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Abstract

We prove sharp `qLp decoupling inequalities for p;q 2 Œ2;1/ and arbitrary tuples

of quadratic forms. Connections to prior results on decoupling inequalities for

quadratic forms are also explained. We also include some applications of our results

to exponential sum estimates and to Fourier restriction estimates. The proof of our

main result is based on scale-dependent Brascamp–Lieb inequalities.
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1. Introduction

Let n;d � 1. We denote by Q.�/D .Q1.�/; : : : ;Qn.�// an n-tuple of real quadratic

forms in d variables. The graph of such a tuple, SQ D ¹.�;Q.�// 2 Œ0; 1�d � Rnº, is

a d -dimensional submanifold of RdCn. We often write a spatial vector in RdCn as

.x; y/ with x D .x1; : : : ; xd / 2 Rd and y D .y1; : : : ; yn/ 2 Rn. Similarly, we often

write a frequency vector in RdCn as .�; �/ with � D .�1; : : : ; �d / 2 Rd and � D
.�1; : : : ; �n/ 2 Rn.
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Let � � Œ0; 1�d . Define the Fourier extension operator

E
Q

�g.x;y/ WD
Z

�
g.�/ei.x��Cy�Q.�// d�; (1.1)

with x 2 Rd ; y 2 Rn. For q;p � 2 and dyadic ı 2 .0; 1/, let Dq;p.Q; ı/ be the small-

est constant D such that

kEQ

Œ0;1�d
gkLp.wB / �D

� X

��Œ0;1�d

l.�/Dı

kEQ

�gkq

Lp.wB /

�1=q

(1.2)

holds for every measurable function g and every ball B � RdCn of radius ı�2, where

wB is a smooth version of the indicator function of B (see (1.31) in the subsection

of notation), and the sum on the right-hand side runs through all dyadic cubes of

side length ı. In the current paper, we determine an optimal asymptotic behavior of

Dq;p.Q; ı/ as ı tends to zero, for every choice of q;p � 2 and Q.

Before stating our main theorem, let us first review related results in the literature.

Decoupling theory originated from the work of Wolff [58] and was further developed

by Łaba and Wolff [42], Łaba and Pramanik [41], Garrigós and Seeger [25], [26],

and Bourgain [8]. A breakthrough came with the resolution of the `2-decoupling

conjecture for paraboloids by Bourgain and Demeter [11]. Subsequently, Bourgain,

Demeter, and Guth [17] resolved the main conjecture in Vinogradov’s mean value

theorem using decoupling theory. We also refer to Bourgain and Demeter [13], Bour-

gain, Demeter and Guo [16], Guo and Zhang [30] and Guo and Zorin-Kranich [32]

for extensions of [17] to higher dimensions.

In the current paper, we study sharp decoupling inequalities for quadratic d -

surfaces in RdCn with d;n � 1. The cases n D 1;d � 1, that is, quadratic hyper-

surfaces, were the objects studied by Bourgain and Demeter [11], [15]. Since these

works, there have been a number of other works studying sharp decoupling inequal-

ities for quadratic d -surfaces in RdCn with n � 2, that is, manifolds of codimen-

sion greater than 1. Bourgain’s improvement on the Lindelöf hypothesis [9] relies

on a decoupling inequality in the case d D n D 2, which was later generalized and

extended to a more general family of manifolds with dimension and codimension 2 in

[12]. Further sharp decoupling inequalities for (nondegenerate) quadratic d -surfaces

of codimension 2 were proved, for 2 � d � 4, in [22] and [31]. More recently, in

[34], the classification of sharp decoupling inequalities for quadratic 3-surfaces in R5

was completed, and sharp decoupling inequalities were proved in the “degenerate”

cases, which were not covered by the previously mentioned works. The approach to

the “degenerate” cases in [34] stands out from the previously mentioned works, in that

it relies on small cap decouplings for the parabola and the 2-surface .�1; �2; �
2
1 ; �1�2/

(we refer also to [23] for further discussion of small cap decouplings). For manifolds
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of codimension n > 2, the only result for quadratic forms that are not monomials prior

to the current article was due to Oh [52], who proved sharp decoupling inequalities for

nondegenerate 3-surfaces in R6. In the current paper, we provide a unified approach

that takes care of all the above examples, and indeed all quadratic d -surfaces in RdCn

for arbitrary combinations of d and n. In Section 3 we will explain in more detail how

the above-mentioned results fit into our main theorem.

Before we finish reviewing the related decoupling literature, we would also like

to mention that Li [44], [45], building partially on [38], [53], quantified the � loss

implicit in (1.8) in the case of the parabola.

Beyond decoupling theory, problems associated with quadratic d -surfaces

(d � 2) of codimension bigger than 1 have also attracted much attention, in par-

ticular in Fourier restriction theory and related areas. We refer to Christ [19], [20],

Mockenhaupt [47], Bak and Lee [1], Bak, Lee, and Lee [2], Lee and Lee [43], and

Guo and Oh [33] for the restriction problems associated with manifolds of codi-

mension 2 and higher, Bourgain [10], Rogers [56], and Oberlin [51] for the planar

variant of the Kakeya problem, and Oberlin [49] for sharp Lp ! Lq improving

estimates for a quadratic 3-surface in R5. Recently, Gressman [27]–[29] has made

significant progress in proving sharp Lp-improving estimates for Radon transforms

of intermediate dimensions. Perhaps more interestingly, he connected this problem

with Brascamp–Lieb inequalities and geometric invariant theory.

