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Abstract—Online data trading is increasingly prevalent as data
are becoming valuable assets. In most common conventional data
trading scenarios, three parties (seller, broker, and buyer) exist,
and fairness in trading is essential. This paper discusses and
solves the fairness problem in two aspects. First, we consider
exchange fairness, which requires payments and data exchanged
correctly between buyers and the broker. In existing solutions,
keys of encrypted data are traded. However, these solutions failed
to provide a complete and secure design for validating keys’
correctness unless they used generic theoretical but expensive
methods, e.g., Zk-SNARK. We address this security issue by
designing a new Kkey verification mechanism. We also present
a novel atomic exchange protocol based on Hashed Timelock
Contracts on Ethereum, reducing gas consumption compared to
the existing approach. Second, we consider distribution fairness,
which requires correctly splitting income between the broker
and sellers. Straightforward solutions are impractical, i.e., sellers
participating in every transaction or traversing the blockchain.
Therefore, we design a verifiable statement protocol for sellers
to verify the income split efficiently. Further, analysis and
experimental results indicate that extra fairness properties are
securely achieved, and our protocol reduces users’ on-chain
participation compared to state-of-the-art protocols.

Index Terms—Data trading, fairness, blockchain, secret-key-
sharing, atomic exchange, verifiable statement.

I. INTRODUCTION

In the era of big data, data are considered valuable and
tradeable assets because they can benefit both academia
and industry. Therefore, digital data trading is increasingly
prevalent, which results in the high-speed development of the
marketplaces oriented by such business [1], [2]. It is estimated
that the value of the data broker market was $257 billion in
2021 and will be about $365 billion in the year 2029 [3].
Besides B2B data brokers such as ZoomlInfo, Ampliz, and
Acxiom, IT companies including Google, Amazon, Alibaba,
IBM, and Bloomberg also participate in the market to improve
their services/products via the traded data. Many laws and reg-
ulations such as General Data Protection Regulation (GDPR)
[4] and California Consumer Privacy Act (CCPA) [5] are also
proposed to regulate the market of data trading, further proving
the business is developing fast and widely needed.

Three parties are usually considered in a conventional data
trading system (e.g., IBM Cloud Pak for Data, Snowflake Data
Marketplace, etc.), including the seller, the platform (we use
the word “broker” hereafter), and the buyer. We consider a
similar but not the same trading scenario in this paper: a seller
assigns her/his data to the broker; the broker will send the data
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on behalf of the seller to the buyer(s) and receive payments;
after some time, the broker will split the total income during
this period with the seller. Fairness is a fundamental property
for every exchange or trading process. Unlike traditional data
trading platforms where the broker in the middle is always
trusted (i.e., large platforms are usually fully trusted based on
their reputation), in our scenario, participants do not fully trust
each other during the whole online trading process. Therefore,
we need to ensure two fairness properties in this paper, namely
exchange fairness and distribution fairness.

We first consider the exchange fairness between the broker
and the buyer. A data exchange process is considered fair iff.:
1) the broker gets paid, and the buyer gets the desired data, or
2) neither the broker reveals the data to the buyer nor the buyer
pays anything. Previous work [6] has shown that a trusted third
party (TTP) who plays a role in exchanging the payment and
the asset is necessary for any fair exchange protocol. There
are several works [7]-[9] that leverage the smart contracts
executed on the blockchain, which can replace the single TTP
in traditional solutions [10], [11] between the two participants.

However, there are still non-trivial problems to be solved in
the fair exchange protocols that are based on blockchain: 1) the
correctness verification of the data. There might be a dispute
between the two parties where the buyer claims the data are
incorrect, and the broker claims the opposite. Existing works
[7], [12] let the broker split the original data into multiple
slices, and the buyer will choose some slices to be revealed
as the correctness proof. However, these solutions lack a
complete implementation and rigorous analysis on the security
of the correctness check using the split-and-choose approach
(e.g., how many slices should the data be split into, how
many data slices should be chosen for verification, etc.); 2) the
atomicity of the exchange of decryption keys and payments.
To ensure the keys and the payments are exchanged correctly
without repudiation, current works leverage the idea of private
key locked transactions [13] to realize atomic exchange on the
blockchain. Though current works are effective, the efficiency
of atomic exchange can be further optimized.

Next, we further consider the distribution fairness between
the broker and the seller. A revenue distribution process is fair
if the broker can periodically split the income with the seller
correctly. Such a revenue distribution process is not a concern
in traditional systems as the broker is fully trusted. Therefore,
it is necessary to design a protocol to ensure distribution
fairness without a fully trusted broker in our scenario. Naively,
the seller can verify the correctness of the revenue distribution
by either participating in every transaction (in this case, the
seller may even transact with buyers without a broker) or
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traversing the blockchain records to collect all her/his datasets’
transaction times (note that the seller is in the same blockchain
network as the broker). However, such methods will result in
large overheads such as extra network burden and 24/7 liveness
requirements or even privacy/security issues caused by address
reuse (e.g., more evidence for retrieving the identity of the
address owner or private key recovery using weak signatures)
from the seller’s side. (Note that the latter issues apply to
all the blockchain users.) Therefore, designing a verifiable
revenue distribution protocol that can guarantee distribution
fairness is non-trivial.

This paper is an extension of our conference paper [14].
Both papers focus on the problem of how to ensure fairness
in a digital trading scenario. The problem has been partially
solved in the conference version, where we designed a random
selection algorithm to facilitate the verification phase and
proposed a new atomic exchange protocol to reduce costs.
In this extended work, we consider a more practical scenario
where a broker trades on behalf of sellers who may have
insufficient resources (e.g., limited access to the Internet or in-
ability to provide stable data availability). As the broker is not
a fully trusted party, besides exchange fairness (between the
broker and buyers), which can be ensured by our conference
work, distribution fairness (between the broker and sellers)
needs to be guaranteed in the extended work. To achieve this,
we propose a verifiable statement protocol and prove that it
allows sellers to verify whether the statements provided by
the broker are correct. Further, both the complexity analysis
and the simulation results indicate that the overhead caused
by following the protocol is low. Therefore, we conclude that
our extended work provides a practical solution for ensuring
fairness in real-world digital trading scenarios.

In this paper, we propose a data trading platform,
Fair’Trade, that can ensure both exchange fairness and dis-
tribution fairness among different participants. To ensure ex-
change fairness during the trading between the broker and the
buyer, we improved existing fair exchange protocols in two
aspects. We first described a detailed design of correctness
checking using the idea of the split-and-choose model. More
specifically, a verifiable random-selection algorithm is used to
ensure the randomness of the chosen samples so that the broker
cannot cheat. Then, the atomic exchange in Fair?Trade is based
on our novel key-secret-sharing mechanism, which is more
efficient than the current work that forces users to re-use the
same random numbers in the ECDSA (Elliptic Curve Digital
Signature Algorithm). Furthermore, the broker will follow a
verifiable statement protocol using the idea of Merkle Tree
and a hash chain structure, which can let the seller efficiently
validate past transactions, and distribution fairness can also be
guaranteed. Our contributions are summarized as follows:

o We designed Fair?Trade, a novel data trading platform
that considers and ensures both exchange fairness and
distribution fairness based on a real-world online trading
paradigm without the broker being fully trusted.

o Our protocol can guarantee the validity of the encrypted
data and the keys sent by the broker. By designing a ran-
dom sampling algorithm, we reduced the communication
rounds and enhanced the security during the verification

phase, compared to existing approaches [7], [12], [15].

« We proposed novel private key locked transactions based
on the idea of secret sharing, which is more efficient than
existing approaches based on ECDSA [7], [13].

« Our protocol allows sellers to efficiently verify the rev-
enue distribution amount without participating in the
selling process or causing a heavy blockchain stor-
age/bandwidth burden. Security analysis also indicates
that it is hard for the broker to cheat without being
detected.

« Our open-source implementation shows that Fair>Trade
consumes less gas for ensuring exchange fairness, causes
overhead for ensuring distribution fairness with certain
trade-offs and reduces users’ on-chain participation com-
pared to existing works. Source codes are released for
reproducibility.

The rest of the paper is organized as follows: Section II
introduces related works; Section III gives the models and
assumptions; Section IV describes the detailed design of
Fair’Trade and security analysis; Section V shows the evalu-
ation results and Section VI summarizes the paper.

