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Abstract
The increasing availability of genomic resequencing data sets and high-quality reference genomes across the tree of 
life present exciting opportunities for comparative population genomic studies. However, substantial challenges pre-
vent the simple reuse of data across different studies and species, arising from variability in variant calling pipelines, 
data quality, and the need for computationally intensive reanalysis. Here, we present snpArcher, a flexible and highly 
efficient workflow designed for the analysis of genomic resequencing data in nonmodel organisms. snpArcher pro-
vides a standardized variant calling pipeline and includes modules for variant quality control, data visualization, vari-
ant filtering, and other downstream analyses. Implemented in Snakemake, snpArcher is user-friendly, reproducible, 
and designed to be compatible with high-performance computing clusters and cloud environments. To demonstrate 
the flexibility of this pipeline, we applied snpArcher to 26 public resequencing data sets from nonmammalian verte-
brates. These variant data sets are hosted publicly to enable future comparative population genomic analyses. With 
its extensibility and the availability of public data sets, snpArcher will contribute to a broader understanding of gen-
etic variation across species by facilitating the rapid use and reuse of large genomic data sets.
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Introduction
In the past decade, rapidly declining sequencing costs have 
led to a dramatic expansion in the availability of genomic 
resequencing data sets in diverse organisms, fueling a wide 
range of novel insights, including the prevalence of adap-
tive introgression between species (Huerta-Sánchez et al. 
2014; Lamichhaney et al. 2015; Jones et al. 2018), the mo-
lecular basis of repeated local adaptation (Jones et al. 
2012; Hill et al. 2019; Wooldridge et al. 2022), and the com-
plex demographic histories of humans (Nielsen et al. 2017; 
Fan et al. 2023) and animals of conservation relevance 
(Robinson et al. 2018). In parallel, rapidly expanding efforts 
to generate high-quality reference genomes across the 
Tree of Life (Rhie et al. 2021; Lewin et al. 2022) are poised 
to empower population genetic inference across a wide di-
versity of organisms. The massive accumulation of existing 
genomic data sets facilitated by these advances can enable 
broad comparisons between diverse populations and 

uncover generalized principles that may explain processes 
that generate diversity across life. These questions include 
the determinants of molecular variation among species 
(Romiguier et al. 2014; Corbett-Detig et al. 2015; Buffalo 
2021) and indirect estimates of the rates of loss of genetic 
variation among populations (Exposito-Alonso et al. 2022).

However, despite the rapid increase in accessibility of 
public sequencing data from diverse organisms, compara-
tive population genetics and reuse of public data remain 
challenging for several reasons. In the absence of standar-
dized variant calling pipelines for nonhuman species 
(Regier et al. 2018), computational batch effects intro-
duced by differences in reference choice, alignment, and 
variant calling algorithms complicate efforts to jointly ana-
lyze existing variant calls across populations and species 
(Lek et al. 2016; Jia et al. 2020; Breton et al. 2021). 
Considerations must also be given to data quality prior 
to data processing, particularly in cases of low coverage 
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(Lou et al. 2021), and workflows must be flexible to accom-
modate these considerations. Because these computation-
al and algorithmic choices can impact downstream 
analysis (Kulkarni and Frommolt 2017), comparative pro-
jects often must reanalyze raw data to produce compar-
able data sets, which can be computationally expensive.

Extensible, reproducible bioinformatic pipelines can 
help address these challenges, to facilitate both primary 
analysis of complex tasks such as variant calling and also al-
low for consistent reanalysis (Wratten et al. 2021). While 
reproducible workflows have had a major impact on hu-
man population genetics (Chen et al. 2022), the need for 
significant expertise to adapt pipelines optimized for hu-
man genetics to diverse species is a major technical hurdle 
for many researchers. Additionally, resequencing data sets 
are increasingly rapidly in scale (Ellegren 2014), driving a 
need for workflows optimized for computational efficiency 
and flexibility to be used across a variety of compute re-
sources, including cloud resources that eliminate the 
need for costly on-site infrastructure (Mangul et al. 2019).

Due to the popularity and need for efficient and repro-
ducible workflows, several solutions have already been 
proposed for variant calling pipelines (Czech and 
Exposito-Alonso 2022; Cullen and Friedenberg 2023). 
Here, we present snpArcher, a reproducible workflow 
for data set acquisition, variant calling, quality control 
(QC), and downstream analysis that is optimized for 
nonmodel organisms and comparisons across data 
sets (available at https://github.com/harvardinformatics/ 
snpArcher). snpArcher implements a combination of sev-
eral notable features not included in other existing solu-
tions that address the challenges presented by the 
expanding scale of comparative population genomic stud-
ies. First, our workflow is optimized for nonmodel species, 
which often lack gene annotations, known variant sites, 
and other genomic information typically required for 
human-optimized pipelines. Second, we take advantage 
of the huge compute power available through cloud re-
sources and large high-performance computing (HPC) 
clusters by highly parallelizing the workflow’s variant call-
ing step and thus greatly reducing analysis time. Finally, we 
designed snpArcher to be modular and easily extended. By 
providing module contribution guidelines and example 
analysis modules, we hope that users will be able to de-
velop and contribute their own modules. This will enrich 
the snpArcher ecosystem and cater to a diverse range of 
genomic analyses.