One major difficulty in the development of the above-mentioned problems in the

setting of codimension bigger than 1 is the lack of a good notion of “curvature.”

This is in strong contrast with the case of codimension 1, where we have Gaussian

curvatures and the notion of rotational curvatures, introduced by Phong and Stein in

[54] and [55].

Next let us turn to the main theorem of the current paper. We will formulate a

slightly more general (and essentially equivalent) version of (1.2). This version uses

functions with Fourier supports in small neighborhoods of SQ, instead of Fourier

extension operators, and lends itself more readily to induction on dimension d .

It is convenient to define the Fourier supports in terms of symmetries of SQ. The

group A generated by translations and scalings of Rd consists of affine maps of the

form A.�/D ı� C a with a 2 Rd and ı 2 .0;1/ (in particular, A Š Rd � .0;1/).

This group acts on RdCn by affine transformations

A.A/.�; �/D
�
ı� C a; ı2�C ırQ.a/ � � C Q.a/

�
: (1.3)

This A-action leaves SQ invariant. For a cube � � Rd , let A� 2 A be the map such

that A�.Œ0; 1�
d /D �, and denote the corresponding affine transformation on RdCn

by A� WD A.A�/. We define the associated uncertainty region by



390 GUO, OH, ZHANG, and ZORIN-KRANICH

U� D U�.Q/ WD A�

�
Œ�2; 2�d �

nY

j D1

4d
�
kHessQj k C 1

�
Œ�1; 1�

�
: (1.4)

The main feature of the definition (1.4) is that the uncertainty region U� contains

the convex hull of the graph of Q on � and is not much larger than this convex hull.

Another convenient property is that

2� � 2�0 H) U� � U�0 : (1.5)

We will denote by f� an arbitrary function with suppcf� � U�.

Let q;p � 2. Let ı < 1 be a dyadic number. Let P .ı/ be the partition of Œ0; 1�d

into dyadic cubes of side length ı. Let Dq;p.Q; ı/ be the smallest constant D such

that

���
X

�2P .ı/

f�

���
Lp.RdCn/

�D
� X

�2P .ı/

kf�kq

Lp.RdCn/

�1=q

(1.6)

holds for every f� with supp bf� � U�. If p D q, we often write

Dp.Q; ı/ WD Dq;p.Q; ı/: (1.7)

Let �q;p.Q/ be the smallest constant � such that, for every � > 0, we have

Dq;p.Q; ı/� Cp;q;Q;�ı
����; for every dyadic ı < 1; (1.8)

where Cp;q;Q;� is a constant that is allowed to depend on p;q;Q and �. If p D q, we

often write

�p.Q/ WD �p;p.Q/: (1.9)

For a tuple eQ D .eQ1.�/; : : : ; eQQn.�// of quadratic forms with � 2 Rd , denote

NV.eQ/ WD
ˇ̌
¹1� d 0 � d W @�d 0

eQQn0 6	 0 for some 1� Qn0 � Qnº
ˇ̌
: (1.10)

Here for a function F , we use F 6	 0 to mean that it does not vanish constantly,

and NV.eQ/ refers to “the number of variables that eQ depends on.” For instance, for
eQ D ..�1 C �3/

2; .�1 C �3 C �4/
2/, we have that NV.eQ/D 3.

For 0� n0 � n and 0� d 0 � d , define

dd 0;n0.Q/ WD inf
M 2Rd�d

rank.M /Dd 0

inf
M 02Rn�n

rank.M 0/Dn0

NV
�
M 0 � .Q ıM/

�
; (1.11)

where Q ıM is the composition of Q with M . We abbreviate dn0.Q/ WD dd;n0.Q/.
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As these quantities will be crucial throughout the entire paper, it may make sense

to look at them from a few angles. Let H � Rd be a linear subspace of codimension

m. Let RotH be a rotation1 on Rd that maps ¹� 2 Rd W �d�mC1 D � � � D �d D 0º to

H . We define

QjH .� 0/ WDQ
�
.� 0;0/ � .RotH /

T
�
;

with � 0 2 R
d�m and 0 D .0; : : : ; 0/ 2 R

m: (1.12)

Here .RotH /
T refers to the transpose of RotH . Similarly, for Q D .Q1; : : : ;Qn/, we

denote

QjH WD .Q1jH ; : : : ;QnjH /: (1.13)

From the Bourgain–Guth argument used in Proposition 5.6 below and from Lem-

ma 6.1 below, one can see clearly why restricting to subspaces is natural. With the

above notation, we can also write

dd 0;n0.Q/D inf
H

inf
M 2GLd 0

inf
M 02Rn0�n

rank.M 0/Dn0

NV
�
M 0 � .QjH ıM/

�
; (1.14)

where H runs through all linear subspaces in Rd of dimension d 0. In other words,

this is the minimal number of variables that n0 many of the forms in Q depend on,

after restricting them to subspaces of dimension d 0, up to linear changes of variables

in their definition domain Rd 0
and their value domain Rn. From (1.14), one can also

see that

dd 0;n0.Q/D inf
H of dim d 0

dd 0;n0.QjH /: (1.15)

For example, if we take d D 3;n D 3 and Q D ..�1 C �2 C �3/
2; .�1 C �2/

2; .�1 C
�2/

2/, then d0.Q/D d1.Q/D 0, d2.Q/D 1 and d3.Q/D 2.

