
Threshold Phenomena for
Random Discrete Structures

Jinyoung Park
1. Erdős–Rényi Model
To begin, we briefly introduce a model of random graphs.
Recall that a graph is amathematical structure that consists
of vertices (nodes) and edges.
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Figure 1. A graph.

Roughly speaking, a random graph in this article means
that, given a vertex set, the existence of each potential edge
is decided at random. We will specifically focus on the
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Erdős–Rényi random graph (denoted by 𝐺𝑛,𝑝), which is de-
fined as follows.

Consider 𝑛 vertices that are labelled from 1 to 𝑛.

Observe that on those 𝑛 vertices, there are potentially
(𝑛
2
) edges, that is, the edges labelled {1, 2}, {1, 3}, … , {𝑛−1, 𝑛}.

Given a probability 𝑝 ∈ [0, 1], include each of the (𝑛
2
) po-

tential edges with probability 𝑝, where the choice of each
edge is made independently from the choices of the other
edges.

Example 1.1. As a toy example of the Erdős–Rényi ran-
dom graph, let’s think about what 𝐺𝑛,𝑝 looks like when
𝑛 = 3 and the value of 𝑝 varies. First, if 𝑝 = 1/2, then 𝐺𝑛,𝑝
has the probability distribution as in Figure 2, defined on
the collection of eight graphs. Observe that each graph
is equally likely (since each potential edge is present with
probability 1/2 independently).

Figure 2. 𝐺3,1/2.

Of course, we will have a different probability distribu-
tion if we change the value of 𝑝. For example, if 𝑝 is closer
to 0, say 0.01, then 𝐺𝑛,𝑝 has the distribution as in Figure 3,
where sparser graphs are more likely (as expected). On the
other hand, if 𝑝 is closer to 1, then denser graphs will be
more likely.

In reality, when we consider 𝐺𝑛,𝑝, 𝑛 is a large (yet finite)
number that tends to infinity, and 𝑝 = 𝑝(𝑛) is usually a
function of 𝑛 that tends to zero as 𝑛 → ∞. For example,
𝑝 = 1/𝑛, 𝑝 = log 𝑛/𝑛, etc.

As we saw in Example 1.1, a random graph is a ran-
dom variable with a certain probability distribution (as
opposed to a fixed graph) that depends on the values of 𝑛

Figure 3. 𝐺3,0.01.

and 𝑝. Assuming 𝑛 is given, the structure of 𝐺𝑛,𝑝 changes
as the value of 𝑝 changes, and in order to understand 𝐺𝑛,𝑝,
we ask questions about the structure of 𝐺𝑛,𝑝 such as

What’s the probability that 𝐺𝑛,𝑝 is connected?

or
What’s the probability that 𝐺𝑛,𝑝 is planar?

Basically, for any property ℱ(= ℱ𝑛) of interest, we can ask

What’s the probability that 𝐺𝑛,𝑝 satisfies property ℱ?

In those questions, usually we are interested in understand-
ing the typical structure/behavior of 𝐺𝑛,𝑝. Observe that, un-
less 𝑝 = 0 or 1, there is always a positive probability that all
of the edges in 𝐺𝑛,𝑝 are absent, or all of them are present
(see Examples 1.2, 1.3). But in this article, we would rather
ignore such extreme events that happen with a tiny prob-
ability, and focus on properties that 𝐺𝑛,𝑝 possesses with a
probability close to 1.

We often use languages and tools from probability the-
ory to describe/understand behaviors of 𝐺𝑛,𝑝. Below we
discuss some very basic examples.

We will write 𝑓(𝑛) ≪ 𝑔(𝑛) if 𝑓(𝑛)
𝑔(𝑛)

→ 0 as 𝑛 → ∞.

Example 1.2. One important object in graph theory is the
complete graph, a graph with all the potential edges present.
The complete graph on 𝑛 vertices is denoted by 𝐾𝑛.

We can easily imagine that, unless 𝑝 is very close to 1, it
is extremely unlikely that 𝐺𝑛,𝑝 is complete. Indeed,

ℙ(𝐺𝑛,𝑝 = 𝐾𝑛) = 𝑝(
𝑛
2)

(since we want all the edges present), which tends to 0 un-
less 1 − 𝑝 is of order at most 𝑛−2.
Example 1.3. Similarly, we can compute the probability
that 𝐺𝑛,𝑝 is “empty” (let’s denote this by ∅) meaning that
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no edges are present.1 The probability for this event is

ℙ(𝐺𝑛,𝑝 = ∅) = (1 − 𝑝)(
𝑛
2).

When 𝑝 is small, 1 − 𝑝 is approximately 𝑒−𝑝, so the above
computation tells us that

ℙ(𝐺𝑛,𝑝 = ∅) → {0 if 𝑝 ≫ 1/𝑛2;
1 if 𝑝 ≪ 1/𝑛2.

Example 1.4. How many edges does 𝐺𝑛,𝑝 typically have?
The natural first step to answer this question is computing
the expected number of edges in 𝐺𝑛,𝑝. Using linearity of ex-
pectation,

𝔼[number of edges in 𝐺𝑛,𝑝]
= ∑

𝑖<𝑗
ℙ(edge {𝑖, 𝑗} is present in 𝐺𝑛,𝑝)

= (number of edges in 𝐾𝑛) × ℙ(each edge is present)

= (𝑛2)𝑝.

Remark 1.5. For example, if 𝑝 = 1/𝑛, then the expected
number of edges in 𝐺𝑛,𝑝 is

𝑛−1
2

. But does this really im-

ply that 𝐺𝑛,1/𝑛 typically has about
𝑛−1
2

edges? The answer
to this question is related to the fascinating topic of “con-
centration of a probability measure.” We will very briefly
discuss this topic in Example 2.5.

