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ABSTRACT: While Bayesian inference is the gold standard for
uncertainty quantification and propagation, its use within physical Set for Complex Property
chemistry encounters formidable computational barriers. These el
bottlenecks are magnified for modeling data with many independent 5
variables, such as X-ray/neutron scattering patterns and electro- 5
magnetic spectra. To address this challenge, we employ local
Gaussian process (LGP) surrogate models to accelerate Bayesian
optimization over these complex thermophysical properties. The
time-complexity of the LGPs scales linearly in the number of
independent variables, in stark contrast to the computationally
expensive cubic scaling of conventional Gaussian processes. To
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illustrate the method, we trained a LGP surrogate model on the radial

distribution function of liquid neon and observed a 1,760,000-fold speed-up compared to molecular dynamics simulation, beating a
conventional GP by three orders-of-magnitude. We conclude that LGPs are robust and efficient surrogate models poised to expand
the application of Bayesian inference in molecular simulations to a broad spectrum of experimental data.

B INTRODUCTION

Molecular simulations are able to estimate a broad array of
complex experimental observables, including scattering pat-
terns from neutron and X-ray sources and spectra from near-
infrared," terahertz,” sum frequency generation,3’4 and nuclear
magnetic resonance.” Recent interest in these experiments to
study hydrogen bonding networks of water at interfaces,”’
electrolyte solutions,” and biological systems’ has motivated
the continued advancement of simulations to calculate these
properties from first-principles.'’”'* However, the ability to
estimate these complex properties comes with a high
computational cost. This barrier greatly limits our ability to
quantify how experimental, model, and parametric uncertainty
impact molecular simulation predictions, making it difficult to
know whether a model is an appropriate representation of
nature or if it is simply overfitting to a given training set.
Therefore, what is needed is a computationally efficient and
rigorous uncertainty quantification/propagation (UQ/P)
method to link molecular models to large and complex
experimental data sets.

Bayesian methods are the gold standard for these aims,"
with examples spanning from neutrino and dark matter
detection,'* materials discovery and characterization,>™'®
quantum dynamics,'”*° to molecular simulation.' ~*' The
Bayesian probabilistic framework is a rigorous, systematic
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approach to quantify probability distribution functions on
model parameters and credibility intervals on model
predictions, enabling robust and reliable parameter optimiza-
tion and model selection.””** Interest in Bayesian methods and
uncertainty quantification for molecular simulation has
surged’* ™" due to its flexible and reliable estimation of
uncertainty, ability to identify weaknesses or missing physics in
molecular models, and systematically quantify the credibility of
simulation predictions. Additionally, standard inverse methods
including relative entropy minimization, iterative Boltzmann
inversion, and force matching have been shown to be
approximations to a more general Bayesian field theory.*
The biggest problem plaguing Bayesian inference is its large
computational cost. The two major pinch points are (1)
sampling in high-dimensional spaces, commonly known as the
“curse of dimensionality” and (2) the large number of model
evaluations required to obtain accurate uncertainty estimates.
In computational chemistry, these bottlenecks are magnified
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since these models are typically expensive. Therefore, rigorous
and accurate uncertainty estimation is challenging or even
impossible without accelerating the simulation prediction time.
One way to achieve this speed-up is by approximating
simulation outputs with an inexpensive machine learning
model. These so-called surrogate models have been develoAPed
from neural networks,””*" polynomial chaos expansions,” "’
conﬁglirgatig)n-sampling-based methods,”* and Gaussian pro-

Gaussian processes (GPs) are a compelling choice as
surrogate models because of several distinct advantages. GPs
are nonparametric, kernel-based function approximators that
can interpolate function values in high-dimensional input
spaces. GPs with an appropriately selected kernel also have
analytical derivatives and Fourier transforms, making them
well-suited for physical quantities such as potential energy
surfaces.**” Additionally, kernels can encode physics-
informed prior knowledge, alleviating the “black box” nature
inherent to many machine learning algorithms. In fact, a
comparison of various nonlinear regressors for molecular
representations of ground-state electronic properties in organic
molecules demonstrated that kernel regressors drastically
outperformed other techniques, including convolutional
graph neural networks.™

Perhaps the most widely adopted application of GP
surrogate models in computational chemistry is for model
optimization. In the past decade, GP surrogates of simple
thermophysical properties including density, heat of vapor-
ization, enthalpy, diffusivity and pressure have been used for
force field design.SI_56 However, to our knowledge, there are
no Bayesian optimization studies that apply GP surrogate
models to thermophysical properties with many independent
variables, such as structural correlation functions or electro-
magnetic spectra. In this work, independent variables (IVs) are
defined as the fixed quantities over which a measurement is
made (e.g., frequencies along a spectrum or radial positions
along a radial distribution function) and the outcomes of those
measurements are referred to as quantities-of-interest (Qols).

