

Phycologia

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uphy20

Asia Pacific Sporolithon (Corallinophycidae, Rhodophyta) species revised based on DNA sequencing of type specimens and including S. crypticum sp. nov., S. immotum sp. nov. and S. nodosum sp. nov.

Paul W. Gabrielson, Jeffery R. Hughey, Viviana Peña, Joseph L. Richards, Gary W. Saunders, Brenton Twist, Tracy Farr & Wendy A. Nelson

To cite this article: Paul W. Gabrielson, Jeffery R. Hughey, Viviana Peña, Joseph L. Richards, Gary W. Saunders, Brenton Twist, Tracy Farr & Wendy A. Nelson (2023) Asia Pacific *Sporolithon* (Corallinophycidae, Rhodophyta) species revised based on DNA sequencing of type specimens and including *S. crypticum sp. nov.*, *S. immotum sp. nov.* and *S. nodosum sp. nov.*, Phycologia, 62:6, 593-607, DOI: 10.1080/00318884.2023.2225309

To link to this article: https://doi.org/10.1080/00318884.2023.2225309

Asia Pacific Sporolithon (Corallinophycidae, Rhodophyta) species revised based on DNA sequencing of type specimens and including S. crypticum sp. nov., S. immotum sp. nov. and S. nodosum sp. nov.

Paul W. Gabrielson 61, Jeffery R. Hughey 62, Viviana Peña 63,4, Joseph L. Richards 65, Gary W. Saunders 66, Brenton Twist 67,8, Tracy Farr 68 and Wendy A. Nelson 68,9

¹Biology Department and Herbarium, Coker Hall CB 3280, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3280, USA
²Division of Mathematics, Science, and Engineering, Hartnell College, 411 Central Ave., Salinas, California 93901, USA
³BioCost Research Group Universidade da Coruña, Facultad de Ciencias, campus de A Zapateira S/N, 15071, A Coruña, Spain
⁴Institut de Systématique, Évolution, Biodiversite (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles,
57 rue Cuvier, CP 39, 75005, Paris, France

⁵Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-3602 USA ⁶Department of Biology, Centre for Environmental & Molecular Algal Research, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada

⁷Department of Botany and Beaty Biodiversity Research Centre, University of British Columbia, 3200-6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada

⁸National Institute of Water and Atmospheric Research, Private Bag 14901, Wellington 6241, New Zealand ⁹School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

ARSTRACT

To address the taxonomic uncertainty of Sporolithon species named in the early to mid-20th century, targeted PCR sequencing was performed on eight historical type specimens and on recently collected specimens. Six type specimens amplified for the rbcL gene and were Sanger sequenced yielding sequences ranging in length from 118 to 280 base pairs (bp). One, S. australasicum, failed to amplify and another, S. howei, was amplified for the psbA gene yielding a sequence 544 bp in length. The 118 bp long rbcL sequence of the lectotype of S. crassiramosum showed that it is a later, heterotypic synonym of S. molle. The rbcL sequences of type specimens of S. episoredion, S. schmidtii, S. sibogae and S. timorense ranged from 118 to 228 bp, and each is a distinct species. The 544 bp long psbA sequence of S. howei is also unique. The 280 bp long rbcL sequence of the lectotype of S. durum did not match any sequence with that name in any public repository, including the previously published complete plastome and mitogenome sequences. However, it was identical in sequence to a specimen in GenBank from the southern coast of Western Australia as well as several other sequences generated from field-collected specimens from the states of South Australia and Western Australia. The rhodolith specimens from New Zealand previously called S. durum are S. nodosum sp. nov. The species is endemic to New Zealand. The epilithic specimens from New Zealand previously called S. durum are S. immotum sp. nov., which is also found along the southeastern coast of Australia. Sporolithon crypticum sp. nov. is described from the southern coast of Western Australia. RAxML and Bayesian phylogenetic analyses of Sporolithon psbA and rbcL sequences are congruent between the two plastid encoded genes. DNA sequencing of type specimens of species of corallines is demonstrated to be the only reliable method to correctly apply names.

ARTICLE HISTORY

Received 02 Sep 2022 Accepted 12 Jun 2023 Published Online 17 June 2023

KEYWORDS

psbA; rbcL; Sanger sequencing; Sporolithales

INTRODUCTION

Sporolithales is a distinct order of Corallinophycidae based on both phylogenetic analyses of DNA sequences, including single marker and concatenated analyses of LSU, psbA, rbcL and SSU (Le Gall et al. 2010; Nelson et al. 2015; Richards et al. 2017, 2022; Richards & Fredericq 2018; Peña et al. 2020), and on two morpho-anatomical features: production of tetrasporangia singly within calcified sporangial compartments and cruciate cleavage of each tetrasporangium (Le Gall et al. 2010). Based on phylogenetic analyses of psbA and rbcL sequences, three genera are currently recognized, namely Heydrichia R.A. Townsend,

Y.M. Camberlain & Keats, Roseapetra W.A. Nelson, Twist & K.F. Neill and Sporolithon Heydrich, along with several morpho-anatomical characters that distinguish both Heydrichia and Roseapetra from Sporolithon, but none that distinguish Heydrichia from Roseapetra (Nelson et al. 2021). At the generic rank, diversity is greatest in the southern hemisphere where all three genera occur; only Sporolithon has been reported from the northern hemisphere. Species in this order occur as rhodoliths and/or are epilithic or are only epizoic; none are epiphytic. All are marine, occurring from the intertidal to the deep subtidal, and are found in waters ranging from cool temperate

to tropical, but are absent from high latitude cold waters (Guiry & Guiry 2022).

Roseapetra is monotypic and reported only from New Zealand (Nelson et al. 2021). Heydrichia is comprised of only four extant and one fossil species. Three of the extant species, H. cerasina Maneveldt & E. van der Merwe, H. groeneri Keats & Y.M. Chamberlain and the generitype, H. woelkerlingii R.A. Townsend, Y.M. Chamberlain & Keats, occur in South Africa, and one, H. homalopasta R.A. Townsend & Borowitzka, has its type locality in Australia and was also reported from New Zealand. Sporolithon is the most speciose with 29 extant species and 13 fossil species (Guiry & Guiry 2022). Of the 29 extant species, 13 have had their type specimens sequenced. Richards et al. (2017) demonstrated that only by sequencing type specimens can species names be correctly applied in this genus. Based on DNA sequencing of type specimens, Richards et al. (2017) found that the name S. ptychoides Heydrich, the generitype species (type locality: El Tor, Egypt), was misapplied in Brazil (Bahia et al. 2011), Hawai'i, USA (Sherwood et al. 2010) and New Caledonia (Bittner et al. 2011), and further that the name S. molle (Heydrich) Heydrich (type locality: El Tor, Egypt, Gulf of Suez) was misapplied in Brazil (Bahia et al. 2014), and that S. dimotum (Foslie & M. Howe) Yamaguishi-Tomita ex M.J. Wynne (type locality: Lemon Bay near Guánica, Puerto Rico) was incorrectly placed in synonymy by Bahia et al. (2011) under S. ptychoides. The first report of Sporolithon from New Zealand (Harvey et al. 2005) noted the presence of both a free-living rhodolith form and an immobile epilithic form growing attached to fixed rock substrate. This was consistent with S. durum sensu Harvey et al. (2002) from southeastern Australia. However, DNA sequencing consistently supported the two ecological forms from New Zealand as separate taxa (Broom et al. 2008; Farr et al. 2009; Twist et al. 2019). The application of names based on perceived morpho-anatomical differences has been an abject failure. Based on these earlier results, we have sought to sequence all remaining type specimens of Sporolithon species.

Herein, we report our successes and failures attempting to sequence the following type specimens of Sporolithon species: S. autralasicum (Foslie) Yamaguishi-Tomita ex M. J. Wynne (type locality: Cape Jaffa, South Australia, Australia), S. crassiramosum (Pilger) P.C. Silva (type locality: Juan de Nova Island, Mozambique Channel), S. durum (Foslie) R.A. Townsend & Woelkerling (type locality: Cape Jaffa, South Australia, Australia); S. episoredion (W.H. Adey, R.A. Townsend & Boykins) Verheij (type locality: St Rogatien Bank, Northwest Hawai'ian Islands, USA), S. howei (Me. Lemoine) Yamaguishi-Tomita ex M.J. Wynne [type locality: Isla Coiba, Gulf of Panama, Panama (Pacific Ocean)], S. schmidtii (Foslie) G.D. Gordon, T. Masaki & Akioka (type locality: Ko Kahdat, Ko Chang Archipelago, Thailand), S. sibogae (Weber Bosse & Foslie) P.C. Silva (type locality: Pearl Bank, Sulu Archipelago, Indonesia) and S. timorense (Foslie) P.C. Silva [type locality: Pulau Sailus-besar, Paternoster Islands (Kepulauan Tengah), Indonesia]. Any type specimen of an extant species of Sporolithon not in this list has already been

sequenced or, to our knowledge, sequencing has not yet been attempted. We also name and describe three new species, two of them previously assigned to S. durum.