THEOREM 1.1

Let d � 1 and n� 1. Let Q D .Q1; : : : ;Qn/ be a collection of quadratic forms in d

variables. Let 2� q � p <1. Then the `qLp decoupling exponent for the d -surface

SQ D ¹.�;Q.�// W � 2 Œ0; 1�d º equals

�q;p.Q/D max
0�d 0�d

max
0�n0�n

�
d 0
�
1� 1

p
� 1

q

�

� dd 0;n0.Q/
�1
2

� 1

p

�
� 2.n� n0/

p

�
: (1.16)

1There are infinitely many such rotations: we pick an arbitrary one.
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Moreover, for 2� p < q � 1, we have

�q;p.Q/D �p;p.Q/C d.1=p � 1=q/: (1.17)

The expression (1.16) simplifies in the case q D p in the following way.

COROLLARY 1.2

In the situation of Theorem 1.1, we have

�p.Q/D max
d=2<d 0�d

max
0�n0�n

��
2d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

�
(1.18)

for every p � 2.

Proof

For every d 0 � d=2 and 0 � n0 � n, we have 2d 0 � dd 0;n0.Q/ � d � 2d � dd;n0.Q/.

Hence, the .d 0; n0/ term in (1.16) is not larger than the .d;n0/ term.

Taking d 0 D d and n0 2 ¹0;nº in (1.18), we see that, for every tuple Q D
.Q1; : : : ;Qn/ of quadratic forms depending on d variables, it always holds that

�p.Q/� max
�
d
�1
2

� 1

p

�
; 2d

�1
2

� 1

p

�
� 2n

p

�
for every p � 2: (1.19)

Similarly,

�2;p.Q/� max
�
0;d

�1
2

� 1

p

�
� 2n

p

�
for every p � 2: (1.20)

We say that Q D .Q1; : : : ;Qn/ is strongly nondegenerate if

dd�m;n0.Q/� n0d=n�m (1.21)

for every n0 and every m with 0�m� d .

COROLLARY 1.3 (Best possible `2Lp decoupling)

We have

�2;p.Q/D max
�
0;d

�1
2

� 1

p

�
� 2n

p

�
for every 2� p <1 (1.22)

if and only if Q is strongly nondegenerate.

We say that Q D .Q1; : : : ;Qn/ is nondegenerate if
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dd�m;n0.Q/� n0d=n� 2m; (1.23)

for every n0 and every m with 0�m< d=2.

COROLLARY 1.4 (Best possible `pLp decoupling)

We have

�p;p.Q/D max
�
d
�1
2

� 1

p

�
; 2d

�1
2

� 1

p

�
� 2n

p

�
for every 2� p <1 (1.24)

if and only if Q is nondegenerate.

In view of (1.20) and (1.19), Corollaries 1.3 and 1.4 characterize tuples of

quadratic forms that possess “best possible” `2Lp decoupling constants and `pLp

decoupling constants, respectively.

We say that Q D .Q1; : : : ;Qn/ is weakly nondegenerate if

dd�m;n.Q/� d � 2m; (1.25)

for every 0�m< d=2.

COROLLARY 1.5

A tuple Q D .Q1; : : : ;Qn/ of quadratic forms is weakly nondegenerate if and only if

there exists some pc > 2 such that

�p.Q/D d
�1
2

� 1

p

�
; 2� p � pc : (1.26)

If Q is weakly nondegenerate, then the largest possible pc is given by

2C min
� 4.n� n0/

d � .dd�m;n0.Q/C 2m/

�
; (1.27)

where the minimum on the right-hand side is taken over all n0 and m satisfying n0 �
n� 1;m < d=2 and d > dd�m;n0.Q/C 2m.

One reason that we are interested in the exponent pc in Corollary 1.5 is that, when

applying our main results to exponential sum estimates (see Corollary 2.1 below), the

exponent pc is the largest for which we can still expect square root cancellation; see

immediately below Corollary 2.1 for what we mean by “square root cancellation.”

