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Partial-wave decomposition of the Keldysh ionization amplitude
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We present an alternative way of calculating the Keldysh amplitude, i.e., the length-gauge form of the
ionization amplitude in the strong-field approximation. The amplitude is evaluated exactly by expanding it
in Fourier components and partial waves. Comparisons of the semianalytic model predictions with results of
ab initio numerical simulations of the time-dependent Schrödinger equation for the interaction of electrons
in short-range potentials with intense laser light yield excellent agreement, for wavelengths from the single
photon to the multiphoton to the tunneling regime. Specifically, for ionization from initial states with higher
angular momentum quantum number, e.g., p states, a significant improvement over predictions based on the
popular saddle-point approximation is found. Furthermore, the current model rate allows for interpretation of the
strong-field ionization process in terms of multiphoton absorption pathways and angular momentum selection
rules.
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I. INTRODUCTION

The interaction of matter with strong electromagnetic radi-
ation in the form of short laser pulses has been a fundamental
topic in quantum dynamics of atoms, molecules, and solids
for the past few decades. Applications of such laser pulses
are found in many different areas of atomic, molecular, and
optical physics, solid-state physics, nanomaterials, plasma
physics, chemistry, biology, etc. Frequencies of currently
available short-pulsed laser systems range from the far in-
frared through the optical and the vacuum ultraviolet up to the
soft x-ray region. The focused laser intensities reach levels far
beyond the strength of the Coulomb fields that bind electrons
and nuclei together, while the pulse lengths have decreased to
femtoseconds (10−15 s) and more recently even below into the
attosecond (10−18 s) regime.

An analytical solution of the Schrödinger equation for the
interaction of an atom (or molecule, solid) with short-pulsed
electromagnetic radiation has not been found so far. However,
for rather simple systems numerical integration techniques
and Floquet methods exist [1,2]. In view of the computational
costs to perform such numerical ab initio calculations, approx-
imation methods are useful to analyze strong-field processes.
Perhaps the most popular one is the lowest order of a system-
atic S-matrix series, known as the strong-field approximation
(or, Keldysh-Faisal-Reiss theory [3–5]). In its basic form the
first-order term for ionization of an electron from an atom
exhibits the transition from the unperturbed initial state in the
atom via the interaction with the field (in either the length-
or the velocity-gauge form) into the final Volkov states, i.e.,
the states of a free electron in the laser field. The ionization
amplitude is then often further evaluated in length gauge via
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the classical action using the so-called stationary phase or
saddle-point approximation [3,6]. This leads to an analytical
form of the amplitude that can be easily computed, is typically
applied in the low-frequency regime, and often reveals an
intuitive picture of the process via classical trajectories.

Recent developments in strong-field physics, e.g., the ap-
plication of laser sources, such as free electron lasers [7]
and high harmonic sources [8], have extended the wavelength
regime, accessible for strong laser light, from the ultraviolet to
the (soft) x-ray regime. Moreover, it has become possible to
control the polarization state of such pulses, enabling studies
not only with linearly polarized, but elliptically and circularly
polarized light [9,10]. This makes it necessary to consider
alternative evaluations of the ionization amplitude, which may
extend the application regime of the standard approximation
methods.

In this work we present an alternative method to evaluate
the ionization amplitude in the strong-field approximation.
Several choices made in the derivation are motivated as
follows. First, we choose to work with the length-gauge
amplitude [3,11,12]. This is motivated by the recent inter-
est in laser-mediated applications involving chiral processes
[13–22] where the helicity of the ground state is coupled to
the helicity of the applied field during ionization. Velocity
gauge decouples these motions and does not consider the
dependence of the ionization rate on the sign of the mag-
netic quantum number of the initial state [5]. Next, we apply
the initial-state Lippmann-Schwinger-type expansion of the
Keldysh amplitude [3] instead of the final-state expansion of
Perelomov, Popov, and Terent’ev (PPT) [12] to allow for mod-
ification of the final state [23]. We may note that the Keldysh
and PPT models are identical in the limit of zero-range poten-
tials but deviate for finite-range applications (see discussion
in Appendix A). Finally, our approach involves expanding
the Keldysh ionization amplitude in Fourier components (in
time) and partial waves (in space), in this way we circumvent
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the stationary phase approximation in length-gauge calcula-
tions. As we will show below, this improves the agreement
with results of ab initio numerical simulations in the case of
initial states with angular momentum quantum number li �= 0
significantly. Our exact evaluation of the ionization amplitude
is motivated by the partial-wave expansion [24–31] used in
nuclear physics and scattering theory as well as the strong-
field expansion given in Refs. [5,32].

As an application to test the predictions of our approach,
we use the ionization of electrons bound in s and p states
of short-range potentials by circularly, elliptically, and lin-
early polarized light at wavelengths from 10–800 nm. The
applications include the reversal of ionization ratio of co-
to counterrotating electrons (with respect to the rotation di-
rection of the applied field) in the intermediate few-photon
ionization regime, which has been a topic of recent research
in experiment and theory [13–20]. As we will show below,
our semianalytical formula provides excellent results for the
ionization of electrons bound to short-range potentials in
the presence of strong circularly, elliptically, and linearly
polarized fields at nonperturbative intensities over a broad
wavelength regime, from single-photon to tunneling ioniza-
tion. Furthermore, the results let us describe the strong-field
ionization process in terms of multiphoton absorption path-
ways and angular momentum selection rules.

The rest of the paper is organized as follows. In Sec. II
we first briefly review the Keldysh amplitude and the popular
saddle-point approximation. We then continue by presenting
the formula resulting from an evaluation based on expansions
in Fourier components and partial waves. This is first done for
circular polarization and then for the general case of elliptical
polarization. In the main text we present the main formula
while the detailed derivation is presented and discussed in the
Appendixes. In the second part (Sec. III) we present appli-
cations in the form of comparisons of the model predictions
with results of ab initio numerical simulations of the time-
dependent Schrödinger equation. Furthermore, general trends
for the photoelectron energy and angular distributions will be
presented and further approximations will be discussed. The
paper ends with a brief summary.

II. IONIZATION AMPLITUDE

We seek to provide an alternative semianalytic approx-
imative solution of the time-dependent Schrödinger equa-
tion (TDSE)

ih̄
∂

∂t
�ε (r, t ) = [Ha + |e|Eε (t ) · r]�ε (r, t ) (1)

for the interaction of an atomic system in a short-range poten-
tial with an elliptically polarized laser pulse with electric field
and vector potential given by

Eε (t ) = E [cos(ωt )x̂ + ε sin(ωt )ŷ], (2)

and

Aε (t ) = −A [sin(ωt )x̂ − ε cos(ωt )ŷ], (3)

where A = cE
ω
. We write the vector potential as a linear combi-

nation of both right-handed (+) and left-handed (–) circularly
polarized fields

Aε (t ) =
(
1 + ε

2

)
A+(t ) +

(
1 − ε

2

)
A−(t ). (4)

In this way we can use the same steps to determine the ioniza-
tion amplitude first for circularly polarized fields and then for
elliptically polarized fields.