MATERIAL AND METHODS

Recent field-collected specimens were obtained intertidally or subtidally by snorkeling or SCUBA. Specimens were removed by hand or with a hammer and chisel. Historical type collections were examined on site or received on loan from L, PC, TRH and US; herbarium acronyms follow Thiers (2023). Vouchers of recently collected specimens were deposited at NCU, UNB or WELT. Type material was extracted and amplified at two different institutions: the Muséum National d'Histoire Naturelle, Paris (MNHN) and Hartnell College (HC). Field-collected material was extracted and amplified at the National Institute of Water and Atmospheric Research (NIWA), the University of New Brunswick (UNB), and the University of North Carolina, Chapel Hill (UNC). Extractions and amplifications of types and historical collections were performed separate from recent collections, and they were accompanied by negative controls in every step. At the MNHN, DNA of one type specimen was extracted using QIAamp®DNA Micro Kit (Qiagen S.A.S., Les Ulis, France) following the manufacturer's protocol for tissues. Samples collected from around the New Zealand coastline were treated as detailed in Twist et al. (2019). Subsamples dried in silica gel were extracted using the Qiagen DNeasy Blood and Tissue DNA Extraction Kit (Qiagen GmbH, Hilden) following slight modifications to manufacturer's protocols. At UNC recent collections were extracted following Gabrielson et al. (2011); at HC type material was extracted according to Hernández-Kantún et al. (2016) following the guidelines proposed by Hughey & Gabrielson (2012); at UNB recent collections were extracted following Saunders & McDevit (2012). Two genes (rbcL and psbA) were amplified in this study. For type specimens and historical collections, rbcL sequences were obtained at HC with two primer combinations, F1150Cor-R1460 or F1150Cor-R1308 yielding a fragment trimmed to a maximum of 263 bp (1172–1434) or 118 bp (1172–1290), respectively; for recent collections at NIWA, DNA was amplified with psbA-F1 and psbA-R1/psbA-R2 for psbA (Yoon et al. 2002) and for rbcL in two parts using F57 paired with R1150, and F753 with RrbcL-Start (Freshwater & Rueness 1994); at UNC, rbcL sequences of 1383 bp were obtained with two overlapping primer combinations F57-R1150 and F753-RrbcS and at UNC rbcL sequences of 691 bp with primer combination F753/RrbcS-Start trimmed to 691 bp (772-1464); at UNB, rbcL sequencing followed Saunders & Moore (2013); at UNC, DNA was amplified using the primer pair psbA-F1/psbA-R2 following Adey et al. (2015); at MNHN, using the primer pairs psbA-F1/psbA-R2 and psbA-F1/psbA-600R (Yoon et al. 2002), following Peña et al. (2015). At the MNHN, PCR products were purified and sequenced by Eurofins (Eurofins Scientific, Nantes, France); at NIWA, PCR products were purified according to Twist et al. (2019) and sequenced by Macrogen Inc. (Seoul, Korea); at UNC, PCR products were purified according to Hughey et al. (2001) and

sequenced at the DNA Analysis Core Facility, Center for Marine Sciences, University of North Carolina, Wilmington; at HC, PCR products were purified and sequenced by Functional Biosciences, Inc. (Madison, Wisconsin, USA); at UNB following Saunders & Moore (2013). Sequences were assembled and aligned with the assistance of CodonCode Aligner® (CodonCode Corporation, USA) Sequencher (Gene Codes Corp., Ann Arbor, Michigan, USA) and adjusted manually using MUSCLE as implemented in Geneious Prime (2020.2.4, Biomatters, Auckland, New Zealand); they were submitted to GenBank (accession numbers listed in Table S1).

The rbcL and psbA datasets were constructed using previously published sequences from GenBank and new sequences generated in this study (Table S1). Sequences in the rbcL dataset ranged from 118 to 1387 bp in length; psbA sequences from 509 to 850 bp. For the rbcL dataset, two taxa from the order Rhodogorgonales were used as outgroups, Rhodogorgon ramosissima J.N. Norris & Bucher and Renouxia marerubra D. Gabriel, J.N. Norris & Fredericg; for the psbA dataset only R. ramosissima was used. The dataset was compiled and aligned using MUSCLE (Edgar 2004) as implemented in Geneious Prime (2020.2.4, Biomatters, Auckland, New Zealand).

Phylogenetic reconstructions with maximum likelihood (ML) and Bayesian inference (BI) were carried out using the RAxML (Stamatakis 2014) and Mr. Bayes (Huelsenbeck & Ronquist 2001) Geneious Prime plugins, respectively. The RAxML analyses were performed using the GTR + CAT + I model and Rapid hill-climbing algorithm for 20 random trees to determine the best starting tree for determining node confidence. Node confidence was assessed by 1,000 bootstrap replications and search for best-scoring ML tree. Bayesian analyses were performed using the GTR + gamma + I sites model with four heated Monte-Carlo Markov Chains for 1,000,000 generations, sampling every 750 generations and with a burn-in length value of 250,000 generations.

Specimens for WELT were prepared for anatomical examination following methods described by Harvey et al. (2005). Small samples were decalcified in 0.6 M HNO₃, stained with 5% aqueous KMnO₄, dehydrated through step changes to 100% ethanol, then embedded in 'LR White' resin (London Resin Co., Reading, Berkshire, England). Permanent slides for light microscopy were prepared with 10-µm sections cut with a slide microtome (American Optical, Buffalo, New York), cleared with HistoClear II (National Diagnostics, Atlanta, Georgia, USA) and mounted with Eukitt (Kindler, Germany). Permanent slides were examined by light microscopy using a Zeiss Axiovert 200 microscope (Zeiss, Jena, Germany) and photomicrographs taken with a Zeiss Axiocam HR digital camera. All slides were deposited with voucher collections held at WELT.

At UL Lafayette, thallus habit images were obtained with a Canon PowerShot A3300 camera. Surface views of conceptacles were observed using a Zeiss Stemi 2000-C dissecting microscope and images were captured with a Canon Rebel Eos T2-I mounted on the microscope. For scanning electron microscopy, material was removed from desiccated specimens using a single edge razor blade or wire cutter tool, and vertical fractures were performed using a new single edge razor blade for each fracture. Fractured pieces were mounted with forceps onto aluminium stubs using conductive adhesive tape and liquid graphite, then coated with 18 nm of gold to prevent charging. Specimens were viewed with a Scios 2 Dual Beam Focused Ion Beam scanning electron microscope (FIB-SEM) at an accelerating voltage of 15 kV.

For cell measurements, lengths denote the distance between primary pit connections, and diameter the maximum width of the cell lumen at right angles (Irvine & Chamberlain 1994). Conceptacle measurements followed Adev & Adev (1973). The determination and presentation (i.e. ranges and not averages with standard deviations/errors) of all measurements followed Maneveldt et al. (2017). Thallus anatomical terminology followed Irvine & Chamberlain (1994). forms) terminology followed Morphological (growth Woelkerling et al. (1993).

RESULTS

Phylogenetic analyses

Separate rbcL (Fig. 1) and psbA (Fig. 2) phylograms were inferred, as six additional Sporolithon species are present in the rbcL phylogram, namely S. crassiramosum, S. dimotum, S. episoredion, S. schmidtii, S. sibogae and S. timorense, although one, S. crassiramosum, is a heterotypic synonym of S. molle. No psbA sequences are available for these taxa, and indeed all are known only based on unique rbcL sequences from their type specimens. A different species, S. howei, is only present in the psbA phylogram and is also known only from its type specimen sequence. Nevertheless, there is strong congruence in the phylogenetic relationships among the taxa that are present in both phylograms (Figs 1, 2). In both phylograms, there is full support in the Bayesian analyses and strong support in RAxML [92% in rbcL phylogram (Fig. 1); 90% in psbA phylogram (Fig. 2)] for a clade consisting of S. crypticum sp. nov. (south coast of Western Australia), S. eltorense J.L. Richards & P.W. Gabrielson (Gulf of Suez) and S. franciscanum L.A.S. Leão & Bahia (Brazil) that in rbcL also includes S. dimotum (Puerto Rico) and S. sibogae (Indonesia); full (psbA) to strong (rbcL) support for a clade of S. amadoi J.L. Richards & Bahia (Brazil), S. molle (Gulf of Suez and Mozambique Channel) and S. ptychoides (Gulf of Suez) that in the rbcL phylogram also includes S. episoredion (Hawai'i), S. schmidtii (Thailand) and S. timorense (Timor Islands); a fully supported clade in both phylograms of S. episporum (M. Howe) E.Y. Dawson, S. 'erythraeum' (Taiwan) and S. indopacificum Maneveldt & P.W. Gabrielson; a fully supported clade in both phylograms of S. durum (south coast of Australia) and S. nodosum sp. nov. (New Zealand), which in rbcL also includes an undescribed Sporolithon species from Jervis Bay, New South Wales, Australia, that previously was incorrectly named S. durum (Harvey et al. 2002); and in both phylograms a fully supported clade that contains the same species, S. gracile J.L. Richards, Kittle & Fredericq (Gulf of Mexico), S. mesophoticum J.L. Richards, P.W. Gabrielson & C.W. Schneider (Bermuda), S. sinusmexicanum J.L. Richards & Fredericq (Gulf of Mexico) and S. yoneshigueae Bahia, Amado-Filho, Maneveldt & W.H. Adey (Brazil). The sister taxon relationships in both phylograms of S. immotum sp. nov. (New Zealand

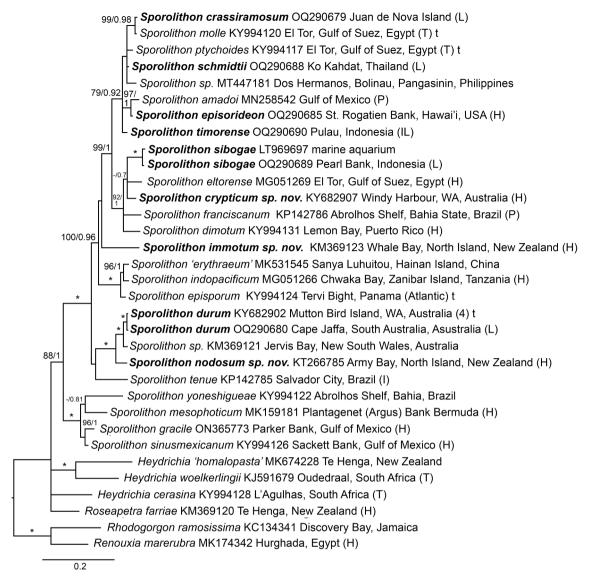


Fig. 1. Phylogram of Sporolithales inferred by RAxML and Bayesian analyses of *rbcL* sequences; outgroups *Rhodogorgon* and *Renouxia* species (Rhodogorgonales). New species and newly sequenced historical type specimens are in bold. GenBank accession number and locality provided. Capital letters in parentheses are: H, holotype; I, isotype; IL, isolectotype; L, lectotype; P, paratype; T, topotype (specimen collected at type locality). Sequences linked to type specimen are marked 't'. Numbers in parentheses indicate the total number of sequences for new species and *Sporolithon durum*. Bootstrap percentages (1,000 replications) and Bayesian posterior probability values are shown at nodes when >75% and >0.7, respectively; nodes with maximal support are marked with *.

and Australia) and *S. tenue* Bahia, Amado-Filho, Maneveldt & W. H. Adey (Brazil) is unsupported.

