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A PROOF OF THE KAHN–KALAI CONJECTURE

JINYOUNG PARK AND HUY TUAN PHAM

1. Introduction

Given a finite set X, write 2X for the power set of X. For p ∈ [0, 1], let μp be the

product measure on 2X given by μp(A) = p|A|(1 − p)|X\A|. In this paper F ¦ 2X

always denotes an increasing property, meaning that if B § A ∈ F , then B ∈ F .
We say that an increasing property F is nontrivial if F �= ∅, 2X . It is a well-known
fact that μp(F)(:=

∑

A∈F μp(A)) is continuous and strictly increasing in p for any
nontrivial increasing property F . The threshold, pc(F), is then the unique p for
which μp(F) = 1/2. In this paper, we resolve a conjecture of Kahn and Kalai [16],
reiterated by Talagrand [23], relating the threshold and the “expectation-threshold”
(definition is below).

Following [23], we say F is p-small if there is G ¦ 2X such that

(1) F ¦ 〈G〉 :=
⋃

S∈G
{T : T § S}

and

(2)
∑

S∈G
p|S| ≤ 1/2.

We say that G is a cover of F if (1) holds. The expectation-threshold of F , q(F), is
defined to be the maximum p such that F is p-small. Observe that q(F) is a trivial
lower bound on pc(F), since

(3) μp(F) ≤ μp(〈G〉) ≤
∑

S∈G
p|S|.

Note that, with Xp the random variable whose distribution is μp, the right-hand
side of (3) is E[|{S ∈ G : S ¦ Xp}|].

Given an increasing property F , let �0(F) be the size of a largest minimal element
of F , and let �(F) = max(�0(F), 2). Our main theorem resolves the following
conjecture of Kahn and Kalai [16].

Theorem 1.1 (The Kahn-Kalai Conjecture). There is a universal constant K such

that for every finite set X and nontrivial increasing property F ¦ 2X ,

pc(F) ≤ Kq(F) log �(F).
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236 JINYOUNG PARK AND HUY TUAN PHAM

Roughly speaking, Theorem 1.1 says that for any increasing property, the thresh-
old is never far from its trivial lower bound given by the expectation threshold.

Thresholds have been a central subject in the study of random discrete structures
since its initiation by Erdős and Rényi [6, 7], the study of which has flourished in
random graph theory, computer science [17, 23], and statistical physics [12]. The
definition of the threshold above is finer than the original Erdős-Rényi notion,
according to which p∗ = p∗(n) is a threshold for F = Fn if μp(F) → 0 when
p � p∗ and μp(F) → 1 when p � p∗. That pc(F) is always an Erdős-Rényi
threshold follows from [4], in which it was observed that every increasing F admits
a threshold in the Erdős-Rényi sense. While much work has been done identifying
thresholds for specific properties (see [3, 14]), another intensively studied direction
in the study of thresholds is “sharpness” of thresholds: we refer interested readers
to [10, 11].

To emphasize the strength of Theorem 1.1, we point out that, in [16], Kahn and
Kalai wrote that “It would probably be more sensible to conjecture that it is not
true.” The expectation threshold is the most naive (and often the easiest) approach
to estimating the threshold, and Theorem 1.1 says that for every nontrivial increas-
ing property, its threshold is only within a logarithmic factor of this naive estimate.
In particular, many important works in this area have been on thresholds for spe-
cific properties, and Theorem 1.1 easily implies some of those very hard results
on the location of thresholds, for example, the appearance of perfect matchings in
random r-uniform hypergraphs in seminal work of Johansson, Kahn and Vu [15],
and the appearance of a given bounded degree spanning tree in a random graph in
recent work of Montgomery [19] (we note that Montgomery shows a stronger “uni-
versality” result that above the correct threshold we actually have containment of
all bounded degree spanning trees, which is not recoverable from Theorem 1.1). For
more discussion on the significance and applications of this theorem, we refer the
readers to [8], in which a weaker fractional relaxation of Theorem 1.1 was proved.