Example 1.6. Similarly, we can compute the expected
number of triangles (the complete graph 𝐾3) in 𝐺𝑛,𝑝.
𝔼[number of triangles in 𝐺𝑛,𝑝]
= ∑
𝑖<𝑗<𝑘

ℙ(triangle {𝑖, 𝑗, 𝑘} is present in 𝐺𝑛,𝑝)

=(number of triangles in 𝐾𝑛)×ℙ(each triangle is present)

=(𝑛3)𝑝
3.

The above computation tells us that

𝔼[number of triangles in 𝐺𝑛,𝑝] → {0 if 𝑝 ≪ 1/𝑛;
∞ if 𝑝 ≫ 1/𝑛,

from which we can conclude that 𝐺𝑛,𝑝 is typically triangle-
free if 𝑝 ≪ 1/𝑛. (If the expectation tends to 0, then there
is little chance that 𝐺𝑛,𝑝 contains a triangle.)

Remark 1.7. On the contrary, we cannot conclude that 𝐺𝑛,𝑝
typically contains many triangles for 𝑝 ≫ 1/𝑛 from the
above expectation computation. Just think about a lottery
of the prize money 101000 dollars with the chance of win-
ning 10−100, to see that a large expectation does not nec-
essarily imply a high chance of the occurence of an event.
In general, showing that a desired structure typically exists

1By the definition, 𝐺𝑛,𝑝 has 𝑛 vertices as a default.

in 𝐺𝑛,𝑝 is a very challenging task, and this became a moti-
vation for the Kahn–Kalai conjecture that we will discuss in
the latter sections.

2. Threshold Phenomena
One striking thing about 𝐺𝑛,𝑝 is that appearance and dis-
appearance of certain properties are abrupt. Probably one
of the most well-known examples that exhibit threshold
phenomena of 𝐺𝑛,𝑝 is the appearance of the giant compo-
nent. A component of a graph is a maximal connected sub-
graph. For example, the graph in Figure 4 consists of four
components, and the size (the number of vertices) of each
component is 1, 2, 6, and 8.

Figure 4. A graph that consists of four components.

For 𝐺𝑛,𝑝, observe that, when 𝑝 = 0, the size of a largest
component of 𝐺𝑛,𝑝 is 1; in this case all of the edges are
absent with probability 1, so each of the components is
an isolated vertex. On the other hand, when 𝑝 = 1, 𝐺𝑛,𝑝
is the complete graph with probability 1, so the size of its
largest component is 𝑛.

Figure 5. 𝐺𝑛,0 and 𝐺𝑛,1.

Then what if 𝑝 is strictly between 0 and 1?
Question 2.1. What’s the (typical) size of a largest com-
ponent in 𝐺𝑛,𝑝?

Of course, one would naturally guess that as 𝑝 increases
from 0 to 1, the typical size of a largest component in 𝐺𝑛,𝑝
would also increase from 1 to 𝑛. But what is really interest-
ing here is that there is a “sudden jump” in this increment.

In the following statement and everywhere else, with
high probability means that the probability that the event
under consideration occurs tends to 1 as 𝑛 → ∞.

Theorem 2.2 (Erdős–Rényi [6]). For any 𝜀 > 0, the size of
a largest component of 𝐺𝑛,𝑝 is

{≤ 𝐶1(𝜀) log 𝑛 if 𝑛𝑝 < 1 − 𝜀
≥ 𝐶2(𝜀)𝑛 if 𝑛𝑝 > 1 + 𝜀

with high probability, where 𝐶1(𝜀), 𝐶2(𝜀) depend only on 𝜀.

NOVEMBER 2023 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 1617



The above theorem says that if 𝑝 is “slightly smaller” than
1
𝑛
, then typically all of the components of 𝐺𝑛,𝑝 are very

small (note that log 𝑛 is much smaller than the number of
vertices, 𝑛).

Figure 6. 𝐺𝑛,𝑝 with all components small (𝑛𝑝 < 1 − 𝜀).

On the other hand, if 𝑝 is “slightly larger” than
1
𝑛
, then

the size of a largest component of 𝐺𝑛,𝑝 is as large as linear
in 𝑛. It is also well-known that all other components are
very small (at most of order log 𝑛), and this unique largest
component is called the giant component.

Figure 7. 𝐺𝑛,𝑝 with the giant component (𝑛𝑝 > 1 − 𝜀).

So around the value 𝑝 = 1
𝑛
, the giant component “sud-

denly” appears, and therefore the structure of 𝐺𝑛,𝑝 also dr-
asitically changes. This is one example of the threshold phe-
nomena that 𝐺𝑛,𝑝 exhibits, and the value 𝑝 = 1

𝑛
is a thresh-

old function for 𝐺𝑛,𝑝 of having the giant component. (The
formal definition of a threshold function is given in Def-
inition 2.3. See also the definition of the threshold in Sec-
tion 5.)

The abrupt appearance of the giant component of 𝐺𝑛,𝑝
is just one instance of vast threshold phenomena for ran-
dom discrete structures. In this article, we will mostly deal
with 𝐺𝑛,𝑝 for the sake of concreteness, but there will be a
brief discussion about a more general setting in Section 5.

Now we introduce the formal definition of a thresh-
old function due to Erdős and Rényi. Recall that, in

𝐺𝑛,𝑝, all the vertices are labelled 1, … , 𝑛. A graph property
is a property that is invariant under graph isomorphisms
(i.e., relabelling the vertices), such as {connected}, {planar},
{triangle-free}, etc. We use ℱ(= ℱ𝑛) for a graph property,
and 𝐺𝑛,𝑝 ∈ ℱ denotes that 𝐺𝑛,𝑝 has property ℱ.