II. RELATED WORKS

Traditional fair exchange protocols usually either assume
a single trusted third party (TTP) [10], [11], which suffers
from the single-point-of-failure vulnerability, or are imple-
mented in a bit-wise manner [16], [17], which suffer from
the inefficiency. Recently, many fair exchange protocols have
been proposed that leverage blockchains due to their decen-
tralized nature. Since fair exchange protocols cannot remove
TTP [6] without any further assumption, recent protocols can
replace the single TTP with smart contracts deployed on the
blockchain. Two aspects are widely discussed and explored
in these works: the verification of data correctness and the
atomicity of the exchange between data and payments.

For the data verification process, a function ¢ is usually
assumed, with which a buyer can verify whether the dataset
D to be sold satisfies (¢(D) = 1) her/his demands or not
(¢p(D) = 0) [12], [18]-[21]. For instance, FairSwap [18]
assumed a public database, and buyers can compare the
hash value of the traded data with the database for verifica-
tion purposes. Several cryptographic-based solutions [8], [9],
[22]-[24], such as using zero-knowledge proof (ZKP), zk-
SNARK, homomorphic encryption (HE), plaintext checkable
encryption (PCE), and chunk-by-chunk signature validation
are also proposed. Besides, another type of solution [13], [15]
leveraged a random sampling process where the buyer can
randomly request a small portion of the dataset for verification.
Note that in this paper, we follow the idea of the random
sampling approaches with a design that can guarantee fewer
communication rounds and no successful cheating.

Existing protocols use different approaches to ensure fair-
ness during the exchange phase. Wan et al. [22] utilized smart
contracts and hash-chain micropayments to guarantee ex-
change fairness. Zhao et al. [15] and Li et al. [9] also proposed
a fair data trading protocol using Double-Authenticating-
Preventing Signatures [25] (DAPS) to exchange secret keys
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and the data. Delgado-Segura et al. [7] proposed a fair ex-
change scheme based on private key locked transactions on
Bitcoin [13]. The key idea behind existing solutions is to
guarantee atomicity (or realize an atomic exchange) during
the exchange process [26]. The original notion of the atomic
swap was derived from Hashed Timelock Contracts (HTLC)
proposed in the lightning network [27], which is widely
adopted in the field of cross-chain digital assets’ exchange
[28]-[33]. We also follow the idea of HTLC to design our
protocol for the exchange phase, which causes negligible
overhead and reduces gas consumption.

Besides fairness, there are many other aspects that should
be considered when designing a digital trading platform, such
as pricing model [34], financial guarantee [35], security [36],
privacy [37], etc. Some works also introduced trusted parties
to facilitate digital trading based on different scenarios. For in-
stance, Galteland et al. [38] introduced a trusted data manager
whose signature works as datasets’ endorsements. Liu et al.
[39] leveraged a distributed but trusted committee for verifying
data availability and managing users’ anonymous credentials.
Xue et al.’s work [40] supported a multiple-issuer model, and
data signed by issuers are considered valid. However, these
are orthogonal to this paper as we focus on fairness, and the
broker is added to facilitate the trading process as a third party
but without being fully trusted. In fact, after including the
broker, the scenario we consider in this paper is similar to the
two-sided market structure [41]. The broker, who serves as
the intermediary and provides transaction facilitation between
sellers and buyers, is still the most commonly considered and
discussed role (besides the seller and the buyer) in many recent
data market designs [42]. Therefore, the revenue distribution
fairness between sellers and the broker should be further
considered and guaranteed in this paper.

III. MODELS AND DEFINITIONS
A. Threat Models

In Fair?Trade, we consider three types of entities: The seller
is the entity that will assign her/his own data to the broker and
get paid. The buyer is the entity that will receive and pay for
her/his desired data. The broker is the entity that will sell the
data to the buyer on behalf of the seller and split the sales
income with the seller periodically.

We now give two types of adversary models that we con-
sidered in this paper. First, we consider the buyer’s adversary
model that during an exchange process, a malicious buyer
will attempt to receive the data/keys without any payment.
Then, we consider the broker’s adversary model: a malicious
broker will attempt to get paid during an exchange process
without sending the correct data/keys to the buyer. During a
distribution process, a covert broker [43] will try to generate
a fake statement so that s/he can gain extra revenue but
will stop cheating if the misbehavior can be detected. Note
that, similar to other related works [44], [45], we do not
consider the situation where the broker colludes with the buyer
and agrees to perform the transaction offline, or intentionally
leaks data off-chain. Data trading platforms usually cannot
provide security guarantees for events outside the system.

However, if the data leakage is within the blockchain, there are
existing works that can detect such misbehaviors [46], [47].
Moreover, if the data contain the seller’s sensitive information,
the seller can perform some preprocessing on the data (e.g.,
de-identification) to avoid personal information leakage.

Note that a dishonest seller who sells wrong or unqualified
data is similar to a malicious broker during the data exchange
phase. Therefore, we skip the discussion on dishonest sellers
as they can be detected by our protocol in Section IV-A.
Besides, we leverage a public blockchain to provide an exe-
cution environment for the protocols. Nodes in the blockchain
network are in charge of verifying and processing the transac-
tions/smart contracts according to the protocols. We also skip
the discussion on misbehaving nodes since their misbehaviors
(i.e., trying to infer users’ data trading secrets, colluding with
trading participants to destroy trading fairness, attempting to
fork the blockchain, etc.) can be prevented either by our
designed protocols or the consensus mechanisms underlying
the blockchain systems.

B. Assumptions

We assume that: 1) Data are transferred with encryption.
Without encryption, everyone in the network will be able to
access the content of the data, and no one will pay for the
data anymore. Therefore, the exchange between two parties
can be further concluded as the exchange of the decryption
keys and the payment. 2) For each exchange or distribution
process, we assume that at most one of the parties (the broker
or the buyer) will be malicious, and they will not collude
with each other. This assumption is made because a system is
hard to secure if the majority of its participants are malicious
[21], [48]. 3) The method of inspecting the data correctness
exists. For example, in FairSwap [18], a validation function
¢ is assumed with which the receiver can verify whether the
data are required.

As aforementioned, the seller will assign the data to the
broker, and the broker will continue selling the data to other
buyers. To avoid trading fraud, we utilize a sample-and-check
verification protocol to protect the trading process. Namely,
the broker will be asked to provide a small sample of the data
before selling it so that the buyer can check if it is correct. The
exchange only proceeds if the sample passes the verification.
Otherwise, the exchange would be terminated. Note that the
data verification process is public. Therefore, other users,
including other potential buyers, can also verify the data if
needed. However, there are still possibilities for the broker to
provide a fake dataset mixed with a portion of original data
and meaningless padding that passes the correctness check and
hence completes the trading fraud. We call such a potential
attack as forgery attack since the goal for the broker is to
forge a valueless dataset yet still pass the correctness check
and complete the exchange. Besides, to gain extra revenue,
a broker may also try to generate a fake statement that can
still pass the seller’s verification. We call such a potential
attack as manipulation attack since the broker can get extra
revenue distribution by generating a fake statement with fewer
transactions. Detailed discussion and analysis on forgery attack
and manipulation attack will be provided in Section IV-D
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TABLE I
SOME SYMBOLS AND THEIR EXPLANATIONS |
Symbol Description
G, g finite group and its gen
D,d one dataset to be traded and one s]
H(),H a cryptographically secure hash functi
H(D) the digest of D, which is the hz
Dk, sk public and secret key pairs in asymn

k keys in symmetric cryptc
S.Enc(),S.Dec() symmetric encryption and ¢
A.Enc(),A.Dec() asymmetric encryption and

tx a transaction in the bloc

#bD the number of transacted ti:
Root the root of a Merkle '

With the above assumptions, a malicio
refuse to accept the correct data or 2) d
correct decryption keys so that s/he could lea
of the data without any payment. Since
participate in both trading processes, a mali
therefore, 1) provide the wrong decryption k
2) launch a forgery attack, or 3) initiate a m:
Besides, there are some other misbehaviors
as re-selling the data via other systems/platfc
the data so that the seller cannot detect it
such misbehaviors are out of the scope of t
refer to some related works [46], [47] for 1

C. Definition of Fairness and Confidentialii

Definition 1 (Exchange Fairness). We say an exchange be-
tween a broker and a buyer is fair if: 1) the broker cannot
get paid unless s/he provides the correct decryption keys to
the buyer; 2) the buyer cannot access the data content unless
s/he has paid sufficient money to the broker.