Measurements of complex Qols with many IVs are often
available or easily obtained yet are rarely included as
observations in Bayesian optimization of molecular models.
One reason this may be the case is that previous literature has
not outlined accurate and robust approaches to designing
Gaussian process surrogates for such data. For example,
Angelikopoulous and co-workers did not use GP surrogate
models for their Bayesian analysis on the radial distribution
function (RDF) of liquid Ar,”" despite the fact that doing so
would significantly reduce computation time. It is likely that
GPs have not been previously used for complex Qols due to
the high training and evaluation costs. Specifically, GPs have a
cubic time-complexity in the number of IVs, which quickly
becomes prohibitively expensive as experimental measure-
ments obtain higher ranges and resolutions.

Local Gaussian processes (LGPs) are an emerging class of
accelerated GP methods that are well-equipped to handle large
sets of experimental data. These so-called “greedy” Gaussian
process approximations are constructed by separating a GP
into a subset of GPs trained at distinct locations in the input
space.*”*” 7> Computation on the LGP subset scales linearly
with the number of IVs, is trivially parallelizable, and easily
implemented in high-performance computing (HPC) archi-
tectures.’”®" State-of-the-art LGP models have been used to
design Gaussian approximation potentials (GAPs),’” a type of

machine learning gotential used to study atomic® ® and

electron structures,">*° as well as nuclear magnetic resonance
chemical shifts"” with uncertainty quantification.** However,
to our knowledge, LGPs have not been applied as surrogate
models for UQ/P on complex experimental data in computa-
tional chemistry.

In this study, we detail a simple and effective surrogate
modeling approach for complex experimental observables
common to physical chemistry. LGPs unlock the capability
for existing Bayesian optimization schemes to incorporate
complex data efficiently and accurately at a previously
inaccessible computational scale. The key feature of the LGP
surrogate model is the reduction in time-complexity with
respect to the number of Qols from cubic to linear, resulting in
orders-of-magnitude speed-ups to evaluate complex observable
surrogate models and perform posterior estimation. The
computational speed-up results from reducing the dimension-
ality of matrix operations and therefore enables Bayesian UQ/
P on experimental data with many IVs. For illustration,
consider that a typical Fourier transformed infrared spectros-
copy (FT-IR) measurement may contain data between 4000
and 400 cm™" at a resolution of 2 cm™, giving a total number
of Qols around 5 = 1800. According to the time-complexity
scaling in #, a LGP is estimated to accelerate this computation
compared to a standard GP by approximately 3,240,000X.
Source code and a tutorial on building LGP surrogate models
are provided on GitHub.

To demonstrate the method, we trained a LGP surrogate
model on the RDF of the (4-6) Mie fluid and performed
Bayesian optimization to fit the parameters of the Mie fluid
model to a neutron scattering derived RDF for liquid neon
(Ne). The LGP was found to accelerate the = 73
independent variable surrogate model calculation approxi-
mately 1,760,000 faster than molecular dynamics (MD) and
2100x faster than a conventional GP with accuracy
comparable to the uncertainty in the reported experimental
data. Bayesian posterior distributions were then calculated with
Markov chain Monte Carlo (MCMC) and used to draw
conclusions about model behavior, uncertainty, and adequacy.
Surprisingly, we find evidence that Bayesian inference
conditioned on the radial distribution function significantly
constrains the (4—6) Mie parameter space, highlighting
opportunities to improve force field optimization and design
based on neutron scattering experiments.

B COMPUTATIONAL METHODS

In the following sections, an outline of standard approaches for
Bayesian inference and surrogate modeling with Gaussian
processes is presented. Then, we describe the local Gaussian
process approximation and highlight key differences in their
implementation and computational scaling.