Two recent breakthroughs related to Theorem 1.1 are the significant progress on
the Erdős-Rado sunflower conjecture by Alweiss, Lovett, Wu and Zhang [1] and the
resolution of the fractional Kahn-Kalai conjecture by Frankston, Kahn, Narayanan
and the first author [8]. The main lemma of [1] gives a sufficient condition to guar-
antee that Xp likely satisfies an increasing property, and is shown via a beautiful
argument inspired from ideas in Razborov’s proof [21] of H̊astad’s switching lemma
[13]. In [8], the authors observed the relevance of the developments in [1] to thresh-
olds and used an improved version of the argument in [1], achieved via separating
typical “non-pathological” and atypical “pathological” cases, to establish Theorem
1.2. Theorem 1.2 is a sharper version of the main lemma of [1] and a weaker version
of Theorem 1.1.

We say F is weakly p-small if there is a λ : 2V → R
+ (:= [0,∞)) such that

(4)
∑

S⊆F

λS ≥ 1 for all F ∈ F

and

(5)
∑

S

λSp
|S| ≤ 1/2.

Note that if we restrict the range of λ to {0, 1}, then we would recover the definition
of the p-small property. Define qf (F) = max{p : F is weakly p-small} to be the
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A PROOF OF THE KAHN–KALAI CONJECTURE 237

fractional expectation-threshold of F . It follows from the definitions that

(6) q(F) ≤ qf (F) ≤ pc(F),

and the main theorem of [8] resolves the following conjecture of Talagrand [23,
Conjecture 8.5], which is a weakening of Theorem 1.1.

Theorem 1.2. There is a universal K such that for every finite X and nontrivial

increasing F ¦ 2X ,

pc(F) < Kqf (F) log �(F).

Talagrand [23, Conjecture 6.3] also conjectured that the parameters q and qf are
in fact always of the same order:

Conjecture 1.3. There is an absolute constant L > 0 such that, for any nontrivial

increasing F , q(F) ≥ qf (F)/L.

This of course implies equivalence of Theorems 1.1 and 1.2, and up until now,
proving Conjecture 1.3 has been regarded as the most likely direction to prove
Theorem 1.1. However, as Talagrand observes, even simple instances of Conjecture
1.3 are not easy to establish. The two “test cases” suggested by Talagrand, which
are now proved respectively in [5] and [9], already necessitate nontrivial arguments,
and proving the full version of the conjecture is considered as a much harder task.

Our proof of Theorem 1.1 takes a surprisingly simple and direct approach rather
than the indirect approach suggested by Conjecture 1.3. Part of our proof is inspired
by the argument in [1,8], though our implementation is significantly different from
the ideas in previous works [1, 8, 18]. In all of those papers, the notion of “spread”
plays a key role in the proofs. In particular, it provides the starting point of the
proof of Theorem 1.2 using linear programming duality, while in the setting of
Theorem 1.1, where one cannot exploit linear programming duality, this starting
point immediately disappears. In the proof of Theorem 1.1, we completely avoid
the use of spread, which is the essential workhorse of the proofs in [1,8,18]. This is
one of the most surprising points of our proof. A key technical insight in our proof is
the notion of minimum fragments. With the minimum fragments, our proof allows
to utilize a direct argument in the spirit of [1], thus giving a simplified proof of the
main lemma of [8] as well as the main result of [18] without separating pathological
cases. It also suggests a clear intuition behind the linear relation between pc(F)
and q(F); see Remark 2.2 and a recent paper by Bell and Frieze [2].

In [20], using a significantly more delicate and elaborate argument that shares
some ideas with those in this paper, we resolve a conjecture of Talagrand ([22,
Problem 4.1], [23, Conjecture 5.7] and [24, Research Problem 13.2.3]), and answer
a question of Talagrand ([25] and a problem posed in [22]). Importantly, even to
address the weaker fractional relaxation version of these conjectures and questions
of Talagrand, we need to use the full strength of the ideas in this paper as well as
additional ideas in [20].

Reformulation. In Section 2 we prove Theorem 1.4, which implies Theorem 1.1.
A hypergraph on X is a collection H of subsets of X, and a set in the collection

H is called an edge of H. We say H is �-bounded if each of its edges has size at most
�. Recall that 〈H〉 = ⋃

S∈H{T : T § S}. Note that we can extend the definition of
p-small to H without any modification. For an integer m, we use an m-subset of
X for a subset of X of size m, and Xm for a uniformly random m-subset of X.

