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Abstract—This work discusses memory-immersed collabora-
tive digitization among compute-in-memory (CiM) arrays to
minimize the area overheads of a conventional analog-to-digital
converter (ADC) for deep learning inference. Thereby, using
the proposed scheme, significantly more CiM arrays can be
accommodated within limited footprint designs to improve par-
allelism and minimize external memory accesses. Under the
digitization scheme, CiM arrays exploit their parasitic bit lines
to form a within-memory capacitive digital-to-analog converter
(DAC) that facilitates area-efficient successive approximation
(SA) digitization. CiM arrays collaborate where a proximal array
digitizes the analog-domain product-sums when an array com-
putes the scalar product of input and weights. We discuss various
networking configurations among CiM arrays where Flash, SA,
and their hybrid digitization steps can be efficiently implemented
using the proposed memory-immersed scheme. The results are
demonstrated using a 65 nm CMOS test chip. Compared to a 40
nm-node 5-bit SAR ADC, our 65 nm design requires ∼25× less
area and ∼1.4× less energy by leveraging in-memory computing
structures. Compared to a 40 nm-node 5-bit Flash ADC, our
design requires ∼51× less area and ∼13× less energy.

Index Terms—Compute-in-Memory; SRAM; Deep Learning

I. INTRODUCTION

A memory structure stores model parameters and performs

most inference computations for the compute-in-memory

(CiM) processing of deep neural networks (DNN). Thus,

by integrating model storage and computations, CiM averts

significant data movements between intermediate memory

hierarchy and processing modules that plague the performance

of conventional digital architectures for DNN. Even more,

traditional memory structures such as SRAM [1], RRAM

[2], embedded-DRAM [3], [4], etc., can be adapted for CiM,

making the scheme highly attractive for cost-effective adoption

in various systems-on-chip (SOC). Most CiM schemes also

leverage analog representations of operands, such as element-

wise weight-input product terms represented as charge or

current, to simplify their summation over a wire by exploiting

Kirchhoff’s law. Thus, exploiting physics can minimize the

necessary workload and processing elements.

Although intermediate analog representations of operands

provide critical advantages to CiM, such as improving paral-

lelism, minimizing workload, and simplifying compute cells,

they also present significant implementation challenges for

CiM peripherals. For analog computations, a CiM array re-

quires digital-to-analog converters (DAC) and analog-to-digital

converters (ADC) to operate on digital inputs and digitize the
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Fig. 1. Overview of memory-immersed collaborative digitization: At the
left, neighboring CiM arrays are coupled for sequential reference generation
for memory-immersed successive approximation ADC. At the right, one CiM
array is coupled with many arrays to the right for parallel reference generation
for memory-immersed Flash ADC.

analog output for routing and storage. The analog circuits

are susceptible to failure under process variability, posing

challenges for area and energy scalability. Recently, many

techniques have obviated analog DACs from CiM, such as by

encoding the inputs as time pulses [5], employing bit slicing

[6], using multiplication-free operators [7], etc. Meanwhile,

the necessity of ADC in a CiM array is directly linked with

utilizing charge or current-based representation of the product

values to avoid a dedicated adder. Hence ADCs are still

necessary for many schemes.

This work discusses a novel memory-immersed digitization
that can preclude a dedicated ADC and its associated area

overhead. Fig. 1 shows a high-level overview of the scheme.

Thereby, with simpler peripherals, most of the silicon space

can be used only for CiM. In the proposed digitization scheme,

parasitic bit-lines of memory arrays form within-memory ca-

pacitive DAC, and neighboring memory arrays collaborate for

resource-efficient digitization. By configuring the networking

among proximal CiM arrays flash, successive approximation

(SA), and their hybrid operations can be performed efficiently

within memory arrays.

II. MEMORY-IMMERSED COLLABORATIVE

ANALOG-TO-DIGITAL CONVERSION

A. Coupling CiM arrays for collaborative digitization

Fig. 2 shows the realization of memory-immersed ADC.