To enable rapid analysis of a growing set of variant calls 
created in a functionally equivalent way, we apply this 
workflow to reanalyze public sequencing data from 26 fo-
cal species of nonmammalian vertebrates and make the re-
sulting variant calls available for public use. Furthermore, 
we provide examples of analysis and visualization modules, 
and we use these to exemplify and enumerate a suite of 
criteria for future module contributions to this project. 
This new and immediately available toolset will enable 
highly reproducible comparative population genomic ana-
lyses for a broad range of taxa.

Results
Overview of snpArcher
We developed snpArcher, a comprehensive workflow for 
the analysis of polymorphism data sampled from nonmo-
del organism populations (Fig. 1). This workflow accepts 
short-read sequence data and a reference genome as input 
and ultimately produces a filtered, high-quality variant call 
format (VCF) genotype file for downstream analysis. It also 
accepts as input accession numbers for reads and refer-
ence genome, which are then automatically downloaded 
from public repositories. We largely follow the Genome 
Analysis Toolkit (GATK) best practices (Van der Auwera 
et al. 2013) to map reads to a reference genome, call 
individual-level variants, generate population-level con-
sensus genotypes, apply filters, and generate QC metrics. 
This workflow is implemented as a Snakemake (Mölder 
et al. 2021) workflow, which enables scalable, reproducible, 
and efficient analysis of large-scale genomic data sets. 
Snakemake manages all aspects of running the workflow, 
such as the installation of software dependencies, creation 
of output directories, and execution of workflow steps, so 
that the user input required is minimal. To use snpArcher, 
users need only edit a configuration file to customize 
workflow settings and define their samples in a table. 
With these files in place, running snpArcher is as simple 
as running one command.

Example Data Sets Processed Using snpArcher
To thoroughly evaluate snpArcher and to provide a data-
base of comparative population genomic data sets, we ran 
the workflow on 26 public resequencing data sets 
(supplementary table S1, Supplementary Material online). 
We identified 13 bird, 12 fish, and 1 reptile data sets that fit 
our criteria of whole-genome, multisample, moderate se-
quencing effort (see Materials and Methods) and have a 
reference genome available. Data sets vary by number of 
individuals from 6 to 306, all with a mean depth of cover-
age of at least 5. We recovered between 3.34 million and 
83.83 million total single nucleotide polymorphisms 
(SNPs) on genomes ranging from 348 Mb to 1.6 Gb 
(supplementary table S1, Supplementary Material online). 
Nucleotide diversity (Watterson's θ) varies by an order of 
magnitude across these species, from 0.00126 in the cichlid 
Amphilophus citrinellus to 0.01568 in the zebra finch 
Taeniopygia guttata.

Benchmarking
Impact of Sequencing Depth
To evaluate the performance of snpArcher, we selected 10 
individuals from a high-quality resequencing data set of ze-
bra finch T. guttata (Singhal et al. 2015) and reanalyzed 
them using a range of approaches. First, we investigated 
the impacts of low sequencing depth by subsampling the 
initially high-depth data set (16.7× to 50.2× coverage) to 
uniform reduced coverage data sets (4×, 10×, and 20×). 
We ran each data set using the “low-coverage” and 
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“high-coverage” configurations of the pipeline; the “low- 
coverage” configuration alters certain GATK parameters 
to improve SNP calling in low-coverage data sets. After fil-
tering for SNPs that passed all filters, we genotyped about 
40, 55, and 50 million SNPs in the 4×, 10×, and 20× data 
sets, respectively, with about 1 million more SNPs recov-
ered from the low-coverage pipeline at 4× coverage com-
pared with the high-coverage version. There were 
negligible differences for the 2 pipeline versions at 10× 
and 20× (Fig. 2a). Assuming the 20× high-coverage pipe-
line produced the truth set of SNPs, the 4× data set was 
missing 35.6% (high-coverage pipeline) or 33.8% (low- 
coverage pipeline), and the 10× data set was missing 
10.3% (high-coverage pipeline) or 11.3% (low-coverage 
pipeline) of SNPs. CPU time to run the low-coverage ver-
sion of the pipeline was substantially higher compared 
with the high-coverage version and increased with 
sequencing depth (Fig. 2b). The percentage of heterozy-
gous sites per individual was substantially reduced at low 
coverage, especially when using the high-coverage para-
meters, and slightly reduced at 10× coverage (Fig. 2c). 
Individual fixation indices measuring excess homozygosity 
(F-statistics) were correspondingly higher at lower sequen-
cing depths, especially with the high-coverage parameters 
(Fig. 2d), indicating more heterozygous dropout. While 
heterozygous dropout is a substantial problem at low 
coverage (Nevado et al. 2014; Benjelloun et al. 2019), par-
ameter tuning can partially mitigate its impact on geno-
type calls, at the cost of longer compute times.

