u and v, ~ 0 on that
interval. These two approximate equalities, when combined with (2.7), imply that u ~ 1 or u ~ 0,
which is not consistent with the fact that u is approximately constant and 0 < u < 1. Hence, u
must ‘drop’ by a proportion over every fixed large interval. The main complications in proving
this are (1) suitably quantifying the above heuristics, and (2) dealing with the wu,, term in the
case (TW).

The exponential decay of Proposition 5.2 is used in various places in the paper, such as The-
orem 2.6 (see below). As such, it is important that it applies uniformly for (HYP) and (TW).
Hence, complication (2) is unavoidable in our work. It is also the main source of difficulty.

2.3.3. Bounds on the speed of solutions of (HYP). In order to show that Theorem 2.5 does not
yield a trivial bound, we show that cﬁyp nep > 0:

Proposition 2.4. Fiz vy > vy, > 0. Then there exists ¢ > 0, depending only on vy and vy,
such that, if vhyp € (Vm, V), then,

(2.11)

%
>
chypvuhyp = C
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If (Conyp > Uiy > Viny, ) 18 @ traveling wave solution of (HYP) and the singular set Z of v, consists
of a single point, then we have the refined estimate:

v 1
(2.12) Conyy € Vg , :
2Whyp + 17 2/,

We note that the dependence on v, can probably be removed by a limiting argument similar
to the one contained in the proof of Theorem 2.8, below (see, e.g., Lemma 7.6 and Lemma 7.7).

The bounds in (2.12) match those proved in [30, Theorem 2.7] for the particular traveling wave
constructed there. The novelty in (2.12) is that it holds for any traveling wave with a discontinuity,
while the proof in [30] relies on the monotonicity of the constructed wave. Our proof uses essentially
the same observations as [30] with an additional partial monotonicity result (Lemma 5.1).

The main contribution of Proposition 2.4 is the generality of the bound (2.11). It has been
observed in [30,32] that if (¢, u,v) is a solution of (HYP) then

(2.13) ¢ = sup(—vy)

holds, and quite precise bounds have been proved for particular waves that have been constructed.
Unfortunately, there is no general lower bound on the speed, and a priori (2.13) leaves open the
possibility of arbitrarily slow traveling waves if v is very ‘flat.” In fact, by analogy with the FKPP
equation, one might expect that the ‘flatter’ the traveling wave, the faster the speed, in contrast
to (2.13).

To establish Proposition 2.4, we use the exponential decay estimate on u (Proposition 5.2) to
obtain a universal lower bound on —wv,.

2.4. The hyperbolic regime. With the results described in the previous subsection in hand, we
establish:

Theorem 2.5. Let vy, > 0.
(i) The minimal speeds have the asymptotics:

lim inf
—X—00,V—>Vhyp

%
>
Z Chyp,vnyp*

.

(i1) Consider any sequence (Xn,Vn) such that —x, — 0 and vy, — Vhyp, and let (c,, Uy, vy,) be
any corresponding traveling wave solutions to (TW). Ifsup ¢, < o, then there exists (¢, u,v)
solving (HYP) and a subsequence indexed by ny such that, under the normalization

(2.14) un(0) =6,

for any 6 € (0, ¥hyp /iy, + 1), the following convergence of (¢p, , Un, , Un, ) to (¢, u,v) holds: there
18 a set Z that is either empty or contains a single point such that
e u,, and v,, converge to u and v, respectively, locally uniformly in C*(Z¢), for any k,
e v,, converges to v weak-x in W**  and
e cp, converges to c.

We now discuss the proof of Theorem 2.5. As above, Theorem 2.5.(i) reduces to the case
Theorem 2.5.(ii), so we only discuss the latter. The main difficulty here is clear: (TW) loses
ellipticity and the limiting equation (HYP) has no ellipticity.

Thus, in order to take a limit, one proceeds in the following way. First, since

. 1
limsup o 2. <
n—0oo hyp

and  |up|pe <1

one can take weak-* limits to obtain v and u that are related by —vv;, = u — v weakly. The
limit above allows us to define Z = {z : ¢+ v,(x) = 0}. However, we need to establish stronger
convergence of u,, and v, to eliminate the possibility that this ‘singular set” Z might be quite large
and complicated.
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An additional problem is that, at this point, our notion of convergence of the u, is not strong
enough to deduce (HYP) as a limiting equation in Z¢. However, an indication that it is possible
to deduce better regularity of the u, in Z¢ is that (2.3) yields

1 1 n n nt1
(un)z—<(un)m+un (V FUn _ Un un)>,

—(en + (vn)z) \xal Vn Un
which, imagining that |x,| = c0 momentarily, yields a W* bound for u,, on compact subsets of
Z¢ when n is sufficiently large. By ‘perturbing’ off of this observation, we are able to show that,
subsequentially, u,, converges to u in C*(Z¢) for any k, see Lemma 6.1.

At this point in the proof, Z and the behavior of u on Z is not understood. An argument
based on the partial monotonicity of u (Lemma 3.2) that is reminiscent of the decay of oscillations
argument discussed above allows us to show that (2.8) is satisfied. This final ingredient allows us
to conclude that the liming object solves (HYP) in the sense of Definition 2.2.

2.5. Upper bounds on the asymptotics of the minimal speed. It is natural to wonder how
sharp the bounds on the minimal speeds cf,, . and czyp’uhyp in Theorem 2.1 and Theorem 2.5 are.
In contrast to the arguments of these theorems, one would like to take a limit of a sequence of
minimal speed traveling waves. Unfortunately, there is no known characterization of the minimal
speed waves of (TW).

We must, instead, approach the problem by constructing a sequence of traveling waves directly
using what we know about the minimal speed waves for (PME) and (HYP). As described in
Subsection 2.1.1, it is known that the minimal speed traveling wave for (PME) when ¢ = 0 is the
one that is 0 after some zo: u(x) = 0 for x > xo. For (HYP), it is believed that the minimal
speed traveling wave is a discontinuous one, corresponding to case (ii) in Proposition 2.3 (see the
discussion after Theorem 1.4 in [32]). Hence, in each case, we construct a sequence of traveling
wave solutions to (TW) that approximate these waves.

2.5.1. The hyperbolic case. Our first construction is related to the scaling associated to the hyper-
bolic model. It is proved in Section 7.1.

Theorem 2.6. Fir any vnyp, > 0 and sequences X, — —00 and v, — Vnyp. There exists corre-
sponding solutions (¢, un,v,) to (TW) and a solution (cy,,, U, V) to (HYP), such that:
() Uy, Vigyys Un, and v, are nonincreasing in x for all n;
(ii) we have,

(215) (UVhyp)x(O) + Cunyp = 0’

(11t) along a subsequence Xn, — — and Vn, — Vhyp, the following limits hold uniformly locally
in R, CY(R\{0}), and weak-+ in W*® | respectively:

nilinoo(cnk y Uny s U'ﬂk) = (Cl/hyp y Uvpyp s Vongp )

The traveling wave solution of (HYP) constructed in Theorem 2.6 is discontinuous: this follows
by combining item (2.15) with case (ii) in Proposition 2.3 (see also [30, Theorem 2.7]). Interestingly,
this provides a completely different construction of traveling wave solutions to (HYP) from that
of [30]. Further, this construction works for all values of vpyp,, whereas that of [30] involves a
restriction to vyyp smaller than some threshold (see [30, Assumption 2.3]).

The important consequence of the discontinuity of w,, , is the partial converse to Theorem 2.5
that comes from combining Theorem 2.6 with Proposition 2.4:

Corollary 2.7. For vy, > 0, the minimal speeds have the asymptotics:

1
limsup c*, <e¢,. < ,
—X—>00,V—>Vhyp v hyp 21 /Vhyp

where ¢y, is the speed associated to the family defined in Theorem 2.6.
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The construction of the wave in Theorem 2.6 follows the standard procedure: use the Leray-
Schauder index to construct a solution to the ‘slab problem,” i.e., an appropriate approximate
solution to (TW) on a ‘slab’ [—L, L], and then take L — co. The main difficulty is in ensuring
that the construction yields a discontinuous traveling wave solution of (HYP): in other words,
ensuring that (2.15) holds. To this end, taking advantage of the structure of (TW), we consider

a(x) := un(x)e‘x‘cnzgw,
and notice that any maximum of @ occurs where |(v,), + ¢| < O(1/|xx|) (see (7.31)).

The goal is, thus, to guarantee the existence of a maximum and show that it remains ‘near’ the
origin, regardless of x,. The existence of the maximum is guaranteed by working with the ‘slab
problem,” whose boundary conditions guarantee an interior maximum (see (7.29)). From the form
of 4 and that v, is bounded, it follows that a maximum cannot occur too far to the left. On the
other hand, the aforementioned exponential decay (Proposition 5.2) guarantees that (v, ), decays
exponentially, so that |(v,), + ¢| < O(1/]x|) cannot hold too far to the right.

We had previously mentioned that it is crucial for the exponential decay estimate to apply
uniformly to (HYP) and (TW). This last step is one of the reasons for this: we must be able to
apply it to solutions of (TW) on the ‘slab’ uniformly as y — —oo.

2.5.2. The porous medium case. Taking any decreasing, discontinuous traveling wave solutions
to (HYP), we prove that, as vnyp \, 0, they converge to the minimal speed traveling wave of (PME).
This is contained in Section 7.2.

Theorem 2.8. Consider the family of traveling wave solutions (¢, ,Uv,,,, Vi, ) to (HYP) con-
structed in Theorem 2.6. Then

. 1
ol ) =\ 5o |
where upm 1s the unique minimal speed traveling wave solution to (PME) with ¢ = 0 and {upm >
0} = (—0,0).

The proof of Theorem 2.8 relies on the ideas and estimates developed for Theorem 2.1. The main
issue is to ensure that the limiting object has support to the left of the origin; that is, u,, , — 0
on all of R. To do this, we show first obtain a preliminary lower bound on ¢ using ‘bulk-burning
rate’ style arguments (see [19]) and then leverage the fact that (v, ).(0) = —c,,,, <0 to obtain
a uniform lower bound on w,,  ~ v,  on (=0,0) as v, N\, 0.

By combining Theorem 2.8 and Theorem 2.6 with a careful double limit, we arrive at the
following converse to Theorem 2.5:

Corollary 2.9. For vy, > 0, the minimal speeds have the asymptotics:
1
C;,l/ = C;m70 = ﬁ

As the proof of Corollary 2.9 is elementary, we omit it.

lim
—x—0,v—0

2.6. Related work. Front propagation in the three models (1.1), (PME), and (HYP) have been
the subject of intense interest in recent years; see, e.g., [13, 15,28, 33,35, 42,43, 48, 55-57] for a
selection of those works closest to the present one. We note, however, that there is also active
study on the behavior on finite domains: see, e.g., [36,59] and articles referencing them. The
majority of the work related to (1.1) is dedicated to the aggregation case y > 0. This is, perhaps,
due to the historical interest in positive chemotaxis that stems from its elegant theory of blow-
up [14,18,41]. Although there are many interesting and difficult features to study in the positive
chemotaxis case, it is unlikely that front speed-up will occur. Heuristically, aggregation ‘pushes’ a
traveling wave to the left on average.
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2.6.1. Propagation enhancement by advection. In the context of turbulent combustion, it has long
been understood that advection can ‘enhance’ reactions by exposing unreacted fluid to the reacting
region. For flows that are imposed, that is, the drift term is linear, this has been thoroughly
investigated over the past several decades, see [27, 34,44, 49, 50, 54, 66-68] for a representative
selection of the literature. Although the interpretation of the equation is quite different here, the
effect we are studying is the same. Here, the ‘reaction’ is reproduction, and the advective effect
of chemotaxis that speeds up fronts is that individuals feel a ‘push’ to less populated areas, where
the per capita reaction rate 1 — u is highest.

What makes the proofs difficult in our setting is the fact that the flow —yw, is not imposed, it
depends nonlinearly on u. Further, it depends nonlocally on u; that is, if the profile of u is changed
at some Zg,y, it changes the flow —yv,(x) at every x, even if |z, — x| » 1 (see (3.1)). Heuristically,
this makes the behavior of the drift hard to predict as one must understand the entire profile of
u, not just its local behavior. Technically, this nonlocality means that (TW) (and (HYP)) do not
enjoy a comparison principle. Given the reliance on the construction of sub- and supersolutions in
the study of reaction-diffusion equations, the lack of a comparison principle is a serious issue.

2.6.2. Nonlocal advection. The previous paragraph leads to another area that, probably due to its
difficulty, has been much less explored: the role of nonlocal advection in front propagation. We
note a few examples below. A major motivation for us is to develop an understanding of models
where nonlocality plays an essential role, as few precise results exist at present.

Beyond the chemotaxis results discussed above, as well as other -taxis effects (e.g., [17,25,46,65]),
there is the reactive-Boussinesq system that, in a sense, dates back to [45]. This, roughly, represents
a model for turbulent combustion in which the density differences arising from the temperature
changes lead to a buoyancy force that induces a drift in the fluid. Due to its extreme complexity,
beyond the existence of traveling waves, very few precise results exist; see, e.g., [9,11,20,60,63,64].
We note also a ‘Burgers-Boussinesq’ model studied in [16,21].