Historical type specimens

Sporolithon australasicum (Foslie) Yamaguishi-Tomitaex M.J. Wynne (1986, p. 2258)

BASIONYM: Archaeolithothamnion australasicum Foslie (1907, p. 12).

LECTOTYPE: (designated by Adey in Adey & Lebednik 1967, p. 84): TRH C19-3370, collected in 1900 by A. Engelhart at Cape Jaffa, South Australia, Australia (no habitat data).

COMMENT: Attempts to obtain *rbc*L sequences from the lectotype specimen failed. Townsend *et al.* (1995) noted that this lectotype specimen is a rhodolith and lacked organic remains, the latter perhaps explaining our failure to obtain any DNA sequence. Based on the morpho-anatomy completed by Townsend *et al.* (1995), the specimen

appears to belong to *Sporolithon*, but could not be assigned to any species. Perhaps future workers will be able to obtain a DNA sequence that will allow this name to be correctly applied. Meanwhile, it should not be used as its correct application is unknowable.

Sporolithon durum (Foslie) R.A. Townsend & Woelkerling in Townsend et al. (1995, p. 86, figs 1-17)

BASIONYM: Archaeolithothamnion durum Foslie (1907, p. 11).

LECTOTYPE: (designated by Adey in Adey & Lebednik 1967, p. 84): TRH C19-3381, collected in 1899 by A. Engelhart at Cape Jaffa, South Australia, Australia (no habitat data). [Specimen is a rhodolith (Townsend *et al.* 1995)].

COMMENT: The 280 bp *rbcL* sequence (GenBank accession number: OQ290680) from the lectotype specimen of *S. durum* is identical over its length to five specimens from South Australia and Western Australia, all occurring along the southern Australian coast (Table S1). The *rbcL* sequence from the lectotype of *S. durum* differs from three

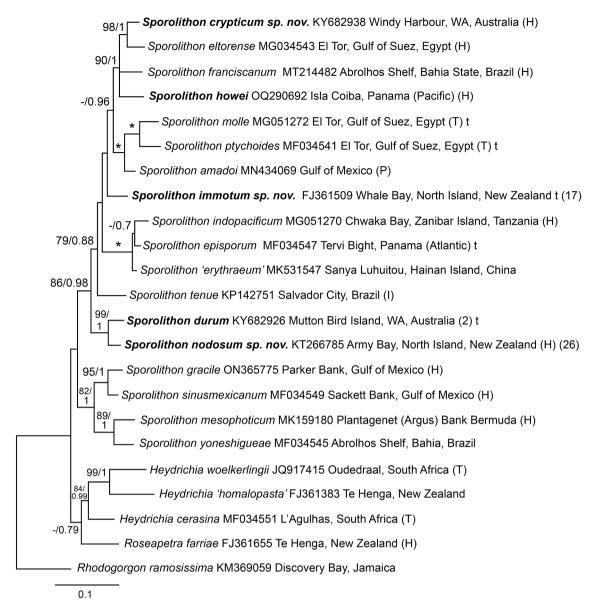
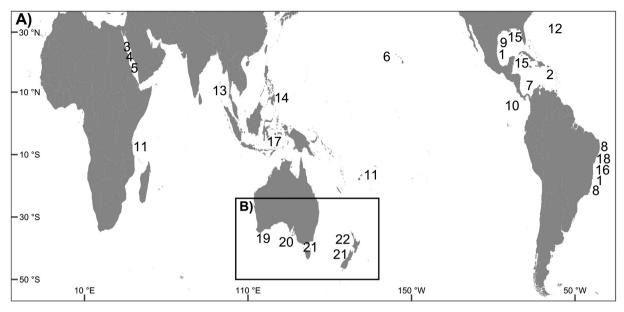


Fig. 2. Phylogram of Sporolithales inferred by RAXML and Bayesian analyses of *psb*A sequences; outgroup *Rhodogorgon ramosissima* (Rhodogorgonales). New species and newly sequenced historical type specimens are in bold. GenBank accession number and locality provided. Capital letters in parentheses are: H, holotype; I, isotype; P, paratype; T, topotype (specimen collected at type locality). Sequences linked to type specimen are marked 't'. Numbers in parentheses indicate the total number of sequences for new species and *Sporolithon durum*. Bootstrap percentages (1,000 replications) and Bayesian posterior probability values are shown at nodes when >75% and >0.7, respectively; nodes with maximal support are marked with*.

sequences deposited in GenBank that were identified previously based on morpho-anatomy as *S. durum*. From LTB 21140 from Jervis Bay, New South Wales (currently an undescribed species), the lectotype sequence differs over its length by 6 bp (2.1% sequence divergence), from *S. nodosum sp. nov.* (see below) from New Zealand by 13 bp (4.6% sequence divergence), and from *S. immotum sp. nov.* (see below) from Australia and New Zealand by 28 bp (10% sequence divergence).

DISTRIBUTION: Based on DNA sequenced specimens along the southern coast of Australia from Cape Jaffa, South Australia in the east to the mainland across from Shelter Island, Western Australia in the west (Fig. 3).


Sporolithon episoredion (W.H. Adey, R.A. Townsend & Boykins) Verheij (1992, p. 501)

BASIONYM: Archaeolithothamnion episoredion W.H. Adey, R.A. Townsend & Boykins (1982, p. 51, fig. 35).

HOLOTYPE: US 190919, collected in August 1971 by D. Child at St. Rogatien Bank, Northwest Hawai'i Islands, USA; rhodolith, 70–95 m depth.

COMMENT: The 228 bp *rbc*L sequence of the holotype of *S. episoredion* (GenBank accession number: OQ290685) differs unambiguously over its length by 5 bp (2.2% sequence divergence) from *S. amadoi*, its closest relative (Fig. 1). Only the holotype specimen was sequenced; paratype specimens are reported from other localities in the Hawai'ian Islands and need to be sequenced. The observation of zonately divided tetrasporangia in one of the paratype specimens also needs to be re-investigated (Adey *et al.* 1982). It is possible that this is a mixed collection, but the holotype specimen clearly belongs in *Sporolithon*.

DISTRIBUTION: Known only from the type locality in the Hawai'ian Islands (Fig. 3).

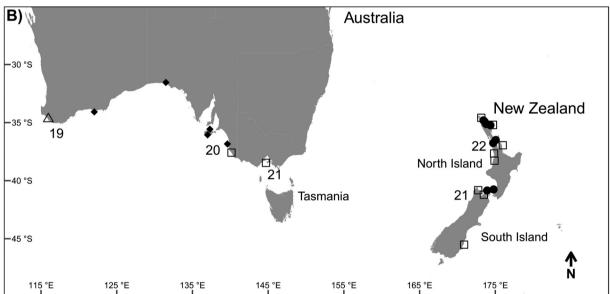


Fig. 3. Map of *Sporolithon* species whose type specimens have been sequenced: A) globally, and B) within the NZ and Australia region. Numbers and symbols correspond to the following species: 1, *S. amadoi*; 2, *S. dimotum*; 3, *S. eltorense*; 4, *S. molle*; 5, *S. ptychoides*; 6, *S. episoredion*; 7, *S. episporum*; 8, *S. franciscanum*; 9, *S. gracile*; 10, *S. howei*; 11, *S. indopacificum*; 12, *S. mesophoticum*; 13, *S. schmidtii*; 14, *S. sibogae*; 15, *S. sinusmexicanum*; 16, *S. tenue*; 17, *S. timorense*; 18, *S. yoneshigueae*; 19 and Δ, *S. crypticum*; 20 and ♦, *S. durum*; 21 and □, *S. immotum*; 22 and •, *S. nodosum*.

Sporolithon howei (Me. Lemoine) Yonishigue-Tomitaex M. J. Wynne (1986, p. 2258)

BASIONYM: Archaeolithothamnion howei Me. Lemoine (1929, p. 40, figs 1, 2; pl. I, fig. 4).

HOLOTYPE: PC 0731949, undated, collected by C. Crossland at Isla Coiba, Gulf of Panama (Pacific Panama); attached to the substratum, dredged 9 m depth.

COMMENT: The 544 bp *psb*A sequence from the holotype of *S. howei* (GenBank accession number: OQ290692) differs from its most closely related species, *S. franciscanum* by 38 bp (7.5% sequence divergence) where these sequences overlap each other (506 bp). Aside from the original description by Lemoine (1929) the only other reports of this species are in checklists or keys from the eastern Pacific (Dawson 1961), from Pacific Central America (Dawson 1962; Fernández-García *et al.* 2011), or from Panama (Earle 1972).