Definition 2.3. Given a graph property ℱ(= ℱ𝑛), we say
that 𝑝0 = 𝑝0(𝑛) is a threshold function2 (or simply a thresh-
old) for ℱ if

ℙ(𝐺𝑛,𝑝 ∈ ℱ) → {0 if 𝑝 ≪ 𝑝0
1 if 𝑝 ≫ 𝑝0.

For example, 𝑝0 = 1
𝑛

is a threshold function for the exis-
tence of the giant component.

Note that it is not obvious at all whether a given graph
property would admit a threshold function. Erdős and
Rényi proved that many graph properties have a threshold
function, and about 20 years later, Bollobás and Thoma-
son proved that, in fact, there is a wide class of properties
that admit a threshold function. In what follows, an in-
creasing (graph) property is a property that is preserved un-
der addition of edges. For example, connectivity is an in-
creasing property, because if a graph is connected then it
remains connected no matter what edges are additionally
added.

Theorem 2.4 (Bollobas–Thomason [5]). Every increasing
property has a threshold function.

Now it immediately follows from the above theorem
that all the properties that we have mentioned so far—
connectivity, planarity,3 having the giant component,
etc.—have a threshold function (thus exhibit a threshold
phenomenon). How fascinating it is!

On the other hand, knowing that a property ℱ has a
threshold function 𝑝0 = 𝑝0(ℱ) does not tell us anything
about the value of 𝑝0. So it naturally became a central
interest in the study of random graphs to find a thresh-
old function for various increasing properties. One of the
most studied classes of increasing properties is subgraph
containment, i.e., the question of for what 𝑝 = 𝑝(𝑛), 𝐺𝑛,𝑝
is likely/unlikely to contain a copy of the given graph. Fig-
ure 8 shows some of the well-known threshold functions
for various subgraph containments (and that for connec-
tivity).

2By the definition, a threshold function is determined up to a constant factor
thus not unique, but conventionally people also call this the threshold function.
In this article, we will separately define the threshold in Section 5, which is dis-
tinguished from a threshold function.
3We can apply the theorem for nonplanarity, which is an increasing property.
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Figure 8. Some well-known thresholds.

Example 2.5. Figure 8 says that 𝑝 = 1
𝑛

is a threshold func-
tion for the property ℱ = {contains a triangle}. Recall
from the definition of a threshold that this means

(i) if 𝑝 ≪ 1
𝑛

then ℙ(𝐺𝑛,𝑝 contains a triangle) → 0; and
(ii) if 𝑝 ≫ 1

𝑛
then ℙ(𝐺𝑛,𝑝 contains a triangle) → 1.

We have already justified (i) in Example 1.2 by showing
that

𝔼[number of triangles in 𝐺𝑛,𝑝] → 0 if 𝑝 ≪ 1
𝑛.

However, showing (ii) is an entirely different story. As
discussed in Remark 1.7, the fact that

𝔼[number of triangles in 𝐺𝑛,𝑝] → ∞
does not necessarily imply that 𝐺𝑛,𝑝 typically contains
many triangles. Here we briefly describe one technique,
which is called the second moment method, that we can use
to show (ii): let 𝑋 be the number of triangles in 𝐺𝑛,𝑝, not-
ing that then 𝑋 is a random variable. By showing that the
variance of 𝑋 is very small, which implies that 𝑋 is “con-
centrated around” 𝔼𝑋 , we can derive (from the fact that
𝔼𝑋 is huge) that typically the number of triangles in 𝐺𝑛,𝑝
is huge. We remark that the second moment method is
only a tiny part of the much broader topic of concentration
of a probability measure.

We stress that, in general, finding a threshold function
for a given increasing property is a very hard task. To illus-
trate this point, let’s consider one of the most basic objects
in graph theory, a spanning tree—a tree that contains all of
the vertices.

Figure 9. A connected graph and a spanning tree in it.

The question of finding a threshold function for 𝐺𝑛,𝑝
of containing a spanning tree4 was one of the first ques-
tions studied by Erdős and Rényi. Already in their seminal
paper [6], Erdős and Rényi showed that a threshold func-

tion for containing a spanning tree is 𝑝0 =
log𝑛
𝑛

. However,

4This is equivalent to 𝐺𝑛,𝑝 is connected.

the difficulty of this problem immensely changes if we re-
quire 𝐺𝑛,𝑝 to contain a specific (up to isomorphisms) span-
ning tree (or more broadly, a spanning graph.5) For exam-
ple, one of the biggest open questions in this area back in
1960s was finding a threshold function for a Hamiltonian
cycle (a cycle that contains all of the vertices).

Figure 10. A graph and a Hamiltonian cycle in it.

This problem was famously solved by Pósa in 1976.

Theorem 2.6 (Pósa [16]). A threshold function for 𝐺𝑛,𝑝 to
contain a Hamiltonian cycle is

𝑝0(𝑛) =
log 𝑛
𝑛 .

Note that both threshold functions for {contain any
spanning tree} and {contain a Hamiltonian cycle} are of or-

der
log𝑛
𝑛

, even though the latter is a stronger requirement.
Later we will see (in the discussion that follows Exam-

ple 4.6) that
log𝑛
𝑛

is actually an easy lower bound on both
threshold functions. It has long been conjectured that for
any spanning tree6 with a constant maximum degree, its

threshold function is of order
log𝑛
𝑛

. This conjecture was
only very recently proved by Montgomery [14].