Licensed to New York Univ, Courant Inst. Prepared on Fri Jul  4 10:51:28 EDT 2025 for download from IP 128.122.149.92.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



238 JINYOUNG PARK AND HUY TUAN PHAM

Theorem 1.4. Let � ≥ 2. There is a universal constant L such that for any

nonempty �-bounded hypergraph H on X that is not p-small,

(7)
a uniformly random ((Lp log �)|X|)-element subset of X belongs to

〈H〉 with probability 1− o�→∞(1).

Remark 1.5. It is easy to see from the proof that one can obtain a quantitative
bound for the o�→∞(1) term of the form (log �)−c for c > 0.

Derivation of Theorem 1.1 from Theorem 1.4. Let F be as in Theorem 1.1. We
assume Theorem 1.4 and derive that if q > q(F) then, with p = Kq log �(F) (K is
a universal constant to be determined), we have P(Xp ∈ F) > 1/2. Here, we recall
that for 0 ≤ p ≤ 1, we denote by Xp the random variable with distribution μp.

Let H be the set of minimal elements of F (so 〈H〉 = F). Then H is �(F)-
bounded and not q-small (since q > q(F)). Let C be a (universal) constant for
which, with � = C�(F), the exceptional probability in Theorem 1.4 is less than 1/4.

Let m = (Lq log �)|X| and p′ = 2Lq log �, and choose K sufficiently large so that
p ≥ p′. Theorem 1.1 vacuously holds if p′ > 1, so we can assume that p′ ≤ 1, in
which case

P(Xp′ ∈ 〈H〉) ≥ P(Xm ∈ 〈H〉) P(|Xp′ | ≥ m) ≥ (3/4) P(|Xp′ | ≥ m) > 1/2,

where the last inequality follows from standard concentration bound, upon noting
that H is not q-small implies |X|q > 1/2 (since {{x} : x ∈ X} covers H) and hence
m > (L log �)/2 (so is somewhat large). This concludes the derivation. �

Notations and Conventions. All logarithms are base 2 unless specified other-
wise. We have not made an attempt to optimize the absolute constants. For the
sake of clarity of presentation, we omit floor and ceiling signs when they are not
essential.

2. Proof of Theorem 1.4

Before going through the proof in detail, we first give an informal overview of
our strategy. A hypergraph H is p-small if H admits a “cheap” cover, where being
cheap refers to the condition in (2). Our proof uses a randomized iterative process.
Starting with H0 = H, at the ith step for i ≥ 1, we assume that we have some
hypergraph Hi−1 produced from the (i−1)th step for which |Si−1| ≤ 0.9i−1� for all
Si−1 ∈ Hi−1, and consider Wi which is a random subset of X \ (⋃1fj<i Wj) of size

wi ≈ Lpn (we will see later in the proof that for the purpose of producing a tail
bound going to 0 with �, it is helpful to choose slightly larger wi towards the last
iterations). We will show that there is a sub-hypergraph Gi of Hi−1 that admits
a cover Ui which has small cost with high probability, as well as a hypergraph Hi

with the following key properties:

(8) Hi−1 \ Gi ¦ 〈Hi〉,

(9) (
⋃

jfi

Wj) ∪ Si ∈ 〈H〉 for all Si ∈ Hi, and

(10) |Si| ≤ 0.9i� for all Si ∈ Hi.

The choices of Gi, Ui and Hi depend on Wi. In the (i + 1)th step we repeat our
process with the hypergraph Hi. Property (8) reduces the task of finding a cover
of the “leftover” Hi−1 \ Gi to finding a cover of Hi. Property (10) implies that for
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A PROOF OF THE KAHN–KALAI CONJECTURE 239

γ > log0.9(1/�), either Hγ is empty, or Hγ only contains the empty set. In the
former case, one can check that

⋃

i Ui is a cover of H; and in the latter case, one
has from (9) that W =

⋃

i Wi ∈ 〈H〉. Since H does not admit a cheap cover (as it
does not satisfy (2)), and the cover

⋃

i Ui has small cost with high probability, we
conclude that W ∈ 〈H〉 with high probability. Theorem 1.4 then follows.

In Section 2.1 we describe our construction of the cheap cover U = Ui (in each
step), and in Section 2.2 we analyze our iteration, concluding our proof.

2.1. Constructing a cover. We use n for |X|. Let L be large enough to support
our conclusion and let H be �-bounded. In the following argument, we always
assume that S, S′, S′′, Ŝ ∈ H and W ∈

(

X
w

)

, where w := Lpn (as usual,
(

X
w

)

is the
collection of w-subsets of X).