Parallelization
We assessed the effectiveness of our parallelization meth-
od for variant calling with snpArcher on the 10× zebra 
finch data set by comparing our scatter-by-Ns approach 
to the traditional scatter-by-chromosome approach. 
Given that GATK HaplotypeCaller has limitations in effi-
ciently utilizing multiple CPU cores, optimal parallelization 
requires a scatter–gather technique, processing each 

chromosome independently (Heldenbrand et al. 2019). 
However, as runtime scales with genomic interval size 
(Fig. 3a), using this approach will still result in potentially 
long execution times, especially for organisms with very 
large chromosomes. To address this, we employ a strategy 
of partitioning chromosomes at Ns (assembly gaps), creat-
ing smaller genomic intervals that can be processed in par-
allel. This approach shortens the run time per individual 
(Fig. 3b), as more intervals can be concurrently processed. 
Although the effectiveness of this approach is dependent 
on available compute resources, the wide availability of 
HPC clusters and affordable cloud compute resources ren-
ders this constraint generally acceptable.

Analysis Modules
QC and Data Visualization
An important component of any pipeline is QC and data 
visualization outputs. We have implemented a module 
in snpArcher, run by default, that produces an interactive 
QC dashboard, which can be used to evaluate individual- 
level sequencing quality (Fig. 4). This dashboard generates 
10 figures that allow visualization of basic summary statis-
tics relating to population structure, batch effects, sequen-
cing depth, genetic relatedness, geography, and admixture. 
For speed, most of these summaries are based on a random 
sample of 100,000 SNPs from across the genome. Four pa-
nels at the top of the dashboard provide high-level sum-
maries of the full variant data set (i.e. without random 
downsampling to 100,000 SNPs).

The use case for these simple visualizations is to quickly 
evaluate potential biases relating to individual-level se-
quencing variation. For example, in the principal compo-
nent analysis (PCA) shown in the upper left panel of 
Fig. 4, it is possible to identify outliers that may represent 
cryptic genetic variation, batch effects, or otherwise prob-
lematic (or interesting) samples. By default, we identify 
3 clusters based on PC1 and PC2 with k-means clustering 
(modifiable in the config file), and the remainder of the 
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plots are colored according to these three clusters. Several 
metrics allow for the user to identify potential sequencing 
artifacts, for example by looking for associations between 
sequencing depth and PCA cluster (Fig. 4, upper right 
panel) or reference bias (Fig. 4, lower middle panel). An 
interactive heatmap of relatedness facilitates a rapid iden-
tification of close relatives in the data set that may have 
otherwise been overlooked. Finally, 2 maps project spatial 
data as an interactive plot and provide a first-pass visual-
ization of the PCA clusters in space.

Postprocessing
By default, snpArcher produces a raw VCF file with only 
basic filters annotated. However, after viewing the 
individual-level QC visualizations as part of the QC mod-
ule, users may wish to remove certain individuals from 
the analysis and apply additional filters on called variants. 
Additional postprocessing steps are implemented in a 
module, which runs if the user adds a column to the sam-
ple sheet header “SampleType.” The postprocessing mod-
ule will exclude from the filtered VCF any sample with 
“exclude” as the SampleType, retaining all other indivi-
duals. Following this sample filtering, this module imple-
ments additional user-configurable filters. By default, the 
postprocessing workflow removes sites that fall into re-
gions of low mappability, regions with excess coverage, 

and regions with insufficient coverage (defined by the con-
figuration file) and then removes sites with a minor allele 
frequency of <0.1 or missingness of >75%. These thresh-
olds can be configured by the user. Finally, 2 clean variant 
files are produced for SNPs and indels separately.

MK Tests
To demonstrate the potential to extend snpArcher to in-
corporate downstream analysis, we developed a module 
to evaluate positive selection among a sample of indivi-
duals from a population (the ingroup) as well as one or 
more diverged samples (the outgroup) by computing 
MacDonald–Kreitman (MK) tests for each gene 
(McDonald and Kreitman 1991). This module is triggered 
when samples are annotated as “ingroup” and “outgroup” 
using the SampleType column in the sample sheet. 
Samples that do not have either designation will be ex-
cluded from the MK tests.

To facilitate the development of this module, we wrote 
a standalone Python program, degenotate (https://github. 
com/harvardinformatics/degenotate), that can retrieve 
coding sequences from an annotated genome, compute 
degeneracy across the genome, and calculate MK tables; 
degenotate can be installed via conda and run independ-
ently but is also incorporated into snpArcher's MK mod-
ule. Briefly, degenotate assesses whether SNPs in the 

Fig. 2. Benchmarks for the 10 individual zebra finch coverage and pipeline testing. For each coverage data set (4×, 10×, 20×), we ran the low- 
coverage (LC) and high-coverage (HC) version of the pipeline, and calculated a) the overall number of SNPs following standard SNP filtering, 
b) the hours of CPU time to run HaplotypeCaller for each individual, c) the percentage of heterozygous sites for each individual, and d) the 
F-statistic calculated for each individual.
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postprocessed VCF encode for polymorphic sites within 
the ingroup or fixed differences between the ingroup 
and the outgroup. It further classifies whether each SNP, 
whether polymorphic or fixed, is synonymous or nonsy-
nonymous. Note that certain assumptions, detailed in 
the Materials and Methods, must be made about how to 
handle certain rare edge cases when doing this.