DISTRIBUTION: Based on the DNA sequencing, known only from the type locality (Fig. 3).

Sporolithon molle (Heydrich) Heydrich (1897b, p. 416)

BASIONYM: Sporolithon ptychoides f. molle Heydrich (1897a, p. 67, pl. III, figs 16, 18, 19; as 'mollis').

HOMOTYPIC SYNONYM: Archaeolithothamnion erythraeum f. molle (Heydrich) Foslie (1904, p. 38; as 'mollis').

HETEROTYPIC SYNONYM: *Sporolithon crassiramosum* (Pilger) P.C. Silva in Silva *et al.* (1996, p. 276) – basionym: *Archaeolithothamnion crassiramosum* Pilger (1908, p. 39, pl. 5, figs 1–3).

LECTOTYPE (DESIGNATED HEREIN): TRH C19-3376, collected in 1894 by Voeltzkow at Juan de Nova Island (Mozambique Channel); no habitat data.

COMMENT: Woelkerling (1993, p. 66) and Woelkerling et al. (2005, p. 476) indicated that a type specimen had not been designated for

S. crassiramosum and that a syntype specimen was located in TRH. It is this specimen, TRH C19-3376, that was sequenced and that we designate as the lectotype. Woelkerling (1993, p. 66) noted that the fragment was 9 mm long at its largest dimension. Two fragments were present in 2022, both about 3 mm³ (Fig. S1). One of these was cut in half to obtain the extracted DNA. Pilger's illustrations (1908, pl. 5, figs 1, 2) of tetrasporangial compartments clearly indicate that this species belongs in the Sporolithales, and his illustration of cell fusions (Pilger 1908, pl. 5, fig. 3) is not at odds with the ordinal circumscription. The 118 bp rbcL sequence (GenBank accession number: OQ290679) is identical over its length to the 296 bp sequence (GenBank accession number: KY994121) of the lectotype (C A92529) and a topotype specimen of S. molle (Richards et al. 2017). While the sequence is short, all other Sporolithales species with rbcL sequences differ by a minimum of 7 bp (5.9% sequence divergence) over this variable 118 bp region of rbcL.

DISTRIBUTION: Based on DNA sequences, confirmed from two localities, El Tor, Egypt, Gulf of Suez, and Juan de Nova Island, Mozambique Channel (Fig. 3).

Sporolithon schmidtii (Foslie) G.D. Gordon, T. Masaki & Akioka (1976, p. 250, pl. 1, figs 1-4)

BASIONYM: Archaeolithothmnion schmidtii Foslie (1901a, p. 16).

HOLOTYPE: TRH C19-3421, collected 15 February 1900 by Johs. Schmidt at Ko Kahdat, Ko Chang Archipelago, Thailand; on dead coral tines, 9 m depth.

COMMENT: Foslie (1904, pl. VIII, figs 15-17) illustrated for the first time the holotype of Archeolithothamnion schmidtii. It was from the specimen photographed in figure 15 in Foslie (1904, pl. VIII) that the 118 bp rbcL sequence was obtained (GenBank accession number: OQ290688). The sequence differs from the most closely related species, S. ptychoides, by 3 bp (2.5% sequence divergence) over its short length. If these were the same species, it would be expected that the sequences in this variable region would be identical. Foslie (1903) recognized a new variety, Archaeolithothamnion schmidtii f. dissitum Foslie, based on a specimen collected by Stanley Gardiner from 66 m deep from South Nilandu Atoll in the Maldives. We have not included this name as a heterotypic synonym of S. schmidtii as we do not know its identity based on DNA sequences, and morpho-anatomy cannot be used to reliably identify coralline specimens to species.

DISTRIBUTION: Based on a DNA sequence of the holotype known only from the type locality (Fig. 3).

Sporolithon sibogae (Weber Bosse & Foslie) P.C. Silva in Silva et al. (1987, p. 39)

BASIONYM: Archaeolithothamnion sibogae Weber Bosse & Foslie in Foslie (1901b, p. 3).

LECTOTYPE: TRH C19-3426, Weber van Bosse expedition, collection 297, station 96, collected 9 May 1899 by A. Weber van Bosse at Pearl Bank (southeast side), Sulu Archipelago, Philippine Islands; rhodolith, 15 m depth.

COMMENT: Adey (1970) designated the material cited in Foslie (1901b) as the 'holotype', which Verheij & Woelkerling (1992) corrected to lectotype. It was from this lectotype specimen (Fig. S2) in TRH (C19-3426) that we obtained a 118 bp rbcL sequence (GenBank accession number: OQ290689) that is distinct from all other Sporolithon rbcL sequences by a minimum of 7 bp (5.9% divergence) over the length of the sequence, with *S. crypticum sp. nov.* being most similar. There is a sequenced specimen in GenBank (LT969679) that matches S. sibogae (Fig. 1), but it is from a specimen in a marine aquarium with an apparently unknown provenance. Verheij (1993) reported four Sporolithon species from the Spermonde Archipelago, Indonesia, based on morpho-anatomy, namely S. episoredion, S. episporum, S. molle and S. ptychoides. However, this locality is over 1,200 km south of the type locality of S. sibogae, and in the absence of DNA sequences we do not know if any of these names are correctly applied.

DISTRIBUTION: Based on a DNA sequence of the lectotype, known only from the type locality (Fig. 3). Based on morpho-anatomy, a single report from Madagascar (Pichon 1978) that requires DNA confirmation.

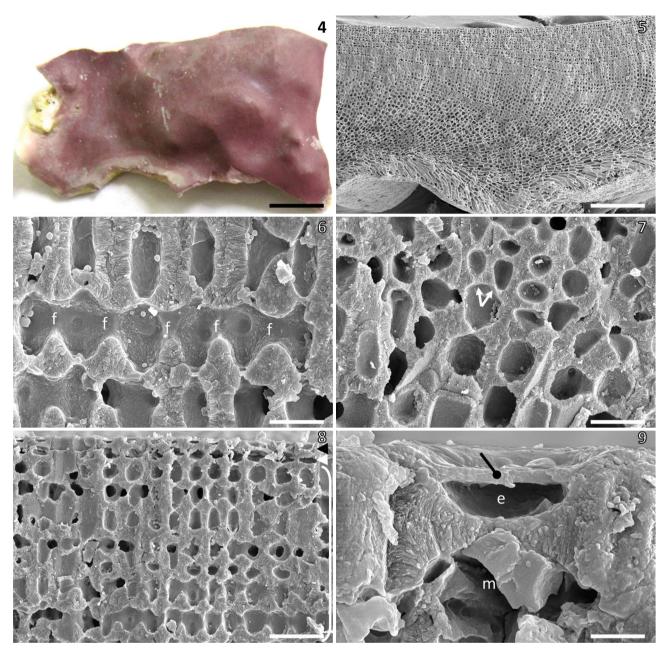
Sporolithon timorense (Foslie) P.C. Silva in Silva et al. (1987, p. 39)

BASIONYM: Archaeolithothamnion timorense Foslie (1904, p. 42, pl. VIII, figs 1-14).

LECTOTYPE: (designated by Verheij & Woelkerling 1992): L 935.20713 (Siboga Expedition collection #443), collected 17-18 February 1900 by A. Weber van Bosse at Paternoster Islands (Kepulauan Tengah), Pulau Sailus-besar, Indonesia.

COMMENT: Verheij and Woelkerling (1992) proposed a new lectotype (L 935.207-13, Siboga Expedition collection #443) for A. timorense, arguing that the specimen in TRH selected by Adey (in Adey & Lebednik 1967, p. 85) was sterile, and therefore in serious conflict with the protologue where Foslie (1904) described sporangia. This single specimen in L was too small to be sent for DNA analysis, so one of 17 isolectotype specimens was sent for DNA sequencing. From this isolectotype specimen, L 935.207-13 Siboga Expedition collection #446 (Fig. S3), a 118 bp length rbcL sequence (GenBank accession number: OQ290690) was obtained that differs across its length by 3 bp (2.5% sequence divergence) from S. schmidtii, 5 bp (4.2% sequence divergence) from *S. ptychoides* and 6 bp (5% sequence divergence) from S. amadoi, its closest relatives. We do not know if the lectotype or other isolectotype specimens are this same species.

DISTRIBUTION: Based on DNA sequences, known only from the type locality (Fig. 3); based on morpho-anatomy a single report from the Philippine Islands (Velasquez et al. 1975).


New Species

Sporolithon crypticum G.W. Saunders, J.L. Richards & P.W. Gabrielson sp. nov.

Figs 4-15

DESCRIPTION: Thallus habit encrusting, epilithic, lumpy to relatively smooth (Fig. 4). Thallus construction monomerous, with a well-developed plumose hypothallus comprised of 8-12 layers of filaments with rectangular hypothallial cells that grow perpendicular to the substratum; some hypothallial cell files curving downward toward substratum (Fig. 5). Perithallus with abundant cell fusions, often laterally joining multiple adjacent perithallial cell files, cells $6.0-16.5~\mu m$ long \times $5-10~\mu m$ wide (Fig. 6). Pseudodichotomous branching observed in perithallus (Fig. 7). Intercalary meristematic cells shorter than wide or approximately isodiametric, 4–8 μ m long \times 7–8 μ m wide (Figs 8, 9). Epithallus comprised of a single layer of epithallial cells that are $2-3 \mu m \log \times 5.5-$ 7.0 µm wide, flared and armoured with highly calcified lateral cell walls, and a thin epithallial cell roof (Figs 8, 9). Uniporate gametangial conceptacles raised above thallus surface (Figs 10, 11). Some uniporate conceptacles observed nearby other uniporate conceptacles, with conceptacle chambers and pores observed directly next to each other in surface views and section views (Figs 11-13), with conceptacle chambers 200-275 µm in diameter. Other, larger conceptacles (chambers up to 600 um diameter), developed further away from other conceptacles (Figs 11, 14, 15). DNA sequences deposited in GenBank, holotype: COI, KY682899; CYTB, KY682920; nLSU, KY682891; psbA, KY682938; rbcL, KY682907; nSSU, KY682883. Sequences also deposited in BOLD: COI, OZSEA082-10; isotype COI, OZSEA083-10.