The connections of these three notions of nondegeneracies will be discussed in

forthcoming examples (see, e.g., Corollary 3.4. We leave the proof of Corollaries 1.3–

1.5 to Section 8.
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Table 1. Minimal number of variables on which lower-dimensional restrictions of Q1 and Q2

depend.

dd 0;n0 .Q1/ dd 0;n0 .Q2/

n0 D 0 1 2 3 4 0 1 2

d 0 D 3 0 1 2 3 3 0 1 3

d 0 D 2 0 0 0 0 2 0 0 1

At the end of the introduction, we would like to make a few remarks on The-

orem 1.1 and how the double max on the right-hand side of (1.16) is connected to

different regimes in scale-dependent Brascamp–Lieb inequalities (see Theorem 4.3

below). To enable comparison with previous approaches, we specialize to p D q, so

that (1.16) simplifies to (1.18), and consider the tuples of quadratic forms

Q1.�/D .�1�2; �1�3; �2�3; �
2
3 /; Q2.�/D .�2

1 ; �
2
2 C �1�3/; (1.28)

for which sharp `pLp decoupling inequalities were previously proved in [32] and

[34], respectively. The reasons for picking these two examples will soon become clear.

The numbers of variables (1.11) that appear in (1.18) in these cases are summarized

in Table 1.

To illustrate the kind of arguments used to obtain the entries in Table 1, let us

consider d3;3.Q1/. If d3;3.Q1/ � 2, then there is a 3-dimensional subspace Q of

the linear space of quadratic forms spanned by Q1, such that all forms in the sub-

space Q depend on at most two variables. The space of quadratic forms depending

on any two variables has dimension 3, so Q consists of all quadratic forms depending

on these two variables. In particular, Q contains two linearly independent quadratic

forms that are complete squares. Therefore, lin Q1 constants a quadratic form of the

form .a�1 C b�2 C c�3/
2 with .a; b/¤ .0; 0/. But such a quadratic form includes one

of the monomials �2
1 ; �

2
2 with a nonzero coefficient, contradicting the fact that it lies in

lin Q1. Hence, d3;3.Q1/ > 2, and since d3;3.Q1/� 3, we obtain d3;3.Q1/D 3. Upper

bounds for dd 0;n0 are usually easier to obtain. For example, with the notation from

(1.14), the upper bounds for d2;n0.Q1/ are obtained withH D ¹�3 D 0º and the upper

bounds for d2;n0.Q2/ with H D ¹�1 D 0º.

Substituting the numbers in Table 1 into (1.18), we see that the decoupling expo-

nents are given by

�p.Q1/D max
�3
2

� 3

p
; 2� 6

p
; 3� 14

p

�
and (1.29)

�p.Q2/D max
�3
2

� 3

p
;
5

2
� 7

p
; 3� 10

p

�
(1.30)

for every p � 2. These decoupling exponents are sketched as functions of 1=p in

Figure 1 (not to scale). The kinks A2;A3 in the graph 1a and B2;B3 in the graph
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Figure 1. Decoupling exponents for Q1;Q2.

1b are called critical points: After proving sharp decoupling inequalities at these two

points, we can simply interpolate them with trivial estimates at L2 and L1 and obtain

sharp `pLp decoupling inequalities for every p � 2. One reason for picking these two

examples: on one hand, graph (A) and graph (B) in Figure 1 look similar, in that they

both have two critical points; on the other hand, the nature of the critical points in the

respective graphs is entirely different, and this can sometimes be misleading when it

comes to trying to come up with a unified proof strategy for both examples. In the

following several paragraphs, let us try to explain the different nature of the critical

points, together with one main ingredient of the paper—scale-dependent Brascamp–

Lieb inequalities.

The tuple Q1, together with the linear forms �1; �2; �3, is the Arkhipov–

Chubarikov–Karatsuba (ACK) system generated by the monomial �1�2�
2
3 , restricted

to degree 2. To be more precise, we take all possible partial derivatives of �1�2�
2
3 ,

collect the resulting terms, and throw away the terms that are of degree higher than 2.

Decoupling exponents for all ACK systems were found in [32]. The main argument

to handle Q1 there was purely guided by the “fake” kink Ac , and the critical points

A2 and A3 were deliberately neglected (see [30, Section 7] for a detailed discussion

on the critical points and the “fake” kink in Parsell–Vinogradov systems). Parsell–

Vinogradov systems are special cases of ACK systems and that discussion applies

equally well to ACK systems. The example (1.28) is perhaps the simplest system

of quadratic monomials that admits more than one critical point and is therefore

discussed here in detail.The way Ac appears in [32] can be summarized as follows:

For all p � 2, the article [32] uses only the global/scale-invariant Brascamp–Lieb
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inequality due to Bennett et al. [5]; the difference between p > pc WD 22=3 and

p < pc is in the scheme of induction on scales there.

Let us describe the current argument of handling Q1. In the current paper, we

still use the argument of induction on scales (see Section 5), and a phase transi-

tion also happens at the “fake” kink Ac . However, for p � pc , we will use local

Brascamp–Lieb inequalities as in [6, Theorem 2.2], and for p � pc , we will use

discrete Brascamp–Lieb inequalities as in [6, Theorem 2.5]. For p D pc , local and

discrete Brascamp–Lieb inequalities coincide and become scale-invariant, as in [5,

Theorem 1.15]. The significance of local and discrete Brascamp–Lieb inequalities

may not be fully reflected from this example, as they coincide at some point. The next

example explains what we could do in a case where they do not coincide at any point.