Note that the definition of exchange fairness of Fair?Trade
shares the same idea of the strong fairness [49] where either
both participants in a trading process will receive what they
want, or nothing will be exchanged if the protocol is aborted.

Definition 2 (Data Confidentiality). We say a dataset is
confidential if: 1) before it is traded, only its seller and the
assigned broker know its complete content; 2) during the
trading process, other users (including the buyer) have no
knowledge about the dataset except a small portion of it for
validation purposes; 3) when the exchange succeeds, the buyer
will also have access to its complete content while others do
not; 4) when the exchange fails, other users (including the
buyer) only have access to the small portion.

Definition 3 (Distribution Fairness). We say a distribution
between a seller and a broker is fair if: when the broker sends
a statement to the seller and shares the income with her/him
according to the statement, the seller should be able to verify
whether the revenue s/he receives is correct.

IV. OUR DESIGN OF FAIR2TRADE

As Figure 1 shows, each data exchange process can be
divided into four phases in Fair®Trade: negotiation phase, ver-
ification phase, exchange phase, and commitment & statement
phase. In the negotiation phase, the seller will propose the
data s/he would like to sell and find a broker for sales. The

Blockchain
Seller Broker Buyers
L Phas‘eq: .
Negotiation
- — — Pha_se:_l: _——
Verification
» Phase 2: R
Exchange "
Phase 3_1:
Commitment
« — Phase 3_2: __
Statement
v
v v <4——— onchain
< — — == offchain

Fig. 1. Workflow of Fair>Trade. In this paper, we focus on Phases 1, 2, and
3. Note that there are two parties in each phase.

broker will halt the process if s/he does not want to transact
the presented data or respond to the seller to discuss the sales
details. If they successfully reach an agreement, the broker will
start to transact with buyers by going through the verification
phase and exchange phase. After a certain time (denoted as
one epoch hereafter), the broker will summarize the trans-
actions during this epoch and propose a commitment to the
blockchain. After the commitment is verified and recorded on
the blockchain, the broker will also send a statement to each
seller. Each seller can then verify her/his statement provided
by the broker if needed. The seller may complain or split the
income with the broker during this epoch accordingly.

Before providing the detailed design in Fair?Trade, we give
the definition of the Decisional Diffie-Hellman problem [50]
and the algorithms in our random selection process first.

Definition 4. Decisional Diffie-Hellman (DDH) problem in a
finite group G with generator g is to, given the group elements
(g%, g%, g°), determine whether g¢ = g°.

There exist many finite groups where the DDH problem is
known to be intractable [50] and note that our protocol can
be implemented with any finite cyclic groups where the DDH
problem is intractable. In this paper, we use ElGamal cryp-
tosystem [51]. The public key of the ElGamal cryptosystem is
pk = ¢°% € G, where g is the generator of the group G, and
sk is the secret key randomly chosen by the seller. We omit
the details of the encryption algorithms due to the space limit
since they are not the most relevant to this paper.

Definition 5. A cryptographic hash function (CHF) is a
function h: X — Y where X = {x € {0,1}* : k € N} is a set
of all bit sequences of arbitrary length and Y = {0, 1} is the
set of sequences with a specific (generally short) length of .
Inputs of h are called messages (denoted as m hereafter), and
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Fig. 2. Workflow of verification phase: data correctness check. The broker
will first split the dataset into n slices, use different symmetric keys to encrypt
each slice and encrypt the symmetric keys with her/his public key pk. After
the dataset encryption is finished, the broker will use the hash value of all the
encrypted slices as the seed to randomly generate some numbers (e.g., using a
random number generator). The broker will then choose the encrypted slices
in accordance with the set of random numbers and reveal the decryption keys
for these slices to the buyer. The buyer can verify whether the provided keys
are included in the hashed keys’ set, the correctness of the index number of
the provided keys, and the content of the corresponding slices.

outputs are called digests (denoted as d hereafter). A secure
CHF should satisfy the following properties:

1) Collision Resistance: it is computationally infeasible to
find any two distinct messages m # m’' € X, such that
h(m) = h(m’);

2) Preimage Resistance: given any d € Y, it is computation-
ally infeasible to find any m € X such that h(m) = d;

3) Second Preimage Resistance: for any given m € X, it
is computationally infeasible to find m' € X such that
h(m) = h(m’) and m # m/'.

Definition 6. Our random selection process consists of two
polynomial time algorithms: SeedGen and Sample:

SeedGen(S.Enc(D)) is a deterministic algorithm that takes
input as the cipher of the data {S.Ency,(d;)i=1,..n} and
outputs a seed s for the user.

Sample(s,num, n) is a deterministic pseudorandom algo-
rithm that takes input as the seed s, an integer num represents
the size of the sampling set, and an integer n represents the
size of the whole set. It outputs a set {11,729, ..., Tnum} where
each unique r; € [1,n].

Note that the results of Sample need to be pseudorandom.
Besides, the broker will decide on the exact random algorithm
(e.g., choose n, num, etc.) and publish it to all the users/nodes
in the blockchain. By making the random algorithm publicly
known to all, one can ensure the reproducibility of its results,
which is important for future verification of the results.

A. Phase 1 (Verification): Data Correctness Check Requested
by the Buyer and Provided by the Broker

As aforementioned in Section III-B, the verification phase is
based on sample-and-check verification protocol in Fair? Trade.

We proposed a random sampling process to prevent malicious
brokers from faking a valueless dataset yet still passing the
correctness check (shown in Figure 2). Detailed steps during
the verification phase are as follows:

First, the broker will divide the data D into n slices. For
each slice d;, the broker will use a different key k; to encrypt it,
which can be done by a symmetric cryptosystem such as AES
[52], [53] (denoted as S.Ency, (d;) hereafter). Then, the broker
will generate a public/secret key pair (pk,sk) of ElGamal
cryptosystem, encrypt each k;, and get a set of ciphertext of
the symmetric keys {A.Encpi(ki)}i=1,... n- The broker will
then select some keys from the set of symmetric keys {k;}
with the following steps:

SeedGen: the broker will use all the encrypted slices
{S.Ency,(d;)}i=1,... n as the input and generate a hash value
H({S.Ency,(d;)}i=1,... ») as the seed s;

Sample: the broker will decide num based on her/his data
slicing number n. Then the broker will use a hash function
which takes input as the seed s concatenated by a counter for
num times and generate {ri,7a, ..., "num}-

After the process is finished, a set of verification keys
{kr,}j=1,- .num Will be selected accordingly and sent to the
buyer along with the sets {S.Ency, (d;)} and {A.Encyi(k;)}.

Upon receiving both encrypted sets and selected keys, the
buyer will verify the correctness of the data with the following
steps: 1) the buyer will re-calculate the hash values of the
given set of verification keys {k,,} and check whether they
are included in the set of keys’ hash {H(k;)}; 2) the buyer
will re-calculate H'({S.Ency,(d;)}), re-generate the set of
verification keys following the same random selection process,
with the H'({S.Ency,(d;)}) as the seed, and output a set of
num indices indicating certain slices the buyer need to verify.
The buyer will compare its random indices with the provided
set {k,,} and halt the verification process if both sets do not
match; 3) otherwise, the buyer will decrypt the encrypted data
slices using {k,} and verify whether the content is correct
or not. If both the verification keys selection and the data
content are correct, the broker and the buyer will continue to
the atomic exchange of sk and the price p. Note that any secure
hash can be used in Fair?Trade, e.g., SHA-256 suggested by
the NIST [54]. Besides, please also note that buyers will not
decide the sampling process as different buyers may request
different numbers of slices or use different random algorithms,
which may cause data leakage concerns on the sellers’ side
and profit loss on both the broker and the sellers’ sides. We
further analyzed why the random sampling process can prevent
malicious brokers from cheating in the data verification phase
in Section IV-D, and discussed why we avoid letting buyers
choose the samples in Section IV-E.