Our approach is based on the Keldysh ionization ampli-
tude. In Sec. II A we will therefore briefly review its derivation
and discuss our selection of initial atomic and final Volkov
states. Then, in Sec. II B, we first briefly discuss the traditional
semiclassical low-frequency approach and then develop our
alternative approach of evaluating the amplitude, based on
expanding the amplitude in discrete energy levels and partial
waves, first for circular polarization and then for the general
case of elliptical polarization. We take the long pulse limit
and determine the ionization rate and angular emission rate
for each photon process.

A. Keldysh amplitude

The exact solution to the TDSE can be expressed as the
Lippmann-Schwinger-type integral equation

�(x) = φi(x) +
∫

d4x1 G(x; x1)VL(x1)φi(x1) (5)

for an arbitrary field where we use the notation

∫
d4x1 ≡

∫ t

t0

dt1

∫
dr1 (6)

for integration over intermediate coordinates. Here t0 is the
moment when the field is turned on and t is the instant in time
when the field is turned off.

The initial atomic state is either chosen to be the exact nu-
merical eigenstates for a single active electron (SAE) potential

φi(x) ≡ e(i/h̄)Iptφi(r) = e(i/h̄)IptRi(r)Y
mi
li
(r) (7)

with Ri given by

Ha(r)φi(r) =
[
p2op
2m

+Va(r)

]
φi(r) = −Ipφi(r) (8)

with atomic potential Va(r) and momentum operator pop =
−ih̄∇r or the approximate asymptotic states from Ref. [12],
where

Ri(r) ≈ Cκliκ
3/2(κr)ν−1e−κr, (9)

which is accurate for calculations at long wavelengths where
ionization is dominated by the tail (κr � 1) of the ground
state. Ip is the ionization potential, h̄κ ≡ √

2mIp is the bound-
state momentum, and we obtain Cκli by fitting the asymptotic
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state to the long-range part (κr � 1) of the exact state. We
will focus on accurate solutions for the case of short-range
potentials where the solution to the atomic Schrödinger equa-
tion for κr � 1 gives the zero-range approximation ν = 0
in Eq. (9). Long-range potentials will briefly be discussed
where the power law becomes ν ≡ (κC/κ ) with the Coulomb
momentum h̄κC = mZ|e|2/h̄ and residual ionic charge Z|e|.

The ionization amplitude is derived by expanding the
Green’s function in Eq. (5) in finite-range or zero-range
Volkov states and projecting on it:

M(k, t ) =
∫

dr	
(−)
k (x)�(x), (10)

where horizontal lines above symbols are used to represent the
complex conjugate. The zeroth-order contribution

M(0)(k, t ) =
∫

dr	
(−)
k (x)φi(x) (11)

is identically zero for finite-range Volkov states and dies off
for zero-range Volkov states in the long pulse limit [12]. The
lowest-order contribution therefore arises from

M(1)(k, t ) = −
(
i

h̄

) ∫
d4x1	

(−)
k (x1)[|e|E(t1) · r1]φi(x1),

(12)
which is the well-known Keldysh amplitude [3].

B. Evaluation of Keldysh amplitude

1. Standard low-frequency semiclassical approach

Usually, the ionization rate is then evaluated by writing it
as [3,12,15]

w = lim
t→∞

∫
dk

∂

∂t
|M(1)(k, t )|2

= lim
t→∞

∫
dk

∂

∂t
|M(1,PPT)(k, t )|2 (13)

using the amplitude given by Perelomov, Popov, and Terent’ev
(PPT)

M(1,PPT)(k, t ) = −
(
i

h̄

)∫
d4x1	k(x1)Va(r)φi(x1). (14)

We note that the PPT and Keldysh rates are equivalent when
zero-range Volkov states are used, as shown in Appendix A.
After taking the limit the rate simplifies to:

w = 2π

h̄

∫
dk

∞∑
n=−∞

|Ln(k)|2δ(Ek + Ĩp − nh̄ω), (15)

where Ek ≡ h̄2k2/2m defines the kinetic energy of liberated
electrons and

Ln(k)|k=kn ≡ ω

2π

∫ π/ω

−π/ω

dt S′(k, t ) e(i/h̄)S(k,t )φ̃i(k(t ))

∣∣∣∣∣
k=kn
(16)

for zero-range final Volkov states 	k and zero-range initial
bound states φi defined in Eq. (9) with momentum represen-
tation

φ̃i(k(t )) =
∫

dr
e−ik(t )·r

(2π )3/2
φi(r). (17)

Here

S(k, t ) =
∫ t

t0

dτ

[
p(τ )2

2m
+ Ip

]
(18)

defines the classical action with kinetic momentum

p(t ) = h̄k(t ) = h̄k + |e|
c
A(t ) (19)

and the ponderomotive or cycle-averaged quiver energy

Up = |e|2
2mc2

〈A(t )2〉T (20)

determines the effective ionization potential Ĩp ≡ Ip +Up

where primes denote derivatives with respect to t .
For laser parameters where the photon energy satisfies

h̄ω � Ip and h̄ω � Up one can then perform the station-
ary phase approximation [3,6]. This semiclassical approach
involves determining saddle points ts, which satisfy the con-
servation law

S′(k, ts) = p(ts)2

2m
+ Ip = 0 (21)

and approximates the time integral in Eq. (16) as a finite sum
over all saddle points

Ln(k)|k=kn ≡ ω

2π

∑
ts

√
2π ih̄

S′′(k, ts)

× S′(k, ts) e
(i/h̄)S(k,ts )φ̃i(k(ts))|k=kn . (22)

Contributions Ln(k)|k=kn are nonzero since φ̃i(k(ts)) contains
poles that coincide with the zeros of S′(k, ts).

2. Exact time integration and expansion in partial waves:
Circular polarization

In order to extend the application of the Keldysh amplitude
into the regime h̄ω � Ip or h̄ω � Up a different approach is
required. To this end, we select t0 = 0 and write the amplitude
as

M(1)(k, t ) =
∫ t

0
dt1e

(i/h̄)S(k,t1 )

(
− ∂

∂t1

)
φ̃i(k,A(t1)) (23)

described by the bound-state momentum component

φ̃i(k,A(t1)) =
∫

dr1φ
(−)
k (r1)e− i|e|

h̄c A(t1 )·r1φi(r1) (24)

and phase factors e(i/h̄)S(k,t1 ) at ionization time t1. We then
expand the terms in Eq. (23) in partial waves to de-
termine the ionization amplitude in the case of circular
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polarization as (see Appendix B):

M(1)
± (k, t ) = (i/h̄)e−ik·ξ±(0)

∞∑
lA=0

lA∑
nA=−lA

(nAh̄ω)AmA
lA

li+lA∑
lk=max(|li−lA|,|mi+mA|)

Klk (k) I
lk ,lA
li

(k)

[
lk lA li

−(mi + mA) mA mi

]
Ymi+mA
lk

(k̂)

×
∞∑
lS=0

lS∑
nS=−lS

XmS
lS

(k)YmS
lS

(k̂)δt ([N (k) − (nA + nS )]ω/2), (25)

where ξ±(0) = ξ x̂ in the present case of circular polarization
with ξ = |e|A

ωmc as the quiver radius and h̄kA ≡ (|e|/c)A is the
vector potential momentum. N (k) ≡ 1

h̄ω (Ek + Ĩp) corresponds
to the number of absorbed photons for an ejected electron with
kinetic energy Ek = h̄2k2