Let us turn to the tuple Q2. As mentioned above, sharp decoupling inequalities

for Q2 were proved in [34]. The tuple Q2 is an interesting example as it is perhaps

the simplest nontrivial example that is degenerate, in the sense that the scale-invariant

Brascamp–Lieb inequality cannot be used for any p 2 Œ2;1/. To handle this degen-

eracy, several specialized tools were introduced in [34], including a partial small ball

decoupling inequality for the tuple .�1�2; �
2
2 /. In [34], sharp decoupling inequalities

were first proved at the critical points B2 and B3, and interpolation with trivial esti-

mates at B1 and B4 was used to cover the whole range p � 2.

Let us describe our current approach. First of all, the counterpart of Ac in Graph

1b is not significant anymore. Secondly, it turns out that for 2 � p � 4 we can still

use the local Brascamp–Lieb inequality and for p � 6 the discrete Brascamp–Lieb

inequality (it is a general principle that the local Brascamp–Lieb inequality works for

small p and the discrete one for large p, although the ranges of p’s in which they

work may be empty). There is, however, a new regime for p 2 .4; 6/. Although this

segment can be filled in by interpolation between p D 4 and p D 6, our proof works

directly for all p, which becomes necessary when the number of kinks increases fur-

ther. To this end, we use the family of scale-dependent Brascamp–Lieb inequalities

due to Maldague [46], which unifies scale-invariant, discrete, and local Brascamp–

Lieb inequalities due to Bennett et al. [5], [6].

Organization of the paper

In Section 2 we state a few applications of our main theorem. In Section 3, we com-

pute the decoupling exponent provided by the main theorem more explicitly for sev-

eral examples of tuples of quadratic forms Q, including some of those tuples Q for

which sharp decoupling inequalities have been previously established in the literature,

and a few tuples Q (in particular, arbitrary pairs of forms and tuples of simultaneously

diagonalizable forms) for which our results are new.
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The upper bounds of �q;p.Q/ in Theorem 1.1 with q � p are proved in Sec-

tions 4 and 5. The lower bounds of �q;p.Q/ in Theorem 1.1 with q � p are proved in

Section 6. In Section 7, we show that the optimal decoupling inequalities for q > p

follow from the case q D p of Theorem 1.1.

In Section 8, we provide the proofs of Corollary 1.3, Corollary 1.4 and Corol-

lary 1.5. In Section 9, we prove the Fourier restriction estimate in Corollary 2.3.

Notation

For two positive constants A1;A2 and a set I of parameters, we use A1 �I A2 to

mean that there exists C > 0 depending on the parameters in I such that A1 � CA2.

Typically, I will be taken to be ¹Q; d; n;p; q; �º, where � > 0 is a small number.

Similarly, we define A1 �A2. Moreover, A1 
A2 means A1 �A2 and A1 �A2.

Let ı 2 .0; 1/ be a dyadic number. We denote by P .Q; ı/ the dyadic cubes of

side length ı in Q for every dyadic cube Q � Œ0; 1�d . Let P .ı/ be the partition of

Œ0; 1�d into dyadic cubes of side length ı. Let � be a cube with side length l.�/. We

use c �� to denote the cube of side length c � l.�/ and of the same center as �.

For two linear spaces V;V 0, we use V 0 � V to mean that V 0 is a linear sub-

space of V . For a sequence of real numbers ¹Aj ºM
j D1, we abbreviate

Q
Aj WD

.
QM

j D1 jAj j/1=M . For E > 0 and a ball B D B.cB ; rB/� RdCn with center cB and

radius rB , define an associated weight

wB;E .�/ WD
�
1C j � �cB j

rB

��E

: (1.31)

The power E is large number depending on d;n (e.g., E D 10.d C n/) and will be

omitted from the notation wB;E . All implicit constants in the paper are allowed to

depend on E . Also, we define the following averaged integrals:

kf k–Lp.B/ WD
� 1

jBj

Z

B

jf jp
�1=p

and kf k–Lp.wB / WD
� 1

jBj

Z
jf jpwB

�1=p

:

For a dyadic box � � Œ0; 1�d , a function f� is always implicitly assumed to satisfy

supp bf� � U�, unless otherwise stated.

We would like to make the convention that all vectors are column vectors, unless

they are variables of functions or otherwise stated. Following are a few more conven-

tions we make on notation: We will use dyadic cubes of side lengths ı, ıb with b < 1

and 1=Kj with 1 � j � d . One can always keep in mind that logKj
logKj

.1=ı/ �
Kj . We will always use � to denote a dyadic cube of the smallest scale ı, J to denote

a dyadic cube of an intermediate scale ıb , and W or Wj to denote a dyadic cube of

a large scale 1=Kj . We will introduce certain multilinear estimates during the proof,

and the degree of the multilinearity will always be called M .
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2. Some applications

2.1. Exponential sum estimates

Let Q D .Q1; : : : ;Qn/ be a collection of quadratic forms of integral coefficients

defined on Rd . Let w D .w1; : : : ;wd / 2 Nd .