3. The Kahn–Kalai Conjecture: A Preview
Henceforth, ℱ always denotes an increasing property.

In 2006, Jeff Kahn andGil Kalai [12] posed an extremely
bold conjecture that captures the location of threshold
functions for any increasing properties. Its formal state-
ment will be given in Conjecture 4.11 (graph version) and
Theorem 5.7 (abstract version), and in this section we will
give an informal description of this conjecture first. All of
the terms not defined here will be discussed in the forth-
coming sections.

Given an ℱ, we are interested in locating its threshold
function, 𝑝0(ℱ).7 But again, this is in general a very hard
task.

Kahn and Kalai introduced another quantity which
they named the expectation threshold and denoted by
𝑝𝔼(ℱ), which is associated with some sort of expectation

5A spanning graph means a graph that contains all of the vertices
6More precisely, for any sequence of spanning trees {𝑇𝑛}
7We switch the notation from 𝑝0(𝑛) to 𝑝0(ℱ) to emphasize its dependence on
ℱ.
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calculations as its name indicates. By its definition (Defi-
nition 4.5),

𝑝𝔼(ℱ) ≤ 𝑝0(ℱ) for any ℱ,

and, in particular, 𝑝𝔼(ℱ) is easy to compute for many in-
teresting increasing properties ℱ. So 𝑝𝔼(ℱ) provides an
“easy” lower bound on the hard parameter 𝑝0(ℱ). A really
fascinating part is that then Kahn and Kalai conjectured
that 𝑝0(ℱ) is, in fact, bounded above by 𝑝𝔼(ℱ) multiplied
by some tiny quantity!

So this conjecture asserts that, for any ℱ, 𝑝0(ℱ) is actu-
ally well-predicted by (much) easier 𝑝𝔼(ℱ)!

The graph version of this conjecture (Conjecture 4.11)
is still open, but the abstract version (Theorem 5.7) is re-
cently proved in [15].

4. Motivating Examples
The conjecture of Kahn and Kalai is very strong, and even
the authors of the conjecture wrote in their paper [12] that
“it would probably be more sensible to conjecture that it
is not true.” The fundamental question that motivated this
conjecture was:

Question 4.1. What drives thresholds?

All of the examples in this section are carefully chosen to
show the motivation behind the conjecture.

Recall that the definition of a threshold (Definition 2.3)
doesn’t distinguish constant factors. So in this section,
we will use the convenient notation ≳,≲, and ≍ to mean
(respectively) ≥,≤, and = up to constant factors. Finally,
write 𝑝0(𝐻) for a threshold function for 𝐺𝑛,𝑝 of containing
a copy of 𝐻, for notational simplicity.

Example 4.2. Let 𝐻 be the graph in Figure 11. Let’s find
𝑝0(𝐻).

Figure 11. Graph 𝐻.

In Example 2.5, we observed that there is a connection
between a threshold function and computing expectations.

As we did in Examples 1.4 and 1.6,

𝔼[number of 𝐻’s in 𝐺𝑛,𝑝]
= (number of (labelled) 𝐻’s in 𝐾𝑛)×
ℙ(each (labelled) copy of 𝐻 is present in 𝐺𝑛,𝑝)

(†)
≍ 𝑛4𝑝5,

where (†) is because the number of 𝐻’s in 𝐾𝑛 is
of order 𝑛4 (since 𝐻 has four vertices), and
ℙ(each copy of 𝐻 is present) is precisely 𝑝5 (since 𝐻 has
five edges). So we have

𝔼[number of 𝐻’s in 𝐺𝑛,𝑝] → {0 if 𝑝 ≪ 𝑛−4/5;
∞ if 𝑝 ≫ 𝑛−4/5,

(1)

and let’s (informally) call the value 𝑝 = 𝑛−4/5

“the threshold for the expectation of 𝐻.”

This name makes sense since 𝑝 = 𝑛−4/5 is where the ex-
pected number of 𝐻’s drastically changes. Note that (1)
tells us that

ℙ(𝐺𝑛,𝑝 ⊇ 𝐻) → 0 if 𝑝 ≪ 𝑛−4/5,
so, by the definition of a threshold, we have

𝑛−4/5 ≲ 𝑝0(𝐻).
This way, we can always easily find a lower bound on 𝑝0(𝐹)
for any graph 𝐹.

What is interesting here is that, for 𝐻 in Figure 11, we
can actually show that

ℙ(𝐺𝑛,𝑝 ⊇ 𝐻) → 1 if 𝑝 ≫ 𝑛−4/5

using the second moment method (discussed in Exam-
ple 2.5). This tells us a rather surprising fact that 𝑝0(𝐻)
is actually equal to the threshold for the expectation of 𝐻.

Dream. Maybe 𝑝0(𝐹) is always equal to the threshold
for the expectation of 𝐹 for any graph 𝐹?

The next example shows that the above dream is too
dreamy to be true.

Example 4.3. Consider 𝐻̃ in Figure 12 this time. Notice
that 𝐻̃ is 𝐻 in Figure 11 with a “tail.”

Figure 12. Graph 𝐻̃.

By repeating a similar computation as before, we have

𝔼[number of 𝐻̃’s in 𝐺𝑛,𝑝] → {0 if 𝑝 ≪ 𝑛−5/6;
∞ if 𝑝 ≫ 𝑛−5/6,
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so the threshold for the expectation of 𝐻̃ is 𝑛−5/6. Again,
this gives that

ℙ(𝐺𝑛,𝑝 ⊇ 𝐻̃) → 0 if 𝑝 ≪ 𝑛−5/6,

so we have 𝑛−5/6 ≲ 𝑝0(𝐻̃). However, the actual threshold
𝑝0(𝐻̃) is 𝑛−4/5, which is much larger than the lower bound.