2m , while li and mi are the orbital and
magnetic angular momentum quantum numbers of the initial
state. Furthermore,

AmA
lA

≡ 4π (−i)lA Y mA
lA

(Â±(0)), (26)

where YmA
lA

(Â±(0)) are the spherical harmonics with mA ≡
±nA,

Klk (k) ≡ (−i)lk eiηlk (k) (27)

with ηlk (k) as the phase shift of the continuum state,

XmS
lS

(k) ≡ 4π ilS jlS (kξ )Y
mS
lS

(ξ̂±(0)) (28)

with spherical Bessel function jlS (kξ ) in addition to mS ≡
±nS , with line shape

δt (x) ≡ eixt sinc(xt )t (29)

and radial function

I lk ,lAli
(k) ≡ 1

k

∫ ∞

0
dr r2 Rk,lk (r) jlA (kAr)Ri(r) (30)

with Rk,lk (r) and Ri(r) as the radial parts of the continuum
state and the initial bound state, respectively.

The angular momentum components are determined by[
lk lA li

−mk mA mi

]
≡

∫
d�r1Y

mk
lk

(r̂1)Y
mA
lA

(r̂1)Y
mi
li
(r̂1) (31)

and the yield is given by

P(ion)
± (t ) =

∫
dk |M±(k, t )|2. (32)

3. Long pulse limit

The time-averaged rate for a long pulse can be determined
in the usual way by taking the limit in time

W±(k) = lim
t→∞ t−1|M(1)

± (k, t )|2 ≡
∞∑

n=nth

|M(1)
n±(k̂)|2δ(k − kn)

(33)
and using the sinc representation of the Dirac delta function,
which results in the quantized final-state momenta

h̄kn ≡
√
2m(nh̄ω − Ĩp) ≡ mvn (34)

and the total rate

w± =
∫

dkW±(k) =
∞∑

n=nth

∫
d�k

dwn±
d�k

=
∞∑

n=nth

∞∑
l=|mi±n|

wln± =
∞∑

n=nth

wn± (35)

after the absorption of n photons with threshold value nth =
�Ĩp/h̄ω
. Above we introduced the partial rates

wln± = k2n
∣∣Cmi±n

l (kn)
∣∣2 and wn± =

∞∑
l=|mi±n|

wln± (36)

as well as the angular rates

dwn±
d�k

= k2n |M±(kn)|2 and
dw±
d�k

=
∞∑

n=nth

dwn±
d�k

(37)

with

M(1)
± (kn) = e−ikn·ξ±(0)

∞∑
l=|mi±n|

Cmi±n
l (kn)Y

mi±n
l (k̂n) (38)

where the coefficients are given by

Cmi±n
l (kn) ≡ (i/h̄)

√
2π

vn

∞∑
lA=0

lA∑
nA=−lA

(nAh̄ω)AmA
lA

li+lA∑
lk=max(|li−lA|,|mi+mA|)

Klk (kn) I
lk ,lA
li

(kn)

[
lk lA li

−(mi + mA) mA mi

]

×
∞∑

lS=|mS |
XmS
lS

(kn)

[
l lS lk

−(mi + mA + mS ) mS (mi + mA)

]
(39)

with nS = n − nA, enforced by the t → ∞ limit. For a long, but finite pulse the total ionization yield can be approximated as

Nion = 1 − e−wT , (40)

where T is the pulse duration.
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FIG. 1. Total ionization yield for the length-gauge amplitude corresponding to a 16 cycle laser pulse with an intensity of 1014 W/cm2 for
zero-range Volkov states and zero-range asymptotic bound states. Results are compared between the saddle-point approximation (red dashed
curve) and the exact time integration (green solid curve) for s states (a) and total yield from the sum of all p states (b). All zero-range states
have an ionization potential of Ip ≈ 13.6 eV.

4. Comparison with the saddle-point approximation

Before we proceed, we assess the difference between the
results of the two evaluations of the Keldysh amplitude. To
this end, we have performed calculations for the laser-induced
ionization of an electron bound in a zero-range potential
using both the standard saddle-point approximation and our
approach. For the comparison we have chosen zero-range
Volkov final states and considered the zero-range asymptotic
initial states of different angular momentum from Eq. (9) and
a binding energy Ip ≈ 13.6 eV.

In Fig. 1 we compare the saddle-point PPT result (equiv-
alent to Eqs. (76)–(78) of Ref. [15]) to the same amplitude
without the approximation for the ionization of an electron in
an initial s state (left panel) and an initial p state (right panel)
due to the interaction with 16 cycle circularly polarized laser
pulses (T = 16 × 2π

ω
), having an intensity of 1014 W/cm2

and wavelengths between 10 nm and 800 nm. Equivalence
between our evaluation of the Keldysh amplitude and a sim-
ilar exact evaluation of the PPT amplitude is demonstrated
in Appendix A. The comparison shown in Fig. 1 therefore
outlines the errors introduced by approximating the integral
over ionization times with the saddle-point approximation.

From the comparison it is obvious that in the case of an s
state for nearly all wavelengths longer than the single-photon
ionization threshold (∼92 nm), both the exact (green curve)
and approximate amplitude (red dashed curve) predict essen-
tially the same results.

In contrast, the same comparison for the sum of all initial
p states with

N ( j)
ion = 1 − e−w( j)T (41)

as before and

Nion = N (2p1 )
ion + N (2p0 )

ion + N (2p−1 )
ion (42)

shows that the exact (green curve) and approximate amplitude
(red dashed curve) disagree over almost the entire wavelength
regime considered.

Comparison of the exact evaluation of the zero-range
model with finite-range numerical solutions of the TDSE will
be discussed in Sec. III A, where we will show the accurate-
ness of the present calculations. In particular, we note that the
s-state results of Fig. 1(a) are included in Fig. 2(a) and the
p-state results of Fig. 1(b) are included in Fig. 3(c) and show
acceptable levels of agreement with the TDSE results.