Bayesian Inference. Bayes’ law, derived from the
definition of conditional probability, is a formal statement of
revising one’s prior beliefs based on new observations. Bayes’
theorem for a given model, set of model input parameters, 6,
and set of experimental Qols, y, is expressed as

p(Oly) o p(y10)p(0) (1)

where p(@) is the ‘prior’ probability distribution over the
model parameters, p(yl@) is the ‘likelihood’ of observing y
given parameters 6, and p(ly) is the ‘posterior’ probability
that the underlying parameter € models or explains the
observation y. Equality holds in eq 1 if the right-hand-side is
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normalized by the ‘marginal likelihood’, p(y), but including
this term explicitly is unnecessary since the posterior
probability distribution can be normalized post hoc. In
molecular simulations, € is the set of unknown parameters in
the selected model, usually the force field parameters in the
Hamiltonian, for the experimental Qol that the simulation
estimates. The observations, y, can be any Qol or combination
of Qols (e.g, RDFs, spectra, densities, diffusivities, etc.). This
construction, known as the standard Bayesian scheme, is
generalizable to any physical model and its corresponding
parameters, including density functional theory (DFT), ab
initio molecular dynamics (AIMD), and path integral
molecular dynamics (PIMD).

Calculating the posterior distribution then just requires
prescription of prior distributions on the model input
parameters and evaluation of the likelihood function. In this
work, Gaussian distributions are used for both the prior and
likelihood functions, which is a standard choice according to
the central limit theorem. The Gaussian likelihood has the
form

n i
1 1 2
0) = xp| —— E -
PO [wm]e 207 & 7Y )

where 7 is the number of observables in y, yy is the model
predicted observables at model input 6, and o, is a nuisance
parameter describing the unknown variance of the Gaussian
likelihood. Cailliez and co-workers choose the nuisance
parameter as the sum of simulation and experiment variances
(62~ 0,4, + Gexpz) ;> however, if these variances are unknown
or one wishes to explore the distribution of variances, the
nuisance parameter can be inferred via Bayesian inference.
Hence, the resulting posterior distribution on the nuisance
parameter includes the unknown uncertainty arising due to the
sum of the model and the experimental variances. In this work,
the nuisance parameter is treated as an unknown to be inferred
along with the explicit model parameters. Note that in some
cases a different likelihood function may be more appropriate
based on physics-informed prior knowledge of the distribution
of the observable of interest (e.g., the multinomial likelihood in
relative entropy minimization between canonical ensembles®®).

The computationally expensive part of calculating eq 2 is
determining yp at a sufficient number of points in the
parameter space. Generally, this can be achieved by calculating
Yo at dense, equally spaced points in the parameter space of
interest (grid method), sampling the parameter space with
Markov chain Monte Carlo (MCMC) to estimate the posterior
with a histogram (approximate sampling method), or assuming
that the posterior distribution has a specific functional form
(ie, Laplace approximation). Regardless of the selected
method, each of these posterior distribution characterization
techniques requires a prohibitive number of molecular
simulations to adequately sample the parameter space (often
on the order of 10°—10°), which is infeasible for even modest
sized molecular systems.

Gaussian Process Surrogate Models. Gaussian pro-
cesses accelerate the Bayesian likelihood evaluation by
approximating y, using an inexpensive matrix calculation. A
Gaussian process is a stochastic process such that every finite
set of random variables (position, time, etc.) has a multivariate
normal distribution.*> The joint distribution over all random
variables in the system, therefore, defines a functional
probability distribution. The expectation of this distribution

maps a set of model parameters, 8%, and IVs, r, to the most
probable Qol given the model parameters, S(rl@*), such that,

E[GP] : 0* x r — S(r|0*) (3)

where the expectation operator is written in terms of a kernel
matrix, K, training set parameter matrix, X, and training set
output matrix, Y, according to the equation,

[E[Gp(o*) l‘)] = K(G*,r),X[KX,X + O-noisezl]_l? (4)

where 6, is the variance due to noise and I is the identity
matrix. Note that in general, the IVs, r, can be multidimen-
sional. As an example, consider the case a GP maps a set of
force field parameters to the angular RDF of a liquid. We now
have a 2-dimensional space of IVs since the angular RDF gives
the atomic density along the radial and angular dimensions. In
the following mathematical development, it is assumed that the
Qol is 1-dimensional for sake of convenience and note that
extending the method to higher-dimensional observables just
requires redefining the IVs in accordance with eq 4.

The kernel matrix, K, quantifies the relatedness between
input parameters and can be selected based on prior
knowledge of the physical system. A standard kernel for
physics-based applications is the squared-exponential (or radial
basis function) since the resulting GP is infinitely differ-
entiable, smooth, continuous, and has an analytical Fourier
transform.”” The squared-exponential kernel function between
input points (@,, r,,) and (@,, r,) is given by,

2 (=) T .6,
K, = aPexp| -~ Y 2om
21 o 2y (s)
where o indexes over dim(@) and the hyperparameters o and
I, are the kernel variance and correlation length scale of
parameter A, respectively. Hyperparameter optimization can be
performed by log marginal likelihood maximization, k-fold
cross validation™ or marginalization with an integrated
acquisition function,”” but can be computationally expensive
and is usually avoided if accurate estimates of the hyper-
parameters can be made from prior knowledge of the chemical
system.