Based on these outputs, the MK module (or standalone 
degenotate) creates tables that are organized by gene and 
can be analyzed using the standard MK test statistic, using 
various extensions (Rand and Kann 1996; Stoletzki and 
Eyre-Walker 2011), or in aggregate to investigate genome- 
wide signatures of natural selection (Messer and Petrov 
2013). This module will enable rapid application of 
population-genomic tests of selection (Fig. 5) and, in com-
bination with the database of processed population data 
sets, provides a framework for comparing rates of adapta-
tion to a range of species. Intriguingly, 3 collagen genes 
with potential roles in tooth and spine development across 
vertebrates (Jonsson et al. 1998; Bosse et al. 2017) are among 
the strongest outliers (Fig. 5a) and may be involved in the 
unique pufferfish morphology (Thiery et al. 2017).

UCSC Genome Browser Track Data Hub Generation
To facilitate downstream data exploration and as an ex-
ample of the module development components of this 
work, we developed a module to generate UCSC 
Genome Browser track files to explore population 

variation data (see Materials and Methods). Briefly, this 
module computes and generates genome browser tracks 
for traditional population genomic summary statistics 
such as windowed estimates of Tajima's D, SNP density, 
pairwise nucleotide diversity (π), minor allele frequency, 
and SNP depth. The Genome Browser tracks allow for ra-
pid analysis of common population genomic statistics 
along with other available genomic feature tracks in an 
easy-to-access and shareable format (Fig. 6).

Discussion
The production of high-quality and accurate genomic vari-
ation data sets for nonmodel species can be a challenging 
task, especially with the ever-increasing volume of genom-
ic data that are being produced. The massive scale of 
population-scale whole-genome sequencing data sets pre-
sents significant hurdles in data management, processing, 
and analysis. In this manuscript, we introduce snpArcher, a 
powerful and user-friendly Snakemake workflow that ad-
dresses these challenges and enables the production of 
reliable and reproducible variation data sets. Crucially, 
our pipeline is parallelized, efficient, and scales well even 
up to modern population-scale data sets. snpArcher also 
provides an ideal tool for reanalyzing population-level 
data sets that are available on public databases and pro-
vides a consistent framework for comparative analyses 
across different data sets. By offering a reproducible and 
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Fig. 4. Preview of QC dashboard for evaluating individual sequencing quality metrics. Shown here are genomic PCA, correlations between PCs 
and sequencing depth, relationship between missingness and SNP depth, percent mapped reads and SNP depth, and FI (inbreeding coefficient) 
and PC1. A complete interactive example can be found online (https://erikenbody.github.io/snpArcher/GCA_013435755.1_final_qc.html).
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well-documented analysis pipeline, snpArcher ensures the 
reliability and consistency of results, empowering research-
ers to spend less time on complex data and workflow man-
agement and more time on analysis and discovery.

Extensibility of snpArcher
A key goal in the design of the snpArcher pipeline is to al-
low extensibility for subsequent analyses after the primary 
variant calling. We implement this using Snakemake mod-
ules, which allow additional rules to easily extend the main 
pipeline. To be added to snpArcher, a module only needs a 
way to indicate that it should be run, such as a flag in the 
config file or a column in the sample sheet, and for output 
files from snpArcher to be linked to input files of the 
workflow. As long as these constraints are met, any 
user-defined Snakemake workflow can be imported as a 
module. Furthermore, to enable seamless integration of 
user-developed modules, we define a set of guidelines for 
users to follow when developing and contributing mod-
ules (https://snparcher.readthedocs.io/en/latest/modules. 
html#module-contribution-guidelines). Finally, we present 
several modular extensions of snpArcher here, but we 
hope also that user-developed modules will grow the set 
of tools linked to snpArcher in order to facilitate diverse 
analysis.

Challenges and Prospects for Reuse of Public Data
Publically available data sets provide opportunities for 
comparative genomics and also present limitations inher-
ent to data reuse. Metadata associated with genomic 
data is often fragmented or missing, meaning crucial infor-
mation for QC of reusing data is not always available 
(Gonçalves and Musen 2019; Toczydlowski et al. 2021). A 
key function of the snpArcher pipeline is to produce me-
trics to evaluate potential biases in the data set for com-
mon population genomic issues. For example, pedigree 
information is typically not available for wild populations 
and likely to be missing from public data sets, but close re-
latives may bias many common population genomic ana-
lyses (Hendricks et al. 2018). Our QC module reports 
relatedness information, allowing rapid identification of re-
lated individuals. In the data sets we analyzed, 14% of all 
data sets considered included identical individuals by 
genotype and 47% of data sets included at least 1 first- 
degree relative in it. At the population scale, undetected 
population structure can bias population and quantitative 
genomic analysis, and the PCA and admixture reports in 
the QC module will give a first-pass assessment of known 
or unknown structuring. Sequencing data on public data-
bases can contain contamination, either from other indivi-
duals or other species. These can be identified using 
measures of inbreeding (i.e. low inbreeding values may 