B. Phase 2 (Exchange): Atomic Exchange between the Broker
and the Buyer for the Payment and the Secret Key sk

As aforementioned, if the data correctness is verified, the
buyer will launch an atomic exchange with the broker. We
follow the idea of private key locked transactions [13] as a
basic framework to design our atomic exchange but with com-
pletely new and simpler mechanisms with better efficiency.
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Fig. 3. Workflow of sell phase: atomic exchange for sk. The broker will
split her/his secret key sk into sk1 and sk where sk = ski + sk2 and then
send ski to the buyer (privately). The buyer will create a smart contract with
the condition that if the input value input = sk — sk;, then an amount of
p money will be paid; otherwise if no one calls the contract for some time,
the buyer will get a refund. After the smart contract is deployed onto the
blockchain, the broker will first check whether the condition is set correctly.
If so, the broker will call the contract by providing the correct sk2 and get
paid; otherwise, the broker can just abort the process without any response.
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Fig. 4. An example of Contract and Tz (described in Section IV-B).

In the original framework [7], Bob has an ECDSA (Elliptic
Curve Digital Signature Algorithm) key pair, {pkg, skg}, and
Alice wants to acquire skg to access the data. To do this,
Bob will generate a valid signature, sigprey, Using skp and
send it privately to Alice. Then, Alice will create a transaction,
and its output can be spent if Bob can provide another valid
signature of his, which is signed using the same random value
k as that of sigprey. With Bob providing a valid signature
as described above, Alice can recover skg by exploiting the
ECDSA’s vulnerability of reusing the same k on two different
signatures. Different from the previous work, in Fair?Trade,
we modify the idea of secret sharing [55] to realize the atomic
exchange between the broker and the buyer using a smart
contract deployed on the blockchain.

To receive the pre-negotiated amount of money, the broker
needs to provide sk or some information that the buyer can
use to calculate sk. The broker cannot disclose sk in plaintext
form because, otherwise, anyone could decrypt the data. Using
a ciphertext of sk cannot solve the problem either since it will
cause another key-sharing problem recursively. Therefore, we
split sk into two shares, sky and ska, and use our novel atomic
exchange protocol to let the broker and buyer exchange sk
with the payment. The detailed process of the exchange phase
(shown in Figure 3) is as follows:

The broker randomly splits the secret sk into two shares
{sk1, sk} such that sk = skq + ska (step 4). Then, the broker

sends sk; to the buyer (step 5) via a secure channel and pub-
lishes the public key pk = g°*. Note that the buyer knows pk
and sk; after step 4. Since pk = g°F = g1 +skz = gsh1. gska
it follows that g**> = pk-(g*1)~1. Then, the buyer calculates
pk - (g¥*1)~! and generate the smart contract Contract (step
6). After the Contract is deployed onto the blockchain, the
broker will verify whether the conditions are correct or not.
The broker will provide sko by calling the Contract with
a transaction Tz if the conditions are correct or abort the
exchange process otherwise (step 7). The detailed content of
Contract and Tz are shown in Figure 4. Namely, if T’z calls
Contract by providing sk as the input, g""P%t = pk-(gk1)~1
will be satisfied, and the Contract will transfer p coins (the
price for this purchase) to the broker; else if the time expires,
the money will be refunded to the buyer and the broker will
not get paid (which can be done via time locked transactions
[7]). With both the verification phase and the exchange phase
correctly and completely finished, exchange fairness can be
ensured. Detailed analysis will be introduced in Section IV-D.

C. Phase 3_1 (Commitment) & 3_2 (Statement): Verifiable
Revenue Distribution between the Seller and the Broker

After the exchange fairness is ensured, another protocol that
can guarantee distribution fairness between the broker and
her/his sellers should be designed. Though there would be
no such concern if each seller could exchange with buyers
directly without a broker, as we mentioned previously, it is
not practical from the seller’s side in real-world cases (e.g.,
being actively on-chain, providing stable access to the data,
etc). Before we explain and provide our design reason and
details, we will briefly introduce two possible solutions first:

« One naive idea is to include both the broker and the data’s
corresponding seller as the recipients in every transaction.
Since the broker will call the Contract, get verified by
blockchain nodes, and trigger the transfer of the coins,
the seller can receive payments without any commitment.
However, unless the seller changes her/his address timely
(which may also cause extra communication burden on
the seller’s side), a single address will be vulnerable if
it repeatedly receives a lot of payments. Therefore, to
guarantee security and provide convenience for sellers
simultaneously, it is necessary to let the broker receive
the payments from buyers first and split the income later.

« The problem now is ensuring each epoch’s revenue dis-
tribution is efficient and verifiable. A following potential
solution is hence to create and maintain a counter for
each dataset that can record its sold times. (Note that
since the seller and the broker reached an agreement
during the negotiation phase, we assumed that the ratio
of income split for each dataset was known to both
parties. Thus, instead of the exact distribution amount,
we focus on ensuring the number of transactions for
each dataset (denoted as #p hereafter) for each epoch is
verifiable.) Every time the broker distributes the revenue
with the sellers, s/he will fetch each seller’s corresponding
counter and return the results to them. However, such
an approach will increase the storage burden on the
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Before introducing the detailed protocol, we first give the
notation of the linear hash chain as follows:

ifi=1
ifi=2

H(Dtxg)a

Hash; =
H(Hash;_1||H(Dyz,)),

(1)

When sending her/his data D to the broker, the seller will
also broadcast a digest of D (here, we use the hash value
H (D) to represent the digest) on the blockchain. As aforemen-
tioned, we assume that both parties will negotiate the revenue
distribution for each dataset. Then, the broker will transact
with buyers by following the steps mentioned in Section IV-A
and Section IV-B. Note that for each transaction, the buyer will
also include H(D;,,), where D;,, represents the transacted
data. With H(D,,,) included, blockchain nodes will be able
to calculate a hash value Hash; following Equation (1) every
time the broker has a new transaction successfully executed.
Blockchain nodes will update and keep this hash value locally
to record the accumulative transaction number per epoch and
verify the commitment later (denoted as H ., hereafter). On
the other hand, the broker will also maintain a local list of
successful transactions.

As aforementioned in Figure 5, the broker needs to generate
a commitment and submit it to the blockchain for every epoch
(e.g., some number of blocks). Here, we use the idea of Merkle

-~
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- -
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Fig. 7. An example of statement verification of seller B.

Tree as an example. As is shown in Figure 6, each Merkle
Tree leaf contains the digest of a dataset H(D;),i—12,.n
that has been transacted and the number of its sold times
#D,si=1,2,...n during this epoch. For other nodes inside the
Merkle Tree, besides the hash value of its two children, the
sum of sold times of the corresponding datasets will also be
included. The broker will then generate a commitment that
includes the Merkle leaves and the root, as well as a list that
specifies the order of each digest’s occurrence. When receiving
the commitment, blockchain nodes will first recalculate the
final result of the hash chain using the order provided in the list
(denoted as H ;omm hereafter) by following Equation (1). Note
that it is necessary for the broker to clearly specify the order
of H(D;) in the commitment because the result of H.omm is
order-sensitive. The commitment will be discarded if H,omm
does not equal H.yr. Otherwise, blockchain nodes will con-
tinue to verify the Merkle root and the total number #;ota1.
The commitment will be accepted, and only its summary (the
Root and the #;,4;) Will be included on the blockchain.
With the commitment verified and accepted, the broker
will send a statement to each seller and provide a trans-
action id tzgym that can be directed to the (Root, #+iotar)
stored on-chain. Thus, the statement will consist of
(tTgum, {tx;}, Leaf(H(D),#p), Proof), where tz; repre-
sents the set of transactions related to D, Leaf(H(D),#p)
includes the D’s digest and the number of the transactions,
and the Proof is the Merkle proof for the leaf (which is a
list of hash values that can let the seller recalculate the Merkle
root). With tz,,,,, the seller can locate the block, compare
the stored Root with her/his recalculated one, and decide to
continue distributing the revenue or complain based on the
validation result (shown in Figure 7). Therefore, using Merkle
Tree can ensure efficient statement verification without forcing
sellers to traverse the blockchain records and causing limited
storage complexity on the blockchain (so that extra sellers’
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network burden and the blockchain bandwidth can be avoided).
Besides, the entry of #;,t,; is included as one part of an
epoch’s summary so that one can quickly learn the platform’s
trading volume by referring to the summary transactions on-
chain.

D. Security Analysis

In this section, we provide security analysis for Fair>Trade.
The major mechanisms in Fair?Trade are based on symmetric
encryption algorithms and secure hash functions. We use
certain properties of these building blocks to prove security
and privacy protection. Before we prove the exchange fairness
and data confidentiality during the exchange phase defined in
Section III-C, we first prove the robustness of the verification
protocol described in Section IV-A. We call such a potential
attack as forgery attack because the broker aims to forge a
valueless dataset yet still passes the verification phase and sells
it to the buyer.