We specifically discuss our techniques and results for eight

transistors (8T) compute-in-SRAM arrays which have been

predominantly used in many platforms [8]–[13]. Unlike 6T

compute-in-SRAM, 8T cells are less susceptible to bit disturbs

due to decoupled write and inference ports and thus are more
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Fig. 2. Architecture and waveforms of SRAM-immersed ADC: (a) Coupling of left-right memory arrays for memory-immersed digitization. When the left
array computes within-memory scalar product, the right array digitizes analog-domain computed output. Both arrays switch their operation subsequently for
collaborative digitization. (b) Clocked comparator design combining n-type and p-type counterparts for rail-to-rail voltage comparison. (c) Transient waveforms.
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Fig. 3. Hybrid mode of SRAM-immersed ADC: A dot product-configured
CiM array is coupled to many ADC-configured arrays to the right for flash
mode digitization of the initial most significant bits. After this, each left-
array couples to the nearest right array to determine the remaining bits in
SAR mode. Operational cycles are shown at the bottom.

amenable to technology scaling. Nonetheless, our propositions

on memory-immersed ADC apply to other memory types,

including 10-T compute-in-SRAM/eDRAM [4], [14]–[16] as

well as non-volatile memory crossbars [17], [18].

In the proposed scheme, two proximal CiM arrays collab-

orate for within-memory digitization, as shown in Fig. 2(a).

In the figure, when the left array computes the input-weight

scalar product, the right array performs SRAM-immersed

digitization on the generated analog-mode multiply-average

(MAV) outputs. Both arrays switch their operating mode sub-

sequently. Each array comprises 8-T cells, combining standard

6-T SRAM cells with a two-transistor weight-input product

port shown in the figure. Memory cells for input-weight

products are accessed using three control signals. Row lines

(RL) are routed horizontally and select two-transistor weight-

input product ports for operation. Input lines (IL) are routed

vertically and apply input bits to the CiM array. Column lines

(CL) are routed vertically and evaluate the 1-bit input-weight

product. After the input-weight product completion on CL, the

Fig. 4. Exploiting MAV statistics for ADC’s time-efficiency: (a) Distribu-
tion of MAV under the uniform distribution of input and weight bits for CiM
scheme in Figure 2. (b) Asymmetric binary search for skewed MAV statistics.
(c) For 5-bit data conversion, asymmetric search requires on average ∼3.7
comparisons, unlike symmetric binary search that requires ∼5 comparisons.

lines are merged on sum lines (SL) to compute the product

sum in the charge domain.

For memory-immersed digitization of charge-domain

product-sum computed in the left array, CLs in the right array

realize the unit capacitors of a capacitive DAC formed within

the memory array. A precharge transistor array is integrated

with the column lines to generate the reference voltages, VREF.

In the successive approximation (SA) mode of digitization, the

operation begins by precharging half of the column lines to

supply voltage (VDD) and discharging the remaining to the

ground (GND). The first reference voltage VREF,0 is generated

by summing the charges of all column lines using transmission

gates in Fig. 2(a). The developed multiply average (MAV)

voltage VMAV in the left CiM array is compared to VREF,0 to de-

termine the most significant bit B0 of the digitized output. The

next precharge state of memory-immersed capacitive DAC is

determined, and the precharge and comparison cycles continue

until VMAV has been digitized to necessary precision. Based on

[7], Fig. 2(b) shows the design of a comparator that couples

n-type and p-type counterparts for rail-to-rail comparison. Fig.

2(c) shows the operational waveforms considering a DAC-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on May 01,2024 at 16:19:33 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)

Fig. 5. Test-chip and measurements: (a) Micrograph of fabricated design in 65 nm CMOS. Four compute-in-SRAM arrays, A1−A4 were fabricated. A1
interfaces with A2 to realize SRAM-immersed SAR ADC. A1 interfaces with A1−A4 to realize SRAM-immersed Flash ADC. (b) Measurement setup. (c)
Measurement transient waveforms for hybrid SAR + Flash ADC operation.

free digital application of input vectors where we bit slice

inputs to 1-bit, i.e., apply one input bit plane in one operating

cycle. However, the operation of a memory-immersed digitizer

is versatile and applicable to any compute-in-memory that

computes product-sum output in the voltage/charge domain.