To train a standard GP surrogate model, N training samples
are generated in the input parameter space and a molecular
simulation is performed for each training set sample to
calculate N predictions over the number of target Qols, . The
training set, X, is then a (Ny X dim(@) + 1) matrix of the
following form,

91,1 92‘1 - N
91,1 92‘1 - B
X = 61,1 62‘1 Tyl
(9172 (92‘2 -
(917N QZ,N 1‘,7 (6)

where the 0, ; are the ith model parameter for sample index j
and 7, are the IVs of the target Qol. Note that the training
sample index, j = 1,--, N, is updated in the model parameters
only after 7 rows spanning the domain of the observable, giving
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Np total rows. Therefore, the training set matrix represents all
possible combinations of the training parameters in the 6
parameter input space. The training set observations, Y, are a
(Nn X 1) column vector of the observable outputs from the
training set,

V= [5(01) 71)) R 8(01) Vﬂ); 5(021 rl)) sy S(oN) rﬂ)]T (7)
where S0, ) = y(0, r) — ukr (0, r) is the difference

between the training set observation of model parameters 6; at
IV r; and a GP prior mean function. Of course, the GP prior
mean, P, is the same shape as the training set observations
matrix,

ﬂ(f;)lr)mr = [//‘(01; 71)) B .u(olx ry,)r ﬂ(azx rl)r ) /"(0N7 ry,)]T
(8)

where 4(6), ;) is the GP prior mean for parameter set 6, at 7.
Note that the selection of a prior mean can impact the quality
of fit of the GP surrogate model and should reflect physically
justified prior knowledge of the physical system.

Conceptually, since a Gaussian process is a Bayesian model,
the prior serves as a current state of knowledge that can encode
an initial guess for the Qol before the GP sees any training
data. The subtraction of the GP prior mean from the model
output effectively shifts the Qol by this prespecified mean
function. Hence, the GP is trained on these mean shifted
observations rather than on the observations themselves.
Although shifting the data by another function seems like it
should not change the ability of the GP to estimate the Qol, it
actually can have an important impact on the stochastic
properties of the data as a function of the IVs. By construction,
GPs are stationary, meaning that the means, variances, and
covariances are assumed to be equal along all Qol. However,
for complex data, this is often not the case. For example, it is
known that the RDF is zero for small r values and has
asymptotic tailing behavior to unity at long-range. The GP
prior mean effectively shifts this nonstationary data and makes
it behave as if it were stationary by removing any r
dependencies.

The expectation of the GP for a new set of parameters,
S*(rl@*), is then a (7 X 1) column vector calculated with eq 4

S*(xl6*) = [S*(rl07), ..., S¥(r,)0%)]" (9)

where S$*(rl@*) is the most probable difference function
between the model and GP prior mean. Hence, to obtain a
comparison to the experimental Qol you simply add the GP
prior mean at %, uF (0% r), back to S*(rl@*).

The GP expectation calculation is burdened by the inversion
of the training-training kernel matrix with O(N**) time
complexity and the (7 X Ni) X (Ny X Niy) X (Nn X 1) matrix
product with O(N’;®) time complexity. Note that these
estimates are for naive matrix multiplication. Regardless, the
cubic scaling in 7 dominates the time-complexity for
observables with many Qols. For example, building a GP
surrogate model for the density of a noble gas (y = 1) with
Lennard-Jones interactions (dim (@) = 2) would give a training
set matrix of (2N X 3). Similarly, a surrogate model for an
infrared spectrum of water from 600 to 4000 cm™' at a
resolution of 4 cm™ (57 = 850) estimated with a 3 point water
model of Lennard-Jones type interactions (dim(@) = 6) would
generate a training set matrix of size (850N X 7). Clearly, the
complexity of the output Qol causes a significant increase in
the computational cost of matrix operations.