2.6.3. Pushed and pulled fronts. One of the oldest problems in reaction-diffusion is that of ‘pushed’
versus ‘pulled’ fronts: where is the important behavior that drives the front forward? More
precisely, is the wave pulled by growth far ahead of the front in the linearized regime where
u ~ 0 or is the wave pushed by nonlinear behavior near the front? While this can be phrased in
many ways, with varying precision and technical sophistication, for our purposes, this boils down
to whether the front speed is linearly or nonlinearly determined. This question is also called the
selection problem, referring to whether the linear or nonlinear behavior ‘selects’ the minimal speed.
We refer to [10,26,58,61,62] for early discussions of this problem, as well as [2,3,5,6,23] for recent
progress on it. We note especially [31] for an interesting treatment of pushed.

In the context of (1.2), fronts are ‘pulled’” when the minimal speed ¢, 4 = 2 and fronts are
‘pushed’ when the minimal speed ¢4 > 2. The main result of [35] is that there is a pulled
regime when |y| and d are sufficiently small and there is a pushed regime when 1 « —y « d. The
current work completes this picture by establishing the precise ‘pushed’ behavior in the remaining
regimes 1 « —x ~ d and d « —y (Theorems 2.5 and 2.6). Very interestingly, the authors of [5]
develop a numerical approach to finding the pushed-pulled transition point and apply it to many
examples, including (TW). Our results in the v — 0 limit agree with their numerical conclusions:
the transition takes place at —y = 1/ = 2 (see (2.5)).

A summary of the results when x < 0. We provide here a table indicating all possible asymptotic
regimes and the available results. It is not meant to be authoritative. It obscures the various
assumptions and subtleties surrounding the minimal speed traveling wave described in more detail
above. The motivation is to help the reader keep track of the many asymptotic regimes.

In the table below, we use &~ to denote an exact asymptotic limit, and we use g to designate an
inequality that holds in the asymptotic limit. In contrast, we use = to mean that the speed has
the exact value for x and d “sufficiently in that asymptotic regime.”
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Asymptotic regime Speed Reference
l«—x«d cm% [35]
d<—x, —X &2 c~ % + \/% Theorems 2.1 and 2.8
d< —x,—x <2 c~ 2 Theorems 2.1 and 2.8
—x«d«1 c=2 [35]
l« —x~d \{ig 5 S CX @ Theorem 2.6
2+(57)
—x~rd«1 cr2 See below

Let us discuss two points. First, one might expect that negative chemotaxis always speeds up
fronts, but this is not the case. The fourth row reflects that, if —y and d are sufficiently small,
the speed is simply 2, as in the case x = d = 0 [35] (see also [57], for an earlier proof in the y > 0
case).

Second, the bottom row of the table has not been handled directly in this or any other paper.
It is, however, a fairly straightforward case. It is easy to check that, in this asymptotic regime,
u and v are uniformly smooth. Thus, by compactness and (2.1), |u — v||p= — 0. The arguments
in [35, Lemma 3.2] then readily yield that the minimal speed wave satisfies

Il
Vd

x|

<24+ X 2.
¢ d

Ju— vl +C
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3. A FEW PRELIMINARY FACTS

We shall use several results from [35]. There, these results are established for y either positive
or negative, but here we only state the version for x < 0 since that is the context of the present
work.

First is a monotonicity result, with our scaling taken into account. This is a rephrasing of [35,
Lemma 2.3], but they are equivalent.

Lemma 3.1. [35, Lemma 2.3] Let x <0 and v > 0. Suppose that (¢, u,v) be a solution to (TW).
Define

xd—inf{x:u(a:)< 2+21/1,}'

Then u is nonincreasing on (xq,0).
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We note that an analogous result (Lemma 5.1) holds for the hyperbolic case (HYP). This,
however, requires some understanding of the structure of Z (recall Definition 2.2) in order to
prove, so we postpone it.

Next, we record a basic property of u, which is the basis of Lemma 3.1 and will be important
in many of our arguments.

Lemma 3.2. Let x <0, v >0, and let (c,u,v) be a solution to (TW). If x,, is a local minimum
(resp. mazimum) of u then w(Tm) = (v + v(xm))/(v + 1) (resp. <).

Proof. Indeed, suppose that x,, is a local minimum of u. Then we have that, by (2.3),

1 1
u<1+v_u+ u)——(c-ﬁ-vm)uz—uméo.
v v x|

By the nonnegativity of u, we have that

v v+1 . v+v
14+ -< u  or, equivalently, < u,
v v v+1
as claimed. The proof of the second claim is very similar and is omitted. (I

From (2.1), an elementary calculation yields the following oft-used expression for v,:

4k

(3.) o) = oo [ F e+ o) - ate - ) ay

Another consequence of (2.1), which is crucial to the proof of Theorem 2.1, is the following refine-
ment:

Lemma 3.3. Let v > 0. Then
(32) K, = Pv * Py,
where the kernel ¢, is defined as,

1 T

1
(33 o) = oo () it ple) = LEallal >0
where K is the modified Bessel function of the second kind that has the asymptotics
2 .
Kol) ~ logmfﬂy 1 z‘f0<x<<1,
goe " (1—&-0(;)) if x> 1.
Here v =~ .5772 is the Euler-Mascheroni constant. Further, |, |1 = 1.

Proof. The scaling in v is clear, so we show the argument for the case v = 1. From (2.1) and a
direct computation, we find
- 1

K:(f) _ \/72? 6—\w|+i£z dx

1 1
V2P + T
Hence, we can take

. S 1
(3.4) B(6) = 2m) VK = —5—.
VE+1
By the convolution theorem, it follows that

(3.5) K=K=Var(pp) ==
from which (3.2) follows.
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The fact that ¢ is given by (3.3) follows from [1, equation 9.6.21]. Next, the L'-norm of ¢ is
computed easily:

(J I@(w)ldw>2 - ([ew dw)2 - IO = VIFR() = [ () de =

where second and fourth equalities are due to the definition of the Fourier transform, the third
equality is the definition of ¢ (3.4), and the final equality is a direct computation. This concludes
the proof. O

Finally, we will use the property that if ¢ € L'(R) is even and f,g € L*(R) n L*(R), then,

(3.6) f F(@)(é % g)(z) dz = fR<f v 8)(2)g(x) d.

4. THE POROUS MEDIUM SCALING REGIME: PROOF OF THEOREM 2.1

In this section, we prove Theorem 2.1. First, we obtain some preliminary estimates on v and
v. The main estimates are a bound in H! of v that is uniform in x and v as well as a decay of
oscillations estimate on u. The proof of Theorem 2.1.(ii) is contained in Section 4.3.

4.1. Preliminary lemmas: regularity of v. A key element of the proof of Theorem 2.1 is the
following identity:

Lemma 4.1. Let (c,u,v) be a solution to TW) For any v > 0 and x <0, we have

J(% * Uy )?

Before proving Lemma 4.1, we point out two bounds that follow from this and that are useful
in taking the limit in Theorem 2.1.

f|u(1 —u)logu| dz = c.

Corollary 4.2. Under the assumptions of Lemma 4.1, we have that

f(vw)2 dz<c and [v]eie <o

Proof. First, we have, by the expression (3.2) for K, (recall that v = K, = u (2.1)), Young’s
inequality for convolutions, the fact that ¢, has L'-norm one (Lemma 3.3), and Lemma 4.1,

(4.1) lvallre = lw * (¢v # u)alrz < [(dy * u)alrz < Ve
Next, notice that, for any x < y,
Y Y 5\ 12
o) = o) < [ @it < Viy—al( [ va2d) " < Vel

where the last inequality follows from (4.1). The desired estimate thus follows. O
We now prove the crucial identity, Lemma 4.1.

Proof of Lemma 4.1. We multiply the first equation in (TW) by log u and integrate over [—L, L]
for L » 1 to obtain,

L

L L L

1

—CJ ug logu do = f (vgpu)y logu do + —J Uy logu da + J u(l — u)logu dz.
—L —L IxlJ-r —L
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Integrating by parts where possible, we find

L
—cu(L)logu(L) + cu(—L)logu(—L) + cf uy dz
-L
L
= vy (L)u(L)logu(L) — v, (—L)u(—L)logu(—L) — J_L VgpUy dz

1 1[5 (ug)? L
+ —(ug(L)logu(L) — uz(—L)logu(—L)) — — dz + u(l —u)logu dz.
x| IXI Jop  w L

We claim that all boundary terms vanish as L — oo. Indeed, by assumption u(—o0) = 1 and
u(+00) = 0, so that elliptic regularity implies that u,(+00) = 0 = ug,(+00). Similarly, v, (£o0) =
0 = vz (£00). Thus, after integrating also the last term on the left, we find

2
—c = —vauw dx — 1 [ () dz + Ju(l —u)logu dx.
IXI'J  w
Here is the key step. From the expression (3.2) for v and properties of convolution, we find
Uy = Py * O, * Uy. Using this in the first term on the right-hand side, and then recalling the
property (3.6) of convolution, we find,
1 [ (u

2
<) dz + Ju(l —u)logu dz

—Cc= - J(SOV * Py * uz)ux dz —
IXIJ  w

=— f(gpl, ¥ ug)? do — ﬁf (v2)” dz + fu(l —u)logu dz.

u

The desired estimate follows upon recalling that (1 — u)logu < 0 for all u > 0. ]

4.2. Preliminary lemmas: decay of oscillations of u. Formally taking v to zero in the second
equation of (TW) indicates that we should expect u — v to converge to zero. This is exactly what
we now prove, in a quantitative way. A significant issue, though, is that we do not have any
regularity estimates on u that are uniform in v and x. To get around this, we use the uniform
estimates that we have established on v to prove the following decay of oscillations of v as v — 0.

Lemma 4.3. If (¢, u,v) is a solution to (TW) with x < 0 and 0 < v < 00, then there is a universal
constant C' > 0 such that

(4.2) max u(x) — min u(z) < C(ve+ 1)v's,

[xo—v1A 20+ 1v1/4] [xo—v14 20 +1v1/4]

As a result, we have

(4.3) |lu—v|Le < C(We+ 1)w'e.

Proof. First, note that we may restrict to v sufficiently small so that
1

(4.4) <v” and v<l.

e"T/‘l
Indeed, when v is large enough that (4.4) does not hold then the proof is finished by possibly
increasing C' and using (2.2).

Next, we note that (4.3) follows easily from (4.2) and (2.1). Indeed, for any xg, we have

LA _% _lul
e v e v
v(xg) < max u | d +J d
(o) nyl/“ 2\/v <[$0—V1/4a95‘0+”1/4] ) Y [~ p1/A]e 24V Y
1/4 lyl

Y e —1/4
1/8 —v 1/8
< J,ym NG (“(xO) +C(Ve+ 1w ) dy +e <u(wo) + (C(Ve+1) + 1),

The argument for the lower bound on v(xg) is similar, and (4.3) follows.
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Fix any xp € R. We actually shall prove
max u(z) < v(ze) + (V3e+ 1) and

[z0— 114 70 +11A]

min  u(z) = v(zo) — (V3e + 1),

[zo—v14 20 +11/4]

(4.5)

from which (4.2) follows. We prove these two bounds separately, beginning with the bound on
the maximum. A key ingredient in both is the regularity of v: due to Corollary 4.2, for all
z € [zg — 3/ 2o + 307,

(4.6) [o(x) — v(zo)| < V3.

We now begin by proving the upper bound on the maximum in (4.5). Our goal is to leverage
Lemma 3.2 to obtain an upper bound on u. A substantial complication, however, is that Lemma 3.2
is only applicable at a local extremum, while the maximum of u over [z¢ — v a0+ 1/1/4] may occur
at the boundary and we do not a priori have control over u(zg + ul/“). As such, our approach is
to identify an interval containing [xo — v'/*, zo + v'/*] for which we can establish a suitable bound
on u at the end points.

We now find such an interval. For any = € [xg — 20"/, 29 4+ 2v7*], let

Yp = argmin  u.

[x—v1A 24014

Then, due to (2.1), (4.4), and the fact that ||ul|p~ < 1, we find

v(z) = J L ef‘x«;‘ < min u> dy
[a—v V4 1] 24/V [w—v/4 2 401/4]
= u(ys) (1 - 6‘”71/4) > u(y,) — v
Thus, rearranging the above inequality and using (4.6) yields,
u(ys) < v(x) + v <o(xo) + V3e' + v,

Applying (4.4), we find
(4.7) u(ye) < v(zo) + (V3c+ 1),
Notice that this is exactly the inequality that we wished to prove, albeit only for y,.. This suggests

that the interval we should work on has endpoints y, for well-chosen x, which is what we do now.
Let y+ = ¥,,+2,14 and notice that, due to (4.4) and the definition of y.,

(4.8) y_ € [wo — 30w — v/ and Yy € [xo + v 2o + 30,

As a result, [z — v"*, 20 + '] < [y_, y+]. We shall now use the argument, based on Lemma 3.2
and outlined above, to establish,
(4.9) max_u(z) < v(zo) + (V3e + 1)
[y—.y+]

According to (4.8), the first inequality in (4.5) follows from (4.9).