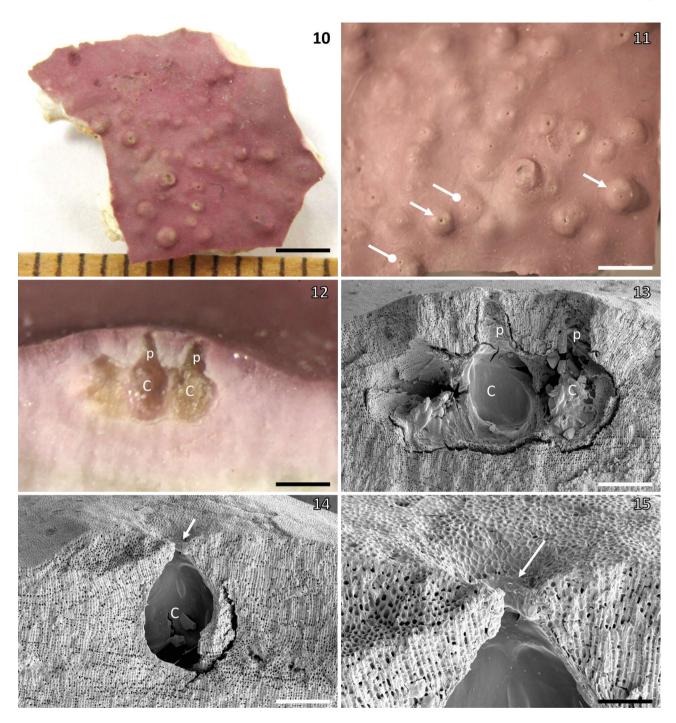
HOLOTYPE: UNB GWS024693, collected 8 November 2010 by G.W. Saunders & K. Dixon at Windy Harbour (34°50.249'S, 116°0.855'E), Western Australia, Australia; epilithic, at 3 m depth.

Figs 4–9. Vegetative morpho-anatomy of Sporolithon crypticum sp. nov. holotype, UNB-GWS024693.

- **Fig. 4**. Thallus habit. Scale bar = 3 mm.
- Fig. 5. Vertical fracture showing monomerous thallus construction with a plumose hypothallus. Scale bar = 175 µm.
- Fig. 6. Perithallus showing multiple cell fusions linking adjacent cell files (f). Scale bar = 10 μ m.
- Fig. 7. Perithallus showing pseudodichotomous branching (arrows). Scale bar = $14 \mu m$.
- Fig. 8. Vertical fracture showing epithallus (upper arrowhead), intercalary meristem (lower arrowhead) and perithallus (bracket). Scale bar = 24 µm.
- Fig. 9. Epithallial cell showing cell lumen (e) and epithallial cell roof (circle pointer) and partial view of intercalary meristematic cell (m). Scale bar = 2.5 µm.

ISOTYPE: UNB GWS024694, epilithic, at 3 m depth (leg. G.W. Saunders & K. Dixon).

ETYMOLOGY: Specific epithet from Latin crypticus, -a, -um, referring to the identity of this species being hidden by the previous taxonomic confusion and misidentifications of Sporolithon spp. in the region.

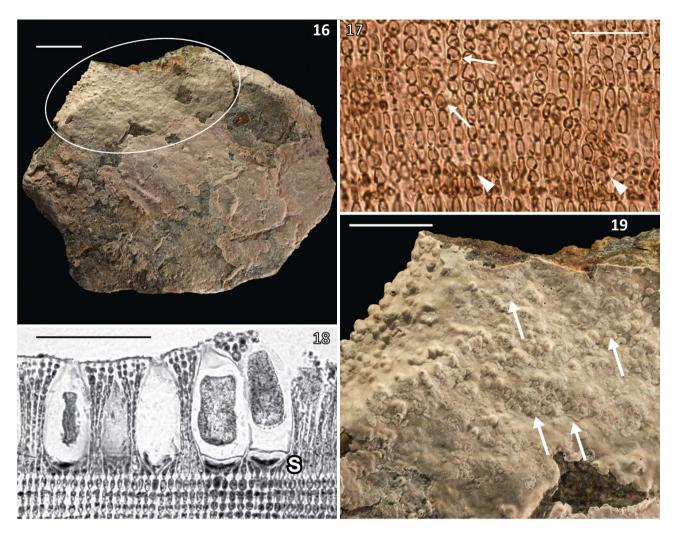

HABITAT: In shallow subtidal marine environment, at 3 m depth.

DISTRIBUTION: This species is currently only known from the type locality (Fig. 3).

Sporolithon immotum T.J. Farr & W.A. Nelson sp. nov.

Figs 16-19

DESCRIPTION: Encrusting and lumpy to warty, epilithic on rocky reef, stones and cobbles (Fig. 16); thallus up to 12 cm across; thallus thickness from 250 µm to 1 cm or more. Colour deep rose purple pink, bleaching to pale pink. Monomerous; flared epithallial cells; secondary pit connections predominate (Fig. 17); cell fusions, where present, occur in dark-staining bands (Fig. 17), often regularly spaced (every 3-4 to 6 rows). Tetrasporangia cruciately divided in calcified compartments, 80-105 μm high and 38–52 μm in diameter. Stalk cell conspicuous (Fig. 18);


Figs 10–15. Reproductive morpho-anatomy of Sporolithon crypticum sp. nov. isotype, UNB-GWS024694.

- Fig. 10. Thallus habit with conceptacles raised above the thallus surface. Scale bar = 2.5 mm.
- **Fig. 11.** Magnified surface view of uniporate conceptacles (arrows), some neighbouring each other with pores closely next to each other (circle pointers). Scale bar = 2 mm.
- **Fig. 12.** Dissecting scope view of vertical fracture showing neighbouring uniporate conceptacles, each with conceptacle chamber (c) and pore canal (p). Scale bar = $295 \mu m$.
- Fig. 13. Magnified SEM view of neighbouring uniporate conceptacles, each with conceptacle chamber (c) and pore canal (p). Scale bar = 175 µm.
- Fig. 14. Partial surface view showing pore (arrow) and section view of conceptacle chamber (c). Scale bar = 140 µm.
- **Fig. 15.** Surface view showing conceptacle pore (arrow) and partial section view. Scale bar = 55 µm.

pore plugs present. Calcified compartments arranged in irregularly shaped, raised sori 45-85(-105) µm above thallus surface (Fig. 19), pale to white. Cells in sori form paraphyses, 6–10 cells in height, but do not become colourless and fused; basal layer of elongate cells. Sori shed after spore release. Holotype DNA sequences deposited in GenBank: psbA, DQ167909; nSSU, EF628211.

HOLOTYPE: WELT A027045 (NZC0249), collected 20 March 2003 by N. Alcock & S. Brown at Cable Bay (41°9.346′S, 173°24.166′E), South Island, Nelson, New Zealand; epilithic, at 5–10 m depth.

ETYMOLOGY: Epithet from Latin *immotus*, -a, -um (immovable), in reference to the growth habit of this species attached to rock.

Figs 16-19. Sporolithon immotum sp. nov.

- Fig. 16. Holotype WELT A027045 (CC-BY 4.0, Te Papa) showing S. immotum on rock (ellipse) substrate. Scale bar = 2 cm.
- Fig. 17. Holotype WELT A027045, vertical section through thallus showing secondary pit connections (arrows) and cell fusions (stars). Scale bar = 50 µm.
- Fig. 18. WELT A027043, vertical section of sorus with tetrasporangia and paraphyses and conspicuous stalk cells (S). Scale bar = 100 µm.
- Fig. 19. Holotype WELT A027045 (CC-BY 4.0, Te Papa), showing sori (arrows). Scale bar = 1 cm.

HABITAT: Open coasts in moderate shelter, in embayments, from intertidal to upper subtidal and down to 18 m depth.

DISTRIBUTION: New Zealand: North Island, north and east coasts of the South Island extending to North Otago; Australia: Victoria (Fig. 3).

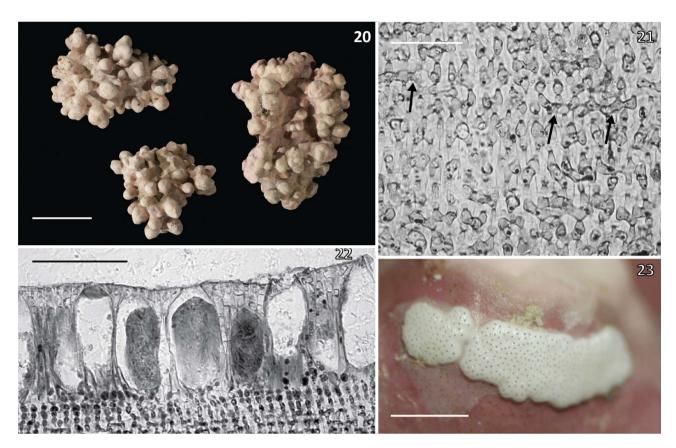
COMMENT: See Table S1 for other sequenced specimens of this species.