Definition 7. The verification protocol is robust if there is
no polynomial time algorithm A for the broker to initiate a
forgery attack that can pass the verification phase.

We prove the forgery attack is impractical if the hash
function used in random selection is cryptographically secure.
Particularly, the hash function should be preimage-resistant
and provide pseudo-randomness.

Theorem 1. In the verification protocol, if the hash function
is cryptographically secure, it is hard for any brokers with
polynomial power to initiate a successful forgery attack.

Proof. The theorem can be proven based on a polynomial
reduction to the preimage-resistance of a cryptographic hash
function, which indicates if such a forgery attack could be ini-
tiated efficiently (in polynomial time), we also have the ability
to find a preimage of a given hash value of a cryptographically
secure hash function.

First, we model the verification protocol as follows:

1) Suppose the original data D is divided into n distinct
slices {d;e[1,n1}. The broker should provide a challenge
set of Repalienge X 1 slices of D for the buyer to verify,
where 0 < Rcpalienge < 11s a pre-defined challenge rate.

2) To forge a fake dataset, D' = {d;e[l)n]}, the broker
chooses a verification set V/, a subset of the original data
V < D with size Ryerify X 1, and a set of meaningless
padding data Pad such that D' = V + Pad. Ryer; #y 1s the
rate of real data the broker would be willing to mix in the
forgery for verification, where Rehailenge < Ryerify < 1.

3) The broker chooses symmetric secret keys {kie[l,n]}
and encrypts the forged data D' = {dge[l,n]} to C' =
{Ciepiny}> where ¢ = S.Ency, (d;).

4) The broker generates {j1,j2, --JRopariengexn > @ list of
indices that are used to determine the slices to be provided
for verification, according to a pseudo-random function
RndSpl(seed), where the seed = H(S.Ency,(d})) is
determined by the hash value of the encrypted data, C".

5) The victim buyer will check if all d] = S.Decy,(c})
match her/his expectation. The verification would pass

iff. the indices list indicates that all the elements are in
the verification set V.

We use the term Veri fySample(ji, ¢}, ) to represent the sam-
ple verification process in step 5), where k € [1, Renalienge X
n]. We specify that the output of VerifySample would be
a set of data slices V', and a forgery attack will succeed iff:
V'’ < V. Note that to maximize her/his profit, a malicious bro-
ker will try to minimize Ryer;fy, Which equals to Repalienge
and leads to V' = V for a successful forgery attack (the
attack is impossible if Ryerify < Rehailenge). On the other
hand, if Ryerify is large (e.g., close to 1), the attack becomes
easier but also less profitable cause the broker needs to include
more real data in the forged data. Therefore, we first provide
our proof from the case where the broker wants to gain the
maximum profit, which means V' = V’. A quantified analysis
of the difficulty of launching a successful forgery attack with
different choices of Ryerify > Rchallenge Will be given later.
We now simplify the steps 2) & 3) into one polynomial
algorithm EncFD(V,Pad) as it only includes a single
round of encryption of the forged data D’. Since in
VerifySample, the selection of ¢ requires only finding
and choosing data slices from the encrypted data C’,
which is determined by j; in polynomial time, we can
further simplify it into VerifySample(ji). Moreover,
since the indices list is determined by a polynomial
algorithm RndSpl(seed), where seed is further generated by
H(EncFD(V, Pad)), therefore, the final decrypted set of
data slices would be VerifySample(H(EncFD(V, Pad)).
If there is a polynomial time algorithm to initiate a successful
forgery attack, it means there is a polynomial algorithm
FindPad(V') = Pad which can find a valid padding dataset
Pad such that V = VerifySample(H(EncFD(V, Pad))).
Based on this assumption, given a hash value A,
we can use the forgery attack algorithm to compute
FindPad(Vy,) = Padp, where Vi, = VerifySample(h).
Therefore, we will have H(EncFD(Vy, Pady)) = h and
EncFD(VerifySample(h), Pady) will be the preimage
of h. Since EncFD, VerifySample and FindPad are
all polynomial algorithms, we can get the preimage of the
cryptographically secure hash function in polynomial time.
Therefore, the forgery attack is at least as hard as performing
a successful preimage attack to a cryptographically secure

hash function.
O

Even though we have proven the impossibility of an efficient
forgery attack for any polynomial brokers, the attack is still
possible with higher Re,;f, or even brute-forcing. The latter
is because the broker will decide the details of the random
sampling process (number of sampled slices, choice of random
algorithm, etc.), and therefore, theoretically, the broker is able
to perform a forgery attack much earlier before the verification
phase. Now, we continue our quantified analysis as follows:

Suppose the cryptographically secure hash function provides
nearly perfect randomness; the probability for the broker to
successfully initiate a forgery attack by building a fake dataset
with a fixed verification set is bounded by the following
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success chance. The in-map curves are the contour lines of achieving the
correlated probability on the line.

equation:

( nXRyerify )
nx Rchallenge

Pr(Forgery succeeds) =

(o Romttense)
nXRenallenge

in which (g) indicates the number of B out of A combi-
nations. As aforementioned, Ry, should be no less than
Rchailenge; otherwise, the challenge set will always be more
than the verification set, and the attack will fail. This means
that the broker needs to provide at least R pqaiienge X M real
data slices in an attack attempt. According to the equation,
the broker may choose to trade a bigger verification set size
(bigger Ryeripy) for a better attack chance, but this would lead
to less profit since more real data will be revealed to the buyer.

We provide the probability maps for different challenge rate
settings in Figure 8. According to the figure, a larger challenge
rate setting, namely more data slices asked by the buyer to ver-
ify, increases the difficulty of performing a successful forgery
attack. For a challenge rate from 0.1% to 1%, the verification
rate increases drastically for the same attack probability. The
larger data volume also reduces the forgery attack probability.
As demonstrated, the more data slices there are, the larger
verification rate will be required for the broker to achieve
practical attack probability. From the broker’s perspective,
the larger verification rate R,..;y, s/he is willing to provide,
the better forgery chance Pr(Forgery succeeds) s/he will get,

together with more revelation of real data. For example, for a
challenge rate of 1% and 6000 data slices in total, our protocol
requires the broker to put at least 80% of the real data into the
final dataset to achieve a # successful forgery attack chance.
For a normal polynomial power broker, the computation for
brute-forcing such probability is troublesome and could also
be easily mitigated by setting a time limit in the trading.

With both the robustness and the unforgeability proved, we
now prove the exchange fairness we defined in Section III-C
with the following theorem:

Theorem 2. If the encryption algorithms in the verification
phase and the cryptosystem in the atomic exchange phase are
secure, then the proposed protocol can ensure the exchange
fairness between the broker and the buyer’s data exchange.

Proof. When the broker is malicious, s/he may provide a fake
sko to Contract and try to get the buyer’s deposit. However,
since the buyer has set the condition in Contract, the broker
cannot get paid if s/he provides a wrong input. On the other
hand, a malicious buyer may also generate a false condition
in Contract. However, false conditions can be detected by
the broker since s/he knows the values of sk, ski, and sko.
The broker will terminate the trading by not responding to the
Contract if false conditions are detected, and Fair>Trade can,
therefore, ensure the fairness between the two parties. O

Theorem 3. With the same assumptions in Theorem 2, if both
the broker and the buyer follow the steps during the exchange
process, then Fair’*Trade can ensure the confidentiality of the
dataset during the exchange phase.

Proof. The data traded between the broker and buyer is only
transmitted in encrypted form publicly. The secret keys used
in the encryption are transmitted off-chain through secure
communication channels. Only the broker has the input that
can satisfy the aforementioned conditions of Contract since
no one knows sk or sko except the broker. Also, the buyer only
publishes gS’Cl in Contract. Therefore, no one else can infer
ski due to the intractability of the discrete logarithm problem.
In fact, due to the intractability of the DDH problem, g°**
is computationally indistinguishable from a random element
of G. Therefore, only the buyer can get the real data if the
exchange is completed. If the exchange terminates in any step,
the buyer will not get any information about the data except
for the verification set s/he requests. O

Before proving the distribution fairness defined in Sec-
tion II-C, we first prove the robustness of the verifiable
statement protocol described in Section IV-C. We name such
a potential attack as manipulation attack because the goal for
the broker is to manipulate fake statements that can still be
verified by sellers so that they will split the income based
on the fake statements. As aforementioned, each statement
will contain a list of transactions related to the seller’s data,
the data’s transaction times #p for that epoch, and a Merkle
proof. Note that #p and the data’s digest H(D) will jointly
form the Merkle leaf. To gain extra revenue, the broker will
include fewer transactions in the statements for the sellers,
which will result in generating a fake Merkle leaf.
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Therefore, the broker will launch the attack by either 1)
generating a fake Merkle Tree with one or several fake leaves
but providing a valid transaction order list that can pass the
hash-chain check by the nodes or 2) submitting a correct
Merkle Tree to the blockchain, generating a valid proof for
each fake leaf when sending the statements to the sellers. We
start our analysis from a scenario with one seller.