Let 2, € [y—, y+] be the maximum of u over [y_,y,]. If x,, is one of y4, then (4.9) holds by
virtue of (4.7). Thus, let us consider the case that z,, € (y_,y+). Then z,, is the location of a
local maximum. Using Lemma 3.2, we find, at x,,,

max 4 = u(Zy) < (v(zm) +v) <v(zm) + v

[v—y+] 1+v
Recalling (4.6) and (4.8), we have

[max] u < v(zo) + V3er'® + v < wlxo) + (V3e+ 1)~
Y-yt

This concludes the proof of the first inequality in (4.5).
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The proof of the second inequality in (4.5) follows along the same lines. We include it in order to
show the necessary (slight) modifications; however, we provide less exposition due to its similarities
to the proof above. First, fix any = € [xg — 3v'/*, 29 + 3v/*] and let

Yy = argmax  u.
[zo—v4,zo+11A4]

Then, using the expression (2.1) for v and the definition of K, we find,
o) = | Koo —yut)dy+ [ Kooyt dy
[x—vi/4 z+u1/4] |

y—z|>vi/4
J 1 _lz—yl
< —e W
[x—vi/4 z+u1/4] 2\5
< u(fy) + v
Thus, recalling (4.6), we find
(4.10) v(z0) < v(x) + V3er < u(f) + (V3e + 1),
As in the proof of the first inequality in (4.5), let §+ = @, 42,14, and, as before, notice [z¢ —
v 2o + vV < [§_, 9+ ]. Hence, it is enough to establish the stronger claim:
min ] u(z) = v(wo) — (vV3e + ).

[G—,7+

—1/4

( max u> dy +e”
[x—v1/4 z+v1/4]

To this end, let i, be the location of the minimum of w over the interval [§_, 7+ ]. If Zmin = U+,
then we are finished by (4.10). Otherwise, i, is an interior minimum and we find, via Lemma
3.2,

U(mmin) +v > v(xmin)
1+v “ 14v
where we use that 1/(1+v) = 1 — v in the third inequality, that v < 1 to get the fourth inequality,

and the estimate (4.6) in the last inequality. The claim then follows by (4.4). This concludes the
proof. O

> (1 — 0)0(Zmin) = 0(Tmin) — v = v(20) — V3 — v,

u(xmin) =

4.3. Proof of Theorem 2.1. We establish the second part of Theorem 2.1.

Proof of Theorem 2.1.(ii). First we address the notion of convergence. Since ¢, is bounded uni-
formly above, by assumption, there is ¢ such that ¢, — ¢ as n — o0 up to passing to a subsequence.
Similarly, by Corollary 4.2 and the bound |[v]|z» < 1, we obtain u e H' n C"* n L* such that, as
n — oo,

(4.11) Up — U weakly in HJ.. and strongly in C{,
for any a € (0,1/2). Finally, due to Lemma 4.3 and (4.11), we have
(4.12) Up — U in LS,

Next, we investigate what qualitative properties u enjoys. First, by (2.2), we have 0 < u < 1.
Next, from the normalization (2.6) and the uniform convergence of u, to u (4.12), it follows that

(4.13) I;lglglu(.%‘) = u(0) = 0.

Next, we argue that u(—o0) = 1. By Lemma 4.1, Corollary 4.2, and the convergence of v,, and
U, to u, implies that

(4.14) [u]cie < 4/c  and f\um|2 dz + f |u(1 —u)logu|de < ¢ < +o0.

By (4.13) and the regularity of u (4.14), the above implies that
(4.15) u(—o0) = 1.
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We note that a byproduct of (4.14) is that
c>0

as (4.13) and (4.15) imply that w is nonconstant. We use this in the proof of monotonicity below.
Further, it must be u(4+00) = 0 (otherwise the integral on the left hand side of (4.14) would be
infinite).

Next, we show that u is a distributional solution to (PME). To this end, fix any ¢ € C2(R). At
the level of u,,, multiply (TW) by ¢ and integrate by parts to obtain:

Cn Junwm dx + f(vn)wunwgC dx = ﬁ Junwmz dx + ‘[un(l — up)Y da.

Using (4.11) and (4.12) and taking n — o0, we find

(4.16) c J u, dor + Juxm/)x dr =¢ J Uy dx + Ju(l —u)ypdx,
that is, @ is a distributional solution to (PME). O

To deduce the desired bound on the limiting speed, we appeal to the results of [4] concerning
solutions of (PME). However, the notion of solution given in [4, equation (2.3)] is, at first glance,
different from that of distributional solutions. However, as we establish below, the two notions
are equivalent. (We also remark that these notions are the same as that of viscosity solution [22];
however, since we do not use this fact in our work, we do not provide a proof).

We also note that if € > 0, then solutions of (PME) are classical; thus, the following lemma is
only interesting when considering solutions of (PME) in the case € = 0.

Lemma 4.4. Suppose 0 < a < 1 andu € HL _(R) satisfying 0 < u < 1 on R, with lim,_,o u(z) = 1
and lim,_, o u(x) = 0. Suppose ¢ > 0. Then the following are equivalent:

(1) (u,c) is a distributional solution of (PME).
(2) there exists w € (—o0, +0] such that {u > 0} = (—o0,w) and u € C**(—oo,w). Further, u
satisfies (PME) classically on (—o0,w) and is strictly decreasing on (—oo,w).

We note that the hypotheses of the lemma and item (2) comprise exactly the definition of
solution in [4].
We first state and prove the following basic fact that we will use twice in the proof of Lemma 4.4.

Lemma 4.5. Suppose 0 < u < 1 is a classical, nonconstant solution of (PME) on (a,b), for some
a < b. Suppose u has a local minimum at & € (a,b) and w(Z) # 1. Then u(Z) = 0.

Proof. Since Z is an interior minimum, we have u,(Z) = 0 and —u,(Z) < 0. Evaluating (PME)
at T then yields,

0> w(@)(1 - u(@)).

—u
Since u(Z) # 1 and 0 < v < 1 holds, we find u(Z) = 0, as desired. O

Proof of Lemma 4.4. If € > 0, elliptic regularity theory implies that w is smooth and is a classical
solution to (PME) and therefore the conclusion of the proposition holds. Thus, we assume € = 0.

Let u be as in the statement of the lemma. We shall establish that u is a distributional solution
if and only if item (2) holds.

If u is a solution in the sense of item (2), then the fact that w is a classical solution of (PME)
on the region where v > 0 immediately yields that u is a distributional solution.

Thus, let us assume that u is a distributional solution of (PME). Let

w = inf{z : u(x) = 0}.
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We remark that our assumption u(—o0) = 1 implies w > —o0. Fix any z¢ < w. By the continuity
of u and the fact that u(—o0) = 1, we have
inf wu(z) > 0.
(—00,0)
Thus, (PME) is a uniformly elliptic equation with C* coefficients on (—o0, z¢). Elliptic regularity
theory implies that u € C%%(—o0,z0) and solves (PME) in the classical sense on (—0, ). Since
xo is arbitrary, it follows that u solves (PME) classically on (—o0,w).

We shall now establish that u is nonincreasing on (—o0,w). Indeed, suppose not. Then u has
a local minimum at some # € (—oo,w) with u(Z) # 1 (here we are using that w is nonconstant,
which is true by assumption.) Lemma 4.5 therefore implies u(Z) = 0, contradicting the definition
of w. Therefore, we conclude that v is indeed nonincreasing on (— oo,w).

Let us once more fix an arbitrary xg € (—o0,w). A standard strong maximum principle argument,
after differentiating (PME), shows that u, < 0 on (—o0, ). Since x¢ is arbitrary, it follows that
u solves (PME) classically on (—o0,w) and is strictly decreasing there.

Now we note that if w = +o00, then the proof is complete. So, let us assume w is finite. We
shall now establish that © = 0 on (w, ). To this end, suppose not. Hence, suppose, by way of
contradiction, that there is some xp; > w such that u(zps) > 0. Since u cannot have a positive
local minimum by Lemma 4.5, either u has a global maximum on (w, o) or u is nondecreasing on
(w,00). In either case, we may take xps such that, for all sufficiently small p,

(4.17) u(zar) € (0,1) and ug =0 on (zpr — p,Tar).

As we showed earlier in the proof, we have,

(4.18) uw>0and uy <0 in (—oo,w).

For any u > 0, take 1, to be a C? test function such that

supp(¥y) < [w =y 2m]  (Yp)e >0 in(w—p,w), Yu=1 onw,zy — 4]
and  (Yu)z <0 in (zp — p, xar).

Applying (4.16) with this choice of test function 1), and recalling that ¢ = 0, we find

[t =y = [utwu)ode + [wu(w,). da

—wLH(%hw+4wlM%h®+f)wM%%®%JW (i) da

TM—H w—p TM—p

(4.19)

T N w T M
<P+ cf u(y)e dz + J Upu(tPy,)p do + J Uz (Y, g dx
TN — M W= TM—H
w T M
<P+ J Uz () do + f Uz (y,)z do
w—p TM

@
<P+ f upu(th,)e dz < 2\ /1.

TM—
The first inequality above comes from the choice of 9, (4.19) and the Holder bound on u (4.14).
The second inequality comes from the fact that, for p sufficiently small, v > 0 and (¢,), < 0
on [xpr — p,xpr]. The third inequality comes from the monotonicity of u on (—o0,w), as recalled
n (4.18), and the choice of ¢, (4.19). The final inequality comes from (4.17) and (4.19).
Thus, we conclude that

T M
f u(l —u)de = lir%f@buu(l —u)dz <0.
H—

w
The left hand side is strictly positive since u is continuous and u(zps) € (0,1). This is a contra-
diction and concludes the proof that u is nonincreasing. This completes the proof. |
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Finally, we turn to:

Proof of Theorem 2.1.(i) using Theorem 2.1.(ii). Fix e = 0. It is enough to show that for any
sequence (X, V), with _% — g, v, — 0, and corresponding traveling wave solutions (¢, Uy, Uy,)
to (TW), satisfy the lower bound

liminfec, > c* .
n—oo v C pm

Thus, consider such a sequence. If liminf,,_,4 ¢, = o0, then we are finished. Hence, we may assume
that the limit inferior of ¢, is finite and, up to passing to a subsequence, we may assume that c,
converges to it. In other words, we assume that there is ¢ € [0, 90) such that

lim ¢, = c.
n—00

Thus, we are in the setting of Theorem 2.1.(ii), and hence obtain a subsequence (¢, , Un, , U, ) such
that (cp, ,un,) converges to a distributional solution (¢,u) of (PME). If € > 0, then the results
of [37] imply ¢ < ¢f,,. And, in the case ¢ = 0, the results of [4], together with Lemma 4.4, imply
c < cgm. Thus the proof is complete. O

5. THE HYPERBOLIC SCALING REGIME: THE STRUCTURE OF Z, MONOTONICITY, EXPONENTIAL
DECAY, AND THE LOWER BOUND ON THE SPEED

In this section, we deduce several general facts that hold for any solution to (HYP). These are
used in several places throughout the sequel, so it is convenient to establish them here, although
many proofs are postponed to Section 8 due to their length and complexity.

5.1. Monotonicity of u for the hyperbolic model. We state a monotonicity lemma that
applies also to the hyperbolic model (notice that Lemma 3.1 is stated only for (TW)).

Lemma 5.1. Suppose that (c,u,v) is a traveling wave solution to (HYP). Let

xd—inf{x:u(m)< 2 }

2+ 10
Then u is nonincreasing on (x4, ).

Proof. We consider two cases based on Proposition 2.3. First, when Z = ¢J, u and v are smooth.
In this case, the argument of Lemma 3.1 can be repeated verbatim. It is sketched below (see the
final paragraph of this proof).

Next consider the case when Z = {z(} for some zy. There is nothing to prove on (zg,0) as
u =0 on that domain. Additionally, recalling Proposition 2.3, we have u(xy) > u(zg).

On the other hand, the proof that w is nonincreasing on (zg4,x¢) is exactly the same as
Lemma 3.1, so we only sketch it briefly. It is proved by contradiction. Take the leftmost local
minimum lying below 2/(2 + ). Then, due to (HYP), u = (* +v)/v 4+ 1) at this point. On the other
hand, u > 2/(2 + v) to the left of this point. Using (2.1), this implies that v > 1/(2 + v) at this point,
which, in turn, yields (* +9)/(v + 1) > 2/(2 + ») at this point, a contradiction. The only wrinkle in this
context is the possible discontinuity of u, but this is avoided by the domain restriction assumption:
x < xg. As such, we omit the details and refer the interested reader to [35, Lemma 2.3]. 0

5.2. Quantified exponential decay. A key part of our work in Proposition 2.4 and Theorem 2.6
is a quantitative exponential decay bound that we state below. For convenience, up to translation,
we use the normalization (2.14), so that

(5.1) u(0) <

14
v4+1

We note that, importantly, the proof below has the advantage of applying equally to three different
settings, one of which is ‘slab problem,” where (u,v) satisfies (TW) only on the finite interval
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[—L, L] (see Section 7 and, more specifically, (7.5)). In this case, we must specify which choice of
v we use since boundary data is not imposed. We take the solution v defined by

1 for x < —L,
(5.2) v(z) =K, *u where @(z) =< u(z) forxe[-L,L],
0 forx > L.