Sporolithon nodosum T.J. Farr & W.A. Nelson sp. nov. Figs 20-23

DESCRIPTION: Free-living (rhodolith), rarely growing attached to rock; range in form and shape from spherical with short lumpy branches (Fig. 20) to more open to sparse twig-like branches, 2-4(-9) cm across; mostly lumpy to fruticose, occasionally warty to fruticose and encrusting. Colour glossy, deep rose purple pink, bleaching to pale pink. Monomerous construction; epithallial cells flared; cell fusions (Fig. 21). Calcified compartments, tetrasporangia (Fig. 22), arranged in irregularly shaped, raised sori, 53- $165 \mu m$ above thallus surface, pale to white (Fig. 23). Cells in sori form paraphyses, 4-6 cells in height, becoming 'fused', lacking pigmentation, with basal layer of elongated cells. Sori up to 1.3 mm across. Sori shed after spore release. Tetrasporangia cruciately divided in calcified compartments, 79.3-129 µm high and 42.4-55.8(-63) µm in diameter (Fig. 22). Stalk cells not apparent (Fig. 22); pore plugs present. Complete plastid genome sequence from holotype deposited in GenBank with accession number: KT266785.

HOLOTYPE: WELT A034583, collected 16 Nov 2012 by W.A. Nelson at Army Bay (36°36'S, 174°49'E), Whangaparaoa Peninsula, Hauraki Gulf, North Island, New Zealand; rhodolith, 0-1 m depth.

ETYMOLOGY: Epithet from Latin nodosus, -a, -um, in reference to the knobbly appearance of this rhodolith-forming species.


HABITAT: Open coasts in moderate shelter, in embayments; from upper subtidal down to 22 m depth.

DISTRIBUTION: New Zealand: North Island, and northern South Island (Fig. 3).

COMMENT: See Table S1 for other sequenced specimens of this species.

DISCUSSION

Of the 33 recognized extant species of Sporolithon (Guiry & Guiry 2022 list 30, plus the three described herein), nine have

Figs 20-23. Sporolithon nodosum sp. nov.

- Fig. 20. Holotype, WELT A034583. Scale bar = 2 cm.
- Fig. 21. WELT A028375, vertical section with cell fusions (arrows). Scale bar = 50 µm WELT A029429.
- Fig. 22. WELT A026998, vertical section through sorus with tetrasporangia, paraphyses with fused cells. Scale bar = 100 µm.

Fig. 23. Surface view of sorus with conspicuous pores. Scale bar = 0.5 mm.

been named and described in the DNA sequencing era and have diagnostic DNA sequences. Only for S. elevatum M.C. Henriques & Riosmena-Rodríguez, described in 2014, are there no DNA sequences (Henriques et al. 2014). Of the 23 Sporolithon species named before the DNA sequencing era, four historical type specimens were sequenced by Richards et al. (2017): S. dimotum, S. episporum, S. molle and the generitype, S. ptychoides, and herein we have added seven more. Two historical type specimens are missing: S. crassum Heydrich, presumed to have been lost in the bombing of the Berlin Herbarium in WWII, and S. mediterraneum Heydrich. For two other type specimens, S. australasicum and S. erythraeum (Rothpeltz) Kylin (type locality: El Tor, Egypt), we failed to amplify the extracted DNA. Richards et al. (2017) recommended that the name S. erythraeum not be used, but recently this name has been applied to DNA sequences from Taiwan, over 8,500 km from the type locality of S. erythraeum. It is our recommendation that neither S. australasicum nor S. erythraeum be used, as DNA sequences are lacking and these names cannot be correctly applied. To our knowledge, DNA sequencing has not been attempted for four historical Sporolithon type specimens: S. indicum V. Krishnamurthy & Jayagopal (type locality: Pamban, Tamil Nadu, India), S. lemoineae (Weber Bosse) Verheij (type locality: Kei Islands, Indonesia), S. pacificum E. Y. Dawson (type locality: Isla del Caño, Costa Rica) and S. stefaninnii (Raineri) P.C. Silva (type locality: Ras Hafun, Somalia). Sequencing of the type of Sporolithon africanum (Foslie) Afonso-Carrillo (type locality: Canary Islands) is currently in progress (V. Peña, personal information).

Three of the Sporolithon type specimen sequences reported herein (S. schmidtii, S. sibogae and S. timorense) are from southeast Asia, a region less well known phycologically. All of these names have been applied outside of their type localities based on specimens identified using morpho-anatomy, S. schmidtii from Guam (Gordon et al. 1976), S. sibogae from Madagascar (Pichon 1978) and S. timorense from the Philippine Islands (Velasquez et al. 1975). All of these reports need to be confirmed by DNA sequencing of the cited material or of field-collected material from the cited localities.

Verheij (1993), in a comprehensive study of Sporolithon species from the Spermonde Archipelago, Indonesia, based on morpho-anatomy and that included examining type specimens, reported five species from the region, namely S. episoredion, S. episporum, S. lemoineae, S. molle and S. ptychoides. He did not find specimens of S. sibogae and S. timorense, species with Indonesian type localities. All of Verheij's material was first preserved in 7% formalinseawater before transfer to a 70% ethanol/2% glycerol solution. While it may be difficult to obtain DNA sequences from this material, it should be attempted to confirm the

application of names with type localities far removed from this region, i.e. S. episoredion, S. episporum, S. molle and S. ptychoides.

Another previously misapplied name has been S. durum. Harvey et al. (2002) were among the first to apply DNA sequencing to coralline algae, using 18S rDNA to sequence two species of the family Sporolithaceae found in southeast Australia, namely Heydrichia homalopasta and S. durum. For neither species was type material sequenced. The molecular concept of S. durum was based on a specimen LTB 21140 from Jervis Bay, New South Wales, Australia, which was later sequenced by Nelson et al. (2015) for rbcL. Over the same 280 bp sequence of the lectotype of S. durum, LTB 21140 differs by 6 bp, indicating that it is a different, undescribed species. The name S. durum had been incorrectly applied, based on morpho-anatomy, to all Sporolithon specimens from New Zealand, both rhodolith-forming and epilithic (Harvey et al. 2005). The complete mitogenome of a rhodolith from Whangaparaoa Peninsula, New Zealand (voucher: WELT A034583) identified as S. durum was assembled by Kim et al. (2013). Subsequently, three other rhodolith specimens from the same locality, cited as SKKU_SD01, SKKU_SD02 and SKKU_SD03, were sequenced for their complete plastid genome (Lee et al. 2016). This species, described herein as S. nodosum sp. nov., differs over a comparable length from the 280 bp lectotype rbcL sequence of S. durum by 14 bp, a sequence divergence of 5% that is very similar to 4.7% sequence divergence of the 1358 bp long sequences of fieldcollected material of the two species. All 26 sequenced specimens of S. nodosum from the North and South Islands of New Zealand occur as rhodoliths. The epilithic specimens from New Zealand, described herein as S. immotum sp. nov., differ over a comparable length from the 280 bp lectotype rbcL sequence of S. durum by 28 bp, a 10% divergence indicating that it is also a distinct species and not S. durum. This species has been collected on both the North and South Islands of New Zealand at 10 different localities. In addition, it was found epilithically at two localities along the southeastern coast of Australia in the states of Victoria and South Australia (Table S1) and likely occurs at more localities in this region.

Based on DNA sequenced specimens that match the rbcL sequence of the lectotype specimen of S. durum, this species is endemic to Australia and occurs from its type locality, Cape Jaffa, South Australia, in the east to Shelter Island, Western Australia, in the west, essentially spanning the Great Australian Bight. All previous reports of S. durum based on morpho-anatomy from Australian localities outside this area, i.e. New South Wales, Victoria, and the west coast of Western Australia (Townsend et al. 1995), need to be confirmed by DNA sequencing. Sporolithon durum occurs as a rhodolith and attached to substratum from the low intertidal to 16 m depth.

Sporolithon crypticum sp. nov. is only known from its type locality, Windy Harbour, Western Australia, where it occurs attached to rock. A concerted collecting and sequencing effort of non-geniculate coralline algae is needed along the entire Australian coast to understand the diversity and distributions of these algae.

From the lectotype of Sporolithon crassiramosum only a 118 bp length rbcL sequence was obtained. While short, this sequence was an exact match to the S. molle holotype and to field-collected specimens from El Tor, Egypt, but differed by a minimum of 7 bp from all other Sporolithon species sequenced to date. Sporolithon molle is now known to occur at El Tor, Gulf of Suez, and at Juan de Nova Island in the Mozambique Channel - the two localities about 5,000 km apart (Fig. 3). DNA sequencing of corallines from the Red Sea and along the east coast of Africa is needed to determine if this species is present between these sites. Hernández-Kantún et al. (2016) discussed other markers that could be sequenced to help understand gene flow and patterns of connectivity in widely distributed non-geniculate coralline algae, e.g. Lithophyllum kaiseri (Heydrich) Heydrich (Hernández-Kantún et al. 2016), Melyvonnea erubescens (Foslie) Athanasiadis & D.J. Ballantine (Richards et al. 2020) and Sporolithon indopacificum (Maneveldt et. al. 2017).

Unfortunately, little can be said regarding the other successfully sequenced historical type specimens of Sporolithon that are known only from their type localities, namely S. dimotum, S. episoredion, S. howei, S. schmidtii, S. sibogae and S. timorense. However, we are confident that with additional sequencing, field-collected specimens will be found that match these type specimen sequences. It took five years to find sequences from field-collected specimens that matched the type sequence of the generitype species of Lithophyllum, L. incrustans Philippi, and three years to find field-collected specimens that matched the type specimen sequence of L. intermedium Foslie (Gabrielson, personal observations). It is also clear that after 11 years of sequencing coralline type specimens, this is the only method that enables names to be correctly applied to coralline species. DNA sequencing is essential to identify all coralline algal specimens to species.