The following notion of a minimum fragment is key in our proof. Given S and
W , we say that T = T (S,W ) is a minimum (S,W )-fragment if T is the set of the
smallest size (possibly empty) such that T can be written as S′\W for some S′ ∈ H
with S′ ¦ W ∪S (breaking ties arbitrarily). Note that such S′ exists as S ∈ H and
S ¦ W ∪ S. We use t = t(S,W ) for |T (S,W )|.

Given W , G = G(W ) is the collection of S whose minimum fragment with respect
to W is “large;” formally,

G(W ) := {S ∈ H : t(S,W ) ≥ 0.9�}.

Then we define U(W ), a cover of G(W ), as

U(W ) := {T (S,W ) : S ∈ G(W )}

(the fact that U(W ) covers G(W ) follows since each minimum fragment T (S,W ) is
a subset of S).

Note that the edges in H\G(W ) are not necessarily covered by U(W ). We define

(11) H′ = H′(W ) = {T (S,W ) : S ∈ H \ G(W )};

the hypergraph H′, which is .9�-bounded, will be the host hypergraph in the next
iteration step (see (19)). Note that H \ G(W ) ¦ 〈H′〉 (as promised in (8)), so in
particular,

(12) a cover of H′ also covers H \ G(W ).

Lemma 2.1 is our key lemma, which says that the cover U(W ) of G(W ) has small
cost with high probability (over the randomness of W ).

Lemma 2.1. For W uniformly chosen from
(

X
w

)

,

(13) E

⎡

£

∑

U∈U(W )

p|U|

¤

⎦ < L−0.8�,

where the expectation is over the randomness of W .

Observe that Lemma 2.1 is equivalent to

(14)
∑

W∈(Xw)

∑

U∈U(W )

p|U| <

(

n

w

)

L−0.8�.

Licensed to New York Univ, Courant Inst. Prepared on Fri Jul  4 10:51:28 EDT 2025 for download from IP 128.122.149.92.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



240 JINYOUNG PARK AND HUY TUAN PHAM

Proof of (14). Given W and m ≥ 0.9�, let

Gm(W ) := {S ∈ H : t(S,W ) = m}

and

Um(W ) := {T (S,W ) : S ∈ Gm(W )}.
Note that for any U ∈ Um(W ) we have |U | = m, so

∑

W∈(Xw)
∑

U∈Um(W ) p
|U| is

equal to pm multiplied by

(15)

∣

∣

∣

∣

{

(W,T (S,W )) : W ∈
(

X

w

)

, S ∈ H, and t(S,W ) = m

}∣

∣

∣

∣

.

We bound the number of choices of W and T = T (S,W )’s in the collection in (15)
using the following specification steps.

Step 1. Pick Z := W ∪ T . Since |Z| = w +m (note W and T are always disjoint),
the number of possibilities for Z is at most (recalling w = Lpn)

(

n

w +m

)

=

(

n

w

)

·
m−1
∏

j=0

n− w − j

w + j + 1
≤

(

n

w

)

(Lp)−m.

Step 2. Note that Z (= W ∪ T ) must contain an edge of H by the definition of

minimum fragment. Make a choice of Ŝ ¦ Z arbitrarily so that the choice of Ŝ
only depends on Z. In particular, the choice of Ŝ is free given Z. Here a crucial
observation is that, since T (S,W ) is a minimum fragment,

(16) T ¦ Ŝ.

Indeed, since Ŝ is contained in T ∪ W ¦ S ∪ W , the failure of (16) implies that

Ŝ ⊂ S ∪W has |Ŝ \W | < |T |, contradicting the minimality of T .

The property (16) enables us to specify T as a subset of Ŝ, the number of
possibilities of which is at most 2�.

Note that (W,T ) is determined upon fixing a choice of Z and T . In sum, we
have

∑

W∈(Xw)

∑

U∈Um(W )

p|U| ≤ pm
(

n

w

)

(Lp)−m2� =

(

n

w

)

L−m2�,

and the left hand side of (14) is at most

∑

mg0.9�

(

n

w

)

L−m2� ≤
(

n

w

)

L−0.8�

for L sufficiently large. �

Remark 2.2. The proofs of the main lemma of [1] and [8,18] also use similar-looking
specification steps. By replacing their definition of Z (:= W ∪ S) with the one in
the above proof (Z := W ∪ T ), one can remove the “pathological” case analysis in
[8, 18] and thus obtain a simplification of the argument there.
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2.2. Iteration. Recall that n = |X|, � → ∞, and L is a large constant. Let
γ = �log0.9(1/�)� + 1. In the following definitions, i = 1, 2, . . . , γ. Let �i = 0.9i�
and note that

(17) 0.9 ≤ �γ < 1.