The result is the following:

Proposition 5.2. Fiz any xo < 0, vay > vy > 0 and Cpy > 0. Suppose that ¢ € [0,Ch],
V€ [Um,vnm], and u satisfies (5.1). Assume one of the three settings below: either
(i) x < xo and (c,u,v) solves (TW) on R with u(4+0) =0, or
(it) (c,u,v) solves (HYP) on R with u(4+00) =0, or
(i1i) (¢, u,v) solves (TW) on [—L, L] for some L > 0 with u(—L) =1, u(L) = 0, and u(z) =0
for x = L and v satisfies (5.2).
Then

(5.3) u(z) < Cu(0)e™ for all z > 0,
where C' and 6 depend only on Xxo, Yy, Vm, and Chy.

Let us point out the content of the above result. Working on (at least) the half-line [0, ),
standard ODE theory tells us that u decays exponentially eventually. It, however, does not tell us
when the exponential decay ‘kicks in.” This leaves open the possibility of a sequence of traveling
waves (Cp, Un, vp) of (HYP) such that w, is ‘nearly constant’ and O(1) on [0, n] for a large n before
u, begins decaying exponentially to zero. The above proposition rules this out. This is crucial in
the proof of the lower bound (2.11) in Proposition 2.4.

As the proof is quite long and technical, it is postponed to Section 8.

5.3. General bounds on the traveling wave speed: Proposition 2.4. We now prove the
bounds on the minimal speed cﬁyp.

Proof of Proposition 2.4. We consider two cases depending on the structure of Z.

Case one: Z = {zy}. First, we show the upper bound as it is very simple. By Proposition 2.3,
u(x) = 0 for all z > xy. We thus note that

1 _lul 1
¢ = —va(o0) = 55 [ sim(e Futeo— iy = oo | e Futao - )ay
- 1 (* -% g 1
< — e Vdy = .
2% Jy W

For future use, we point out that, from the third inequality and the fact that « = 0 on (z, ), we
have

1
(5.4) ¢ = —vy(xp) = ﬁﬂ(fo)-
Next, we establish a lower bound for v(zg). By definition of Z (Definition 2.2) and by Propo-
sition 2.3, we find
(5.5) vp(x0) = —¢, u(zg) = %(9160)7 and  u(zg) =0.
By Lemma 5.1,

. 2 v+uou(x
(5.6) u(z) = min { YA +(10)} for all z < xg.
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We claim that

v
5.7 > —.
(5.7) v(zo) = 57
If this were not true then the minimum in (5.6) is given by
u(z) > L0

v+1
It then follows that
o o—l|zo—yl/vVY zo o—lzo—yl/v¥ 1
v(z0) = j — 3 u(y)dy = f ‘ vt U(xo)dy _ v(xo),
o N N v+1 2 v+1
which implies that (5.7) does in fact hold.
On the other hand, using (5.5)

(5.8) v(zy) = jw S jffu(y )y = —fv j

Putting together (5.5) and (5.8), we find

e lzo—yl/v/v
#)wu(y)dy = —\rug(wo) = Ve

c= Vv .
2v+1
This concludes the proof in the case where Z = {z}.

Case two: Z is empty. We now consider the case when Z = ¢JJ. In this case,
(5.9) sup(—v,) < c.

Indeed, —v, # c on R since Z = ¢J and, since v(—0) = 1 and v(+o) = 0, it cannot be that
—v; > con R.

If ¢ > 1, the proof is finished. Hence, we consider only the case where ¢ < 1. We first note
that, up to translation, the normalization (5.1) in conjunction with the monotonicity of u (recall
Lemma 5.1) yield

v v
. = < .
(5.10) u(z) o1 when z <0 and u(z) o1 when z > 0
Next, let C and 6 be as in (5.3) and take
1 2C
11 L= -1 ] .
(5:11) ma"{o’e Og(1+9ﬁ)}

Notice that C and 6 depend only on v as we are working under the assumption that ¢ < 1. Hence
L depends only on v.
Using the expression (3.1), followed by the exponential decay (5.3) and (5.10), yields,
ly| vl

) = [ S [ uway

1wl Lyl
v 0 e_ﬁ v L™ f Cv [©e v _

2 — — oydy.
v+1 2[ v+1]J 2[ v+1];, 2[

Carrying out the integration and simplifying yields,

L

AN Cv 1 ~(FH o)L

- N B 7
Vv, (0) 2(v +1) u+12(1+3\5)6

v _r (1 C _oL
= e Vv | -————e .
v+1 2 2(1+0/v)
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Our choice of L (5.11) then implies that
v LV . (1 + Gﬁ)9
—0p(0) > ——— -7 1, (2 .
v=(0) = 7o e v+ { e )V
Recalling (5.9) finishes the proof of case two. O

6. THE HYPERBOLIC SCALING REGIME: PROOF OF THEOREM 2.5

With the general results of the previous section in hand, we may now prove Theorem 2.5; that
is, for any sequence (¢, Uy, vy,) solving (TW) with x,, — —o0 and v, — v > 0, we have that

. . > %
hTILIL 1£f Cn Z Chyp-

Notice that the normalization (2.14), along with Lemma 3.1 and the fact that u,(—0) = 1 and
Up (+00) = 0 yields
(6.1) inf u,(x) = 0 = supuy, ().

Moreover, by Proposition 5.2, there are C, 6 > 0, independent of n, such that
un(z) < Ce™® for all x > 0.

We use these inequalities in order to guarantee the nontriviality of a limit.
We now begin the proof.

Proof of Theorem 2.5. As in the proof of Theorem 2.1, it suffices to prove Theorem 2.5.(ii) as
the claim (i) follows by simply taking a subsequence ¢, that realizes the limit inferior. Up to
the extraction of a subsequence, u,, — u and v, — v weak-* in L® and W%, respectively, and
¢n — ¢ 2 0. It immediately follows v that solves the second line of (HYP) weakly.

We have the following two results, whose proofs we postpone until Section 6.1. The first is
regarding the smoothness of u on Z¢:

Lemma 6.1. In the setting above, for every k € N, xg € Z¢, and pu > 0 such that (xo—p, xo+p) <
Z€, there is ng and C such that
tun ok (zo—ifo,mo4u) < C for all n = nyg.

The constant C depends only on k, xg, u, ¢, and v. The constant ng also depends on these
parameters and, additionally, the convergence rate of |c, — ¢| and |v, — v|w1..

Lemma 6.2. In the setting above, (c,u,v) satisfy (2.8).

With Lemma 6.1 and Lemma, 6.2, we see that u, converges to u in C' on Z¢. It follows that
(c,u,v) is a solution of (HYP) in the sense of Definition 2.2.
Next, we check the boundary conditions u(—o0) = 1 and u(+00) = 0. The latter follows directly
since, by Proposition 5.2, each u,, satisfies
Up () < Ce™ % for all z > 0.

The limit on the left is more delicate. First notice that by Lemma 6.1, there is Z such that w is
smooth on (—o0, Z). Next notice that

limsup u(z) < 1.
T——00

Hence, it is enough to show that £ > 1, where
¢ = liminf u(z).

Tr——00
This is now our aim. We make note of two facts first:

(6.2) liminfv(z) ¢ and £¢>=0>0,

r——00
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where the first inequality follows by (2.1) and the second from (6.1). Since u < 1, either u is
eventually monotonic (that is, up to decreasing Z, u is monotonic on (—0, Z)) or u has a sequence
of local minima on which its value tends to £. In either case, we can choose x, to be a sequence
of points tending to —oo such that

lim u(x,) =¢ and  lim wuy(z,)=0.
n—0o0 n—0o0

Evaluating (2.7) at z,, we find

0= lim ug(2n)(—¢ — vp(an)) = lim u(zn) (”*”(x”) _re 1u(xn)) > ¢ (”M vt 113) .

n—0o0 n—o0 14 v 174 v
By (6.2), it follows that

v+l v+1
<
v v

¢ which is equivalent to 0 < v(¢ — 1).

We conclude that ¢ = 1, which, due to the discussion above, yields u(—o0) = 1, as claimed.
Thus, (¢, u,v) is a traveling wave solution to (HYP), which concludes the proof. O

6.1. Proof of the first main lemma: Lemma 6.1.

Proof. We show only the C'! regularity as the higher regularity may be established by differentiating
the equation and apply the same argument. Due to the convergence of v,, to v, there is 6 > 0 and
ng such that if n > ng then

|(Un)z +c| =0 in (zg — 31/a, 2o + 31/1).

Using then (2.3), we find, on (z¢ — 31/4, xo + 3K/4),

1 1 v+ vy, v+1
|(un)x‘ S e—— 7(un)mc + Un - Unp
(6.3) |(vn)z + cnl | IX] v v
. _ 1 i( ) N V+ vy B v+1
x s ‘X| Un )zx Up iy B Up, .

By the mean value theorem, there is & € (xg — 31/4, 29 — #/2) and &, € (zg + #/2, 2o + 31/4) such
that

|(un)$(£€)| = un(xo - u/z) ;/4un(x0 — 3“/4) < é and
(64 Un (2o + 31/4) — up(zg + Hf2) Z
|(un)m(£7")| = #/4 < ;

The second inequality follows from the fact that 0 < u, < 1.
By elliptic regularity theory, w, is smooth. Hence, by the extreme value theorem, there is
& € [&,&,] such that
6.5 Un )z = max |[(Un)z| = max Up, )| -
(65 )o (O] = max [(w)ol > max ()
The equality above follows from the definition of a maximum, and the inequality is because [xg —

ni xo + 1] < [€e,&r], by construction. If & = & or &., then the conclusion follows from (6.4)
and (6.5). On the other hand, if £ is an interior minimum, then (uy)..(¢) = 0 and (6.3) yields

1 (V—i—’l)n <y+1> )‘ lv+1
U, — Up || < = .
v v 0 v

In view of (6.5), the proof is finished. O
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6.2. Proof of the second main lemma: Lemma 6.2.

Proof. Consider any closed interval [z, Z] ¢ Z with z < Z. We note that, by the definition of Z,

it must be that v, = —c on [z, Z]. We have two important consequences from this:
(6.6) Vg =0 on [z,7],

and

(6.7) v is nonincreasing on [z, Z].

We claim that, up to extracting a subsequence,
(6.8) Up — v  asn — o in L*([z, Z]).

We postpone its proof momentarily and show how to conclude.
Fix any smooth function ¢ with support in (z,Z), multiply it against (2.3), and take n — o to
find

J%(% + C)de + Jwva:wu dz = nh—r};o <J"l/)$ ((Un)w + Cn) Uy, dz + Jw(vn)wxun dl‘)

n—oo0 n—oo Vn Vn
1
Jw <1/+v B <1/+ >v>vdx.
v v
Above we used that (v,)zr — Ve in L?([z,Z]) and that v, — v in L®([z,Z]). Recalling that
vy +c¢ =0 on [z,Z], yields
Ozjw(y—&-v _ (V+1)v)vdx,
v v

which concludes the proof.

We now prove (6.8), which is the most difficult part. We first note that u,, converges weakly to

v in L?([z,z]). Using the second equation in (TW), we have that the weak limit u of wu,, clearly
satisfies

=—lim [ % ((vn)e + cn) (upn)zdz = lim |4 (Vn tn _ (Vn + 1) un> Uy, dz

U=V— Vgg.
Using this and (6.6), we deduce that u = v; hence,
u, —v in L*([z,7]).
Fix p,d > 0. Our next step is to show that, for all n sufficiently large and up to extracting a
subsequence,
(6.9) Up Z 0 —p  on (z+9,T—90).

Before showing (6.9), we show how to conclude (6.8) from it. Noting (2.2) and using that u,, v, —
v, we have that

lim supJ (tp, — vyp)?*dx

n— oo T

T—6 Z—8
<25+Iimsupj |un—vn|dx<25+u|:ﬁ—§\—l—limsupJ [y, — v + p| dz

n—o0 £+6 n—0o0 £+6

75
=20+ plz —z| + 1imsupj (Un, — vy, + p) dz

n—w Jris

n—o0

< 20 4 2p|T — z| + lim supJ‘]l@_H;@_(;Wn da — lim ian]l[g_,_(;,f_(;]vn dx
n—o0

=20+ 2u|T —z| + J‘]l[£+5)a—:,5]v dox — J\]l[£+57j,5]7) dz = 20 + 2u|Z — z|.
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Note that (6.9) was used in the first equality. Clearly, (6.8) follows after taking &, u — 0.