5. Exact time integration and expansion in partial waves:
Elliptical polarization

By writing the field in the general case of elliptical po-
larization as a linear combination of two circularly polarized
fields, as discussed at the outset of this section, similar steps
can be taken to determine the ionization rate for the interaction
with an elliptically polarized field (see Appendix C):

M(1)
ε (k, t ) = (i/h̄)e−ik·ξε (0)

∑
lA,nA

(nAh̄ω)AmA
lA

∑
lk

Klk (k)I
lk ,lA
li

(k, kA, ε)

[
lk lA li

−(mi + mA) mA mi

]

×
∑
lS,nS

XmS
lS

(k, ξ , ε)
∑
l

[
l lS lk

−(mi + mA + mS ) mS (mi + mA)

]
Ymi+mA+mS
l (k̂)

×
∑
a

Ba(A, ω, ε)δt ([N (k) − (nA + nS + 2a)]ω/2), (43)
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FIG. 2. Comparison of predictions for the s-state model with the TDSE results for exponential parameters a = a0/5, a0/3, a0, and ∞
(a)–(d). The red line corresponds to calculations using zero-range (zr) initial bound and final Volkov states. The green curve replaces the
zero-range initial states with the short-range (sr) states of the atomic Hamiltonian. The black curve corresponds to calculations with the same
short-range initial states, but now the zero-range Volkov states have been replaced with short-range Volkov states. a = ∞ is included for an
initial ground state of hydrogen with final zero-range Volkov states (green) and long-range (lr) Coulomb-Volkov scattering states (black). Laser
parameters and bound-state energies are identical to Fig. 1.

where

XmS
lS

(k, ξ , ε) ≡ 16π2ilS jlS−

[(
1 − ε

2

)
kξ

]
jlS+

[(
1 + ε

2

)
kξ

]
Y

−nS−
lS−

(ξ̂−(0))Y
nS+
lS+

(ξ̂+(0)), (44)

AmA
lA

= 16π2(−i)lAY
−nA−
lA−

(Â−(0))Y
nA+
lA+

(Â+(0)), (45)

Klk (k) = (−i)lk eiηlk (k) (46)

and

Ba(A, ω, ε) = Ja

( |e|2A2(1 − ε2)

8h̄ωmc2

)
(47)

with nA ≡ (nA− , nA+ ), nA ≡ nA+ + nA− , mA ≡ (−nA− , nA+ ), mA ≡ nA+ − nA− , lA ≡ (lA− , lA+ ) and lA ≡ lA+ + lA− with
similar for A �→ S. Additionally the shorthand notations

∑
lA,nA

≡
∞∑

lA+ =0

lA+∑
nA+ =−lA+

∞∑
lA− =0

lA−∑
nA− =−lA−

(48)
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and

∑
lS,nS

≡
∞∑

lS+ =0

lS+∑
nS+=−lS+

∞∑
lS− =0

lS−∑
nS−=−lS−

(49)

have been used to simplify the sums. The angular contribution becomes[
lk lA li

−mk mA mi

]
≡

∫
d�rY

mk
lk

(r̂)Y
−nA−
lA−

(r̂)Y
nA+
lA+

(r̂)Ymi
li
(r̂) (50)

and

I lk ,lAli
(k, kA, ε) ≡ 1

k

∫ ∞

0
dr1 r

2
1 Rk,lk (r1) jlA−

[(
1 − ε

2

)
kAr1

]
jlA+

[(
1 + ε

2

)
kAr1

]
Rni,li (r1) (51)

determines the radial behavior.
Taking the long-pulse limit as in Sec. II B 3 we obtain the amplitude for elliptical polarization:

M(1)
nε (kn) = (i/h̄)

√
2π

vn
e−ikn·ξε (0)

∑
lA,nA

(nAh̄ω)AmA
lA

∑
lk

Klk (kn)I
lk ,lA
li

(kn, kA, ε)

[
lk lA li

−(mi + mA) mA mi

]

×
∑
a

Ba(A, ω, ε)
′∑

lS ,nS

XmS
lS

(kn, ξ , ε)
∑
l

Y mi+mA+mS
l (k̂n)

[
l lS lk

−(mi + mA + mS ) mS (mi + mA)

]

= e−ikn·ξε (0)
∑
l,m

Cm
l (kn)Y

m
l (k̂n) (52)

with

′∑
lS ,nS

≡
∞∑

lS+=0

lS+∑
nS+ =−lS+

∞∑
lS−= |nS− |

, (53)

Wε (k) =
∞∑

n=nth

|M(1)
nε (k̂)|2δ(k − kn), (54)

wε =
∫

dkWε (k) =
∞∑

n=nth

∫
d�k

dwnε

d�k

=
∞∑

n=nth

∑
l,m

wm
lnε =

∞∑
n=nth

wnε, (55)

dwnε

d�k
= k2n

∣∣M(1)
nε (k̂n)

∣∣2, and wm
lnε = k2n

∣∣Cm
l (kn)

∣∣2, (56)

where

nS− = n − nA − nS+ − 2a (57)

is enforced by the t → ∞ limit. We may finally note that
the partial-wave expansions used throughout are applicable to
other gauges as well.

III. APPLICATIONS

In this section we first show comparisons of the model
predictions for the ionization yields with results of simulations
of the time-dependent Schrödinger equation. Furthermore,
we give examples of predictions for the energy and angular
distributions, which show the general features expected for
light-induced processes.

A. Ionization yields

To test the model predictions we compare ionization yields
of spinless hydrogen-like and neon-like anions using Eq. (35)
and Eq. (55) with results of the time-dependent Schrödinger
equation. In our test calculations we have used short-range
Yukawa potentials of the form

Va(r) = −Za|e|2
r

e−r/a, (58)

where the exponential factor a determines the range of the
potential and the prefactor Za is chosen such that the bind-
ing energy of Ip ≈ 13.6 eV remains the same for all ranges
considered. Comparisons are performed for three selections of
initial and final states. In the first set we use zero-range initial
[Eq. (9)] and zero-range final Volkov states [3] to analyze
the errors introduced by the zero-range approximation. In
the next set of calculations we replace the zero-range initial
states with finite-range states of the atomic Hamiltonian to
determine errors introduced by the use of a zero-range initial
state. Finally, we consider another set of calculations again us-
ing finite-range initial states, but the plane wave components
(2π )−3/2eik·r of the final zero-range Volkov states are replaced
with finite-range scattering states of the atom φ

(−)
k (r) [23].

1. Hydrogen-like anions

In Fig. 2, we compare the predictions of the model rate
to the TDSE results for the case of an s-state and exponen-
tial parameters a = a0/5, a0/3, a0, and ∞ (a0 is the Bohr
radius) to show that the model can provide accurate results
for short-range potentials at all wavelengths. For the TDSE
calculations we used velocity gauge and expanded the wave
function in a basis of spherical harmonics for the angular
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FIG. 3. Comparison of predictions for the p-state model with
the TDSE results for an exponential parameter of a = a0/2 for an
ellipticity of (a) ε = 0, (b) ε = 0.5, and (c) ε = 1. Bound-state pa-
rameters are given in Table I. Definitions of each curve and the choice
of laser parameters are consistent with Fig. 2.

dimensions (lmax = |mmax| = 30) and a basis of eighth-order
B splines in the radial dimension. The 600 B-spline nodes
are placed such that the spacing between nodes is quadratic

TABLE I. Table of bound-state energy levels and Yukawa param-
eters for the neon-like anion.

State 1s 2s 2p a = a0/2

Ip(Hartree) 33.9 1.32 0.50 Zc = 10.15

near the origin then becomes constant at a chosen radius (30
a.u.). The maximum radius of the box is 500 a.u., where
exterior complex scaling has been applied to the last 50
a.u. of the grid. The Crank-Nicolson method has been used
to propagate the wave function in time with a step size of
0.1 a.u.. Calculations have been performed for the interac-
tion with a 16 cycle circularly polarized flat-top pulse with
intensity 1 × 1014 W/cm2 at wavelengths between 10 nm and
800 nm. An additional two cycle sin2 ramp on and ramp off
has been included to the 16 cycle flat-top pulse to ensure that
the vector potential smoothly goes to zero at t → ±∞.