Let X0 = X and Wi be uniform from
(

Xi−1

wi

)

, where Xi = Xi−1 \ Wi and
wi = Lipn with

Li =

{

L if i < γ −
√

log0.9(1/�)

L
√
log � if γ −

√

log0.9(1/�) ≤ i ≤ γ.

At the end, W :=
⋃γ

i=1 Wi is a uniformly random (CLp log �)n-subset of X where
C ≤ C ′ for some absolute constant C ′ > 0. Note that there is an absolute constant
c > 0 for which

(18) �i > exp(c
√

log �) for all i < γ −
√

log0.9(1/�).

By iteratively applying our argument in Section 2.1, we produce a sequence {Hi}
with H0 = H and

(19) Hi = H′
i−1

(see (11) to recall the definition of H′). Note that each Hi is �i-bounded, and
associated to each set Wi in step i, we have Gi = Gi(Wi) ¦ Hi−1 and a cover
Ui = Ui(Wi) of Gi. Properties (8), (10), and inductively Property (9), can be
easily verified from our construction of Gi, Ui and Hi. Indeed, assuming that
Property (9) holds for Hi−1, then, since each hyperedge Si ∈ Hi has the form
Si = T (Si−1,Wi) = S′

i−1 \Wi for some Si−1, S
′
i−1 ∈ Hi−1, we have

(
⋃

jfi

Wj) ∪ Si = (
⋃

jfi−1

Wj) ∪Wi ∪ (S′
i−1 \Wi) § (

⋃

jfi−1

Wj) ∪ S′
i−1 ∈ 〈H〉.

Proposition 2.3. We have that either W ∈ 〈H〉 or U :=
⋃

ifγ U(Wi) covers H.

Proof. Note that �γ < 1, hence either Hγ = ∅ or Hγ = {∅}.
In the former case (Hγ = ∅), we show that U covers H. Indeed, for S ∈ H,

let S = S0, S1, S2, . . . (Si ∈ Hi) be the evolution of S in the iteration process,
i.e., Si := T (Si−1,Wi). In each iteration, either Si ∈ Gi and is covered by Ui, or
otherwise, Si+1 ∈ Hi+1. Since Hγ = ∅, there exists j < γ for which Sj ∈ Gj . Hence,
S is covered by U .

In the latter case (Hγ = {∅}), we show that W ∈ 〈H〉. Indeed, by Property (9),
W1 ∪ . . . ∪Wγ ∪ ∅ ∈ 〈H〉, and hence W ∈ 〈H〉. �

Let E be the event that U covers H. By Proposition 2.3, we have

P(W ∈ 〈H〉) + P(E) ≥ 1;

equivalently,

P(W ∈ 〈H〉) ≥ 1− P(E).
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To bound P(E), note that the expected “cost” for the cover U is

E

⎡

£

∑

U∈U(W )

p|U|

¤

⎦

(13)
<

∑

ifγ

L−0.8�i
i

=
∑

i<γ−
√

log
0.9

(1/�)

L−0.8�i
i +

γ
∑

i=γ−
√

log
0.9

(1/�)

L−0.8�i
i

(17),(18)

≤ 2L−0.8 exp(c
√
log �) +O((L

√

log �)−c′) = (log �)−c′′

(20)

for some constant c′, c′′ > 0. Also note that, by the assumption that H is not
p-small,

(21) if E occurs, then
∑

U∈U(W )

p|U| > 1/2.

Therefore, by combining (21) and Lemma 2.1, we have

P(E) ≤ P

⎛

¿

∑

U∈U(W )

p|U| > 1/2

À

⎠

(�)

≤ 2E

⎡

£

∑

U∈U(W )

p|U|

¤

⎦

(20)
= (log �)−c′′ = o�→∞(1),

where (�) follows from Markov’s Inequality. This gives the desired conclusion.
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