We now show that (6.9) holds. As the proof is quite intricate, we briefly outline the main idea
here. We first show that, were (6.9) to be false, the weak convergence of u,, and v, to v implies the
existence of points y,, and z, between which u,, — v,, travels from being bigger than —u/2 to being
—p. Choosing a ‘good’ point between them, we can use the fact that v, is ‘nearly’ decreasing
(see (6.12)) along with the partial monotonicity result Lemma 3.2 to find a nontrivial interval
where u,, — v,, remains smaller than —/2, which is not consistent with the weak convergence of
u, and v, to v.

First, by the weak convergence of u,, to v, we have that there exists y, € (z,z + ) such that

(610) un(yn) = Un(yn) - g

If this were not true,
Jw(’un - un) = gjwd%

for any nonnegative, nontrivial test function v supported in (z,z + §). This contradicts the fact
that u,, — v and v,, — v.
Next, let z, to be the first time in (y,,z, — J) that

(6.11) un(2n) = vn(zn) —
If no such point exists, then (6.9) holds and we are finished. Hence, arguing by way of contradiction,
we assume z, exists. Notice that, by the C'-convergence of v,, to v and (6.7), there is n sufficiently
large such that
1 _
6.12 n)e S o ———— s T
(6.12) n)e < o4z @7
As a consequence, using the concavity of v, we have
I
Un(2n) = vn(2n) = 1 < (Va(Yn) + (Vn)z(Yn) (20 — Yn)) — 1 < vn(yn) + 100 1< Un(yn),
where the first inequality follows by (6.12) and the second inequality is due to the choice of y,, (6.10).
We next claim that there exists a point (, € [yn, 2] such that

(6.13) n(Ca) S 0(Ca) = 22 and  (un)al(Ca) < 0.

4
We construct this as follows. Let
_3k e )
4 501+z—x) )
That ¢, exists follows from the definition of z, (6.11) and that (,, > y,, follows from the definition
of y, (6.10). Since u, — v, > —31/a — & =yn) 501 + 7 — z) in (yn, (), it must be that

(n)2(Cn) < ( - %ﬂ - m ) (G

¢, = min {x € [Yn, 2n) : un(z) = vy (2)

After applying (6.12), we conclude (6.13).

We claim that

I _

(614) un(y) < Un(y) - 5 for all ye (Cn: 33)
Before proving this, we show how to conclude the proof by contradiction that started with the
existence of z,. Indeed, up to taking a further subsequence, we have that (, — (o, for some (.
Then, take any nonnegative, nontrivial test function ¢ supported on a compact subset of (s, Z).
Note that the fact that ¢, < z, < Z — § ensures that the support of ¢ is nontrivial. By (6.14), we
observe that

liminqu/}(vn —up) > %dex > 0.

n—0o0
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This contradicts the weak convergence of u,, and v,, to v.
We now show that (6.14) holds. To establish this, let ymin be the first local minimum of w,
after ¢,. We first consider the case where y,i, does not exist or where

Ymin = T.

In this case, from to the lack of an interior minimum and the fact that (u,).(¢,) < 0 (by construc-
tion, see (6.13)), it follows that w, is decreasing on ({,,Z). In this case, for any y € (¢, Z),

3p 1% 3p %
6.15 n gnngnn_ign Tnn/1 1 =~ N9 7 6n) T T n\9y) — §-
(0.15) ws(y) < 0alGn) < 0G) = < 0a0) + [ ¥~ G~ o <)~ 5
The first inequality is because u,, is decreasing, the second inequality is due to (6.13), the third
inequality is due to (6.12), and the last inequality is due to the width of the domain. This
establishes (6.14).

We next consider the case where ymin € ((, Z). The same reasoning as in (6.15) yields

Un(ymin) < Un(ymin) - g
Lemma 3.2, however, implies that
V + Uy (Ymi
un(ymin) = % = 'Un(ymin)-

Thus, we have reached a contradiction, and hence, this case cannot occur. This concludes the
proof of (6.14). As detailed above, this yields (6.9), which, in turn, completes the proof of the
lemma. (]

7. THE PARTIALLY MATCHING UPPER BOUNDS: PROOF OF THEOREMS 2.6 AND 2.8

Here we construct special solutions that, in a sense, saturate the bounds obtained in Theorem 2.1
and Theorem 2.5. We begin by constructing a traveling wave solution to (HYP).

7.1. A sequence converging to the discontinuous hyperbolic wave: Theorem 2.6. Here
we establish the existence of a sequence of solutions to (T'W) that converges to a discontinuous
hyperbolic traveling wave. Our construction proceeds in the usual way, by approximating traveling
waves solutions to (TW) by solutions to a well-chosen Dirichlet problem in a finite slab. The main
novelty in our setting is to construct a solution such that v,(0) + ¢ ~ 0 as |x| — . In view
of Proposition 2.3 and Lemma 6.2, this is enough to deduce that, in the limit, there is a jump
discontinuity at the origin. The convergence of the sequence thus yield a new method to construct
traveling waves for the hyperbolic problem (HYP), different from the original one provided in [30]
and that does not require the same technical assumption.

7.1.1. The main proposition and the proof of Theorem 2.6. The main proposition used in estab-
lishing Theorem 2.6 is the following:

Proposition 7.1. Fixz any x < 0, v > 0, and 0 € (0,¥/(v+1)). There exists a traveling wave
(c,u,v) solving (TW) such that u and v are decreasing and c,u satisfy,

1 v 1 2 v+1
ce(\/m m,WJrW«/ » ), u(0) =6, wu(—ow)=1, and u(+ow)=0.

Moreover, for |x| sufficiently large, there is a constant C' > 0, depending on v and § only, and a
point x,, € (—C,C) such that

9 iy—i— 1
(7.1) (va(zy) +¢)° < ™

Before establishing Proposition 7.1, we show how to use it to prove Theorem 2.6.
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Proof of Theorem 2.6. Fix any vhyp, > 0 and take any sequence X, — —0, Vy — Vhyp. Let
(Cn, Un,vy) be the solution of (TW) guaranteed by Proposition 7.1. By Theorem 2.5.(ii), there is
(¢, u,v) that is a solution of (HYP) in the sense of Definition 2.2 to which (¢, u,,v,) converges
along a subsequence. This additionally gives that

u(—0) =1 and wu(+0)=0.

The monotonicity of u and v follows directly from that of w, and v,,.
Let z,, € (—C, C) be the point such that

9 i v, +1
(7.2) ((Un)a(@n) + cn)” < ol vn

Up to passing to a further subsequence, there exists x, € [—C, C] such that z, — x4 as n — oo.
The convergence of v, is weak-* in W% so that (7.2) implies,

Vg (z4) + ¢ = 0.

This, along with Proposition 2.3 and Lemma 6.2, implies that Z = {0} and that

_ v+ v(zy)
u(zy) = Tl* >0 and wu(z])=0.
This concludes the proof, up to translating by x.. O

7.1.2. Constructing a solution: the proof of Proposition 7.1. The main step in constructing the
traveling wave of Proposition 7.1 is to solve the ‘slab problem’:

(73) —CUy — \71|u” = (uwvg)s +u(l —uw), ze(—=L,L),
’ u(—L) = 1,u(L) =0,

where
1 for x < —L,
(7.4) v=K,*u where @(z) = { u(z) for ze[-L,L],
0 for x > L.

This is achieved through a number of steps and relies on the Leray-Schauder index.
To this end, for fixed x <0, v > 0, ¢ > 0, and 7 € [0, 1], we define the operator F, acting on
we CI([~L, L]) by
Fr(u) :=u(x),

where @(z) is the unique solution to the equation

(75) _\71|ﬂ”($) — clg () + u(z) = T(u(x)ve(z))s + u(x)(Z — u(x)), for all z € (—L, L)
' a(—L) =1,a(L) = 0,

for v given by (7.4). For any bounded open set Q < C*([—L, L]), we use i(F,,) to denote the

Leray-Schauder index of F, acting on 2. We refer the reader to [69, Chapter 14] for the definition

of Leray-Schauder index.
We remark that fixed points u of F, correspond exactly to solutions of,

{—cum - ﬁum = 7(wg)e + u(l —u), ze(—L,L),
U

(7.6) (—L) =1,u(L) =0,

where v is given by (7.4). For 7 = 0 we recover a classical slab problem for FKPP waves. For
7 =1 we have our target problem (7.3).
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Lemma 7.2 (Index in the slab). Let 0 < xm < Xar, 0 < U < var, 0 < ¢y < cpr and a € (0,1)
be fized. Fix |x| € [Xm>Xn], V € [Vim, V], and ¢ € [¢m, car]. There exists My > 0 such that for all
M > My, the Leray-Schauder index of F, in the bounded open set

(7.7) Q= {u e Lo ([-L, L)) : {0 <u(z) <1, forallze (—L,L),

La([_
—M < u,(z) <0, forall:z:e[L,L],}CC ([-L, L))

is equal to 1 for T € [0,1]:
(7.8) iW(Fr, Q) =1 for 7 €[0,1].
The constant My only depends on Xm, XM, Vin, VM, Cm, and Cpf.
Proof. First, we note that v solves the equation
— Ve (x) = u(z) — v(x) pointwise for all x € (=L, L),

so that v is bounded in C**((—L, L)) and continuous as a function of u € C%*([~L, L]) in the
same space; if u € Cl’o‘((fL, L)) then v € C3""((7L, L)) and depends continuously on u. Clearly
F, maps C*([—-L, L]) into C1*([—L, L]) and is continuous with respect to the parameter 7 for
the C1® norm. Moreover by the Schauder estimates F, is compact for the C1:*([—L, L]) topology.

Next we show that the Leray-Schauder index of F, (see [69, Proposition 14.5]) is non-zero in
the open set Q) for a sufficiently large constant M. The proof consists of two main parts: first,
we show that the Leray-Schauder index of Fy is 1, and, second, we establish that F, has no fixed
point on the boundary of Q for 7 € (0,1]. The consequence of these two facts and the homotopy
invariance property of the Leray-Schauder index is that (7.8) holds.

Step one: the Leray-Schauder index of F is 1.
For 7 = 0, the equation (7.6) is the classical FKPP traveling wave equation on the slab [—L, L].
Hence, this step is essentially ‘folklore’; however, being unable to find a published proof, we
include it here. First, we note that it is known that this equation has a unique solution u° which
is strictly decreasing and satisfies sup,c(_p 1) |ud(x)] < +oo (and hence lies in Q upon taking M
large enough): the uniqueness and monotonicity follow from ‘sliding’ arguments [12], while the
bound on u! follows from elliptic regularity theory. Since fixed points of F, correspond exactly to
solutions of (7.6), we deduce that Fy has a unique fixed point u" €  and P is strictly decreasing.
Next we compute i(Fy,2), the Leray-Schauder index of Fy in Q. Since u°(z) is the unique
fixed-point of Fy in 2, we have by [69, Proposition 14.5]:

(7.9) i(Fo,Q) := i(DFo(u?), B(0,1)) = (—1),

where DFy is the Fréchet derivative of Fo in C*([—L, L]) and a is the sum of algebraic multiplicities
of all eigenvalues of DFy(u") that are greater than 1. This formula, however, is conditional on the
fact that 1 is not an eigenvalue of DJFy(u®), which we prove now. The Fréchet derivative DJFy can
be computed as DFy(u)h = h where

710) {jli/}m(x) — chy(x) + h(z) = h(z)(2 - 2u(x)), forallze (~L,L),

h(—L) = h(L) = 0.
Notice that the coefficient in the right-hand side of (7.10) is a nonnegative function, therefore
DFy(u®) is order-preserving.
We now show that DFy(u®) does not have an eigenvalue larger than one. We argue by contra-
diction, in which case, DJFy(u®) has principal eigenvalue A > 1. Then there must exist h(z) > 0
such that DFy(u®)h = \h; that is,

(2 —2u°)

—chy — S hyw +h=h
c + h\

T
h(—L) = h(L) = 0.

(7.11) < h(2—2u0), in (—L,L),
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However the function k() := —ul(x) > 0 satisfies
a1 _ 9,0 in (—
(7.12) —cky — kae + k= k(2 — 2u®), in (=L, L),
k(—L) = —u%(=L) > 0,k(L) = —ud(L) > 0,

where the sign of ul(—L) and ul(L) are known from Hopf’s Lemma. Due to the boundary
conditions, we have that Ah < k for A sufficiently small. Letting

Ao =sup{A: Ah < kon (—L,L)},

we see that Agh < k and there exists zg € (—L, L) such that Agh(zo) = k(zo). If A > 1, it follows
that

thm(l‘o) = If(l‘o) and thﬂv(xo) < k‘xm(l‘o),
and that violates (7.11) and (7.12) (notice that Agh also satisfies (7.11)). If A = 1, the strong

maximum principle implies that Agh—k =: C is a negative constant. Taking the difference between
(7.11) and (7.12) we find that

C=(2-2u"2))C <= 1-2u"(2) =0,

which is a contradiction since u(L) = 0. We conclude that DF,(u®) does not have any eigenvalues
larger than 1. We, thus, conclude that ¢ = 0 in (7.9) and

i(Fo, Q) = 1.