For s states the predictions for the yield are essentially
independent of the choice of the specific initial and final-state
representation and agree well with the TDSE results for the
case a = a0/5 [Fig. 2(a)]. Expanding the atomic range to
a = a0/3 [Fig. 2(b)] and a0 [Fig. 2(c)] makes it clear that
short-range atomic initial and final (Volkov) states are re-
quired to obtain reliable results. The case of a = ∞ [Fig. 2(d)]
is also considered, where the results based on long-range
Volkov states (solid black curve) provide excellent predic-
tions of the ionization yield for wavelengths shorter than the
single-photon ionization threshold. In comparison, for any
other choice of the states considered here the yield does not
provide reasonable agreement at any of the wavelengths. This
is exemplified by the results of the calculations using an
atomic initial state and a zero-range Volkov state, which are
represented by the green curve. The finite values of a were
chosen such that there were no unoccupied excited states. The
first-order amplitude is insufficient as excited states are intro-
duced via an increase in range. The a → ∞ limit of hydrogen
should be thought of as a worst case scenario. Expansion to
higher-order S-matrix elements are expected to resolve these
issues [3,23,33].

2. Neon-like anions

For the case of a neon-like anion we chose a valence ioniza-
tion potential Ip(2p) ≈ 13.6 eV to enable direct comparison
with the hydrogen-like data. The Yukawa range parameter of
a = a0/2 was chosen to obtain 1s, 2s, and 2p bound states
with parameters given in Table I. To obtain the total ion-
ization yield for the neon-like anion we assume all orbitals
are occupied, neglect spin, and calculate the single orbital
yield as

N ( j)
ion = 1 − e−w( j)T (59)

as before and add those up

Nion = N (1s)
ion + N (2s)

ion + N (2p1 )
ion + N (2p0 )

ion + N (2p−1 )
ion (60)

to get the total yield. As one can anticipate, the occupied core
1s orbital can be neglected since the yield is much smaller
than all the other yields for all wavelengths considered.
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In Fig. 3 we present the results for the interaction of
the neon-like anion with laser fields of different ellipticities,
namely Fig. 3(a) ε = 0 (linear polarization), Fig. 3(b) ε = 0.5,
and Fig. 3(c) ε = 1 (circular polarization). Other laser pa-
rameters were chosen to be the same as in the calculations
for the hydrogen-like anion. Comparison between the model
predictions for the same choice of initial and final states and
with the TDSE results, as in Fig. 2, are shown.

As in the case of hydrogen-like anion, the results show
that the best agreement with the TDSE results are found using
initial and final atomic states, independent of the polarization
state of the laser field. Some disagreement is observed near
ionization thresholds since we did not include properties of
the pulse envelope in the evaluation of the model predictions.
Thus, we may summarize that the exact calculation of the
Keldysh ionization amplitude in length gauge can provide
an excellent agreement with results of ab initio numerical
calculations for short-range potentials. Most remarkable, this
finding is independent of the angular momentum of the initial
state, i.e., it holds for s as well as p states. The predictions of
the present approach therefore provide a significant improve-
ment over those of the popular saddle-point approximation,
especially for initial states having an angular momentum of
li > 0.

B. Photoelectron energy and angular distributions

After we have validated the accuracy of the model pre-
dictions for the total ionization yields we will now present
examples for photoelectron distributions. The energy and
angular distributions have been obtained using standard for-
mulas. We evaluate the population of the ground state and
each energy level in the continuum via the rate equations

d

dt

⎡
⎢⎢⎣

Ni

Nnth
Nnth+1
...

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−w

wnth
wnth+1

...

⎤
⎥⎥⎦Ni, (61)

while the total angular distribution is given by

dNion

d�k
= 1

w

dw

d�k
Nion =

∞∑
n=nth

dNn

d�k
(62)

with angular distributions for each photon process as

dNn

d�k
= 1

wn

dwn

d�k
Nn, (63)

as well as the polar distributions

dNion

d (cos θk )
≡

∫ 2π

0
dϕk

dNion

d�k
= 2π

dNion

d�k

∣∣∣∣
ϕk=0

(64)

and

dNn

d (cos θk )
≡

∫ 2π

0
dϕk

dNn

d�k
= 2π

dNn

d�k

∣∣∣∣
ϕk=0

(65)

for the total and the partial yields, respectively.
In Fig. 4 we plot the photoelectron energy and angular

distributions for neon-like anion with both atomic initial and
final states, interacting with a circularly polarized field. Wave-
lengths of 10 nm, 100 nm, and 800 nm have been considered.

The 10 nm and 100 nm data correspond to the single-photon
and perturbative multiphoton limit and, as expected, the en-
ergy distribution is linear on a log scale. In contrast, the kinetic
energy distribution at 800 nm is peaked at energies larger than
the threshold value nth demonstrating the expected behavior
in the nonadiabatic limit [15]. The total angular distributions
correspond to emission summed over all photon processes
and becomes increasingly localized around the plane of po-
larization as wavelengths increase due to electrons belonging
to higher-order orbital angular momentum states with l ≈ m
via the absorption of additional photons [20]. All these results
qualitatively agree with the expectations for light-induced ion-
ization in the single-photon, perturbative, and nonperturbative
multiphoton regimes.

C. Short-wavelength limit

In this section we discuss and apply two ways to further
approximate the model formulas, which are especially appli-
cable in the short-wavelength regime.

1. Restriction of orbital angular momentum states

We first consider approximations to the coefficients in
Eq. (39). Initial s states will be discussed, but similar steps
may be taken for other states. The s-state coefficients are
written as:

C±n
l (kn) = (i/h̄)

1√
2vn

∞∑
nA=−∞

(nAh̄ω)
∞∑

lA=|mA|
AmA
lA
KlA (kn) I

lA
0 (kn)

×
∞∑

lS=|mS |
XmS
lS

(kn)

[
l lS lA

−(mA + mS ) mS mA

]
(66)

with nS = n − nA. The evaluation of the coefficient involves
two sums over lA and lS , which we may interpret as a two-
step absorption process. The initial state (li = 0, mi = 0, for s
states) is promoted to a small set of intermediate momentum
states (lA, mi + mA) via the absorption of nA photons before
an additional nS photons are absorbed to transition into a final
momentum state (l , mA + mS). We will now explore how to
restrict the sums over the orbital angular momentum states.