An additional impediment, even when type specimens are sequenced, is that for many contemporary coralline species the rbcL gene is not being sequenced, and thus cannot be compared to the rbcL sequences generated for many type specimens to know if an historical name applies. It would be useful, both for correctly applying historical names and for phylogenetic analyses, for each coralline species to have psbA, rbcL and COI sequences generated from at least one specimen.

It is helpful that the *psbA* and *rbcL* gene trees for *Sporolithon* are congruent, despite the absence of numerous species from the psbA phylogram. As sequences from field-collected specimens are found that match the type specimen sequences, it will enable concatenated phylograms to be constructed that will be phylogenetically more informative. Only for one clade of Sporolithon species, namely S. gracile, S. mesophoticum, S. sinusmexicanum and S. yoneshigueae, is there a strong biogeographic pattern, all occurring in the western Atlantic Ocean, and that clade has full support in both the psbA and rbcL phylograms. No character or suite of characters, however, has been found that is diagnostic for this clade. And there are other western Atlantic species, namely S. amadoi, S. episporum, S. franciscanum and S. tenue that occur in clades with Pacific species. Encrusting (without protuberances) species of Porolithon (Foslie) Foslie, e.g. P. imitatum R. A. Townsend & Huisman, P. onkodes (Heydrich) Foslie, P. penroseae R.A. Townsend & Huisman and numerous

unnamed *Porolithon* species (Order Corallinales) that are found in warm temperate to tropical waters also have mixed clades of Atlantic and Pacific species (Gabrielson *et al.* 2018). These two examples, along with the aforementioned widely distributed non-geniculate coralline species, *Lithophyllum kaiseri, Melyvonnea erubescens* and *Sporolithon indopacificum*, illustrate our limited understanding of the processes that drive the evolution and biogeography of non-geniculate coralline algae.

ACKNOWLEDGEMENTS

We are most grateful to the following herbarium curators for loaning historical type specimens from which we removed fragments for DNA sequencing and without which it would be impossible to correctly apply coralline algal names: Kristian Hassel and Tommy Prestø at TRH, Roxali Bijmoer at L, Line Le Gall at PC, and Sue Lutz at US. We thank Wilson Freshwater, DNA Analysis Core Facility, University of North Carolina, Wilmington, for providing sequencing support and Todd Vision for providing research space and equipment to PWG. Kate Neill (NIWA) is thanked for her extensive contributions to field work, sample processing and database management, Erika MacKay (NIWA) for assistance with preparation of images for publication, and Bridget Hatton and Jean-Claude Stahl (Te Papa) for assistance with specimens and images. Tom Pesacreta and Lily Ann Hume from the Microscopy Center at UL Lafayette are thanked for help and advice while using the FIB-SEM. Acquisition of DNA sequences from PC collection was carried out at the 'Service de Systématique Moléculaire', UMS 2700 2AD, MNHN, CNRS. GWS thanks Tanya Moore for molecular assistance at UNB, and Kyatt Dixon for his assistance in the field.

DISCLOSURE STATEMENT

No potential conflict of interest was reported by the authors.

FUNDING

Funding from NIWA SSIF Coasts & Oceans, Marine Biodiversity, and MPI programme ZBD201407 is acknowledged with thanks. This work was also funded in part by NSF grant DEB-1754504 to Suzanne Fredericq, and NSF grant MRI-1920166 and in part by a family trust to PWG. VP acknowledges funding from Action Transversale du Museum National d'Histoire Naturelle ('Taxonomie moléculaire: DNA barcode et gestion durable des collections'). GWS was funded through a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada, with infrastructure support from the Canada Foundation for Innovation and the New Brunswick Innovation Foundation. Field support was provided in part through the Australian Biological Resources Study.

ORCID

Paul W. Gabrielson (b) http://orcid.org/0000-0001-9416-1187
Jeffery R. Hughey (b) http://orcid.org/0000-0003-4053-9150
Viviana Peña (b) http://orcid.org/0000-0001-7003-3850
Joseph L. Richards (b) http://orcid.org/0000-0002-7805-5453
Gary W. Saunders (b) http://orcid.org/0000-0003-4813-6831
Brenton Twist (b) http://orcid.org/0000-0002-4694-8628
Tracy Farr (b) http://orcid.org/0009-0008-3665-8804
Wendy A. Nelson (b) http://orcid.org/0000-0003-0014-5560

REFERENCES

Adey W.H. & Lebednik P. 1967. Catalog of the Foslie Herbarium. Det
 Kongelige Norske Videnskabers Selskabs Museet, Trondheim,
 Norway. 92 pp.

- Adey W.H. 1970. A revision of the Foslie crustose coralline herbarium. Det Kongelige Norske Videnskabers Selskabs Skrifter 1: 1–46.
- Adey W.H. & Adey P.J. 1973. Studies of the biosystematics and ecology of the epilithic crustose Corallinaceae of the British Isles. *British Phycological Journal* 8: 343–407.
- Adey W.H., Townsend R. & Boykins W. 1982. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawai'ian Islands. Smithsonian Contributions to Marine Science 15: 1–74.
- Adey W.H., Hernández-Kantún J.J., Johnson G. & Gabrielson P.W. 2015. DNA sequencing, anatomy and calcification patterns support a monophyletic, subarctic, carbonate reef-forming *Clathromorphum* (Hapalidiaceae, Corallinales, Rhodophyta). *Journal of Phycology* 51: 189-203.
- Bahia R.G., Riosmena-Rodríguez R., Maneveldt G.W. & Amado-Filho G. M. 2011. First report of Sporolithon ptychoides (Sporolithales, Corallinophycidae, Rhodophyta) for the Atlantic Ocean. Phycological Research 59: 64–69.
- Bahia R.G., Amado Filho G.M. & Maneveldt G.W. 2014. Sporolithon molle (Heydrich) Heydrich (Sporolithales, Corallinophycidae, Rhodophyta): an addition to the Atlantic flora found on a remote oceanic island. Cryptogamie Algologie 35: 7–14.
- Bittner L., Payri C., Mandeveldt G., Couloux A., Cruaud C., Reviers B. & Le Gall L. 2011. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. *Molecular Phylogenetics and Evolution* 61: 697–713.
- Broom J.E.S., Hart D.R., Farr T.J., Nelson W.A., Neil K.F., Harvey A.S. & Woelkerling W. J. 2008. Utility of *psbA* and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. *Molecular Phylogenetics and Evolution* 46: 958–973.
- Dawson E.Y. 1961. A guide to the literature and distributions of Pacific benthic algae from Alaska to the Galapagos Islands. *Pacific Science* 15: 370–461.
- Dawson E.Y. 1962. Una clave ilustrada de los géneros de algas bénticas del Pacífico de la America Central. *Pacific Naturalist* 3: 167–231 [in Spanish].
- Earle S.A. 1972. A review of the marine plants of Panama. *Bulletin of the Biological Society of Washington* 2: 69–87.
- Edgar R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792– 1797.
- Farr T., Broom J., Hart D., Neill K. & Nelson W. 2009. Common coralline algae of northern New Zealand: an identification guide. NIWA Information Series No. 70 (unpaginated).
- Fernández-García C., Riosmena-Rodríguez R., Wysor B., Tejada O.L. & Cortés J. 2011. Checklist of the Pacific marine macroalgae of Central America. *Botanica Marina* 54: 53–73.
- Foslie M. 1901a. Part II. Corallinaceae. Botanisk Tidsskrift 24: 15–22. [In: Flora of Koh Chang. Contributions to the knowledge of the vegetation in the Gulf of Siam (Ed. by Johs. Schmidt).]
- Foslie M. 1901b. Three new lithothamnia. Kongelige Norske Videnskabers Selskabs Skrifter 1901 (1): 1–5.
- Foslie M. 1903. The lithothamnia of the Maldives and Lacadives. In: *The fauna and the geography of the Maldive and Lacadive Archipelagoes*, vol. 1 (Ed. by J.S. Gardiner), pp 460–471. Cambridge University Press, Cambridge, UK.
- Foslie M. 1904. Lithothamnioneae, Melobesieae, Mastophoreae. In: *The Corallinaceae of the Siboga Expedition* (Ed. by A. Weber van Bosse & M. Foslie), pp 10–77. E.J. Brill, Leiden, Netherlands. [Siboga Expedition Monograph 61.]
- Foslie M. 1907. Algologiske notiser III. Det Kongelige Norske Videnskabers Selskabs Skrifter 1906 (8): 1–34.
- Freshwater D.W. & Rueness J. 1994. Phylogenetic relationships of some European *Gelidium* (Gelidiales, Rhodophyta) species based on *rbc*L nucleotide sequence analysis. *Phycologia* 33: 187–194.
- Gabrielson P.W., Miller K.A. & Martone P.T. 2011. Morphometric and molecular analyses confirm two species of *Calliarthron* (Corallinales, Rhodophyta), a genus endemic to the northeast Pacific. *Phycologia* 50: 298-316.