Fig. 6. Example genome browser trackhub created by the trackhub module. Tracks include minor allele frequency, noncallable sites, pairwise 
nucleotide diversity (π) in 1-kb bins, SNP depth, SNP density in 1-kb bins, Tajima's D in 1-kb bins, and a VCF track.
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suggest excess heterozygosity and cross-contamination) 
that are reported in the QC module. Outliers in sequencing 
depth, missingness, and mapping rate are all quickly iden-
tifiable using the interactive QC plots. Finally, data quality 
at short-scale genomic intervals can be visualized using the 
genome browser outputs, for example to evaluate sequen-
cing depth and genetic diversity around regions of interest.

Together, we expect these improvements to variant 
calling for the average user will enable users to focus on 
analyzing their data, rather than processing it. This is 
made easier by the extensibility of snpArcher, where it is 
relatively simple to add on new analyses to the workflow. 
The standardization inherent to the workflow will further 
improve our ability to reuse large and unwieldy publically 
available data sets. We hope the ease of use and flexibility 
of the snpArcher workflow will enable a more rapid and 
reproducible workflow for researchers generating large 
population genomic data sets.

Materials and Methods
Configuration
Core workflow options in snpArcher are controlled by a 
YAML configuration file. This file controls options such 
as module selection, output prefix for final files, and tem-
porary storage location. For complete instructions on set-
ting up snpArcher, please refer to our documentation: 
https://snparcher.readthedocs.io/en/latest/setup.html.

In order to determine what outputs to create, 
snpArcher requires users to create a sample sheet file. 
This comma-separated file contains the required sample 
metadata about the user's samples in order to run the 
workflow. At a minimum, the snpArcher pipeline requires 
that each sample has a unique sample name, a reference 
genome accession or a path to a fasta file, and a 
Sequence Read Archive (SRA) accession or path to 2 
paired-end fastq files (Table 1). We include with 
snpArcher a simple script, written in Python, to facilitate 
the generation of sample sheets from local data sets, and 
we include examples of how to create snpArcher sample 
sheets from SRA run tables in R.

Computer Resources and Cloud Configuration
Variant calling for large population-level sequencing data 
sets is computationally intensive and requires substantial 
computational resources to run. While it is possible to 
run snpArcher on a laptop for small data sets, such as 
the test data set included in the workflow or single samples, 
we have optimized it to run on HPC clusters and cloud 
compute platforms. We have tested snpArcher extensively 
on SLURM-based high-performance clusters and on the 
Google Cloud Life Sciences platform, and following 
Snakemake best practices, we provide configurable profiles 
that can be enabled depending on which computational 
resources you will use. The SLURM profile and associated 
bash script provide the basic configuration for running 
on a SLURM cluster, but the profile will need to be adjusted 
according to the configuration of the user's specific system.

To run snpArcher on the Google Cloud Platform (GCP), 
the user must have a Google account linked to a billing ac-
count where charges for computational resources can be 
made. This Google configuration is set up outside of 
snpArcher, on the command line, and on the Google 
Cloud Console. Once this is set up in the local environ-
ment, snpArcher can be directed to run on Google 
Cloud instances using the GCP profile provided with the 
workflow. The user can define how many instances to cre-
ate and also define the size of required resources in the re-
sources.yaml file included in the workflow. The GCP profile 
also is configured to exploit preemptible instances, which 
are short-term compute instances that are offered at con-
siderable cost savings, but can only run for 24 h and be 
bought out by other GCP users. The current defaults 
have been optimized for data sets of genome size of 
∼2 Gb, 150 individuals, and 10× sequencing depth with 
an estimated cost of $1/sample when a Sentieon license 
is available. Larger or smaller projects may need to tweak 
these resources to optimize cost/saving benefits best and 
prevent the preemption of long-running data sets.

Data Acquisition and Preprocessing
The first step of the workflow is the acquisition and prepro-
cessing of raw sequence data and reference genomes. For 
each sample, 2 paired-end fastq files are required. The default 
behavior is to retrieve sequencing data from National 
Center for Biotechnology Information (NCBI) based on an 
SRA run accession (Leinonen et al. 2011) using prefetch. 
For various reasons, prefetch may fail. If this happens, ffq 
(Gálvez-Merchán et al. 2022) is used to generate a FTP link 
for the accession that is downloaded. Alternatively, users 
can supply paths to fastq files in the sample sheet, in which 
case snpArcher will operate on those locally stored files. 
Next, sequencing adapters are trimmed from the raw fastq 
files with fastp (Chen et al. 2018), and sequences with greater 
than 40% of bases with a phred score below Q15 were re-
moved. Reference genomes are retrieved using the NCBI 
data sets tool (Sayers et al. 2021) if an NCBI accession is 
specified; otherwise, a path to the reference fasta must be 
included in the sample sheet. Once available, the reference 
fasta is processed using bwa index (Li and Durbin 2009), 
samtools faidx, and samtools dict (Li et al. 2009) to produce 
the indexes necessary for downstream processes.