Definition 8. The revenue distribution is verifiable if there is
no polynomial time algorithm A for the broker to manipulate
a statement that can provide a valid Merkle proof for a fake
leaf.

We prove it is impractical for the broker to launch a
successful manipulation attack if the hash functions used in
the hash chain calculation (Equation (1)) and Merkle Tree
generation are cryptographically secure. Specifically, the hash
functions should be second preimage-resistant.

Lemma 1. During the commitment phase, if the hash function
is cryptographically secure, it is hard for any brokers with
polynomial power to manipulate a wrong Merkle Tree with a
valid transaction order list that can pass the hash-chain check.

Proof. The proof is straightforward. After each epoch, all
blockchain nodes will have the same image on the value
of H.y.r. The broker knows both H.,.. and the ordered
list of transactions {tx},; for the epoch that can be used to
compute the final hash-chain result. We simplify the hash
chain algorithm as a polynomial algorithm HashChain(-)
as it just calculates the hash value by appending each
element to the current result. Suppose the broker sub-
mitted a different list {tx}/,. Then, the attack will suc-
ceed if and only if HashChain({txz}),) = Heurr

HashChain({tz},;). If there is a polynomial time algorithm
FindList(HashChain({tx},)) that can provide a different
list {txz}/, whose hash-chain result HashChain({tz},,) is
also H.y,r, that means there would be a polynomial time
algorithm that can be used to find a second-preimage collision.
Therefore, it is at least as hard as finding a second preimage
collision on a secure hash function for the broker to submit a
fake Merkle Tree but can still pass the hash-chain check. [

Theorem 4. With Lemma 1, we say that during the statement
phase, if the hash function is cryptographically secure, it is
hard for any brokers with polynomial power to manipulate a
statement with a wrong leaf but a valid Merkle proof.

Proof. The theorem can be proven based on a reduction
from the second preimage-resistance of a cryptographic hash
function. We model the statement generation as follows:

1) Suppose during one epoch, each dataset D; is sold #p,
times and the Merkle root Root for the epoch is calculated
correctly to pass the commitment phase.

2) When an epoch ends and Root is recorded on-chain, the
broker will generate statements for sellers. To generate a fake
statement for some victim seller Sy, the broker will modify
the real sold times #p, to #7, ~and generate a proof p'.

3) The victim seller will reconstruct the root Root’ and
check if it matches with the Merkle root Root stored on-chain.
The validation would pass iff. Root = Root’.

We use the term MerkleVerify(Leaf, Proof) to
represent the algorithm for validating a leaf’s membership of
a Merkle Tree. The fake statement will be considered valid
if and only if MerkleVerify((H(Dv),#p,),p") =
True. Suppose the original leaf and its correct
proof is the pair ((H(Dv),#p,),p) such that
MerkleVerify((H(Dv),#p,),p) = True. The exact
process of MerkleVerify(-) includes recalculating the root
of the given input and comparing it with Root on-chain.
Therefore, to generate a fake statement that can pass the
check, the broker needs to find a different p’ based on #7,
such that the result of root recalculation Root’ equals Root.

We simplify the Merkle root calculation algorithm as a
polynomial algorithm MklRtC'al(-) as it only includes a hash
calculation for each two sibling nodes that share the same
parent node. According to the process of root (re)calculation,
each intermediate result (including the final result for the
root value) will be calculated by the polynomial algorithm
IntmdHash(Hjc, H.c) = H(H||Hy) = Hintmd, Where
H;nma represents the intermediate value for each node in
the Merkle Tree and H;c, H.c represent the hash value of
its left child and right child, respectively. The algorithm
IntmdHash(-) is polynomial as it only runs one round
hash function. If there exists a polynomial algorithm to
generate a valid proof for a fake statement successfully, it
means that for a given pair (H;, H,.), there will be a poly-
nomial time algorithm FindChildren(Intmd(H;, H,)) =
(H|,H]) which can find a different pair (H;],H]) such
that Intmd(H|,H|) = Intmd(H;, H,). (In fact, at least
one such case that satisfies this equation will allow a
valid proof to be created. For instance, in Figure 7, to
generate a valid proof for a fake leaf of Hp, -either
finding a new H/, that makes IntmdHash(H),Hp) =
IntmdHash(Hy,Hg) or a new IntmdHash(Hx,Hy)'
such that IntmdHash(H(H4||Hy), H(Hx||Hy)") = Root
would be sufficient to generate a valid proof.)

Based on this assumption, given a pair of input (H;, H,.), we
can follow this algorithm to compute a different pair (Hj, H,.)
such that IntmdHash(H;, H,) = IntmdHash(H], H]), and
then (Hj,H!) will be the second preimage of (H;, H,).
Since IntmdHash, MKklRtCal, and MerkleV erify are both
polynomial algorithms, we can get the second preimage of the
cryptographically secure hash function in polynomial time.
Therefore, with Lemma 1, launching a successful manipu-
lation attack is at least as hard as performing a successful
second preimage attack to a cryptographically secure hash
function. O

Theorem 5. If the hash functions are cryptographically
secure, then the proposed protocol in the commitment &
statement phase can ensure distribution fairness between the
seller and the broker.

Proof. The proof is straightforward. The provided commit-
ment (including the Merkle leaves and the root) can be easily
verified with the data digests included in each exchange.
Therefore, the seller can verify the statement correctly by
referring to the Root stored on-chain. Since it is very hard
for the broker to launch a successful statement manipulation
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attack, cheating on the number of transactions #p in the
statement without being detected is thus impractical within
polynomial power. Therefore, a covert broker will follow the
protocol correctly, #p’s correctness in the statement will be
guaranteed, and the seller can easily calculate the correct rev-
enues s’he deserved for each epoch according to the previous
negotiation with the broker. O

With Theorems 2, 3 and 5, the exchange fairness, dataset
confidentiality, and distribution fairness in Section III-C are
fully proved.

E. Discussion

We first discuss and analyze the disadvantages that other
solutions to the verification phase where the buyer will select
the encrypted slices to be revealed [7], [12], [15]. In such a
solution, a malicious buyer may 1) request a large number
of slices to be revealed, or 2) control multiple IPs/nodes to
request fewer but different slices each time. The first attack
can be detected immediately when the broker is requested,
and s/he can refuse to respond. The second attack cannot be
discovered directly from a single request because each request
looks the same from the broker’s side. Fair2Trade, on the other
hand, can avoid such malicious buyers since the slices are
chosen by the broker through running the random algorithm
and we also proved in Section IV-D that it is impractical
for a malicious broker to initiate a forgery attack. Moreover,
without buyers participating in the sampling process, the
number of communication rounds during the verification phase
is reduced, which is another benefit of our protocol.

Then, we discuss a special situation where a Contract is
generated correctly and included in a block, but the block is
forked later and no longer belongs to the blockchain. This
could be a potential attack within permissionless blockchains
since forks may appear at any time. A malicious buyer could,
therefore, launch such an attack by following the protocols
normally until the broker provides the correct ske. Then, s/he
will attempt to fork the block that contains the Contract. The
broker may finally get no paid but has already provided sk
with the buyer. However, such attacks will happen only if the
buyer can break the consensus mechanism of the blockchain,
which is not realistic for normal buyers. Hence, in this paper,
we assume that the blockchain consensus mechanism will
prevent such attacks.