Figure 13. Gap between 𝑝0(𝐻̃) and the expectational lower
bound.

This is interesting, because Figure 13 tells us that when
𝑛−5/6 ≪ 𝑝 ≪ 𝑛−4/5, 𝐺𝑛,𝑝 contains a huge number of 𝐻̃
“on average,” but still it is very unlikely that 𝐺𝑛,𝑝 actually
contains 𝐻̃. What happens in this inverval?

Here is an explanation. Recall from Example 4.2 that if
𝑝 ≪ 𝑛−4/5, then 𝐺𝑛,𝑝 is unlikely to contain 𝐻. But

the absence of 𝐻 implies the absence of 𝐻̃,

because 𝐻 is a subgraph of 𝐻̃!
So when 𝑛−5/6 ≪ 𝑝 ≪ 𝑛−4/5, it is highly unlikely that

𝐺𝑛,𝑝 contains 𝐻̃ because it is already unlikely that𝐺𝑛,𝑝 con-
tains 𝐻. However, if 𝐺𝑛,𝑝 happens to contain 𝐻, then that
copy of 𝐻 typically has lots of “tails” as in Figure 14. This
produces a huge number of copies of 𝐻̃’s in 𝐺𝑛,𝑝.

Figure 14. 𝐻 with many “tails.”

Maybe you have noticed the similarity between this ex-
ample and the example of a lottery in Remark 1.7.

In Example 4.3, 𝑝0(𝐻̃) is not predicted by the expected
number of 𝐻̃, thus the Dream is broken. However, it still
shows that 𝑝0(𝐻̃) is predicted by the expected number of
some subgraph of 𝐻̃, and, intriguingly, this holds true in
general. To provide its formal statement, define the density
of a graph 𝐹 by

density(𝐹) = (the number of edges of 𝐹)
(the number of vertices of 𝐹) .

The next theorem tells us the exciting fact that we can find
𝑝0(𝐹) by just looking at its densest subgraph, as long as 𝐹
is fixed.8

8For example, a Hamiltonian cycle is not a fixed graph, since it grows as 𝑛
grows.

Theorem 4.4 (Bollobás [4]). For any fixed graph 𝐹, 𝑝0(𝐹)
is equal to the threshold for the expectation of the densest sub-
graph of 𝐹.

For example, in Example 4.2, the densest subgraph of
𝐻 is 𝐻 itself, so 𝑝0(𝐻) is determined by the expectation of
𝐻. This also determines 𝑝0(𝐻̃) in Example 4.3, since the
densest subgraph of 𝐻̃ is again 𝐻.

Motivated by the preceding examples and Theorem 4.4,
we give a formal definition of the expectation threshold.

Definition 4.5 (Expectation threshold). For any graph 𝐹,
the expectation threshold for 𝐹 is

𝑝𝔼(𝐹) = min{𝑝 ∶ 𝔼[number of 𝐹′ in 𝐺𝑛,𝑝] ≥ 1 ∀𝐹′ ⊆ 𝐹}.
Observe that

𝑝𝔼(𝐹) ≲ 𝑝0(𝐹) for any 𝐹, (2)

and in particular, Theorem 4.4 gives that

𝑝𝔼(𝐹) ≍ 𝑝0(𝐹) for any fixed 𝐹.
Note that this gives a beautiful answer to Question 4.1
whenever ℱ is a property of containing a fixed graph.

Example 4.6. Theorem 4.4 characterizes threshold func-
tions for any fixed graphs. To extend our exploration, in
this example we consider a graph that grows as 𝑛 grows. We
say a graph𝑀 is amatching if𝑀 is a disjoint union of edges.
𝑀 is a perfect matching if 𝑀 is a matching that contains all
the vertices. Write PM for perfect matching.

Figure 15. A matching (above) and a perfect matching (below).

Keeping Question 4.1 in mind, let’s first check the valid-
ity of Theorem 4.4 to a perfect matching,9 which is not a
fixed graph. By repeating a similar computation as before,
we obtain that

𝔼[number of PM’s in 𝐺𝑛,𝑝] ≍ (𝑛/𝑒)𝑛/2𝑝𝑛/2,
which tends to 0 if 𝑝 ≪ 1/𝑛. In fact, it is easy to compute
(by considering all subgraphs of a perfect matching) that
𝑝𝔼(PM) ≍ 1/𝑛, so by (2),

𝑝0(PM) ≳ 1/𝑛.
However, unlike threshold functions for fixed graphs,
𝑝0(PM) is not equal to 𝑝𝔼(PM); it was proved by Erdős and
Rényi that

𝑝0(PM) ≍ log 𝑛
𝑛 (≫ 𝑝𝔼(PM)). (3)

9We assume 2|𝑛 to avoid a trivial obstruction from having a perfect matching.
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Figure 16. Gap between 𝑝0(PM) and 𝑝𝔼(PM).

Notice that, in Figure 16, what happens in the gap
is fundamentally different from that in Figure 13. When
1
𝑛
≪ 𝑝 ≪ log𝑛

𝑛
, 𝐺𝑛,𝑝 contains huge numbers of PMs and

all its subgraphs “on average.” This means the absence of a
subgraph of a PM is not the obstruction for 𝐺𝑛,𝑝 from hav-
ing a PM when 𝑝 ≫ 1/𝑛. Then what happens here, and
what’s the real obstruction?