- Gabrielson P.W., Hughey J.R. & Diaz-Pulido G. 2018. Genomics reveals abundant speciation in the coral reef building alga Porolithon onkodes (Corallinales, Rhodophyta). Journal of Phycology 54: 429-434.
- Gordon G.D., Masaki T. & Akioka H. 1976. Floristic and distributional account of the common crustose coralline algae on Guam. Micronesica 12: 247-277.
- Guiry M.D. & Guiry G.M. 2022. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www. AlgaeBase.org; searched on 16 July 2022.
- Harvey A., Woelkerling W., Farr T., Neill K. & Nelson W. 2005. Coralline algae of central New Zealand: an identification guide to common 'crustose' species. NIWA Information Series No. 57.
- Harvey A.S., Woelkerling W.J. & Millar A.J.K. 2002. The Sporolithaceae (Corallinales, Rhodophyta) in south-eastern Australia: taxonomy and 18S rRNA phylogeny. Phycologia 41: 207-227.
- Henriques M.C., Coutinho L.M., Riosmena-Rodríguez R., Barros-Barreto M.B., Khader S. & Figueiredo M.A.O. 2014. Three deep water species of Sporolithon (Sporolithales, Rhodophyta) from the Brazilian continental shelf, with the description of Sporolithon elevatum sp. nov. Phytotaxa 190: 320-330.
- Hernández-Kantún J.J., Gabrielson P.W., Hughey J.R., Pezzolesi L., Rindi F., Robinson N.M., Peña V., Riosmena-Rodríguez R., Le Gall L. & Adey W.H. 2016. Reassessment of branched Lithophyllum spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications. Phycologia 55: 609-635.
- Heydrich F. 1897a. Corallinaceae, insbesondere Melobesieae. Berichte der deutsche botanischen Gesellschaft 15: 34-70, pl. III.
- Heydrich F. 1897b. Melobesiae. Berichte der deutsche botanischen Gesellschaft 15: 403-420, pl. XVIII.
- Huelsenbeck J.P. & Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
- Hughey J.R., Silva P.C. & Hommersand M.H. 2001. Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. Journal of Phycology 37: 1091-1109.
- Hughey J.R. & Gabrielson P.W. 2012. Comment on "Acquiring DNA sequence data from dried archival red algae (Florideophyceae) for the purpose of applying available names to contemporary genetic species: a critical assessment." Botany 90: 1191-1194.
- Irvine L.M. & Chamberlain Y.M. 1994. Seaweeds of the British Isles, vol. 1, Rhodophyta, Part 2B. Corallinales, Hildenbrandiales. The Natural History Museum, London, UK. 276 pp.
- Kim K.M., Yang E.C., Kim J.H., Nelson W.A. & Yoon H.S. 2013. Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta). Mitochondrial DNA 26: 155-156.
- Lee J., Kim K.M., Yang E.C., Miller K.A., Boo S.M., Bhattacharya D. & Yoon H.S. 2016. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes. Scientific Reports 6: Article 23744.
- Le Gall L., Payri C.E., Bittner L. & Saunders G.W. 2010. Multigene phylogenetic analyses support recognition of the Sporolithales ord. nov. Molecular Phylogenetics and Evolution 54: 302-305.
- Lemoine M. 1929. Les Corallinacées de l'Archipel des Galapagos et du Golfe de Panama. Archives du Muséum National d'Histoire Naturelle Paris, série 6 4: 37-88, pls I-IV.
- Maneveldt G.W., Gabrielson P.W. & Kangwe J. 2017. Sporolithon indopacificum sp. nov. (Sporolithales, Rhodophyta) from tropical western Indian and western Pacific oceans: first report, confirmed by DNA sequence data, of a widely distributed species of Sporolithon. Phytotaxa 326: 115-128.
- Nelson W.A., Sutherland J.E., Farr T.J., Hart D.R., Neill K.T., Kim H.J. & Yoon H.S. 2015. Multi-gene phylogenetic analyses of New Zealand coralline algae: Corallinapetra novaezelandiae gen. et sp. nov. and recognition of the Hapalidiales ord. nov. Journal of Phycology 51:
- Nelson W.A., Neill K.F., Twist B.A. & Sutherland J.E. 2021. A new genus and species in the Sporolithales (Corallinophycidae, Rhodophyta) from northern New Zealand: Roseapetra farriae sp. nov. Phytotaxa
- Peña V., De Clerck O., Afonso-Carrillo J., Ballesteros E., Bárbara I., Barreiro R. & Le Gall L. 2015. An integrative systematic approach to

- species diversity and distribution in the genus Mesophyllum (Corallinales, Rhodophyta) in Atlantic and Mediterranean Europe. European Journal of Phycology 50: 20-36.
- Peña V., Vieira C., Braga J.C., Aguirre J., Rösler A., Baele G., De Clerck O. & Le Gall L. 2020. Radiation of the coralline red algae (Corallinophycidae, Rhodophyta) crown group as inferred from a multilocus time-calibrated phylogeny. Molecular Phylogenetics and Evolution 150: Article 106845.
- Pichon M. 1978. Recherches sur les peuplements à dominance d'anthozoaires dans les récifs coralliens de Tuléar (Madagascar). Atoll Research Bulletin 222: [vi +] XXXV + 447 pp.
- Pilger R. 1908. Corallinaceae aus dem westlichen Indischen Ozean. In: Reise in Ostafrika in den Jahren 1903-1905 ... Wissenschaftliche Ergebnise, vol. 3 (Ed. by A. Voeltzkow), pp 39-48. E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, Germany.
- Richards J., Kittle R.P., Schmidt W.E., Sauvage T., Gurgel C.F.D., Gabriel D. & Fredericq S. 2022. Assessment of rhodolith diversity in the northwestern Gulf of Mexico including the description of Sporolithon gracile sp. nov. Frontiers in Marine Science 9: 1-14.
- Richards J.L., Sauvage T., Schmidt W.E., Fredericq S., Hughey J.R. & Gabrielson P.W. 2017. The coralline genera Sporolithon and Heydrichia (Sporolithales, Rhodophyta) clarified by sequencing type material of their generitypes and other species. Journal of Phycology 53: 1044-1059.
- Richards J.L. & Fredericq S. 2018. Sporolithon sinusmexicanum sp. nov. (Sporolithales, Rhodophyta): a new rhodolith-forming species from deepwater rhodolith beds in the Gulf of Mexico. Phytotaxa 350: 135-146.
- Richards J.L, Kittle R.P., Abshire J.R., Fuselier D., Schmid W.E., Gurgel C.F.D. & Fredericq S. 2020. Range extension of Mesophyllum erubescens (Foslie) Me. Lemoine (Hapalidiales, Rhodophyta): first report from mesophotic rhodolith beds in the northwestern Gulf of Mexico offshore Louisiana and Texas, including the Flower Garden Banks National Marine Sanctuary. Check List 16: 513-519.
- Saunders G.W. & McDevit D.C. 2012. Acquiring DNA from dried archival red algae (Floridophyceae) for the purpose of applying available names to contemporary genetic species: a critical appraisal. Botany 90: 191-203.
- Saunders G.W. & Moore T.E. 2013. Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae
- Sherwood A., Kuirhara A., Conklin K., Sauvage T. & Presting G. 2010. The Hawai'ian Rhodophyta biodiversity survey (2006-2010): a summary of principal findings. BCM Plant Biology 10: 258.
- Silva P.C., Meñez E.G. & Moe R.L. 1987. Catalog of the benthic marine algae of the Philippines. Smithsonian Contribution to Marine Sciences 27: 1-179.
- Silva P.C, Basson P.W. & Moe R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean. University of California Press, Berkeley, California, USA. 1259 pp.
- Stamatakis A. 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.
- Thiers B. 2023 [continuously updated]. Index Herbariorum: a global directory of public herbaria and associated staff. World-wide electronic publication, New York Botanical Garden's Virtual Herbarium, New York, USA. http://sweetgum.nybg.org/ih/; searched on 8 August 2022
- Townsend R.A., Woelkerling W.J., Harvey A.S. & Borowitzka M. 1995. An account of the red algal genus Sporolithon (Sporolithaceae, Corallinales) in southern Australia. Australian Systematic Botany 8: 85–121.
- Twist B.A., Neill K.F., Bilewitch J., Jeong S.Y., Sutherland J.E. & Nelson W.A. 2019. High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research. PLOS One 14: Article e0225645.
- Velasquez G.T., Trono, G.C. & Doty M. 1975. Algal species reported from the Philippines. Philippine Journal of Science 101: 115-169.
- Verheij E. 1992. Structure and reproduction of Sporolithon episoredion (Adey, Townsend et Boykins) comb. nov. (Corallinales,

- Rhodophyta) from the Spermonde Archipelago, Indonesia. Phycologia 31: 500-509.
- Verheij E. & Woelkerling W.J. 1992. The typification of nongeniculate Corallinales (Rhodophyta) involving Siboga Expedition collections. Blumea 36: 273-291.
- Verheij E. 1993. The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from Spermonde Archipelago, Indonesia. Phycologia 32: 184-196.
- Woelkerling W.J., Irvine L.M. & Harvey A.S. 1993. Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Australian Systematic Botany 6: 277-293.
- Woelkerling W. J. 1993. Type collections of Corallinales (Rhodophyta) in the Foslie Herbarium (TRH). Gunneria 67: 1-289.
- Woelkerling W.J., Gustavsen G., Myklebost H.E., Prestø T., & Såstad S. M. 2005. The coralline red algal herbarium of Mikael Foslie: revised catalogue with analyses. Gunneria 77: 1-625.
- Wynne M.J. 1986. A checklist of benthic marine algae of the tropical and subtropical western Atlantic. Canadian Journal of Botany 64: 2239-2281.
- Yoon H.S., Hackett J.D. & Bhattacharya D. 2002. A single origin of the peridinin and fucoxanthin containing plastids in dinoflagellates through tertiary endosymbiosis. Proceedings of the National Academy of Sciences USA 99: 11724-11729.