Read Mapping
After the raw data are retrieved and preprocessed, the 
workflow aligns sequencing reads to the reference genome 

Table 1 An example of the minimum required sample metadata to run 
snpArcher

BioSample refGenome Run

SAMEA3532857 GCF_003957565.2 ERR1013161
SAMEA3532860 GCF_003957565.2 ERR1013164
SAMEA3532862 GCF_003957565.2 ERR1013166
SAMEA3532864 GCF_003957565.2 ERR1013168
SAMEA3532865 GCF_003957565.2 ERR1013169
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using bwa mem (Li 2013) to produce per sample BAM files. 
For each sample, read groups are appended based on the 
sample sheet specification. We mark PCR duplicates using 
sambamba markdup (Tarasov et al. 2015) to exclude these 
technical artifacts from downstream analysis. Alignment 
statistics are calculated per sample using samtools flagstat.

Mappability and Coverage
Additionally, mappability statistics are computed on the 
reference genome using genmap (Pockrandt et al. 2020). 
Per-site coverage statistics are optionally computed and 
aggregated using d4tools (Hou et al. 2021), mosDepth 
(Pedersen and Quinlan 2018), and bedtools (Quinlan and 
Hall 2010). Mappability statistics for the reference genome, 
combined with per-site coverage statistics, can be used to 
generate a bed file delineating callable regions of the gen-
ome based on user-configurable thresholds.

Variant Calling
We use GATK (McKenna et al. 2010) for individual variant 
calling and joint genotyping. First, we employ GATK 
HaplotypeCaller to call SNPs and indels in each sample. 
If the user has selected the low-coverage configuration, 
we set the --min-pruning and –min-dangling-branch-length 
options equal to 1 (Hui et al. 2020); otherwise, defaults are 
used. Next, individual variant calls are aggregated into an 
efficient data structure via GATK GenomicsDBImport. 
This step is necessary to enable large cohort joint genotyp-
ing. Then, we use GATK GenotypeGVCFs to perform joint 
genotyping and produce a multisample VCF, retaining 
only high confidence variants. This approach is broadly 
adapted by the field as the standard for variant calling, 
as evidenced by nearly 20,000 citations of the flagship 
GATK paper to date. Finally, we apply filter annotations 
to the VCF according to the GATK best practices (Van 
der Auwera et al. 2013) using GATK VariantFiltration.

Parallelization
Processing even moderately sized data sets can be excep-
tionally slow with GATK. One solution is to parallelize 
each GATK step by splitting the reference genome into 
processing intervals for both the individual and joint geno-
typing steps. Optimally, this interval creation step divides 
the genome into shorter subchromosomal (or subscaffold) 
pieces so that each interval can finish in a shorter amount 
of time. In order to optimize runtime, we use a two-step 
interval creation process. We generate an initial set of call-
ing intervals using the ScatterIntervalsByNs tool to divide 
the reference genome at large blocks of Ns. This is import-
ant because SNP calling with GATK Haplotype Caller is 
based on local reassembly, which can be adversely affected 
if, for example, reads that map across an interval boundary 
are discarded. However, for many reference genomes, this 
can result in thousands of intervals, which leads to ineffi-
cient workflows as the time to assess which jobs need to 
run becomes prohibitive. To create a balanced set of inter-
val lists, we use the GATK SplitIntervals tool using the 

option <-mode BALANCING_WITHOUT_INTERVAL_ 
SUBDIVISION>, which creates a set of interval lists 
(up to a maximum user-specified value) that all have 
approximately equal numbers of bases. For the joint 
genotyping step, each site is treated independently, so we 
can gain efficiency by creating additional intervals without 
the concern of splitting adjacent regions of the genome. 
Thus, for the second set of intervals, we use the option 
<-mode INTERVAL_SUBDIVISION> to produce a scalable 
number of intervals that can divide adjacent regions. 
These intervals are then used to parallelize GATK 
GenomicsDBImport for efficient multisample calling.

Sentieon Accelerated Variant Calling
In addition to the BWA/GATK mapping and variant calling 
pipeline, we include a Sentieon (Kendig et al. 2019) work-
flow. This software package is proprietary and produces 
identical results as GATK but has been much more effi-
ciently parallelized, resulting in substantially reduced com-
pute needs. The Sentieon workflow uses Sentieon's drop-in 
replacement tools for mapping, PCR duplicate removal, 
metrics, and variant calling. The use of this workflow is a 
user-specified option in snpArcher and requires a software 
license from Sentieon that can be specified in the config 
file.