As lA increases the value of the integral I lA0 (kn) ≡ I lA,lA
0 (kn)

[cf., Eq. (30)] decreases due to the decreased overlap of both
the continuum state Rk,lA (r) and the Bessel function jlA (kAr)
with the initial bound state Ri(r). The coefficient should there-
fore be dominated by the lowest-order contribution lA = |mA|.
Similarly, we should expect that for the intensity and wave-
lengths considered the sum over lS should be dominated by
the lowest-order contribution |mS|. Continuing along the same
lines, the sum over l in the final rate w± [cf., Eq. (35)] may
be restricted. This is done by choosing the set of nA, which
minimizes |mA| + |mS| for a particular n. Geometrically this
amounts to identifying the set of nA, which minimizes the
total distance (|mA| + |mS|) over which the magnetic quantum
number changes from the initial state to the intermediate state
(|mA|) and then from the intermediate state to the final state
(|mS|). This is achieved for all 0 � nA � n where l = n. Thus,
the l > n contributions may be neglected for fixed n since
the distance |mA| + |mS| is larger than for n = l yielding the
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FIG. 4. (a)–(c) Photoelectron energy and (d)–(f) angular distributions for the neon-like anion data. Both finite-range initial and final
(Volkov) states are chosen and wavelengths of 10 nm (a), (d), 100 nm (b), (e), and 800 nm (c), (f) are selected. Parameters are as in Fig. 3 and
angular distributions correspond to the total emission summed over all photon processes.

approximation

w± ≈
∞∑

n=nth

wnn±. (67)

2. UV limit

A way to further approximate the coefficients is to con-
sider that at the shortest wavelengths (Up � h̄ω) the Bessel
functions jlA (kAr) and jlS (knξ ) are accurately approximated
by their lowest-order polynomial contribution

jl (x) ≈ l!(2x)l

(2l + 1)!
. (68)

Using this additional approximation along with the restriction
of the orbital angular momentum states the radial integral
simplifies to

I |mA|
0 (kn) = Cκ,0|mA|!

�(lk + 3/2)

√
κ

2

(knkA)|mA|(
k2n + κ2

)|mA|+1 (69)

with resultant coefficients

C±n
n (kn) = 2(i/h̄)

(∓i)n n! Cκ,0√
(2n + 1)!

√
κ

vn

(knξ )n(
k2n + κ2

)
× (h̄ω)

n∑
nA=0

nA
nS!

(
2kA/ξ

k2n + κ2

)nA

= i
Cκ,0(∓iknξ )n√

(2n + 1)!

√
h̄κ

mkn

[
1 +

(
Up

nh̄ω

)

× 2F0

(
−n, 1; ;−1

n

)]
, (70)

where the identity

Y±l
l (θ, ϕ) = 1

l!

√
(2l + 1)!

4π

(
∓1

2
sin θe±iϕ

)l

(71)

has been applied,

2F0(a, b; ; z) =
∞∑
j=0

(a) j (b) j
j!

z j (72)

is a hypergeometric function, (a) j is the Pochhammer symbol,
�(a) is the Euler integral, and nS = n − nA as before.

Again choosing physical parameters such that Up � h̄ω
one obtains

C±n
n (kn) = i

Cκ,0(∓iknξ )n√
(2n + 1)!

√
h̄κ

mkn
(73)

and the partial rates

wn,n± = C2
κ,0

(κ vn) (knξ )2n

(2n + 1)!
, (74)

which gives the expected near-threshold (l = n) scaling of
∼k2l+1

n [24,31,34].
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FIG. 5. Comparison between the weak-field approximation
(solid red curve), exact yield (black dashed curve), and reduced set
of selection rules (solid cyan curve). Laser and atomic parameters are
identical to Fig. 2.

To test these two approximations we consider the zero-
range ionization yield and compare the results of the
approximations along with the full result in Fig. 5. Quantita-
tive agreement is found between the exact Keldysh amplitude
(black dashed lines) and the restriction of the orbital an-
gular momentum states (solid cyan curve), as discussed in
Sec. III C 1. The additional weak-field approximation (solid
red curve) used in the present section provides good agree-
ment up to the four-photon ionization process. Although
applied to the present zero-range example, the restriction on
orbital angular momentum states may be applied to finite-
range applications as well.

IV. SUMMARY

We have presented an alternative method to evaluate
the length-gauge form of the ionization amplitude in the
strong-field approximation, i.e., the Keldysh amplitude. In the
evaluation we circumvent the popular saddle-point approxi-
mation by expanding the amplitude in Fourier components
and partial waves. Semianalytic formulas have been de-
rived for both circular polarization and the general case
of elliptical polarization. Predictions of this approach for
laser-induced ionization of electrons in short-range poten-
tials are in excellent agreement with results of simulations of
the time-dependent Schrödinger equation. In particular, the
predictions show a significant improvement over those ob-
tained using the popular saddle-point approximation for initial
states with angular momentum li > 0. It is further shown that
this alternative approach qualitatively reproduces the trends
for photoelectron energy and angular distributions.
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APPENDIX A: EQUIVALENCE OF KELDYSH AND PPT
IONIZATION AMPLITUDES

In this Appendix we will show that the first-order Kedysh
amplitude is equivalent to the PPT amplitude [12] up to
boundary terms for zero-range final states. To this end, we
write the Keldysh amplitude as

M(1)(k, t ) =
∫ t

t0

dt1e
(i/h̄)S(k,t1 )

(
− ∂

∂t1

)
φ̃i(k(t1)), (A1)

where

φ̃i(k,A(t )) =
∫

dr1φk+ |e|
h̄cA(t )

(r1)φi(r1)

≡ φ̃i(k(t )) (A2)

and

p(t ) = h̄k(t ) = h̄k + |e|
c
A(t ). (A3)

Acting on both sides with ih̄ ∂
∂t and using primes to denote

time derivatives we see that

ih̄
∂

∂t
[M(0)(k, t ) + M(1)(k, t )]

= −S′(k, t ) e(i/h̄)S(k,t )φ̃i(k(t )). (A4)

Solving for the amplitude yields

M(1)(k, t ) = −[M(0)(k, t1)|tt1=t0

+
(
i

h̄

) ∫ t

t0

dt1S
′(k, t1) e

(i/h̄)S(k,t1 )φ̃i(k(t1)),

(A5)

where the boundary term

M(0)(k, t ) = e(i/h̄)S(k,t )φ̃i(k(t )), (A6)

can be neglected.
Using

S′(k, t ) = p2(t )
2m

+ Ip (A7)

the remaining term is written as

M(1)(k, t ) =
(
i

h̄

) ∫
d4x1	k(x1)

[
p2(t1)
2m

+ Ip

]
φi(x1).

(A8)

We then obtain the zero-range PPT formulas by recognizing

−Ipφi(x) =
[
pop2

2m
+Va(r)

]
φi(x), (A9)

which gives

M(1)(k, t ) = −
(
i

h̄

)∫
d4x1	k(x1)

×
[
p21,op − p2(t1)

2m
+Va(r1)

]
φi(x1). (A10)
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Integrating by parts we see that

p2op
2m

	k(x1) = p2(t )
2m

	k(x1) (A11)

gives us the desired result

M(1)(k, t ) = −
(
i

h̄

) ∫
d4x1	k(x1)Va(r1)φi(x1). (A12)

For finite-range final states the situation is different. Writ-
ing down the PPT amplitude and substituting in finite-range
states gives a different rate than using the equivalent Keldysh
amplitude with the same states. To show this, we start with
Eq. (A10) and separate the amplitude into a PPT-like contri-
bution and a perturbation

M(1)(k, t ) = M(1,PPT)(k, t ) + δM(1)(k, t ), (A13)

where

M(1,PPT)(k, t ) = −
(
i

h̄

) ∫
d4x1	

(−)
k (x1)Va(r1)φi(x1)