Another potential attack that may occur during the atomic
exchange process is that a malicious broker will always refuse
to provide the correct sko to the buyer, no matter whether the
Contract is generated correctly or not. Even though the buyer
can get refunded if such attacks happen, s/he still has extra
cost compared to the broker since the buyer has already paid
for the C'ontract’s deployment in the first place. Although
this potential attack falls outside the scope of the broker’s
adversary model considered in this paper, we refer interested
readers to an existing work [56], which discusses the solution
to this problem. Similarly, a broker can also keep silent without
sending statements to the sellers. In such cases, sellers can
directly require statements from the broker or complain about
the broker if there is no response from the broker.

TABLE II
TIME CONSUMPTION FOR THE BROKER AND THE BUYER IN THE
VERIFICATION PHASE OF FAIR2TRADE

number of | AES encryption AES decryption Sampling
data slices (broker’s cost) (buyer’s cost) (cost of both)
n = 2000 551.49ms 1.3866ms 1.5172ms
n = 4000 1180.59ms 2.8791ms 2.9639ms
n = 6000 1692.95ms 4.1888ms 4.5511ms
n = 8000 2250.29ms 5.9547ms 5.9591ms
n = 10000 2918.19ms 6.7461ms 7.4291ms

Note that, besides fairness, many other aspects should also
be considered when designing a digital trading platform, such
as pricing models, data privacy, copyright protection, etc.
Although these aspects are important, they are orthogonal to
the focus of our paper, which is to ensure fairness during the
trading process. Interested readers can refer to survey papers
for a more comprehensive view of this field [42], [57].

V. EVALUATION WITH EXPERIMENTS

The design of Fair?Trade mainly focused on three phases:
the verification phase, the atomic exchange phase, and the
commitment & statement phase. As is shown in Figure 1, each
phase has different participants and happens either on-chain or
off-chain. Therefore, we use python3 for simulating and eval-
uating off-chain operations (e.g., the random sampling process
in the verification phase, the Merkle Tree generation/validation
in the commitment & statement phase, etc.). The simulation
codes are running on a computer with Ubuntu 20.04.5 LTS,
Intel i7-6700 CPU (3.40GHz) with 8 GB memory. On-chain
operations and functionalities (e.g., atomic exchange and com-
mitment verification), on the other hand, are implemented with
smart contracts written in Solidity on Ethereum. We use Truffle
as the development environment to measure gas consumption.
Our simulation codes and smart contracts are available at
https://github.com/DougZaoldyeck/FairTradeExt.git.

A. Phase 1 (verification)

As aforementioned, there are many different methods that
are used in different works to verify data correctness. The ver-
ification phase may happen before (e.g., buyers are provided
with some samples of the data at the beginning), during (e.g.,
a stream of data chunks is transferred and validated sequen-
tially [24]), and after (e.g., a Proof-of-Misbehavior (PoM) is
provided to complain about the decrypted data [18], [19]) the
exchange phase. In Fair?Trade, we follow and improve current
ideas of sampling during the verification phase because it
only requires off-chain calculation/communication. Compared
with other sampling-based solutions (e.g., [7], [12], [15]),
a random algorithm is additionally required in Fair’Trade
to finish the sampling process. Therefore, the extra cost of
both the broker and the buyer in the verification phase of
Fair’Trade comes from running the random algorithm to fin-
ish/verify the sampling process. According to the descriptions
in Section IV-A, the broker needs to encrypt the sliced data
and then use H({S.Ency,(d;)}) as the random seed to finish
sampling. The buyer will also reproduce the sampling process
and decrypt the chosen slices to finish the verification phase.
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1e6 Gas consumption of atomic exchange

Fair?Trade execution cost
Fair*Trade transaction cost
Delgado's execution cost

10 Delgado's transaction cost
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Fig. 9. Gas consumption of atomic exchange: Fair?Trade and Delgado’s work
[7]. The horizontal axis has two values: the cost for a buyer to setup an atomic
exchange and the cost for a seller to answer to the contract deployed by the
buyer. For each horizontal value, we are comparing the gas consumption of
the buyer/seller in Fair?Trade with that in Delgado’s work.

Therefore, the overhead of Fair’Trade comes from executing
these operations during the random algorithm. In Table II, we
include the encryption/decryption time of AES to show the
total time consumption for both parties during the verification
phase in Fair?Trade. Here, we take Rchailenge €quals to 5% as
an example to present the evaluation results. Note that we omit
the time of calculating H ({S.Ency, (d;)}) since it is negligible
compared to other calculations. The simulation results show
that the overhead caused by the sampling process (the process
of calculating hash values as mentioned in Section IV-A) is
much smaller than the AES encryption time. However, the time
consumption of running the random algorithm and performing
the AES decryption are close. This is because the buyer only
needs to decrypt the samples during the verification phase, and
the time consumption is decreased.

B. Phase 2 (Exchange)

During the exchange phase, our optimized atomic exchange
protocol is implemented using smart contracts. We choose
the most relevant work [7] as the baseline to compare with.
As aforementioned, FairSwap [18] exchanged the secret key
directly with the smart contract, and Wan et al. [22] utilized
hash-chain micropayments-based smart contracts to guarantee
exchange fairness. These solutions differ from ours as only
part of the keys is provided, and calculation is needed for input
validation. Zhao’s work [15] and Li’s work [9] both leveraged
Double-Authentication-Preventing Signatures (DAPS) [25] to
recover the secret keys. Notably, DAPS can also be instantiated
efficiently on ECDSA, which means the recovery process
will require a similar calculation to that of Delgado’s work.
Thus, we compare our work with Delgado’s work only for the
exchange phase. To measure the gas consumption difference
between the two works, we modified from the HTLC contract
[58] and Elliptic Curve arithmetic operations [59]. As is shown
in Figure 9, the gas consumption of atomic exchange in
Fair?Trade is about 30% less than that of Delgado’s work. This
is because the number of operations is fewer in Fair?Trade,
and the complexity of computations in Fair’Trade is also
lower than their approach [13]. Specifically, the calculation in
Delgado’s design on the C'ontract consists of T'x’s signature

TABLE III
TIME CONSUMPTION FOR OFF-CHAIN CALCULATION IN THE
COMMITMENT & STATEMENT PHASE OF FAIR2TRADE

number of tx Merkle Tree generation statement validation
(per epoch) (broker’s side) (seller’s side)
n = 300 0.6489 15 14.5225 15
n = 400 0.8750s 16.3441us
n = 500 1.0817 s 17.1053 us
n = 600 1.2309us 22.8956 48
n = 700 1.3301 s 24.0138 115

verification and a bit-wise AND operation between two 256-bit
integers to validate that the same random number is re-used.
The bit-wise calculation is negligible compared to the signa-
ture verification process. In Fair?Trade, the only calculation is
calculating ¢g**2 and comparing it with pk- (¢g***)~1. Since the
multiplication operation (major cost in Delgado’s work) needs
more computation power than that of the inverse operation
(major cost in Fair?Trade), the gas consumption is therefore
reduced in Fair?Trade.

C. Phase 3 (Commitment & Statement)

For the commitment & statement phase, we first analyze
the time complexity for the off-chain processes, including
the Merkle Tree generation (for the commitment) and the
Merkle leaf validation (for the statement). As aforementioned
in Section IV-C, the broker will generate a Merkle Tree to be
included in the commitment and get verified by blockchain
nodes. The size of the Merkle Tree is O(n), where n is the
total number of transactions for that epoch. The calculation
complexity, on the broker’s side, would be O(n) for the Merkle
Root generation. On the other hand, from the seller’s side, to
verify her/his revenue is correctly distributed, s/he just needs
O(log(n)) time and the proof size in the statement for each
seller is also limited to O(log(n)). We simulate the Merkle
Tree generation and the leaf validation processes to evaluate
users’ costs during the commitment & statement phase using
Python. Our results for both the broker’s generation time and
the seller’s validation time based on different numbers of tx
per epoch are shown in Table III.