The Local Gaussian Process Surrogate Model. The
time-complexity of the training-kernel matrix inversion and the
matrix product can be substantially reduced by fragmenting the
full Gaussian process of eq 4 into 77 Gaussian processes. This
method is also referred to as the subset of regressors method”"
and is considered a “greedy” approximation.*> Under this
construction, an individual GP; is trained to map a set of
model parameters to an individual Qol,

E[GP] : 0 — S(ry) (10)

where r is no longer an input parameter. The training set
matrix, X', is now a (N X dim(@)) matrix,

91,1 92,1
= 91,2 92,2
X = . .
91,N GZ,N (11)

while the training set observations, Y';, is a (N X 1) column
vector of the Qols from the training set at r,

Y, = (S0, 1), -y S(By, )T (12)
where S(0), ) = y(8,, ) — ufe3(ri) and k indexes over IVs.

r1or

The LGP prior mean /A{Gplk(rk) is now,
wicny = Oy 1), oy Oy, T (13)

such that (@, r;) is the GP prior mean for parameter 6; at ry.
The squared-exponential kernel function is now,

dim(0) (9 -9 )2
K = a%exp| — ~om _on
e E e

o=1

(14)

The LGP surrogate model expectation for the observable at r,,
at a new set of parameters, 0%, is just the expectation of the kth
Gaussian process given the training set data,

ZI]_I?k
(15)
We then just combine the local results from the subset of 7

GPs to obtain a prediction for the difference between the
model and LGP prior mean,

Sltc(rle*) = [Slic(rlla*)! ey Sltc(rnla*)]T (16)

S (10%) = E[GR(0¥)] = Ky 2K 5 + 0,

noise

and subsequently add back the LGP prior mean to obtain the
estimated Qol, yi, *(rl0*) = S, *(rl0*) + pbiy (0% x) .

By reducing the dimensionality of the relevant matrices, the
time complexity of the matrix calculations are drastically
reduced compared to a standard GP. The single step inversion

of the training-training kernel matrix is now of O(N?) time
complexity while the # step (1 X N) X (N X N) X (N X 1)
matrix products are reduced to O(N' %) time complexity. If the
number of training samples, N, the number of IVs, 7, and the
number of model evaluations, G, are equal between the full and
LGP algorithms, then a LGP approximation reduces the
evaluation time complexity in a standard GP from cubic-
scaling, 7, to embarrassingly parallelizable linear-scaling, #.
In summary, a local Gaussian process is an approximation in
which the Qols are modeled as independent random variables,
each described by its own Gaussian process. This amounts to
assuming that the random variables are stochastically

https://doi.org/10.1021/acs.jctc.3c01358
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independent. For time-independent data including scattering
measurements and spectroscopy, this approximation is
appropriate, since each observation is an independent
measurement at each independent variable. Finally, it is well-
established that low rank approximations of Gaussian processes
can compromise the accuracy of the estimated uncertainty, so
the use of LGP regressors should be carefully scrutinized based
on the risk/consequences of misrepresenting the resulting
functional distributions.

Complex experimental observables can be reconstructed by
this set of LGPs through a series of relatively straightforward
matrix operations with linear time-complexity in the number of
IVs. Furthermore, the LGP has all of the primary advantages of
Bayesian methods, including built-in UQ, interpretability, and
analytical derivatives and Fourier transforms. In the following
section, we demonstrate the computational enhancement and
accuracy of the LGP approach by modeling the RDF of a neon
at 42K. The LGP surrogate model is then implemented within
a Bayesian framework to exemplify the power of UQ/P for
molecular modeling.

Bl A LOCAL GAUSSIAN PROCESS SURROGATE FOR
THE RDF OF LIQUID NE

To explore the computational advantages of LGP surrogate
models for Bayesian inference, we studied the experimental

Table 1. Average Relative Time and Speed-up to Qol
Evaluation and Training Set Matrix Inversion for a Standard
and Local Gaussian Process for 960 Training Samples and a
RDF with # = 73 Points

Model QoI Eval. Time (s)  Speed Up (t/t4,) Inv. Time (s)
Simulation 1,251 1 -
GP 1.52 822 35S
LGP 0.0007 1,760,267 0.01

RDF of liquid Ne”” under a (A—6) Mie fluid model. The (1—
6) Mie force field is a flexible Lennard-Jones type potential
with variable repulsive exponent

ro ) -],

where A is the short-range repulsion exponent, ¢ is the collision
diameter (A), and € is the dispersion energy (kcal/mol).”?
MD simulations were performed from a Sobol sampled set
spanning a prior range based on existing force field
models”"™¢ (1 = [6.1,18], 6 = [0.88, 3.32], and € = [0,
0.136]) to generate a RDF training set matrix of the form in eq
11. Prior parameter ranges were selected so that training
samples were restricted to the liquid regime of the (1-6) Mie
phase diagram.”””® A sequential sampling approach was used
in which we Sobol sampled the prior range of parameters,
calculated the training sample with the best-fit to the
experimental data (lowest root mean squared error), centered
the new space on this training sample, and then narrowed the
sample range around this center point by a user selected ratio
7. This procedure was repeated three times with 320 samples
per round (960 total training simulations) with y = 0.8. This
ratio was selected so that the final range would span >3
standard deviations of the posterior distributions estimated in
prior literature.”"”* Subsequently, 320 test simulations were
randomly sampled from the final range and used to determine

whether the surrogate model provides accurate model
predictions. A visualization of this procedure is provided in
the Supporting Information.