COROLLARY 2.1

For every d;n� 1, every p � 2; � > 0, there exists CQ;�;p such that

���
X

1�d 0�d

X

0�wd 0 �W

e2�i.w�xCQ.w/�y/
���

Lp.Œ0;1�d �Œ0;1�n/
� CQ;�;pW

�p.Q/C d
p C� (2.1)

for every integer W .

If �p.Q/D d.1=2� 1=p/, then the above corollary says that

���
X

1�d 0�d

X

0�wd 0 �W

e2�i.w�xCQ.w/�y/
���

Lp.Œ0;1�d �Œ0;1�n/

� CQ;�;pW
�
���
X

1�d 0�d

X

0�wd 0 �W

e2�i.w�xCQ.w/�y/
���

L2.Œ0;1�d �Œ0;1�n/
; (2.2)

by which we mean square root cancellation holds for the exponential sum at such p.

The derivation of exponential sum estimates of the form in the above corollary

from decoupling inequalities has been standard (see, e.g., [11, Section 2] and [17,

Section 4]). We will not repeat the argument here.

Let s � 1 be an integer. Consider the system of Diophantine equations

w1 C � � � C ws D wsC1 C � � � C w2s;

Q.w1/C � � � C Q.ws/D Q.wsC1/C � � � C Q.w2s/:
(2.3)

For a large integer W , let JQ.W / be the number of solutions to (2.3), where 0 �
wd 0 �W for every d 0. As a immediate corollary of (2.1), we obtain the following.

COROLLARY 2.2

For every d;n� 1, integer s � 1, and every � > 0, there exists CQ;�;s such that

JQ.W /� CQ;�;sW
2s�2s.Q/CdC�; (2.4)

for every W .
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2.2. Fourier restriction estimates

Let Q D .Q1; : : : ;Qn/ be a collection of quadratic forms defined on Rd . We say that

Q is linearly independent if Q1; : : : ;Qn are linearly independent. We are interested

in the Fourier restriction problems: Find an optimal range of p such that

kEQ

Œ0;1�d
gkLp.RdCn/ �d;n;p;Q kgkp (2.5)

holds true for every function g. By a simple change of variables, one can see that the

restriction estimate (2.5) cannot hold true for any p <1 if Q is linearly dependent.

As an application of Corollary 1.2, we prove some restriction estimates for every

linearly independent Q for some range of p.

COROLLARY 2.3

Let Q D .Q1; : : : ;Qn/ be a collection of linearly independent quadratic forms defined

on Rd . Then

kEQ

Œ0;1�d
gkLp.RdCn/ �d;n;p;Q kgkp (2.6)

for every

p > pQ WD 2C max
m�1

max
n0�n

4n0

2mC dd�m;n0.Q/
: (2.7)

The proof of this corollary will be presented in Section 9. One significance of

this corollary is that the range (2.7) is sharp for Parsell–Vinogradov systems. Let

us be more precise. Let d � 2. Denote �˛ WD �
˛1

1 : : : �
˛d

d
for � D .�1; : : : ; �d / and a

multi-index ˛ D .˛1; : : : ; ˛d /. For Q WD .�˛/j˛jD2, we have nD d.d C 1/=2, and it

has been shown by Christ [20] and Mockenhaupt [47] that (2.6) holds if and only if

p > 2C 4n

d C 1
D 2d C 2: (2.8)

Let us also mention that, for this tuple Q, the full range of Lq ! Lp estimates gen-

eralizing (2.6) has been obtained in [1] and [50]. The next claim shows that the range

(2.7) coincides with (2.8).

CLAIM 2.4

Let Q WD .�˛/j˛jD2. Then

max
m�1

max
n0�n

4n0

2mC dd�m;n0.Q/
D 4n

2C dd�1;n.Q/
D 4n

d C 1
D 2d: (2.9)

In other words, the max is attained at mD 1;n0 D n.



400 GUO, OH, ZHANG, and ZORIN-KRANICH

Proof of Claim 2.4

By definition, dd�1;n.Q/D d � 1. Hence it suffices to show that the leftmost expres-

sion in (2.9) is equal to 2d .

Fix m � 1 and n0 � n. Denote l WD dd�m;n0.Q/. Notice that by the definition of

dd�m;n0.Q/, we see that l Cm� d . Our goal is to show that 4n0

2mCl
� 2d . We claim

that

n0 �
 
l C 1

2

!
C
 
mC 1

2

!
Cm.d �m/: (2.10)

Indeed, by definition (1.14), there exist a linear subspaceH � Rd of dimension d �m
and a linear subspace Q of the span of Q of dimension n0 such that the restrictions of

the forms from Q toH depend only on l variables. Since the system Q D .�˛/j˛jD2 is

a basis for the space of all quadratic forms in d variables, the above statement does not

depend on H and the l variables inside H , so we may assume H D ¹� W �d�mC1 D
� � � D �d D 0º and the l variables are �1; : : : ; �l . In this case, Q is contained in the

space of all quadratic forms that depend either only on �1; : : : ; �l , or on at least one of

the variables �d�mC1; : : : ; �d . The right-hand side of (2.10) is precisely the dimension

of the latter space, which concludes the proof of (2.10).