Besides, we also evaluate the cost of the revenue distribution
process using smart contracts. We consider two baseline works
that were mentioned previously to compare with, namely, one
is the naive distribution that was mentioned in the Section IV-C
where the seller will be included as the second recipient of
each transaction (denoted as “Baseline without cmt” in the
figure); and the other is to leverage a counter instead of
the Merkle Tree and hash chain design for the commitment
process (denoted as “Baseline with counters” in the figure).
The first baseline approach is straightforward, where instead
of the broker generating a commitment and statements per
epoch, the buyer will directly pay both the broker and the
seller. Namely, the buyer will include both the broker and
the seller as the payment recipients when s/he deploys the
smart contract (here, we can suppose all users in the platform
know the revenue split ratio). Since the seller will receive
the payment when the transaction between the broker and
the buyer is completed, there is no need to perform an extra
commitment phase. However, as we mentioned before, such a
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1e7 Extra cost for revenue distribution Broker's extra cost for commitment verification in Fair*Trade
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Fig. 10. Extra gas consumption of revenue distribution process in Fair>Trade (each dataset may be traded mutiple times in multiple transactions)
and two baseline approaches (one of which is a naive distribution method  Fig. 11. Broker’s extra cost for commitment verification in Fair?Trade. In

where the seller is included as the second recipient in each atomic exchange
and will split the payment with the broker immediately when the smart
contract is called; with the other using a counter to record each sold dataset’s
sold times instead of the Merkle Tree and hash chain design).

method will increase the communication burden of the seller,
which goes against our design goal of ease on the seller’s side.
The second baseline’s calculation cost to increment counters
for each dataset is simpler than computing a hash chain, but
since each dataset has its own counter, the blockchain storage
will, therefore, be increased linearly as more datasets are
transacted.

In Figure 10 we can see that the buyer in the baseline work
without commitment has more extra cost during the revenue
distribution process compared to that of the other baseline
work and Fair?Trade. The cost difference among buyers is
close because they need to include an extra entry in their
smart contracts. The buyer in this baseline work needs to
specify the seller as the second payment recipient in the smart
contract. The buyer in Fair>Trade and the baseline work with
counters needs to include the date digest H(D;,) in their
smart contract. Therefore, the total cost on the buyers’ sides
in all three approaches grows linearly with the increasing
number of transactions per epoch. Although for each buyer,
the difference in extra cost between the approaches is small
(less than 1,000 gas), sellers in the baseline approach without
commitment may suffer from either the vulnerability of a
repeatedly transacted address or frequent communications with
the buyers to update her/his address timely. As we explained
in Section IV-C, neither situation is desired in our protocol
design. In Figure 11, we can see that with the total number
of transactions fixed per epoch, the broker’s extra cost for
commitment verification grows linearly with the increasing
number of transacted datasets in that epoch. This is because
the more datasets are transacted in one epoch, the more leaves
will the Merkle Tree have, which results in a higher cost for
the Merkle Tree verification.

On the other hand, we further tested the broker’s extra
cost for the revenue distribution process when each dataset’s
transacted times changed (with the total number of trans-
actions fixed). According to Figure 12, for an epoch with
300 transactions, the brokers’ extra cost in Fair’Trade and
the baseline work with counters are higher than that of the
baseline approach without commitment when each dataset is

general, with the number of transactions fixed per epoch, the cost will grow
linearly with the increasing number of traded datasets in that epoch.

transacted fewer times in one epoch (less than 20 times).
This is because both brokers in Fair?Trade and the baseline
work with counters require extra calculation for each sold
dataset. Specifically, the broker in the baseline work with
counters needs to set up and maintain a counter for each
dataset, and similarly, the broker in Fair2Trade needs to create
a leaf in the Merkle tree for each sold data. Both initial
operations are expensive. However, note that only one dataset
is traded in each transaction, but each dataset could be traded
multiple times in multiple transactions within the same epoch.
Therefore, although both brokers need to consume extra gas
to validate/check the commitment/counters, they only need to
launch one balance transfer transaction to each seller. Thus,
the more frequently each dataset is traded in one epoch, the
fewer payment transactions are made by the broker.

We can also notice that for each dataset, after a certain
transacted times (around 30), both brokers from Fair’Trade
and the baseline work with counters are lower than that of
the baseline approach without commitment, but the broker in
Fair’Trade consumes a bit more. This is because for each
transaction, the hash calculation required by Fair’Trade is
slightly more expensive than the counter increment. However,
to ensure the statement’s verifiability, each validation/check
result should be recorded so that sellers can refer to it when
needed. The baseline work with counters requires will need
to store all datasets’ sold times on the blockchain, resulting
in O(n) space complexity, while Fair?Trade only requires
Root (and #iota1), Which is O(1). Therefore, when the seller
verifies the statement, extra network resources are required
on the seller’s side, and the blockchain also needs to support
sufficient download bandwidth. Considering the volume of the
data marketplaces nowadays (e.g., one data broker holds as
many as 700 billion data elements according to a report by
Federal Trade Commission (FTC) [60], such extra burden is
not desired by our design either.

We further compare the number of entities’ on-chain partici-
pation times in Fair?Trade with other works that involve three
parties during a fair exchange process, including FairShare
[61], a content delivery solution by He et al. [24] as well as the
baseline approaches mentioned above. As shown in Table IV,
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TABLE IV
COMPARISON AGAINST FAIR EXCHANGE APPROACHES WITH THREE-PARTY INVOLVEMENT IN THE SYSTEM

Dat fied Verification Dat K Seller On-chain participation Blockchain storage
ata verihe method ata access €Y aceess | involved? (n txs/epoch) overhead (n txs/epoch)
FairShare [61] After exchange PoM Cloud Fog Node - O(4n) -
During and Signed chunks . .
He et al. [24] after exchange PoM Deliverer Provider - O((3+¢)-n) -
Baseline without | p exchange Band(‘)m Broker Broker Yes O(3n) -
commitment sampling
Baseline with Random
counters Before exchange sampling Broker Broker No O(2n + #qatasets) O(n)
Fair?Trade Before exchange Random Broker Broker No O(2n + # ets) O(1)
samplmg datasets

1e7 Broker's extra cost for the revenue distribution process

Baseline without cmt.
Baseline with counters
—— Fair*Trade

0.6
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(suppose there are 300 transactions in one epoch)

Fig. 12. Broker’s extra cost for the revenue distribution process (with a total
of 300 transactions per epoch). When each dataset is traded fewer times, the
brokers’ cost in Fair?Trade and the baseline work with counters are higher
because they need to submit more transfer transactions (21,000 gas/tx) as
more sellers are involved in this epoch, plus the verification cost. On the
other hand, the extra cost will be lower than that of the baseline approach
without commitment, as fewer transfer transactions will be needed if each
dataset is sold more times.

FairShare and He et al.’s work both require the client/consumer
to generate a Proof-of-Misbehavior (PoM) when the decrypted
data are found incorrect after the exchange. This will result
in the extra O(n) cost in the worst-case scenarios where each
transacted dataset is complained. Besides, in He et al.’s work,
they further considered delivery fairness, where a deliverer
who indeed sends some data to the consumer would be
rewarded for her/his successful data transmission. To avoid
possible disputes on whether the data are delivered or not,
data providers will split their data into chunks, encrypt, and
sign the chunks. Each time a chunk is delivered, the consumer
will validate the signature and make a response so that the
deliverer can generate some proof of a successful delivery.
Therefore, the total participation times of the deliverer for each
transaction will be determined by the number of chunks the
dataset is sliced into (denoted as ( in the table). In the baseline
works and Fair?Trade, the broker will provide both the data
and key access, resulting in O(2n) on-chain participation
times. However, in the baseline work without commitment,
the seller needs to participate in each transaction (to update
her/his wallet address in time to avoid using the same ad-
dress repeatedly), so the total on-chain participation would be
O(3n). While in Fair’Trade, after a commitment is verified,
the broker only needs to create some transfer transactions to

pay the sellers whose datasets are sold during this epoch.
Therefore, the total on-chain participation of Fair’Trade is
O(2n + #datasets). Similar on-chain participation can also
be seen in the baseline work with counters but will result in
O(n) storage overhead on blockchain in the worst case.

VI. CONCLUSION

In this paper, we present Fair’Trade, a blockchain-based
data trading platform that ensures both exchange fairness and
distribution fairness. Specifically, Fair?Trade allows buyers to
verify the correctness without the risk of being deceived by
the broker, accelerates the exchange process through a more
efficient atomic exchange of the secret key, and enables the
sellers to validate their revenue distribution with a verifiable
statement protocol. The detailed verification mechanism is
achieved by using random algorithms to ensure the broker
cannot initiate a forgery attack within polynomial time. Our
atomic exchange protocol with the key-secret-sharing mecha-
nism is also more efficient than the ECDSA-based approaches.
The verifiable statement protocol uses the hash chain and
Merkle Tree structures to prevent the broker from launching
any successful manipulation attack without being detected.
These mechanisms can be combined together to ensure both
exchange and distribution fairness in Fair?Trade.
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