The number of observed points # in the radial distribution
function was calculated by dividing the reported ry,, — #1min
15.3 by the effective r-space resolution given by, Ar = 7/ Q.
where Ar = 0.21 A for reported Q,,,, = 15 A™". This relation
indicates that the appropriate number of observed independent
r-values in the RDF is 5 = 73.

The training set matrix and training observation matrix were
then constructed from the 960 training samples according to
eqs 11 and 12, respectively. As a prior mean, we selected the
RDF determined analytically from the dilute limit potential of
mean force (PMF),

~
~

ﬂ[})ﬁ;k (0]) rk) = g(ap rk) = eXP[—ﬂV(Q; rk)] (18)

where g(@, ) and V(0]-, r) are the analytical dilute limit RDF
and (/1—65 Mie potential for parameters 6, at r;, respectively. A
PMF prior mean yields physically realistic short-range (g(r) =
0) and long-range (g(r) — 1) behavior. The PMF prior had
improved RMSE compared to an ideal gas prior (V r € Ry,
g(r) = 1), but this difference did not significantly impact the
Bayesian posterior estimate (see Supporting Information).
Finally, LGP hyperparameter optimization was performed
using brute force to minimize the leave-one-out GP posterior
probability” over the training set.

Quantitative analysis of model sensitivity can be performed
with probabilistic derivatives of the Qol with respect to model
parameters (see Supporting Information) and subsequently
related to temperature derivatives of radial distribution
functions.®’

Computational Efficiency and Accuracy. Now that we
have constructed the training set matrix, we simply evaluate the
expectation at each r, according to eq 15 and combine the
results into a single array as in eq 16. The average
computational times to invert the training set matrix and
evaluate the surrogate model for both a standard GP and LGP
are shown below in Table 1. The LGP surrogate accelerates
the RDF evaluation time compared to molecular dynamics by a
factor of 1,700,000 for the n = 73 independent variable Qol
with 960 training simulations. This 6 orders-of-magnitude
speed-up beats a standard GP by 3 orders-of-magnitude
(2141x). With respect to the training-training kernel matrix
inversion, the LGP wins out on the standard GP by a factor of
31,565.

In summary, the LGP significantly accelerates both
computational bottlenecks for Gaussian process surrogate
modeling; namely, the training set matrix inversion and
surrogate model evaluation time. Of course, the exact speed-
ups depend on numerous factors including the number of IVs
7, the number of training samples used to construct the
training set matrix N, the level of code parallelization, and the
hyperparameter optimization procedure. Which step is rate
limiting depends on the surrogate modeling application. For
instance, if the surrogate model does not need to be evaluated
a large number of times, the training set generation, matrix
inversion and hyperparameter optimization will be the rate
limiting steps. On the other hand, applications that require a
large number of model evaluations, such as uncertainty
quantification and propagation, result in the surrogate model
evaluation time being rate limiting. Typically, designing a
surrogate model is only necessary in the latter case.

https://doi.org/10.1021/acs.jctc.3c01358
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01358/suppl_file/ct3c01358_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01358/suppl_file/ct3c01358_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c01358/suppl_file/ct3c01358_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01358?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation pubs.acs.org/JCTC
(o] (o]
(a) (b)
0] o
0.04 0.04
0.031 0.03 1
w w
) n
= =
& 0.021 o 0.02
0.01 1 0.01 -
0.00- 0.00
0.030
0.04 - 0.025 -
0.020
0.03
ml m
g L 00151
o 0.021 o
0.010
0.01 1 0.005 A
0.00 L T T T T T T T T 0.000 | T T T T T T T
003 004 005 006 007 008 009 0.10 0 2 4 6 8 10 12 14
€ (kcal/mol) r (R)

Figure 1. (a—c) Test set samples over each parameter plotted against the RMSE between simulated and LGP data. (d) Average RMSE over the
320 test set samples as a function of 7. The dashed line represents the reported error from the experiment.”

Clearly the LGP is fast, but is it accurate? In other words,
does the LGP provide Qol predictions that are within a
reasonable level of accuracy to serve as a true surrogate model
for molecular dynamics predictions? To evaluate the accuracy
of the local predictions, a test set of 320 (A—6) Mie parameters
was randomly sampled from the final range of the sequential
sampling method (see Supporting Information) and the RMSE
computed between simulated and LGP predicted radial
distribution functions along all radial positions, r. The results
are summarized in Figure 1.