Step two: there is no fixed point in the boundary of Q.
Suppose by contradiction that there exists 7 € (0,1] and a function u € 0Q such that F,(u) = u.
Since u € 02, at least one of the following equalities holds:

(7.13) u(z) =0 for some z € (—L, L),
(7.14) u(z) =1 for some z € (—L, L),
(7.15) ugy(z) =0 for some x € [—-L, L],
(7.16) ug(z) = —M for some x € [—-L, L].

We will show that none of those equalities can hold, which is a contradiction.

First, we note that elliptic regularity theory implies that, by increasing M, we can ensure
that (7.16) does not hold. And, due to the boundary condition on u, we have that (7.13) and (7.14)
cannot occur unless (7.15) occurs. Thus, we conclude that there exists z* € [—L, L] such that
ug(x*) = 0.

We now use Hopf’s Lemma to find,

uy(—L) <0 and uy (L) <0,
so we obtain that, actually, z* € (—L, L). Defining w(z) := u,(z) we have

—cwg () — ﬁwm(x) = T(wy (2)vg(z) + 2w(z)vy(x) + u(z)vg(2))
(7.17) + w(z)(1 — 2u(z)), if xe(—L,L),

w(—L) = uy(—L),w(L) = u, (L).
Evaluating (7.17) at 2 = 2* (which is a local maximum for w) we have
(7.18) 0 < Tu(z*)vg(z*).

However, since u is decreasing and non-constant, we have v, (z*) < 0, therefore (7.18) is a con-
tradiction. Therefore (7.15) cannot hold. This concludes the proof of the claim of Step 2 and,
therefore, the proof of the lemma as well. O
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We can immediately deduce from Lemma 7.2 the existence of a continuum of waves in 7 and ¢
for a fixed L > 0.

Corollary 7.3. For each 0 < & < 40, there exists a connected set C < [0,¢] x CV*([—~L, L]) such
that (i) for each (c,u) € C the function u solves (7.3) with speed ¢, and (i) there is a pair (c,u) € C
for each c € [0,¢].

Proof. Let ¢ > 0 be given. By Lemma 7.2 there exists a M > 0 such that for ¢ = 0, the index of
F1 (defined in (7.5)) in the set  defined in (7.7) is equal to 1. Moreover it has been shown that
there are no fixed-points of F; with u € 02 and Fi is continuous with respect to ¢. By a direct
application of the global continuation principle [69, Theorem 14.C], there exists a continuum C
composed with fixed-points of F1, connecting {0} x Q to {¢} x 2. Since fixed points of F, correspond
exactly to solutions of (7.6), Corollary 7.3 is proved. |

Lemma 7.4. Let u(x) be a decreasing solution to (7.3). Then ¢(x) < u(x) < @(x), where o(x) is
the solution to the FKPP equation

{—cwm — N2 (@) = 2(0) (1= () o(@)), we (=L, L),

o(=L) =v/w+v, ¢(L) =0,

and B(x) is the solution to the FKPP equation

(7.30) {— (e~ 5) Bel) = (@) = (1) Bla) L~ B(a), we (-L.L).
#(=L) =1, p(L) = 0.

In particular if € € (0,1) and L is sufficiently large, we have

2
(7.21) W)= (-9, i< m«/%ﬂ,

and

(7.19)

_Lixl (o L 1)1 (vt
(7.22) u(O)ée 2 (C W+ (C W) 4|x\( v ))’ ifC—LZL v+l
YRRV
Proof. Indeed u(x) is a subsolution to (7.20) and a supersolution to (7.19). Since both (7.20) and
(7.19) satisfy the comparison principle, we have
(7.23) p(z) < u(xr) <P(z) for all z € (—L, L).
To obtain (7.21), it is enough to show that ¢(x) converges to ;%5 locally uniformly as L — +o0
since ¢ is smaller than the minimal speed of the FKPP equation (7.20) (when defined on R), which

is 2/\/Ix|a/¥/(v + 1). We briefly outline why this is true. First, it is simple to construct a subsolution
o (7.19) of the form

ere MR cos (%) on (—R, R),

with g, Ar, and R chosen depending only on 2/\/[x[\/¥/(v + 1) — c. Hence, $(0) > €p for all L > R.
On the other hand, after taking L — o, ¢ converges to some function gb solving (7.19) on R.
Since c¢ is smaller than the minimal speed, ¢ must be a trivial solution. By above, ¢ > 0, and,
hence, can only be v/(v + 1).

To obtain (7.22) we take c satisfying the inequality in (7.22) and note that the function

P(x) := Ae %(Cfﬁﬂ/(kﬁ)zﬂﬁ(vrl))x

is a super-solution for (7.20) as long as p(+L) > @(+L). This last condition is equivalent to the

condition:
2
A > 67 L‘ZX‘ (Ci \};+\/(C7 \};) —4 \)1(\ ( 3;1 )) .
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Hence, taking A to be exactly equal to the quantity on the right-hand side of the previous line, we
find ¢ < . Together with (7.23), this implies (7.22). Lemma 7.4 is proved. |

As a consequence of Corollary 7.3 and Lemma 7.4, we obtain the following result:

Proposition 7.5. For all § € (0,%/(v + 1)), there exists Ls > 0 such that for all L > Ls there exists
a solution (u,cs) to (7.3) such that u € CY([—L, L)) is decreasing and satisfies u(0) = 6, and the
speed satisfies,

¢s € (¢, 0),
where ¢ and ¢ are given by,

2 v+ 1

7.24 c= and ¢ = —
2 <= TR reT AV
Proof. Fix ¢ > 0 such that 6 < (1 —€)(¥/(v+1)). Let C be the connected set of solutions (¢, u) €
[0,¢] x CY*([—L, L]) to (7.3) provided by Corollary 7.3. The map ® : C — R defined by ®(c,u) =
u(0) is continuous. Hence, the image ®(C) is connected.

Let u be a solution corresponding to ¢ and let u be a solution corresponding to ¢ such that
(¢,u), (c,u) € C. These exist due to Corollary 7.3. Next, let L be large enough so that the
conclusion of Lemma Lemma 7.4 holds; thus, we have,

L 4 1
O(c,u) < exp _ LI c——= —I—\/ — (H) and @(c¢,u) = (1—e) Y

2 1/ x| v v+1

Hence, due to the fact that ®(C) is connected, we deduce that

Lix| [ _ 4 (v+1 v
X el 2 (e 1- o(C).
exp 5 (¢ +\/ 1/ N ( u )  ( E)V+ 7] < ()

Thus, by further increasing L as to guarantee

oo 2 (ol ) -2

holds, we find that there exists (¢, u) € C with ®(c, u) = u(0) = §. This completes the proof. O

We are now in the position to prove Proposition 7.1.

Proof of Proposition 7.1. Fixv >0, x <0,and § € (0, ﬁ) By Proposition 7.5, for L sufficiently
large, there exists a (cp,,ur,vy) with
(7.25) cr, € (¢,¢), where ¢ and ¢ are given by (7.24),

such that u solves (7.3) and
ur, (0) =94.

By a standard diagonalization procedure, up to taking a subsequence, there exists (¢, u,v) and
a sequence (cr, ,ur,,vr, ) with L, — +00 such that ¢;,, — ¢ and uy, — u and vy, — v locally
uniformly in C2. The convergence implies that (c,u,v) solves (TW). The limit u(+o0) follows
from Proposition 5.2 and the limit u(—o0) = 1 follows easily by standard arguments (see, e.g., the
arguments used to establish that u(—o0) = 1 in the proof of Theorem 2.5) and the facts that w is
monotonic and u(0) = 0.

The remaining thing to prove (7.1): the smallness of v, + ¢ at a point for |x| sufficiently large.
This is the main difficulty in the proof. We do this now. Actually, we establish this at a point
Zn € (—Lyn, L,) and argue that x, remains in a bounded interval around the origin as n — oo.
For the remainder of the proof, we’ll denote (cr,,ur,,vr,) as (¢n,Un,vy). In addition, we now
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clarify what we mean by |x| sufficiently large. First, we recall from Proposition Proposition 2.4
that c}":yp > 0 holds. Now we take |x| sufficiently large so that Theorem 2.5.(i) guarantees that any
traveling wave solution of (HYP) satisfies

C
(7.26) c= 22,

In addition, we take |x| large enough so that

o 4 v+1
7.27 P
(7.27) 8 \ Ixl v

holds. In the remainder of the proof, |x| will not be further increased.
We shall now establish (7.1). To this end, let

cnxtvn(x)

() := up (z)eX 2

Then @ satisfies the equation

(7.28) L e — (1 L @) (V i 1) Un () — ((”")’“’Lc")> in (=L, Ly).

|x| v v 4L

IxI
Let us take L, > ( — ﬁ log %) ¢! and consider any z < (% logg — 1) (¢)~!. From the defini-

tion of @, that u, <1 and v, < 1, the fact that 2 < 0 and the upper bound on ¢, from (7.25), we
find,

ﬁ(ﬂ'}) < e‘%‘(cnaﬁLl) < e%(gaﬂrl) < e%(%log%) _ é
2
Thus, we have,
) X
(7.29) sup i) <5 <8 a(0) = 5e 30O > 5 @(L,)=0<4,

:ve(—Lm(ﬁ log %—1)(9)_1)

which proves that @ has an interior global maximum x,, satisfying,

(7.30) Ty € <(|i| logg - 1) ()" ,Ln> :

Testing (7.28) at the location of the maximum z,,, we have

0<-ta —a (1 L OnlEn) _ (V + 1) (1) — X ((vn)a () + cn)2> 7

|| v v 4

so that
Ix| (Ve (20) + cn)? _v +1

~

4 v

Next, we show that x,, is contained in a bounded interval around the origin. The fact that z,,
cannot be too negative follows from (7.30). We now show that x,, cannot be too positive. First
notice that, due to (7.26), we may assume that

(7.31)

c
Cn Z %a

up to increasing n. Combining this with (7.27) and (7.31) yields

(7.32) vg (@) + cn] < 2

5"
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From (2.1) and Proposition 5.2, it is clear that there are positive constants C’, 6" > 0, independent
of L and x (recall that we have already restricted to  sufficiently large, so there is no dependence
on y through Proposition 5.2), such that

lua| < Cle™0.
Combining this with (7.32), we find that either z, <0 or

—0 Cn
Cn—Cle Oan <3

which yields

]. ‘9/1 2 8
—e "< — < .
C’ Cn c}”;yp
Taking the logarithm of both sides, we find
1 8C’
(7.33) 70 < 5 log (),
o' Chyp

which is the desired bound.
Up to passing to a further subsequence, there is x, such that =, — =4 as n — 0. From the C*
convergence (recall that |v,|wz» < C(1+ 1)) of v, to v, it follows that

4 v+1
2
S R —
(vg(z4) + ) X v
The bounds on z, follow directly from (7.30) and (7.33). This completes the proof. O

7.2. Converging to the porous medium wave: Theorem 2.8. We now show that discontin-
uous traveling wave solutions to (HYP) converge to traveling wave solutions to (PME). We work
with the solutions constructed in Theorem 2.6. We point out the properties that we use: first,

(7.34) u, is nonincreasing, (v,),(0) = —¢,, and wu, =0 in (0, 0).

The first is due to Theorem 2.6.(i), the second follows from (5.4), and the third follows from
Theorem 2.6.(ii) and Proposition 2.3. Additionally, we have that

(7.35) —c¢, < (vy)z(x) <0 for z € (—00,0) and w, is smooth in (—o0,0).

Next, we observe that u and v are close, depending on v. Indeed, as (¢, u,v) is constructed as
a limit of solutions to (TW), we may apply the estimate Lemma 4.3

(7.36) lwy = v < C(We, + D',

for some universal C' > 0. Similarly, we also have, from Lemma 4.1 and Corollary 4.2,

(7.37) J|u,,(1 —uy)logu,|dz <e¢, and [v.]cie, (V)2 < Ve

We begin by obtaining an upper bound on ¢. Note that this does not follow from the previously
established upper bound in Proposition 2.4. For notational ease, we drop the v subscript here.

Lemma 7.6. Suppose that (¢, u,v) is a traveling wave solution to (HYP) satisfying (7.34) and (7.35).
Then

v(x) = (c+x)|z]  for all x € (—c,0) and ¢ < 2.

Proof. First notice that the second claimed inequality follows from the first since v < 1. Hence,
we now focus on the first inequality.
Fix any = < 0. Integrate (HYP) over [x,0] and recall (7.34) to find

0
J u(l —u)dz = —cu(0) + cu(x) — u(0)vy (0) + u(z)vy(x) = (¢ + vy (z))u(z).

x
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Since v is nonincreasing, we have
0

|z|u(z) = J u(l —u)dz = (¢ + vy (2))u(z).

After dividing by u(x) and rearranging, we find
c— x| < —v.(x).
By the mean value theorem, we can find &, € [z, 0] so that
v(z) = v(0) + va(&)7 = v(0) + (—va(&a)) ||
= v(0) + (¢ = &[] = v(0) + (¢ — |z])|z| = (¢ — |a])]x].