Given (2.10), it remains to show

4
� l.l C 1/

2
C m.mC 1/

2
Cm.d �m/

�
� 2d.2mC l/; (2.11)

which is equivalent to

2.l Cm/.l �mC 1/� 2dl: (2.12)

This holds because l Cm� d and l �mC 1� l .

3. Examples: Old and new

3.1. Example: Hypersurfaces with nonvanishing Gaussian curvatures

We take n D 1. Let Q be a quadratic form depending on d variables. Without loss

of generality, we assume that d1.Q/D d . Via a change of coordinate, we can write

Q.�/ as �2
1 ˙ �2

2 ˙ � � � ˙ �2
d

. This is the (hyperbolic) paraboloid case. It is easy to see

d0.Q/D 0;d1.Q/D d .

LEMMA 3.1

Let eQ W Rd ! R be a quadratic form. Let M 2Md�d with rank d 0. Then

d1

� eQ.�M/
�

� d1

� eQ.�/
�

� 2.d � d 0/: (3.1)
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Proof of Lemma 3.1

A lemma of this form was already proved and used by Bourgain and Demeter (see

[15, Lemma 2.6]). We use Hess.eQ/ to denote the Hessian of the quadratic form eQ.

What we need to prove is, for every M 2Md�d with rank d 0, it holds that

rank
�
MHess.eQ/M T

�
� rank

�
Hess.eQ/

�
� 2.d � d 0/: (3.2)

This follows immediately form Sylvester’s rank inequality,

rank.AB/� rank.A/C rank.B/� n; (3.3)

for two arbitrary matrices A;B 2Mn�n.

By Lemma 3.1, we know that d1.QjH / � d � 2m for every linear subspace of

codimension m, which means Q is nondegenerate. Therefore, we can apply Corol-

lary 1.4 and obtain

�p.Q/D max
�
d � 2d C 2

p
;d
�1
2

� 1

p

��
: (3.4)

This recovers the `pLp decoupling results of Bourgain and Demeter in [11] and

[15]. Moreover, if we take Q.�/ D �2
1 C � � � C �2

d
, then it is elementary to see that

d1.QjH / � d �m for every linear subspace of codimension m, which means Q is

strongly nondegenerate. Therefore, we can apply Corollary 1.3 and obtain

�2;p.Q/D max
�
0;
d

2
� d C 2

p

�
: (3.5)

This recovers the `2Lp decoupling results of Bourgain and Demeter in [11].

3.2. Example: Codimension 2 manifolds in R4

Take d D n D 2. Let Q1.�/ D A1�
2
1 C 2A2�1�2 C A3�

2
2 and Q2.�/ D B1�

2
1 C

2B2�1�2 CB3�
2
2 . Under the assumption that

rank

�
A1; A2; A3

B1; B2; B3

�
D 2; (3.6)

Bourgain and Demeter [12] proved that

�p.Q/D max
�
2
�1
2

� 1

p

�
; 2
�
1� 4

p

��
; (3.7)

with Q D .Q1;Q2/. This decoupling inequality is particularly interesting as it is one

key ingredient in Bourgain’s improvement on the Lindelöf hypothesis in [9].
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Let us see how Theorem 1.1 recovers this result. We take d D nD 2 and notice

that d2.Q/ D 2 (indeed, if d2.Q/ � 1, then Q1;Q2 would be linearly dependent,

since the space of quadratic forms in one variable is 1-dimensional, contradicting

(3.6)). Moreover, it is straightforward to see that d1.Q/ > 0, as the assumption (3.6)

says that Q1 and Q2 are linearly independent. Therefore, Q is nondegenerate in the

sense of (1.23). We can apply Corollary 1.4 and recover the result of Bourgain and

Demeter [12].

3.3. Example: Degenerate 3-dimensional submanifolds of R5

Take d D 3, n D 2 and Q D .�2
1 ; �

2
2 C �1�3/. Note that d0.Q/ D 0, d1.Q/ D 1,

d2.Q/D 3, and therefore Q fails to satisfy the nondegeneracy condition (1.23). On the

other hand, one can also compute, for instance via (1.14), that d2;2.Q/D 1;d2;1.Q/D
0 and dd 0;n0.Q/D 0 whenever d 0 � 1. We apply Theorem 1.1 and obtain that

�p.Q/D max
�
3
�1
2

� 1

p

�
;
5

2
� 7

p
; 3� 10

p

�
; (3.8)

after some elementary computation. This recovers the main result of Guo et al. [34],

via an entirely different approach: The proof in [34] relies on bilinear Fourier restric-

tion estimates, small cap decoupling inequalities for the parabola and the manifold

.�1; �2; �
2
1 ; �1�2/ and a more sophisticated induction argument; while the proof in the

current paper relies on more sophisticated Brascamp–Lieb inequalities and multilin-

ear Fourier restriction estimates.