It turned out, we have

𝑝0(PM) ≳ log 𝑛
𝑛

for a very simple reason: the existence of an isolated ver-

tex10 in 𝐺𝑛,𝑝. It is well-known that if 𝑝 ≪ log𝑛
𝑛

, then
𝐺𝑛,𝑝 contains an isolated vertex with high probability (this
phenomenon is elaborated in Example 4.7). Of course, if
there is an isolated vertex in a graph, then this graph can-
not contain a perfect matching.

So (3) says the very compelling fact that once 𝑝 is large
enough that 𝐺𝑛,𝑝 avoids isolated vertices, 𝐺𝑛,𝑝 contains a
perfect matching!

The existence of an isolated vertex in 𝐺𝑛,𝑝 is essentially
equivalent to the coupon collector’s problem:

Example 4.7 (Coupon collector’s problem). Each box of
cereal contains a random coupon, and there are 𝑛 different
types of coupons. If all coupons are equally likely, then
how many boxes of cereal do we (typically) need to buy to
collect all 𝑛 coupons?

The well-known answer to this question is that we need
to buy ≳ 𝑛 log 𝑛 boxes of cereal. This phenomenon can be
translated to 𝐺𝑛,𝑝 in the following way: in 𝐺𝑛,𝑝, the 𝑛 ver-
tices are regarded as coupons. If a vertex is contained in a
(random) edge in 𝐺𝑛,𝑝, then that is regarded as being “col-

lected.” Note that if 𝑝 ≪ log𝑛
𝑛

, then typically the number

of edges in𝐺𝑛,𝑝 is (𝑛
2
)𝑝 ≪ 𝑛 log 𝑛, and then the coupon col-

lector’s problem says that there is typically an “uncollected
coupon,” which is an isolated vertex.

Observe that, in Example 4.6, the “coupon-collector be-
havior” of 𝐺𝑛,𝑝 provides another lower bound on 𝑝0(PM),
pushing up the first lower bound, 𝑝𝔼(PM), by log 𝑛. And it
turned out that this second (better) lower bound is equal
to the threshold.

10a vertex not contained in any edges

Lower bounds Threshold
Expectation
threshold

𝑝0 ≳ 𝑝𝔼 𝑝0 ≍ 𝑝𝔼 log 𝑛
Coupon
collector

𝑝0 ≳ 𝑝𝔼 log 𝑛

Figure 17. Bounds on 𝑝0(PM).

Hitting time. Again, the existence of an isolated ver-
tex in a graph trivially blocks this graph from containing
any spanning subgraphs. In Example 4.6, we observed the
compelling phenomenon that if𝑝 is large enough that𝐺𝑛,𝑝
typically avoids isolated vertices, then for those 𝑝,𝐺𝑛,𝑝 con-
tains a perfect matching with high probability. Would this
mean that, for 𝐺𝑛,𝑝, isolated vertices are the only barriers to
the existence of spanning subgraphs?

To investigate this question, we consider a random pro-
cess defined as below. Consider a sequence of graphs on
𝑛 vertices

𝐺0 = ∅,𝐺1, 𝐺2, … , 𝐺(𝑛2)
= 𝐾𝑛,

where 𝐺𝑚+1 is obtained from 𝐺𝑚 by adding a random
edge.

Figure 18. Random process.

Then 𝐺𝑚, the 𝑚-th graph in this sequence, is the ran-
dom variable that is uniformly distributed among all the
graphs on 𝑛 vertices with 𝑚 edges. The next theorem tells
us that, indeed, isolated vertices are the obstructions for a
random graph to having a perfect matching.

Theorem 4.8 (Erdős–Rényi [7]). Let𝑚0 denote the first time
that 𝐺𝑚 contains no isolated vertices. Then, with high probabil-
ity, 𝐺𝑚0 contains a perfect matching.

We remark that Theorem 4.8 gives much more precise
information about 𝑝0(PM) (back in 𝐺𝑛,𝑝 setting). For ex-
ample, Theorem 4.8 implies:

Theorem 4.9. Let 𝑝 = log𝑛+𝑐𝑛
𝑛

. Then

lim
𝑛→∞

ℙ(𝐺𝑛,𝑝 ⊇ PM) =
⎧
⎨
⎩

0 if 𝑐𝑛 → −∞
𝑒−𝑒−𝑐 if 𝑐𝑛 → 𝑐
1 if 𝑐𝑛 →∞

.

We observe a similar phenomenon for Hamiltonian cy-
cles. Notice that in order for a graph to contain a Hamil-
tonian cycle, a minimum requirement is that every vertex
is contained in at least two edges. The next theorem tells
us that, again, this naive requirement is essentially the only
barrier.
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Theorem 4.10 (Ajtai-Komlós-Szemerédi [1], Bollobás [3]).
Let𝑚1 denote the first time that every vertex in 𝐺𝑚 is contained
in at least two edges. Then, with high probability, 𝐺𝑚1 contains
a Hamiltonian cycle.

Returning to Question 4.1, so far we have established
that there are two factors that affect threshold functions.
We first observed that 𝑝𝔼 always gives a lower bound on
𝑝0. We then observed that, when it applies, the coupon-
collector behavior of 𝐺𝑛,𝑝 pushes up this expectational
lower bound by log 𝑛. Conjecture 4.11 below dauntingly
proposes that there are no other factors that affect thresh-
olds.

Conjecture 4.11 (Kahn–Kalai [12]). For any graph 𝐹,
𝑝0(𝐹) ≲ 𝑝𝔼(𝐹) log 𝑛.

Conjecture 4.11 is still wide open even after the “abstract
version” of this conjecture is proved. We close this section
with a very interesting example in which 𝑝0 lies strictly in
between 𝑝𝔼 and 𝑝𝔼 log 𝑛. A triangle factor is a (vertex-) dis-
joint union of triangles that contains all the vertices.