Exploiting neighborhood CiM arrays for VREF,0 generation

for memory-immersed digitization provides many crucial ad-

vantages. First, various non-idealities in analog-mode MAV

computation such as the impact of the parasitic capacitance of

column merge switches, wires, etc., become common-mode

due to exploiting an identical array for VREF,0 generation.

Thus, the non-idealities only minimally impact the accuracy

of digitization. Secondly, collaborative digitization minimizes

peripheral overheads. Only an analog comparator and simple

modification in the precharge array are sufficient to realize a

successive approximation search.

Compared to traditional CiM approaches where a dedicated

ADC is used at each array, interleaving of scalar product

computation and digitization cycles in our scheme affects the

achievable throughput. Meanwhile, with simplified low-area

peripherals, more CiM arrays can be accommodated than prior

works employing dedicated ADCs. Therefore, our scheme

compensates for the overall throughput at the system level by

operating many parallel CiM arrays. Especially the improved

area efficiency of CiM arrays in our scheme minimizes the nec-

essary exchanges from off-chip DRAMs to on-chip structures

in mapping large DNN layers, a significant energy overhead

in conventional techniques.

B. Hybrid SRAM-immersed Flash and SAR ADC Operation

In addition to the nearest neighbor networking in Fig. 2,

more intricate CiM networks can also be orchestrated for more

time-efficient collaborative digitization in Flash and/or hybrid

SAR + Flash mode. Fig. 3 shows an example networking

scheme where Array-1 couples with three memory arrays to

the right for collaborative digitization in Flash mode. Here,

the three right arrays simultaneously generate the respective

reference voltages VREF,0–VREF,2 for the Flash mode of dig-

itization and to determine the first two most significant bits

in one comparison cycle. Time steps for the hybrid mode

digitization scheme are shown at the bottom of Fig. 3. CiM-

configured memory arrays sequentially connect to all three

ADC-configured arrays in parallel to digitize their first most

significant bits, i.e., D0–D1. After this, each array couples

to the nearest ADC-configured CiM array to the right for

SAR mode digitization of the remaining bits in parallel across

all arrays. In the discussed case, i.e., one-to-three coupling,

hybridization reduces the energy for digitization since the

initial references for the Flash mode are shared among CiM

arrays and need not be generated individually, thus saving the

reference generation energy.

C. Exploiting MAV Statistics for ADC’s Time-Efficiency

The above hybrid scheme for data conversion further ben-

efits from exploiting the CiM-computed multiply average

(MAV) statistics. In many CiM schemes, the computed MAV

is not necessarily uniformly distributed. For example, in bit-

plane-wise CiM processing, DACs are avoided by processing

a one-bit input plane in one time step. Under single-ended

processing using 8T cells, the column bit line discharges

only when both the stored bit and applied input are ‘1.’

Thus, even if weights and inputs are uniformly distributed, the

probability of bit line discharge is 25%, and MAV is skewed

distributed, as shown in Fig. 4(a). Similarly, in most DNNs,

weights are regularized to be small, and activation layers

such as rectified linear units (ReLU) are used to promote the

sparsity of outputs. This, too, results in a skewed distribution

of MAV. The skewed distribution of MAV can be leveraged by

implementing an asymmetric binary search for digitization, as

shown in Fig. 4(b). In Fig. 4(c), under the asymmetric search,

the average number of comparisons reduces to ∼3.7 for 5-

bit digitization compared to 5 comparisons under symmetric

search, thus proportionally reducing the energy and latency

for the operation. Even more, the proposed hybrid digitization

scheme further exploits the asymmetric search since, in most

cases, only two comparisons are sufficient (see right branches

of the search tree in Fig. 4(b)), which can be accelerated by

Flash mode of digitization.
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Fig. 6. Measured non-idealities of SRAM-immersed ADC: (a) Output code vs. applied input voltage. (b) Differential and (c) integrated non-linearities.