The RMSE for all radial positions is less than 0.03, which is
excellent considering that this error is smaller than the
reported experimental uncertainty (~0.03). Of course, the
acceptable RMSE over the Qol is user-defined and largely
subjective based on the surrogate model application but can be
improved with additional training and hyperparameter
optimization if necessary (an example is included in the
Supporting Information).

Learning from the Ne RDF Surrogate Model with
Bayesian Analysis. Our fast and accurate LGP surrogate
model now allows us to explore the underlying probability
distributions on the (1—6) Mie parameter space. This example
is provided to show how one can use Bayesian analysis to learn
about correlations and relationships between model parame-
ters as well as model adequacy. This analysis can provide
robust insight into the nature of the model and provide
quantifiable evidence for whether the model is appropriate for
a target application. Bayesian inference yields a probability

distribution function over the model parameters called the
joint posterior probability distribution. The maximum of the
joint posterior, referred to as the maximum a posteriori (MAP),
represents the set of parameters with the highest probability of
explaining the given experimental data. In force field design,
the MAP would be an appropriate choice for an optimal set of
model parameters. However, the power of the Bayesian
approach lies in the fact that, not only can we identify the
optimal parameters, but we can also examine the probability
distribution of the parameters around these optima. For
instance, the width of the distribution provides evidence for
how important a parameter in the model is for representing the
target data. For a given parameter, a wide distribution indicates
that the parameter has little influence on the model prediction.
On the other hand, a narrow distribution indicates that the
parameter is critical to the model prediction. Additionally, the
joint posterior may exhibit multiple peaks, or modes. A
multimodal joint posterior suggests that there are multiple sets
of model parameters that reproduce the target data, which may
be a symptom of model inadequacy. Finally, the symmetry of
the distribution provides information on relationships and
correlations between parameters, providing a framework to
diagnose subtle relationships that may otherwise go unnoticed.

Usually, the joint posterior distribution is a high-dimensional
quantity that cannot be visualized directly. However, we can
visualize the joint posterior along one dimension by integrating
the contributions over all other parameters. The resulting
distributions are called marginal distributions. Marginal
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Figure 2. (Diagonal) 1D marginal distributions for the (1—6) Mie fluid parameters. Prior distributions are not depicted since they are flat lines near
0 probability. Yellow vertical lines represent the maximum a posterior (MAP) estimate. (Off-Diagonal) 2D marginal histograms showing parameter

correlations.

Table 2. Summary of (A—6) Mie Potential Parameters
Optimized for Ne“

Force Field Qol A o (A) € (kcal/mol)
Mick (2015) VLE 11 2.794 0.064
SOPR (2022) RDF 11 2778 0.063

This Work RDF 11 2.773 0.064

“Values for the repulsive exponent parameters are rounded to the
nearest integer.

distributions computed over the (1—6) Mie potential
parameters optimized to the RDF of liquid Ne are shown in
Figure 2.

For each parameter, the resulting marginal posterior
distributions are unimodal and symmetric. This result is not
surprising in the context of recent results that show iterative
Boltzmann inversion, which is a maximum likelihood approach
to the structural inverse problem, is convex for Lennard-Jones
type fluids.*’ Observing the 2D marginal distributions in

Figure 2, we can also see that each of the parameters are
correlated to one other. For example, the negative correlation
between o and € suggests that increasing the size of the particle
should be accompanied by a decrease in the effective particle
attraction. Conceptually this makes sense: if the particles are
larger, then they would need to have a weaker attractive force
to give the same atomic structure. This result is consistent with
Bayesian analysis on liquid Ar.’' The nuisance parameter
distribution shows that the unknown standard deviation
between the LGP surrogate model and the experimental data
is around 0.016.

One surprising characteristic of the posterior distribution is
that it is extremely narrow. Recall that narrow distributions
indicate that the parameters are important or have tight control
over the model quality-of-fit to the experimental data. From
our Bayesian analysis, we can therefore confidently conclude
that detailed interatomic force information is contained within
the experimental RDF. This observation is in stark contrast to
over 60 years of prior literature which has unanimously
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Figure 3. (a) RDF mean and credibility interval propagated from the parameter uncertainty quantified with Bayesian inference. (b) Residual
analysis comparing the experimental data to the posterior predictive distribution.

asserted that only the excluded volume or collision diameter
can be ascertained from experimental scattering data.*”~** In
fact, the Bayesian analysis shows that it is possible to determine
values for 4, 0, and € within +2, + 0.02 and +0.0075 kcal/mol
with 95% certainty. This result leads to two important
conclusions: (1) Scattering data can effectively constrain the
force field model parameter space and (2) the data must be
sufficiently accurate to do so. These results provide evidence
that scattering data could be invaluable to inform accurate
force fields, particularly for structure and self-assembly
applications.