Figure 19. A triangle factor.

The question of a threshold function for a triangle-
factor11 was famously solved by Johansson, Kahn, and Vu
[10]. Observe that an obvious obstruction for a graph from
having a triangle factor is the existence of a vertex that is
not contained in any triangles. The result below is the hit-
ting time version of [10], which is obtained by combining
[11] and [9].

Theorem 4.12. Let 𝑚2 denote the first time that every vertex
in 𝐺𝑚 is contained in at least one triangle. Then, with high
probability, 𝐺𝑚2 contains a triangle factor.

The above theorem implies that

𝑝0(triangle factor) ≍ 𝑝𝔼(triangle factor) ⋅ (log 𝑛)1/3.

5. The Expectation Threshold Theorem
The abstract version of the Kahn–Kalai conjecture, which
is the main content of this section, is recently proved in
[15]. We remark that the discussion in this section is not
restricted by the languages in graph theory anymore.

We introduce somemore definitions for this general set-
ting. Given a finite set 𝑋 , the 𝑝-biased product probability
measure, 𝜇𝑝, on 2𝑋 is defined by

𝜇𝑝(𝐴) = 𝑝|𝐴|(1 − 𝑝)|𝑋⧵𝐴| ∀𝐴 ⊆ 𝑋.
We use 𝑋𝑝 for the random variable whose law is

ℙ(𝑋𝑝 = 𝐴) = 𝜇𝑝(𝐴) ∀𝐴 ⊆ 𝑋.

11or, more generally, a 𝐾𝑟-factor for any fixed 𝑟

In other words, 𝑋𝑝 is a “𝑝-random subset” of 𝑋 , which
means 𝑋𝑝 contains each element of 𝑋 with probability 𝑝
independently.

Example 5.1. If 𝑋 = ([𝑛]
2
), then
𝑋𝑝 = 𝐺𝑛,𝑝.

So 𝐺𝑛,𝑝 is a special case of the random model 𝑋𝑝.
We redefine increasing property in our new setup. A

property is a subset of 2𝑋 , and ℱ ⊆ 2𝑋 is an increasing prop-
erty if

𝐵 ⊇ 𝐴 ∈ ℱ ⇒ 𝐵 ∈ ℱ.
Informally, a property is increasing if we cannot “destroy”
this property by adding elements. Note that in this new
definition, ℱ is not required to possess strong symme-
try as in increasing graph properties; for example, there is
no longer a requirement “invariant under graph isomor-
phisms.”

Observe that 𝜇𝑝(ℱ)(≔ ∑𝐴∈ℱ 𝜇𝑝(𝐴) = ℙ(𝑋𝑝 ∈ ℱ)) is
a polynomial in 𝑝, thus continuous. Furthermore, it is a
well-known fact that 𝜇𝑝(ℱ) is strictly increasing in 𝑝 unless
ℱ = ∅, 2𝑋 (see Figure 20). For the rest of this section, we
always assume ℱ ≠ ∅, 2𝑋 .

Figure 20. 𝜇𝑝(ℱ) for 𝑝 ∈ [0, 1], and 𝑝𝑐(ℱ).

Because 𝜇𝑝(ℱ) is continuous and strictly increasing in 𝑝,
there exists a unique 𝑝𝑐(ℱ) for which 𝜇𝑝𝑐(ℱ) = 1/2. This
𝑝𝑐(ℱ) is called the threshold for ℱ.

Remark 5.2. The definition of 𝑝𝑐(ℱ) does not require se-
quences. Incidentally, by Theorem 2.4, for any increasing
graph propertyℱ(= ℱ𝑛), 𝑝𝑐(ℱ) is an (Erdős–Rényi) thresh-
old function for ℱ.

For a general increasing propertyℱ ⊆ 2𝑋 , the definition
of 𝑝𝔼 is not applicable anymore. Kahn and Kalai intro-
duced the following generalized notion of the expectation
threshold, which is also introduced by Talagrand [17].

Definition 5.3. Given a finite set𝑋 and an increasing prop-
erty ℱ ⊆ 2𝑋 , 𝑞(ℱ) is the maximum of 𝑞 ∈ [0, 1] for which
there exists 𝒢 ⊆ 2𝑋 satisfying the following two properties.

(a) Each 𝐴 ∈ ℱ contains some member of 𝒢.
(b) ∑𝑆∈𝒢 𝑞|𝑆| ≤ 1/2.
A family 𝒢 ⊆ 2𝑋 that satisfies (a) is called a cover of ℱ.
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Remark 5.4. The definition of 𝑞(ℱ) eliminates the “sym-
metry” requirement—which seems very natural (and seem-
ingly easier to deal with) in the context of thresholds for
subgraph containments—from the definition of 𝑝𝔼. It is
worth noting that this flexibility is crucially used in the
proof of Theorem 5.7 in [15].

The next proposition says that 𝑞(ℱ) still provides a
lower bound on the threshold.

Proposition 5.5. For any finite set 𝑋 and increasing property
ℱ ⊆ 2𝑋 ,

𝑞(ℱ) ≤ 𝑝𝑐(ℱ).
Justification. Write 𝑞 = 𝑞(ℱ). By the definition of 𝑝𝑐(ℱ), it
suffices to show that 𝜇𝑞(ℱ) ≤ 1/2. We have

𝜇𝑞(ℱ) ≤ ∑
𝑆∈𝒢

∑
𝑆⊆𝐴∈ℱ

𝜇𝑞(𝐴) ≤ ∑
𝑆∈𝒢

∑
𝐵⊇𝑆

𝜇𝑞(𝐵)

= ∑
𝑆∈𝒢

𝑞|𝑆| ≤ 1/2,

where the first inequality uses the fact that 𝒢 covers ℱ. □

For a graph 𝐹, write ℱ𝐹 for the increasing graph prop-
erty of containing a copy of 𝐹. The example below illus-
trates the relationship between 𝑝𝔼(𝐹) and 𝑞(ℱ𝐹).