(a) (b)

(c) (d)

Fig. 7. Design space exploration of memory-immersed ADC: Area in (a)
and latency in (b) vs. bit precision for different ADC styles. For memory-
immersed ADC MNIST prediction accuracy and power vs. frequency in (c)
and vs. operating voltage in (d).

III. TEST-CHIP DESIGN, MEASUREMENT RESULTS, AND

COMPARISON TO TRADITIONAL ADC

A 65 nm CMOS test chip characterized the proposed

SRAM-immersed ADC. Figs. 5(a, b) shows the fabricated

chip’s micrograph and measurement setup. Four compute-in-

SRAM arrays A1−A4 of size 16×32 were implemented. A1

couples with A2 to realize within-SRAM 5-bit SAR ADC in

the designed chip. A1 couples with A2−A4 for within-SRAM

2-bit Flash ADC using the schemes discussed in Fig. 3. The

coupling of CiM arrays can also be programmed to realize

hybrid Flash-SAR ADC operations, such as obtaining the two

most significant bits in Flash mode and the remaining in SAR.

Fig. 5(c) shows the transient waveforms of different control

signals and comparator outputs, showing a hybrid Flash +

SAR ADC operation. Flash mode is activated in the first

comparison cycle where CiM arrays A2−A4 generates the

corresponding reference voltages, and the first two bits of

MAV digitization are extracted. Subsequently, the operation

switches to SAR mode, where the remaining digitization bits

are obtained by engaging A2 alone with A1. In the last

four cycles, A3 & A4 become free to similarly operate on

a proximal CiM array to digitize MAV in SAR mode. Fig.

6(a) shows the measured staircase plot of input voltage to

output codes and the comparison to an ideal staircase, showing

near-ideal characteristics. The corresponding differential and

integrated non-linearities at various output codes are shown in

Figs. 6(b, c) which are always below 0.5 bits.

Table I: Comparison of 5-bit in-memory ADC with 10
MHz clock against SAR and Flash architectures
Architecture Tech. Area (μm2) Energy (pJ)

SAR [19] 40 nm 5235.20 105

Flash [19] 40 nm 10703.36 952

In-Memory (ours) 65 nm 207.8 74.23

Fig. 7 and Table I show the design space exploration of pro-

posed memory-immersed ADC compared to other ADC styles.

In Fig. 7(a), leveraging in-memory structures for capacitive

DAC formation, the proposed in-memory ADC is more area

efficient than Flash and SAR styles. Significantly, Flash ADC’s

size increases exponentially with increasing bit precision. In

Fig. 7(b), SAR ADC’s latency increases with bit precision

while Flash ADC can maintain a consistent latency but at the

cost of the increasing area as shown in Fig. 7(a). A hybrid

data conversion in the proposed in-memory provides a middle

ground, i.e., lower latency than in SAR ADC. Figs. 7(c-d)

show the impact of supply voltage and frequency scaling on

in-memory ADC’s power and accuracy for MNIST character

recognition. At increasing frequency

IV. CONCLUSIONS

We have presented a memory-immersed ADC that obviates

the area overheads of a traditional CiM-based deep learning

inference design. Exploiting the multi-functionality of CiM

arrays, the silicon space can be maximally exploited for CiM-

based processing to support a higher degree of parallelism and

to minimize exchanges with off-chip memories in footprint-

constrained designs. In the proposed scheme, proximal CiM

arrays collaborate to efficiently realize various data conversion

schemes such as Flash, successive approximation (SA), and

their hybrid steps. The results were demonstrated using 65

nm CMOS technology demonstrating impressive energy and

area-efficiency advantages over the traditional designs.
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