The joint posterior can also be used for model parameter
selection given the experimental observation. Specifically, the
optimal parameters are given by MAP, corresponding to the
maximum of the joint posterior distribution. The MAP is
presented in Table 2 along with two other existing force fields
for liquid Ne.

The estimated Mie parameters are in agreement with the
Mick”® and structure optimized potential refinement
(SOPR)”® models. This result confirms that the radial
distribution function contains sufficient
determine the transferable force field parameters in simple
liquids.

Some interesting questions arise considering that both the
Mie fluid model and SOPR, which is a probabilistic iterative
Boltzmann method for experimental scattering data, give
similar predictions for structure-optimized potentials. The key
difference between the Bayesian optimization performed in this
work and SOPR is that the former is parametric while the latter
is nonparametric, both of which have strengths and
weaknesses. Specifically, parametric models are less complex
but may not be flexible enough to describe the subtle details of
the experimental observation. On the other hand, non-
parametric models can describe nuanced experiments but
may overfit to nonphysical features of the data. It is then

information to
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natural to wonder: Is a (1—6) Mie model adequate to describe
the experimental scattering data? Or does the scattering data
complexity necessitate the use of nonparametric iterative
potential refinement techniques like SOPR?

We can investigate the first question of model adequacy by
propagating parameter uncertainty through the LGP to
construct a distribution of RDF predictions, referred to as
the posterior predictive. The posterior predictive can be
estimated by evaluating the LGP for all MCMC samples and
computing the mean,

N
1
E[Sy ~— ) Sk (xl0,
[ Ioc(rk)] N o loc(rk t) (19)

and variance

N
VIS (r)] % Z (Siac(r)B) — E[Si(r)])° 0
i=1 20

of the resulting Qol predictions. Recall that the nuisance
parameter distribution is also sampled to account for unknown
uncertainties in the LGP surrogate model and experimental
data. The posterior predictive therefore quantifies how
accurately we know the Qol given experimental, model, and
parametric uncertainty. If the model is adequate, the Bayesian
credibility interval (4 + 20) should contain approximately 95%
of the experimental data. The posterior predictive and residuals
(gexp(r) — pu(r)) estimated for the liquid Ne RDF are shown in
Figure 3.

Clearly, the agreement between the posterior predictive
mean and the experimental data is excellent. However, the
residuals often lie outside of the 20,,, credibility interval.
These differences between the experiment and model could be
explained by a number of different factors, including errors
arising from Fourier transform truncation, background
scattering corrections, or model inadequacy, among others.
However, without rigorous uncertainty quantification on the
experimental scattering data, it is currently not possible to
determine which factor or combination of factors results in
model disagreement. We argue that this knowledge gap
necessitates rigorous UQ/P studies on scattering data as well
as iterative potential refinement methods. Combining these
approaches with Bayesian inference on molecular dynamics
models could then shed light on what physical interactions can
be learned from scattering experiments.

In summary, we have shown that an LGP surrogate model
enables rapid and accurate uncertainty quantification and
propagation with Bayesian inference. We then showed how the
posterior distribution is an indispensable tool to learn subtle
relationships between model parameters, identify how
important each model parameter is to describe the outcome
of experiments, and quantify our degree of belief that our
model adequately describes our observations. The power of
Bayesian inference is evident.

B CONCLUSIONS

We have shown that local Gaussian process surrogate models
trained on an experimental RDF of liquid neon improves the
computational speed of Qol prediction 1,760,000-fold with
exceptional accuracy from only 960 training simulations. The 3
orders-of-magnitude evaluation time speed-up for a local
versus standard Gaussian process was shown to accelerate
Bayesian inference without the need for advanced sampling

techniques such as on-the-fly learning. Furthermore, since the
LGP linearly scales with the number of output Qols,
significantly higher speed-ups are expected for more complex
data, such as infrared spectra or high resolution scattering
experiments, or for multiple data sources simultaneously (e.g.,
scattering, spectra, density, diffusivity, etc). We conclude that
local Gaussian processes are an accurate and reliable surrogate
modeling approach that can accelerate the Bayesian analysis of
molecular models over a broad array of complex experimental
data.
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