(A14)

and

δM(1)(k, t ) = −
(
i

h̄

) ∫
d4x1	

(−)
k (x1)

×
[
p21,op − p2(t1)

2m

]
φi(x1). (A15)

Using the Fourier representation

φi(x) = (2π )−3/2
∫

dk′eik
′ ·rφ̃i(k′, t ) (A16)

and

	
(−)
k (x) = (2π )−3/2

∫
dk′′eik

′′ ·r	̃(−)
k (k′′, t ) (A17)

we see that the perturbation becomes

δM(1)(k, t ) = −
(
i

h̄

) ∫ t

t0

dt1

∫
dq 	̃

(−)
k (k + q, t1)

[
(h̄q)2 + 2(h̄k) · (

h̄q − |e|
c A(t1)

) − ( |e|
c A(t1)

)2
2m

]
φ̃i(k + q, t1). (A18)

If φ
(−)
k is a plane wave then the corresponding Volkov state

contains a single Fourier component corresponding to h̄q =
|e|
c A(t ) and gives δM(1) = 0 as before. Atomic scattering
states are described by a distribution of vectors q, which
leads to δM(1) �= 0 in general and therefore a different
result.

APPENDIX B: EXPANSION OF IONIZATION AMPLITUDE
IN PARTIAL WAVES: CIRCULAR POLARIZATION

In this Appendix we provide the details of the evaluation
of the ionization amplitude, Eq. (23). We start by expressing
the vector potential contribution in φ̃i(k,A(t )) as

e− i|e|
h̄c A±(t )·r = 4π

∞∑
lA=0

lA∑
nA=−lA

(−i)lA jlA (kAr)

× YmA
lA

(Â±(0))YmA
lA

(r̂)e−inAωt , (B1)

where kA ≡ |e|A
h̄c is the vector potential momentum. We note

that YmA
lA

(r̂) represents the angular momentum transfer with
mA ≡ ±nA and e−inAωt represents the total energy transfer
nAh̄ω. Since lA � |nA|, in general, nA describes the net ab-
sorption or emission of energy and not necessarily an order of
perturbation theory. Furthermore, we expand the continuum
state as

φ
(−)
k (r) = 1

k

∞∑
lk=0

lk∑
mk=−lk

ilk e−iηlk (k)Rk,lk (r)Y
mk
lk

(k̂)Ymk
lk

(r̂),

(B2)

where Rk,lk is the radial continuum state with phase shift
ηlk (k). Here φ

(−)
k describes scattering states, which are asymp-

totically described at r → ∞ by a plane wave plus an ingoing
spherical wave [27].

Thus, we can evaluate(
− ∂

∂t

)
φ̃i(k,A(t ))

= (i/h̄)
∑
lA,nA

(nAh̄ω)A±nA
lA

e−inAωt
∑
lk

Klk (k)I
lk ,lA
li

(k)

×
[

lk lA li
−(mi + mA) mA mi

]
Ymi±nA
lk

(k̂) (B3)

with coefficients

AmA
lA

≡ 4π (−i)lAY mA
lA

(Â±(0)), (B4)

and

Klk (k) ≡ (−i)lk eiηlk (k). (B5)

The Fourier component e−inAωt corresponds to the contri-
butions of nA quanta of energy to the ionized electron and the
angular integrals

[
lk lA li

−mk mA mi

]
≡

∫
d�r1Y

mk
lk

(r̂1)Y
mA
lA

(r̂1)Y
mi
li
(r̂1) (B6)

describe the corresponding angular momentum selection
rules, which are evaluated as Wigner-3 j symbols. The radial
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integral

I lk ,lAli
(k) ≡ 1

k

∫ ∞

0
dr1 r

2
1 Rk,lk (r1) jlA (kAr1)Ri(r1), (B7)

determines how the initial state influences the photoelectron
distribution and is numerically evaluated in the current work.

To finish the derivation we expand the action term in partial
waves and perform the time integrals where

S±(k, t ) =
∫ t

0
dτ

[
p(τ )2

2m
+ Ip

]

= N (k)h̄ω t + h̄k · [ξ±(t ) − ξ±(0)], (B8)

N (k) ≡ 1

h̄ω
(Ek + Ĩp), Up ≡ h̄2k2A

2m
(B9)

and

ξ±(t ) ≡ |e|
mc

∫ t

A±(τ )dτ = ξ [cos(ωt )x̂ ± sin(ωt )ŷ] (B10)

with ξ ≡ |e|A
ωmc . Using the same partial-wave expansion as be-

fore we have

eik·ξ±(t ) = 4π
∞∑
lS=0

lS∑
nS=−lS

ilS jlS (k ξ )YmS
lS

(ξ̂±(0))Y
mS
lS

(k̂)e−inSωt

(B11)
with mS ≡ ±nS . For a given number of quanta nA from the
vector potential term we have∫ t

0
dt1e

(i/h̄)S±(k,t1 )−inAωt1 = e−ik·ξ±(0)
∞∑
lS=0

lS∑
nS=−lS

XmS
lS

(k)YmS
lS

(k̂)

× δt ([N (k) − (nA + nS )]ω/2)
(B12)

with coefficient

XmS
lS

(k) ≡ 4π ilS jlS (kξ )Y
mS
lS

(ξ̂±(0)). (B13)

The shape term

δt (x) ≡ eixt sinc(xt )t (B14)

describes the distribution of final energy states after the ab-
sorption of nA + nS photons by a finite flat-top pulse.

Combining all contribution we get for the ionization
amplitude

M(1)
± (k, t ) = (i/h̄)e−ik·ξ±(0)

∞∑
lA=0

lA∑
nA=−lA

(nAh̄ω)AmA
lA

li+lA∑
lk=max(|li−lA|,|mi+mA|)

Klk (k) I
lk ,lA
li

(k)

[
lk lA li

−(mi + mA) mA mi

]
Ymi+mA
lk

(k̂)

×
∞∑
lS=0

lS∑
nS=−lS

XmS
lS

(k)YmS
lS

(k̂)δt ([N (k) − (nA + nS )]ω/2) (B15)

with angular momentum components determined by

YmS
lS

(k̂)Ymi+mA
lk

(k̂) =
∑
l

[
l lS lk

−(mi + mA + mS ) mS (mi + mA)

]
Ymi+mA+mS
l (k̂) (B16)

and yield described by

P(ion)
± (t ) =

∫
dk |M±(k, t )|2. (B17)

It is worth noting that the amplitude may be evaluated exactly for the often-used case of zero-range Volkov states and
asymptotic initial states. In that case the Bessel functions in the radial integral are expanded as

jl (x) =
√

π

2x
Jl+1/2(x) =

√
π

2

(x/2)l

�(l + 3/2)
0F1(; l + 3/2;−x2/4), (B18)

with hypergeometric function

0F 1(; a; x) ≡
∞∑
m=0

xm

m! (a)m
(B19)

where (a)m ≡ �(a + m)/�(a) is the Pochhammer symbol and �(a) is the Euler integral.
As a result, one obtains

I lk ,lAli
(k) = Cκ,li

2ν−1/2

κ3/2

�([lk + lA + ν + 2]/2)�([lk + lA + ν + 3]/2)

�(lk + 3/2)�(lA + 3/2)

×
(
k

κ

)lk(kA
κ

)lA

F4

(
lk + lA + ν + 2

2
,
lk + lA + ν + 3

2
; lk + 3

2
, lA + 3

2
;−

(
k

κ

)2

,−
(
kA
κ

)2
)

. (B20)
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Here, the Appell F4 function [35] is defined as

F4(a, b; c1, c2; x, y) =
∞∑

m,n=0

(a)m+n(b)m+n

(c1)m(c2)n

xm

m!

yn

n!
(B21)

with domain of convergence
√|x| + √|y| < 1 (or k + kA <

κ). Note that the domain can be extended via various analytic
continuations [36–39].