Quality Control
snpArcher includes an optional QC module that aggre-
gates various statistics from the workflow and produces 
preliminary analyses and plots in an interactive HTML 
file. We estimate the per-individual variant metrics 
SNP-depth, individual missingness, heterozygosity, and 
transition/transversions, using vcftools v0.1.16 (Danecek 
et al. 2011). We next generate a small subset of variant 
data for calculating several preliminary population genom-
ic statistics. In order to generate this pruned data set, we 
use bcftools v1.12 (Danecek et al. 2021) to first remove 
all SNPs not passing the filters described above and remove 
indels, sites with minor allele frequency <0.01 (i.e. sites pre-
sent in only 1% of the population), sites with >75% missing 
data, and any sites mapping to a previously annotated 
mitochondrial genome. We next calculate how large of a 
window to prune this filtered data set to retain 100k vari-
ant sites (i.e. WindowSize = NSNPs/100,000) and use 
bcftools to select 1 SNP at random per window. This 
pruned variant file of 100k SNPs is used for all downstream 
QC calculations; however, several basic summaries (total 
number of SNPs, approximate theta, and number of indi-
viduals) are calculated from the full variant file and pre-
sented in the header of QC HTML file.

We used Plink2 v2.00a2.3 (Chang et al. 2015; Purcell and 
Chang 2023) to perform genome PCA (Galinsky et al. 
2016) and a KING relatedness matrix (Manichaikul et al. 
2010). We also generate a distance matrix using Plink v 
1.90b6.21 (Purcell et al. 2007). If geographic coordinates 
are provided, samples will be plotted on an interactive 
map. Lastly, we used admixture v1.3.0 (Alexander et al. 
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2009) to calculate admixture for k = 2 and k = 3 from the 
pruned variant file. The output of these analyses, tabula-
tions of variant files, and mapping statistics are all sum-
marized in a single interactive HTML dashboard. Briefly, 
we use R v4.1.3 (R Core Team 2022) and the following 
packages for building this summary: tidyverse v1.3.1 
(Wickham et al. 2019) for data manipulation, ggplot2 
v3.3.5 (Wickham 2016) for graphics, plotly v4.9.4.1 
(Sievert 2020) for interactive graphics, ape v5.5 (Paradis 
and Schliep 2019) and ggtree 3.2.0 (Yu et al. 2018) for 
phylogenetic tree visualization, reshape2 v1.4.4 
(Wickham 2007) for data management, and ggmap 
v3.3.0 (Kahle and Wickham 2013) for terrain maps.

Postprocessing
In order to enable users to efficiently filter individuals from 
their VCF file after initially running snpArcher, we include 
the postprocessing module. Users can trigger this module by 
marking individuals for removal using the “SampleType” 
column in their sample sheet. The postprocessing mod-
ule applies customizable filters, which by default remove 
sites in regions of low mappability and excessive or insuf-
ficient coverage (as defined in the configuration file) 
using bedtools and sites with a minor allele frequency 
of <0.1 or missingness of >75% using bcftools (after recalcu-
lating these metrics following sample removal). We also 
produce separate variant files for SNPs and small indels 
called by GATK.

Trackhubs
To display population genomic statistics calculated from 
the VCF generated by snpArcher, we include an optional 
module to generate a UCSC Genome Browser track data 
hub (Raney et al. 2014). At time of publication, this module 
calculates Tajima's D (Tajima 1989), SNP density, nucleo-
tide diversity (π), and allele frequency. These statistics 
are calculated using VCFtools v0.1.15 and converted to 
bigBed format using bedToBigBed (Kent et al. 2010).

Annotating Codon Degeneracy and Inferring 
Synonymous and Nonsynonymous Variants
snpArcher also includes an optional module that annotates 
the degeneracy of all coding regions in the reference genome 
and implements the classic MK test for detecting selection 
acting in coding regions within a population (McDonald 
and Kreitman 1991). Briefly, this test compares the number 
of SNPs present within the population that either change 
(nonsynonymous) or do not change (synonymous) the ami-
no acid encoded at that position. This is compared with simi-
lar counts of fixed differences in a diverged outgroup sample 
to see if and how the ratio of nonsynonymous to synonym-
ous changes differs between them. While annotating degen-
eracy and computing tables for the MK test are common 
tasks in population genetics, we are not aware of any tools 
that automate these analyses at a genome-wide scale. To fa-
cilitate the integration of this functionality into snpArcher, 
we developed a standalone tool called degenotate (https:// 

github.com/harvardinformatics/degenotate), which calcu-
lates MK tables, performs degeneracy annotation, and allows 
users to extract coding sequences from a genome by their 
degeneracy.

To implement the MK test across diverse organisms, we 
make some assumptions about how to classify polymorph-
ic and divergent sites. We consider a polymorphic site to 
be any location where at least 1 individual within the in-
group possesses a nonreference allele and divergent sites 
to be only those where none of the outgroup alleles exist 
in the ingroup. Using these definitions, it is possible for a 
site to both be polymorphic and fixed if the outgroup al-
leles are different from the alleles segregating within the 
population. For quantifying variants, we also make some 
simplifying assumptions. First, if a codon has more than 
1 variant segregating within a population (either because 
multiple positions at the codon have segregating sites or 
because 1 position has a multiallelic SNP), we treat each 
segregating variant as independent. For the outgroup, if 
there are multiple fixed differences in a single codon in 
the outgroup, we compute all possible mutational path-
ways between the ingroup codon and the outgroup codon 
and take the average number of nonsynonymous and syn-
onymous changes across these paths, weighted equally. 
This means we can have fractional numbers of synonym-
ous and nonsynonymous divergence. We also implement 
calculations of the neutrality index (Rand and Kann 
1996) and direction of selection (Stoletzki and 
Eyre-Walker 2011) based on the MK test results.