Example 5.6 (Example 4.3 revisited). For 𝑋 = ([𝑛]
2
) (so

𝑋𝑝 = 𝐺𝑛,𝑝) and the increasing propertyℱ = {contain 𝐻̃}(⊆
2𝑋),

𝒢1 ≔ {all the (labelled) copies of 𝐻̃ in 𝐾𝑛}
is a cover of ℱ. The left-hand side of Definition 5.3 (b) is

∑
𝑆∈𝒢1

𝑞|𝑆| =(number of 𝐻̃’s in 𝐾𝑛)

× ℙ(each copy of 𝐻̃ is present in 𝐺𝑛,𝑝),
which is precisely the expected number of 𝐻̃’s in 𝐺𝑛,𝑝.
Combined with Proposition 5.5, the above computation
gives that 𝑛−5/6 ≲ 𝑝𝑐(ℱ).

On the other hand, we have (implicitly) discussed in
Example 4.3 that there is another cover that gives a lower
bound better than that of 𝒢1; if we take

𝒢2 ≔ {all the (labelled) copies of 𝐻 in 𝐾𝑛},
then the computation in Definition 5.3 (b) gives that
𝑛−4/5 ≲ 𝑝𝑐(ℱ).

The above discussion shows that, for any (not necessar-
ily fixed) graph 𝐹,

𝑝𝔼(𝐹) ≲ 𝑞(ℱ𝐹)
(whether 𝑝𝔼(𝐹) ≍ 𝑞(ℱ𝐹) is unknown). The abstract ver-
sion of the Kahn–Kalai conjecture is similar to its graph
version, with 𝑝𝔼 replaced by 𝑞(ℱ). This is what’s proved in
[15].

Theorem 5.7 (Park–Pham [15], conjectured in [12, 17]).
There exists a constant 𝐾 such that for any finite set 𝑋 and
increasing property ℱ ⊆ 2𝑋 ,

𝑝𝑐(ℱ) ≤ 𝐾𝑞(ℱ) log ℓ(ℱ)
where ℓ(ℱ) is the size of a largest minimal element of ℱ.

Theorem 5.7 is extremely powerful; for instance, its im-
mediate consequences include historically difficult results
such as the resolutions of Shamir’s problem [10] and the
“tree conjecture” [14]. Here we mention one smaller con-
sequence:

Example 5.8. If 𝐹 is a fixed graph, then ℓ(ℱ𝐹) is the num-
ber of edges in 𝐹, thus a constant. So in this case Theo-
rem 5.7 says 𝑝𝑐(ℱ) ≍ 𝑞(ℱ), which recovers Theorem 4.4.

The sunflower conjecture, and “fractional” Kahn–Kalai.
The proof of Theorem 5.7 is strikingly easy given its pow-
erful consequences. The approach is inspired by remark-
able work of Alweiss, Lovett, Wu, and Zhang [2] on the
Erdős–Rado sunflower conjecture, which seemingly has no
connection to threshold phenomena. This totally unex-
pected connection was first exploited by Frankston, Kahn,
Nayaranan, and the author in [8], where a “fractional” ver-
sion of the Kahn–Kalai conjecture (conjectured by Tala-
grand [17]) was proved, illustrating how two seemingly
unrelated fields of mathematics can be nicely connected!

Note that 𝑞(ℱ) is in theory hard to compute. For in-
stance, in Example 4.3, we can estimate 𝑝𝔼(𝐻̃) by find-
ing 𝐹 ⊆ 𝐻̃ with the maximum 𝑒(𝐹)/𝑣(𝐹). On the other
hand, to compute 𝑞(ℱ𝐻̃), we should in principle consider
all possible covers of ℱ𝐻̃ , which is typically not feasible.
The good news is that there is a convenient way to find an
upper bound on 𝑞(ℱ), which is often of the correct order.
Namely, Talagrand [17] introduced a notion of fractional
expectation threshold, 𝑞𝑓(ℱ), satisfying

𝑞(ℱ) ≤ 𝑞𝑓(ℱ) ≤ 𝑝𝑐(ℱ)
for any increasing property ℱ. He conjectured (and it was
proved in [8]) that the (abstract) Kahn–Kalai conjecture
(nowTheorem5.7) holdswith 𝑞𝑓(ℱ) in place of 𝑞(ℱ). This
puts us in linear programming territory: by LP duality, a
bound 𝑞𝑓(ℱ) ≤ 𝛼 (𝛼 ∈ [0, 1]) is essentially equivalent to
existence of an “𝛼-spread” probabilitymeasure onℱ. In all
applications of Theorem 5.7 to date, what is actually used
to upper bound 𝑞(ℱ) is an appropriately spreadmeasure.12

So all these applications actually follow from the weaker
Talagrand version.

We close this article with a very interesting conjecture of
Talagrand [17] that would imply the equivalence of Theo-
rem 5.7 and its fractional version:

12The problem of constructing well-spread measure is getting growing attention
now; see, e.g., [13] for a start.
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Conjecture 5.9. There exists a constant 𝐾 such that for any
finite set 𝑋 and increasing property ℱ ⊆ 2𝑋 ,

𝑞𝑓(ℱ) ≤ 𝐾𝑞(ℱ).
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