The proof is completed by evaluating the above at = —¢/2:
2

U(_E)><C_E)E_i
2) 7 2/2 4

Next, we show that ¢ cannot degenerate to zero as v N\ 0. Notice that this is important because
the generic lower bound in Proposition 2.4 degenerates as v ™\ 0.

Lemma 7.7. Fix any vy > 0. Suppose that (c,u,v) is a traveling wave solution to (HYP) with
v e (0,vnr) satisfying (7.34)-(7.37). Then there is ¢ > 0, depending only on vy, such that

c>c.

Proof. First note that we need only check v « 1 due to Proposition 2.4. Before beginning, we
describe the intuition behind the proof. If ¢ is small, (7.37) forces u to transition from 1 to 0
‘quickly’ and v to be nearly constant. This is not consistent with the fact that (7.36) makes u and
v ‘close.’
To this end, let
rp=v"12/3) and z, =v (1/3).
Notice that, due to (7.37), it follows that

(7.38) I |v(xe) — v(zr)| < A/c|Te — 20 ).

3
Then, in view of (7.36) and up to decreasing vy, we have
1 3
(7.39) <u(z) < I for all x € [xy, x,].

4
Incorporating (7.38) and (7.39) into (7.37) yields

1 3log(4/3 o
131848 10 | min u(1— w)|logul <j u(1 - w)|logul dz < c.
9¢c 16 [ze,zr] Te

Rearranging this completes the proof. |
We are now in position to complete the proof of the theorem.

Proof of Theorem 2.8. We establish this by showing that any sequence has a subsequence that
converges in the claimed manner. To this end, fix (¢, un, vy) with v, \, 0 as n — o0.

Using Lemma 7.6, (7.37), and (7.36) and after passing to a subsequence, we obtain ¢ and @ such
that ¢, — ¢, u, — @ locally uniformly, and v,, — ¥ locally uniformly in CZ_ for any « € (0,1/2)
and weakly in H_. From (7.36) we know that @ = v so @ is continuous (even C"/?). We also note
that, since u,, is nonincreasing for every n, so is u. We use this often in the next paragraphs.

First, we check the qualitative behavior of u. Note that, due to Lemma 7.7, we have that ¢ > 0.
Then, from Lemma 7.6 and the monotonicity of u, we have that @ > 0 for = € (—00,0). In fact,
we have

a(z) = u(—¢/2) = /4 for all < —

DO | Ol



36 NEGATIVE CHEMOTAXIS TRAVELING WAVES

In view of (7.37) and using the same arguments as in the proof of (4.15), we conclude that
(—o0) = 1. Additionally, from (7.34), we have that @(z) = 0 on (0, ). In summary,

a(—o0), and {u=0}=]0,00).

Next, we briefly show that @ is a distributional solution to (PME). Testing the equation satisfied
by u, with a smooth function ¢ supported on a compact interval I < (—o0,0), we find that:

en [(wn)ga + [unton)ups = [[un(t = wp

The first integral converges to {up, and the last to {a(1 — @)y because u,, — u locally uniformly.
The middle integral converges to Sﬂ@zgox = Sﬂﬂﬂ% because u,, — u locally uniformly (hence
strongly in L?(I)), and v, — © weakly in H'(I). Thus @ € H]_ is a distributional solution
of (PME) on (—00,0). It follows from classical arguments that @ € Clzo’f‘(—oo, 0) and is a classical
solution of (PME) on (—0,0), and that w is strictly decreasing. Thus w is a solution of (PME) in
the sense of Lemma 4.4 ((2)), and we conclude that u is a distributional solution on R.

Since & = 0 on (0,00) (recall (7.34)), it follows that @ is the minimal speed traveling wave

solution to (PME) [4]. It follows that ¢ = 1/4/2. This completes the proof. O

8. PROOFS OF TECHNICAL LEMMAS
8.1. Exponential decay: Proposition 5.2.

Proof of Proposition 5.2. First, we point out that the normalization (5.1) guarantees that w is
nonincreasing on z > 0. In cases (i) and (iii) this is due to Lemma 3.1 and the boundary data
u(+o0) = 0 and u(L) = 0, respectively. In case (ii), this follows from Lemma 5.1. Moreover, we
can also compare with points to the left of the origin. Indeed, the monotonocity results above
indicate that u(x) = w(0) for < 0. Hence,

(8.1) if x >0 and z < x then u(z) = u(x).

Next, the proof for solutions of (HYP) is significantly easier than for solutions of (TW), so we
show only the proof in the setting of the latter equation. Actually, by formally taking y = —o0 in
the computations below, one arrives immediately at a proof for solutions of (HYP).

We start by defining the following constants. First, let

Ap = 4log8 sothat e 3A0/4 e/ < 1/4
Next, define,

1 64c(2v + 1) .1 1 |xo0|Av
2 A= Ay, —y ————= = = .
(8.2) max { 0, » } and g = min { 8 e +1) 2

We shall prove that

(8.3) u(zo + AVv) < (1 — p)u(zo).
as long as xo = 0 and u solves (TW) on [zg, zg + A4/v). We point out that the dependence on vy,
vy, and C)yy is clear due to the explicit nature of A and pu.
Before beginning with the proof of (8.3), we show how it yields the claim. Fix any z and let
Ng = [ﬁﬁj be such that
Angv <z < A(ng + 1)y/v.
Then, by the monotonicity of u pointed out at the outset of the proof, it follows that

uw(x) < u(Ang\/v).
On the other hand, applying (8.3) n, times yields
z__q vV

u(@) < u(Ang V) < (1= pu(A(n, = Dvv) < - < (1= )" u(0) < (1= p) ™77 =
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Hence, up to establishing (8.3), the proof is complete.
We now prove (8.3). We argue by contradiction: assume there exists o > 0 such that

(8.4) u(zo + AVv) = (1 = p)u(wo).

Since the proof is quite intricate, let us explain the main idea. The monotonicity of u and (8.4)
indicates that w is approximately constant on a large interval. Given its definition, it follows that
v &~ u on this interval. Using then (TW) and expanding the (v u), term, we find

v v+1
—cul.:u(l—!—f—(

)u) + Vp Uy +
v

1
x|

%u(l—u) + VU + Uy -

1
x|
Let us ignore the second order term, which is only a technical issue. Next note that we expect
vz, = 0 due to the monotonicity of u, on [0,00). Finally, since u changes by pu over an interval
of length, A\/v, we expect:

cpu
Ay
Canceling a u term on each side and noting that u < v/(v + 1) < 1, would yield a contradiction
since the left hand side tends to zero as A — o or p — 0, but the right hand side is positive. This
is roughly how the proof proceeds. Most of the technical difficulty is in dealing with the second
order term.
We now proceed with the proof. The first step is to establish that, under the assumption (8.4),
we have,

(8.5) v(z) = u(xg)/8 for all z € [zg, o + 3AV/v/4].
To this end, from (2.1), we have
‘,

N —ClUy = u(l — u) + o(1).

—3Av  _ lul

v(z) = f t u(x +y)dy + JO ﬂ“(ﬁ +y)dy + JAWM 6_% u(z + y)dy
“ e 2w _sAyi/a 2V 0 2\/v '

Notice that @ — 344/v/4 < xy. We bound the first integral with (8.1) and the second and third
integrals with (8.4). This yields

<>>f_3Aﬁ/4e“y” (o) d f e“%(l Yu(o)d JW%_% Yu(o)d
v(x) = u(xo)dy+ — (1 — p)u(xo)dy + — p)u(xo)dy
—0o0 2'\/; 0 —3A\/;/4 2\/D 0 0 2'\/17 0
1
=5 (e (L= L= )+ (1 e (1= ) uao)

1 1
~ (FU- e e A L ey

> ((1 — )+ (1—p) <_63A/42_ eA/4>> u(wo),

from which (8.5) follows by using that A > Ay and p < 1/8.
Next, we use (8.5) and the monotonicity of u to find, for all € [z, zo + 3A4/V/4],

1+U(VI)—<V+1)u(x)>1+<—1—jy>u(mo).

14

We use the inequality u(zg) < 2v/(2v + 1), which follows from (5.1) and monotonicity, to bound
the right-hand side from below and obtain

v(x) v+1 v—-1 2w 1 1
8.6) 1+ (T >1- - - for all 20+ 3Ay/v/4].
(86) 1+ ( v >“(“) o el 2z oralle [rome+ 34vi/d
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Our next ingredient is the observation that, for all z > z, we have,

(8.7) Vv, (z) = L ’ %(u(x +y) —u(z—y))dy <O0.

Indeed, the equality follows from the expression (2.1) for v. The inequality holds pointwise on the
integrand, which can be seen by considering two cases. First, when z¢g —y > 0, this is due to (8.1).
In the other case, when zg — y < 0, Lemma 3.1 implies that u(zo —y) = v/(v + 1). On the other
hand, (8.1) implies that

v
v+ 1
Hence, u(xg +y) — u(xg — y) < 0, as claimed. This finishes the proof of (8.7).

Next, define

u(zo +y) < u(0) =

2uu(x
(8.8) F:= {x € [wo, xo + AVV] 1 v/ (x) > _/il(\ﬁo)}.
These are the points where w is flat, hence the F' notation. Note that, due to (8.4),
2pu (o)
pu(zo) < u(wg) — ulzg + AV SJ Uy (2) dx < |F|———=%,
() < (o) — uf )< [ ety do < 1112
so that
A
P> AV
2
It is useful to further restrict F'. Let
- _ A

(8.9) F = F 20,20 + 3Av0/4],  which has |F| > f.

We shall now establish a lower bound on ug, that holds on F. To this, end, we use (8.8) and
the equation (2.3) satisfied by w and v, to find, for all = € F,

2’1‘:&?)0 > —cup(z) = u(z) (1 IR (”V“> u(a:)) T s (@) () + “‘T;(x).

Then, using (8.4) and (8.6) to bound the first term on the right-hand side from below and (8.8)
to estimate the second term yields

2pu(zo) 1 1 Uy ()
—F—Cc= 1—p)= 0 .
Ay ¢ @)l —pga g + 0+ =
Rearranging this and recalling the definition of A and p (8.2), we find
. 2 1 1 1 1 1 1 1
(8.10) U () <t (1—p) <

u(zo)x| S AV 220+1 82v+1) 420+1 82w +1

On the other hand, we bound u,, off of F' by again employing the equation (2.3):

si1) “X(f) = —cup(z) — g (2)ve(z) — u(@) <1 + @ - <”z1) u(a:))

< —cug(z),

where the second inequality follows from the estimates (8.7) as well as (8.6).
To begin to put these ingredients together, we use Taylor’s theorem to find,

AVE

u(zo + AVV) = u(wg) + uq(w0) AVr + L Yugz (o + AV —y) dy.
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Next, recall from (8.9) that F < [z, o + 3A+/v/4] and |F| = Ay/v/4. Together with the fact that
uz(xg) is non-positive we thus find,

u(zo + AV) < u(zo) + f Yuga(zo + AV —y) dy
(8.12) ot AVy-F
+ f Yuaa(zo + ANy —y) dy.
2o+ ANV —[z0,20+AVV]\F

We shall now bound each of the terms on the right-hand side. For the first term, we use the
estimate (8.10) to find,

1
Yuzz(zo + AV —y) dy < —7|X|U(xo)f ydy
1 L0+A\/;F 8(2V + 1) 10+A\/;7F
(8.13) AT/ )
< g M) [y < - oo (e
S TR(aw ) | YIS T, Ty XM T

where, to obtain the second inequality, we used that | F| > A}lﬁ (recall (8.9)) and that the minimum
of

GHJydy for any G € G
G

is attained at G = [0, Ay/v/4], where we have defined G to be the set of Lebesgue measurable sets

G in [0, +o0] with |G| > Y%,

For the portion of the integral off of F', we use (8.11) to find

(8.14)
f Y (o + AV —y)dy = f (o + AVV — y)uaa(y) dy
zo+Av—[z0,20+AVV\F [z0,20+AVV\F
o+ AV
< AVv —|xleuy (y) dy = —Alx|ev/v (u(zo) — u(zo + AVY))

Zo

< Allevpu(a).

We now use (8.13) and (8.14) to bound the second and third terms on the right-hand side
of (8.12) from above, and also use (8.4) to bound the left-hand side of (8.12) from below, to obtain

(1 = pyuleo) < uleo + AV < ulzo) — muwo) + Alxlevpu(zo)

~ u(ao) (1= AV (g - ) ).

Our choice of A and the fact that p < 1/8 implies that
(1 = pu(wo) < ulzo) (1 — x| AV/2)

which yields the desired contradiction by our choice of p, completing the proof. O

8.2. The structure of Z: Proposition 2.3. We begin by establishing some properties of the
set of discontinuities of u.

8.2.1. Some helpful lemmas. First we obtain a semi-explicit form of v on Z¢. This allows us to
deduce its behavior at each boundary point of Z.
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Lemma 8.1. Under the assumptions of Proposition 2.8, suppose that there is x,, € Z¢. Take the
mazimal interval (x_,xy) < Z° such that x,, € (x_,xy). Let 7 : R — I, be the solution to the
differential equation

(8.15)

for any x,, € (x—,x1). Then, denoting v(t) := v (7(t)), we have,

t v+0(s) s
(8.16) u(r(t)) = ulem) exp o T ds) for allt e R.