Empirical Data Sets
In order to test our pipeline and provide a robust set of 
consistently processed variant calls for downstream appli-
cations, we ran snpArcher on a set of publicly available 
resequencing data sets (supplementary table S1, 
Supplementary Material online). The resulting VCF and 
genomic VCF files can be accessed via Globus (Foster 
2011; Allen et al. 2012) in the “Comparative Population 
Genomics Data” public collection (link available at 
https://snparcher.readthedocs.io/en/latest/datasets.html). 
Of the data sets processed, 13 are multispecies samples 
mapped to a common reference genome, 7 are primarily 
a single species but with 1 or 2 outgroup samples, and 6 
are purely a single species. We focus on nonmammalian 
vertebrates, as high-quality reference genomes are fre-
quently available in this group, but genome sizes are man-
ageable to limit the computational demands needed to 
process many large population samples. In total, we used 
the following 26 data sets: A. citrinellus (Kautt et al. 
2020), Anas platyrhynchos (Zhou et al. 2018; Feng et al. 
2021), Anolis carolinensis (Bourgeois et al. 2019), 
Astatotilapia calliptera (Malinsky et al. 2015, 2018; Weber 
et al. 2021), Athene cunicularia (Mueller et al. 2018; Feng 
et al. 2020), Chaenogobius annularis (Hirase et al. 2021), 
Clupea harengus (Feng et al. 2017; Lamichhaney et al. 
2017; Han et al. 2020), Corvus cornix (Poelstra et al. 2014; 
Vijay et al. 2016), Coturnix japonica (Wu et al. 2018; Liu 
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et al. 2019), Egretta garzetta (Li et al. 2014; Feng et al. 2020), 
Eopsaltria australis (Gan et al. 2019), Falco peregrinus 
(Zhan et al. 2013; Gu et al. 2021), Ficedula albicollis (Burri 
et al. 2015; Kardos et al. 2016; Smeds et al. 2016), 
Gasterosteus aculeatus (Yoshida et al. 2014, 2020; Feulner 
et al. 2015; Liu et al. 2016; Ishikawa et al. 2017; Marques 
et al. 2017; Haenel et al. 2019; Miller et al. 2019; Verta 
and Jones 2019; Kirch et al. 2021), Hippocampus comes 
(Li et al. 2021), Hirundo rustica (Schield et al. 2021), 
Hypoplectrus puella (Hench et al. 2019), Oryzias latipes 
(Spivakov et al. 2014; Ansai et al. 2021), Parus major (Qu 
et al. 2015; Laine et al. 2016), Passer domesticus (Elgvin 
et al. 2017; Ravinet et al. 2018; Runemark et al. 2018), 
Pungitius pungitius (White et al. 2015; Dixon et al. 2019), 
Sylvia atricapilla (Delmore et al. 2020), Symphodus melops 
(Mattingsdal et al. 2020), T. guttata (Singhal et al. 2015), 
Takifugu rubripes (Zhang et al. 2020), and Thunnus alba-
cares (Barth et al. 2017).

We used SRA to search for possible data sets for inclu-
sion, limiting our search space to species with (i) a refer-
ence genome and (ii) at least 1 BioProject that contains a 
minimum of 10 BioSamples sequenced to at least 5× aver-
age coverage. The resulting list was then manually curated 
to identify publications associated with each BioProject, 
excluding from further consideration data sets for which 
a publication could not be identified. We then manually as-
sessed the resulting plausible samples to identify a subset 
for further analysis. R notebooks are provided on GitHub 
that contain the code for initial and final assessments 
(https://github.com/sjswuitchik/compPopGen_ms).

Benchmarking
To investigate the impact of low sequencing depth on vari-
ant calling, we, first, subsampled the original high-depth 
data set zebra finch data set to 4×, 10×, and 20× coverage. 
We ran snpArcher on these subsampled data sets and fil-
tered the resulting VCF files by removing sites not passing 
standard filters and calculated heterozygosity statistics 
using VCFtools v0.1.15 (Danecek et al. 2011). Second, we 
assessed the effectiveness of our variant calling paralleliza-
tion (scatter-by-Ns) approach to the conventional 
(scatter-by-chromosome) approach using the 10× data 
set. We performed these benchmarking runs on 
Google Cloud compute instances, selecting the instance 
types for each rule to balance cost and runtime 
(supplementary table S2, Supplementary Material online).

Supplementary Material
Supplementary material is available at Molecular Biology 
and Evolution online.
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