APPENDIX C: EXPANSION OF IONIZATION AMPLITUDE
IN PARTIAL WAVES: ELLIPTICAL POLARIZATION

We now provide the details of the derivation of the ioniza-
tion amplitude for the general case of elliptical polarization.
Again, we start with φ̃i(k,A(t )) in Eq. (23). Following the
same steps as in Appendix B we express the vector potential
contribution as

(
− ∂

∂t1

) ∫
dr1φ

(−)
k (r1) e− i|e|

h̄c Aε (t1 )·r1φi(r1) = (i/h̄)
∑
lA,nA

(nAh̄ω)AmA
lA
e−inAωt1

∑
lk

Klk (k)Y
mk
lk

(k̂)I lk ,lAli
(k, kA, ε)

×
[

lk lA li
−(mi + mA) mA mi

]
, (C1)

where

AmA
lA

= 16π2(−i)lAY
−nA−
lA−

(Â−(0))Y
nA+
lA+

(Â+(0)) (C2)

and

Klk (k) = (−i)lk eiηlk (k) (C3)

with nA ≡ (nA− , nA+ ), nA ≡ nA+ + nA− , mA ≡ (−nA− , nA+ ),
mA ≡ nA+ − nA− , lA ≡ (lA− , lA+ ), and lA ≡ lA+ + lA− with sim-
ilar for A �→ S. The sum

∑
lA,nA is performed over the physical

range of the four angular momentum indices lA+ , nA+ , lA− , and
nA− .

Other contributions correspond to the angular integral[
lk lA li

−mk mA mi

]
≡

∫
d�rY

mk
lk

(r̂)Y
−nA−
lA−

(r̂)Y
nA+
lA+

(r̂)Ymi
li
(r̂)

(C4)

expanded in terms of 3 j symbols and the radial integral

I lk ,lAli
(k, kA, ε) ≡ 1

k

∫ ∞

0
dr1 r

2
1 Rk,lk (r1)

× jlA−

[(
1 − ε

2

)
kAr1

]
jlA+

[(
1 + ε

2

)
kAr1

]

× Rni,li (r1), (C5)

which is evaluated numerically.
The amplitude is completed by the action

Sε (k, t ) = (
Ek + Ip

)
t + h̄k · [ξε (t ) − ξε (0)]

+ |e|2
2mc2

∫ t

0
dτAε (τ )

2, (C6)

where the ponderomotive term

|e|2
2mc2

∫ t

0
dτAε (τ )

2 = Up t + |e|2A2(1 − ε2)

8ωmc2
sin(−2ωt )

(C7)
with

Up ≡ |e|2A2(1 + ε2)

4mc2
(C8)

has now additional time-dependent oscillations due to the
presence of both right- and left-handed fields.

The quiver motion

ξε (t ) =
(
1 + ε

2

)
ξ+(t ) +

(
1 − ε

2

)
ξ−(t ) (C9)

is separated into left- and right-handed contributions giving
the exponential partitions

e(i/h̄)Sε (k,t ) = e−ik·ξε (0)eiN (k)ωt ei
|e|2A2 (1−ε2 )

8h̄ωmc2
sin(−2ωt )

× ei(
1−ε
2 )k·ξ−(t )ei(

1+ε
2 )k·ξ+(t ) (C10)

with

N (k) ≡ 1

h̄ω

(
Ek + Ĩp

)
. (C11)

Factors ei(
1±ε
2 )k·ξ±(t ) are evaluated as before with modified

coefficients

XmS
lS

(k, ξ , ε) ≡ 16π2ilS jlS−

[(
1 − ε

2

)
kξ

]
jlS+

[(
1 + ε

2

)
kξ

]

× Y
−nS−
lS−

(ξ̂−(0))Y
nS+
lS+

(ξ̂+(0)) (C12)

and the new contribution

ei
|e|2A2 (1−ε2 )

8h̄ωmc2
sin(−2ωt ) =

∞∑
a=−∞

Ba(A, ω, ε)e−2iaωt (C13)

completes the exponential with

Ba(A, ω, ε) = Ja

( |e|2A2(1 − ε2)

8h̄ωmc2

)
. (C14)
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Collecting all the terms, the finite-pulse amplitude becomes

M(1)
ε (k, t ) = (i/h̄)e−ik·ξε (0)

∑
lA,nA

(nAh̄ω)AmA
lA

∑
lk

Klk (k)I
lk ,lA
li

(k, kA, ε)

[
lk lA li

−(mi + mA) mA mi

]

×
∑
lS,nS

XmS
lS

(k, ξ , ε)
∑
l

[
l lS lk

−(mi + mA + mS ) mS (mi + mA)

]
Ymi+mA+mS
l (k̂)

×
∑
a

Ba(A, ω, ε)δt ([N (k) − (nA + nS + 2a)]ω/2) (C15)

and the yield is given by

P(ion)
ε (t ) =

∫
dk |Mε (k, t )|2. (C16)

The sum
∑

lS,nS is performed over the physical range of the four angular momentum indices lS+ , nS+ , lS− , and nS− .
It is again worth noting that the amplitude may be evaluated exactly for the often used case of zero-range Volkov states and

asymptotic initial states. In that case the radial integral can be written as

I lk ,lAli
(k, kA, ε) = Cκli

23/2−ν

√
π

κ3/2

�
( lk+lA+ν+2

2

)
�

( lk+lA+ν+3
2

)
�

(
lk + 3

2

)
�

(
lA− + 3

2

)
�

(
lA+ + 3

2

)(
k

κ

)lk[(
1 − ε

2

)
kA
κ

]lA−
[(

1 + ε

2

)
kA
κ

]lA+

× F (3)
C

(
lk + lA + ν + 2

2
,
lk + lA + ν + 3

2
; lk + 3

2
, lA− + 3

2
, lA+ + 3

2
;−

(
k

κ

)2

,−
[(

1 − ε

2

)
kA
κ

]2

,

−
[(

1 + ε

2

)
kA
κ

]2)
, (C17)

where

F (3)
C (a, b; c1, c2, c3; x1, x2, x3) ≡

∞∑
i1,i2,i3=0

(a)i1+i2+i3 (b)i1+i2+i3

(c1)i1 (c2)i2 (c3)i3

xi11
i1!

xi22
i2!

xi33
i3!

(C18)

is the Lauricella hypergeometric series [40], which may be evaluated past its radius of convergence
√|x1| + √|x2| + √|x3| < 1

(or k + kA < κ) through various analytic continuations.
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