14 U(y,) L Sé exp{ {; %7(3) ds}dr

Moreover, assuming that uw(z,,) > 0 and that if x4 = too, then the limit v(xy) exists, we have:
when vy (z,,) < —c,

)

i — L v+o(z) : o vtz
tl}r_noou(T(t)) = yl\lglﬁ u(y) € {07 1/+1} and tEI_EIOCU(T(t)) = yl}'r;l+ u(y) = 1

and, when vy (x,) > —c,
- — _vtu(z) . o v+o(xy)
tETwu(T(t)) = y{ril, u(y) = V1 and tEIElOOU(T(t)) = yl}lﬂrnl+ u(y) € {0, V11

The next results establish that, if v jumps to 0 at some point ¢ € R and v, does not oscillate
too much at this point, then u stays equal to 0 either on (zg,+0) or on (—00,zg).

Lemma 8.2. Suppose that the conditions of Proposition 2.3 hold.
(i) If there exists xg € Z and To > xo such that

u(zg) = mh\rilo u(z) =0

and (xo,To) < Z°, then ¢ > 0 and
u(z) =0 and v(z)= cﬁef% for all x > xy.
(i) There cannot exist xo € Z and xy < xo such that (zq,x0) = Z° and

u(zg) == wli/n;lo u(z) = 0.

Our last result allows us to exclude the possibility of a singular point € Z inside the region
{u > 0}. Since its proof is so short, we include it here.

Lemma 8.3. Suppose that the conditions of Proposition 2.3 hold. Let (xg,x1) € Z¢ be a mazimal
connected subset. It cannot be that xo and 1 are finite and u(zg ), u(zy) > 0.

Proof. Suppose by contradiction that both xy and x; are finite. Then, by Lemma 8.1,

o(@) —u(@) 1 (v(xo) (o) +V> _ v(v(m) — 1)

1+v 1+v

lim vz, (x) = lim
z—xd ozl v v

Therefore

< 0.

€T

Vg (x) = vz (z0) + J Ve (¥) dy < vz (x0) = —cy

Zo

if x is sufficiently close to xg.

Similarly,
— 1 -1
lim vye(z) = lim v(@) —u(z) _ 1 (v(xl) _v(z) + I/> _ v(u(z) - 1) <.
a7} z—x] v v 1+v 1+v
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Therefore .

Vg (x) = vg (1) + J Ve (¥) dy > v (21) = —¢,

1
if x is sufficiently close to x;.
By the continuity of v, and the mean value theorem, there must exists x; € (g, x1) such that

ve(x4) = —c,

in which case z, € Z; however this is impossible because I = (zg,z1) < Z¢ by definition. The
contradiction proves the lemma. O

8.2.2. The proof of Proposition 2.3. We are now in a position to prove Proposition 2.3. We write
the proof in multiple parts. First we show that Z has the decomposition claimed (that is, either
Z =g or Z = {xp} contains exactly one point). Then we prove the qualitative behavior claimed
in cases (1) and (2).

Proof of the decomposition of Z in Proposition 2.3. We split the proof in two cases, based on
whether c¢ is zero or positive. We begin with the former, which we show cannot occur.

Case one: ¢ = 0. If Z = R, then v, = 0. From the second equation in (HYP), it follows that
u = v. From (2.7), we have

O0=u((v+v)—(v+1u) in R.

These two identities can hold if u(z) = 0 or 1 for every « € R. Since u = v, it is continuous. Hence,
u = 0 or 1. This contradicts the hypothesis that u £ 0 and u # 1 and, thus, concludes the proof
when Z = R.

If Z # R, we may take any maximal interval (2o, 1) < Z¢, and it must be that either zy > —o0
or x1 < +o0. Let us consider the former case, but the latter is similar (and, thus, omitted). The
maximality of this interval implies that xo € Z.

By Lemma 8.2, if u(xz{) = 0, then ¢ > 0, which is a contradiction. Hence, u(z{) > 0. If z; is
finite and u(z]) = 0, we have that u(z]) = 0 due to Lemma 8.2, which is a contradiction. If x4
is finite and w(x] ) > 0 then Lemma 8.3 is violated. (Note that, in all cases, the existence of the
limit follows from Lemma 8.1). It follows that z; = +00.

Now, as ¢ = 0 and (xp,00) < Z¢, the definition of Z (see Definition 2.2) and the intermediate
value theorem imply that v, has a constant sign on (xg,00). Since v is bounded, there must be
a sequence y, — o0 such that v,(y,) — 0 as n — co. Note also that, since xg € Z, vy (x9) = 0.
Using these facts, along with (HYP) and that u is bounded and ¢ = 0, we find

0 Yn, Yn
f u(l —u)dr = 1ng0 uw(l —w)dz = liIrolO (vgu), do
o n— zo n— zo

= lim (Uﬂc(yn)u(yn) - Ux(xo)U(IBL)) =0.

n—:0o0

Since 0 < u < 1 and u € C (wg, ), it follows that either u = 0 or u = 1, which is, as above, a
contradiction. It follows that ¢ # 0.

Case two: ¢ > 0. First, we show that Z¢ is nonempty and any maximal interval it contains is
infinite.

Since v is bounded and ¢ > 0, it cannot be that Z = R. Hence, Z¢ is nonempty. Take any
maximal interval (zg,x1) < Z°¢ There are three cases to consider: either (i) zp = —oo and
x1 = 400, (ii) @y > —oo, or (iii) &1 < +00. The proof is finished in case (i). Case (iii) is handled
exactly as case (ii); hence, we only show the proof of case (ii).

Suppose that zg > —oo. If u(z§) = 0, it follows from Lemma 8.2 that

T—x

— Q
ve(x) = —ce W > —c for all x > xg.
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Hence, (z¢,00) < Z¢, finishing the claim. In the other case, where u(xar) > 0, then Lemma 8.3
implies that x1 = +00. This concludes the proof that Z¢ is nonempty and any maximal intervals
it contains are infinite.

From the above, we conclude that Z is either empty, a single point, or a closed interval. We
need to rule out the last option. The proof for this was outlined in Section 2 (see the discussion
around (2.9)), and, hence, is omitted. This completes the proof. O

Proof of the qualitative behavior of u in Proposition 2.3.(1). The case where Z = (J requires only
that we establish the regularity of w. This, however, follows directly from Lemma 8.1. |

Proof of the qualitative behavior of u in Proposition 2.3.(2). Here, there is 29 such that Z = {z}.
By construction of Z, v,, + ¢ has a constant sign on (—o0,zg) and on (zg, ). Since v is bounded,
it follows that v, + ¢ > 0 on both intervals. Hence,

(8.17) vy +¢>0 onZ°

We require (8.17) in order to determine which case to use in Lemma 8.1 when we apply it below.
By Lemma 8.1, if u is positive anywhere on a connected component of Z¢, then it is positive
on the entire connected component. Hence, we have three cases: either u > 0 on Z¢, u = 0 on
(—00,20), or u =0 on (zg, ).
Case one: u > 0 on Z° Then Lemma 8.1 implies that, up to a redefinition at xg, u is
continuous on R and we have
v+ v(zo)
v+1
In the last inequality, we used that {u < 1} has positive measure so that, due to (2.1), v(zo) < 1.
On the other hand, x( is the location of a minimum of v,, + ¢, implying that

Ve (20) = v(x0) — u(mg) = v(x0) — <0.

Vg (T0) = 0.

This is a contradiction. Hence, case one may not occur.

Case two: v =0 on (—00,x0). We apply Lemma 8.2 and find that u = 0 on (x¢,0). Hence,
u = 0 almost everywhere, which contradicts our assumption that {0 < u} has positive measure.
Hence, case two cannot occur.

Case three: v =0 on (zg,). By assumption, u is positive on a positive measure subset of
R. Hence, u is positive on a positive measure subset of (—o0,zg). We then apply Lemma 8.1 to
conclude that N

v+ vz
u(zg) € {0, #}-
If u(zg ) = 0, then Lemma 8.2 implies that w = 0 on (—00, zg), which contradicts the assumption
that {0 < u} has positive measure. It follows that
v+ v(zo)
v+1
which concludes the proof. |

U,($O ) = ’
The combination of the above establishes Proposition 2.3 in full.
8.2.3. Proofs of Proposition 2.3’s helper lemmas.

Proof of Lemma 8.1. We first note that the vector field on the right-hand side of (8.15) is globally
Lipschitz continuous, therefore the solution to (8.15) is well-defined and unique on R. Since u
satisfies (2.7) on (z_,z), the function @(t) := u(7(t)) solves the equation

@(t) = 7' () (r(t)) = alt) (” o) _ (” * 1> a(t)) for all £ € R.

v 174

This implies that @(¢) = u(7(¢)) must be given by (8.16).
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Now, assume u(z,,) > 0. Note that, for all ¢ € R, we have

(1 +u(zm) <” * 1) Lt el ZEols) ds dr) w(r(8)) = ulwm) exp { f v 50 s},

1% 0 v

therefore 1 + u(2y,) (m) Sé elo “5()ds 4] does not vanish for ¢ € R. Tt may, however, tend to

v
zero as t — —oo.
Consider first the case where vy (2,,) < —c. Then 7 is strictly increasing with lim;, 4o, 7(t) = x4
and limg—, o, 7(t) = x_ . We first compute the limit as ¢t — +oo. Notice that, as ¢ — +o0,

t _ ¢ r _
exp{f Hv(s)ds} — 400 and f exp{f V_F:(S)ds} dr — 4o00.

0 v 0 0

Hence, by ’'Hopital’s rule,
(8.18)

v

u(n) exp { § 5L ds} () 20 exep { 57 220D g}

lim %4(t) = lim - - = lim -
=0 2O () EE §o exp { o 7y+5(s) ds} dr 7% u(z,)Ltt exp{ o LFZ(S) ds}
~ lim v+ 0(t) _v +v($c+).
t—oo v+ 1 v+1

Next we deal with the limit ¢ — —oo. We note that the numerator of the right-hand side
of (8.16) approaches 0 as t approaches —oo. As for the denominator, it is clearly increasing and
bounded on (—0,0), and therefore it has a limit. We distinguish two cases, based on whether that
limit is positive or zero.

Case one: suppose that

tim_ (1 + ) (”V“> f: exp {fo v Los) ds} dr) - 0.

Then, recalling that the numerator tends to zero, we find

ylirii uly) = lim a(t) =0.

Case two: suppose that

i, (14 ue) (2

Then, arguing exactly as in (8.18) yields

Jot exp{JOT ”j La(s) ds} dr> 0.

N v+ ov(x_)
1 t)y = —=.
Jm alt) = —723

This concludes the proof in the case where v, (z,,) < —c.

If vy (2,,) > —c then 7 is a strictly decreasing function with 7(¢) — x4 as t — Foo. By applying
a similar method, we get the conclusion claimed in the lemma. Lemma 8.1 is proved. |

Proof of Lemma 8.2. We include only the proof of (i), as the proof of (ii) is similar. Without loss
of generality, we may take To € Z U {+0}; that is, (xg,Zg) is the maximal connected interval in
Z°¢ with zg as a left endpoint. Since 0 < u,v < 1,

v(xo) — u(zg) - 1

Vaa(w0) = SO <

X

It follows that

€T

(@) = 0a(a0) + | vea()dy < —c 4 (@ o),

Zo
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from which we deduce the inequality

Let

—c—uy(z) = —%(x — Zp).

(8.19) Zo = sup{z > z¢ : u(x) < min{v(z), 1/4}}.

We first show that To = T, and then we use this to show that To = +o0, which will conclude the
proof.

Since u € CL(x0, Zo), u(xd) = 0, and v > 0 (recall (2.1)), Zg is well-defined and Zg > x¢. Then,
for any x € (zg, min{Zo, To}),

() = u(z) (1/+U(x) B <y+ 1) u($)>

—c — v, () v v

ulz) (z/—l—v(x) - (”jl)u(x)> )

= —=(r —x0) v

It immediately follows that u is decreasing on (xo, min{Zo,Zo}); however, since u(zl) = 0, it
follows that u = 0 on this set. Following the definition of Z (8.19), it follows that Zo > Zo.

We now show that o = +00. We argue by contradiction, assuming that Zy < +00. In this case,
Zo € Z (see the first paragraph of the proof). Hence, by the previous paragraph and (HYP), we

find

VUpy = U in (o, Zo),

vz (20) = v,(Zg) = —ec.

This is clearly not possible as the first line implies that v, is strictly increasing over [xg, Zg] (recall
that v is strictly positive due to (2.1)), while the second line implies that v, is the same at two
points. It follows that Zg = +00; hence, u = 0 on (xg, ).

We omit the proof of the form of v on (x¢, ) as this follows directly from the fact that vv,, = v
on (xg,o0) along with the boundedness and positivity of v.

Finally, it is clear from the form of v and its positivity that ¢ > 0. This concludes the proof. [
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