3.4. Simultaneously diagonalizable forms

COROLLARY 3.2

Let Q D .Q1; : : : ;Qn/ be a collection of quadratic forms without mixed terms. Then

�p.Q/D max
0�n0�n

�
d
�1
2

� 1

p

�
C
�1
2

� 1

p

��
d � dn0.Q/

�
� 2.n� n0/

p

�
; (3.9)

for every p � 2.

Proof of Corollary 3.2

We first apply Corollary 1.2 and obtain

�p.Q/D max
d=2�d 0�d

max
0�n0�n

��
2d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

�
: (3.10)

In order to obtain (3.9), it suffices to prove that

max
d=2�d 0�d

�
2d 0 � dd 0;n0.Q/

�
D 2d � dn0.Q/; (3.11)
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for every n0. By the equivalent definition of dd 0;n0.Q/ as in (1.14), this is equivalent

to proving

min
0�m�d=2

inf
H of

Setcodimm

�
dn0.QjH /C 2m

�
D dn0.Q/; (3.12)

for every n0, which is the same as saying

dn0.Q/� 2m� dn0.QjH / (3.13)

for every 1� n0 � n and every plane H of codimension m with 1�m� d=2.

We argue by contradiction and assume that

dn0.QjH /� dn0.Q/� 2m� 1; (3.14)

for some n0 and some linear subspace H of codimension m. By the definition (1.11),

we can find Md�m 2GLd�m.R/ and M 0 2Mn�n0 of rank n0 such that

NV. NP/D dn0.QjH /; (3.15)

where for � 0 2 Rd�m we define

NP.� 0/ WD
�
Q1jH .� 0 �Md�m/; : : : ;QnjH .� 0 �Md�m/

�
�M 0

D
�
Q1

�
.� 0 �Md�m;0/ � RotH

�
; : : : ;Qn

�
.� 0 �Md�m;0/ � RotH

��
�M 0: (3.16)

Here 0 D .0; : : : ; 0/ 2 Rm and RotH is a rotation matrix acting on Rd . Let Md 2
GLd .R/ be a matrix such that

.� 0 �Md�m;0/D .� 0;0/ �Md ; for every � 0 2 R
d�m: (3.17)

With this notation, we can write

NP.� 0/D
�
Q1

�
.� 0;0/ �Md � RotH

�
; : : : ;Qn

�
.� 0;0/ �Md � RotH

��
�M 0

DW
� NP1.�

0/; : : : ; NPn0.� 0/
�
: (3.18)

Recall (3.15). It implies that

NV.�1
NP1 C � � � C �n0 NPn0/� dn0.QjH /� dn0.Q/� 2m� 1; (3.19)

for all choices of �1; : : : ; �n0 2 R. Now if we denote

NQ.�/ WD
� NQ1.�/; : : : ; NQn0.�/

�
WD
�
Q1.�/; : : : ;Qn.�/

�
�M 0; (3.20)

then from the definition of dn0.Q/ and the fact thatQ1; : : : ;Qn are diagonal quadratic

forms, we can find some �1; : : : ; �n0 such that
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d1.�1
NQ1 C � � � C �n0 NQn0/D NV.�1

NQ1 C � � � C �n0 NQn0/� dn0.Q/: (3.21)

Recall the definition of NP in (3.16) and the relation in (3.17) and (3.18). Lemma 3.1

then says that

NV.�1
NP1 C � � � C �n0 NPn0/� dn0.Q/� 2m; (3.22)

which is a contradiction to (3.19).

COROLLARY 3.3

For 1� n0 � n, define

Qn0.�/ WD
X

1�d 0�d

an0;d 0�2
d 0 : (3.23)

Then for every p � 2, with Q D .Q1; : : : ;Qn/,

�p.Q/D max
�
d
�1
2

� 1

p

�
; 2d

�1
2

� 1

p

�
� 2n

p

�
(3.24)

if and only if, for every 1� n0 � n, every n� .bd � n0d
n

c C 1/ submatrix of

2
4
a1;1; a1;2; : : : ; a1;d

: : :

an;1; an;2; : : : ; an;d

3
5 (3.25)

has rank at least n� n0 C 1. Here for A 2 R, bAc refers to the largest integer �A.2

When nD 2, a condition of the form (3.25) already appeared in Heath-Brown and

Pierce [39]. Let Q D .Q1;Q2/ be a pair of quadratic forms with integer coefficients.

Heath-Brown and Pierce [39] studied the problem of representing a pair of integers

.n1; n2/ by the pair of .Q1;Q2/ for general Q1 and Q2. If Q1 and Q2 are assumed

to be simultaneously diagonalizable, say of the form (3.23), then the condition in [39]

becomes that every 2� 2 minor of

�
a1;1; a1;2; : : : ; a1;d

an;1; an;2; : : : ; an;d

�
(3.26)

has rank 2 (see [39, Condition 3]).

Proof of Corollary 3.3

Let us show the “only if” part by contradiction. Suppose that, for some 1 � n0 � n,

some n� .bd � n0d
n

c C 1/ submatrix of (3.25) has rank n� n0 or less. Then

2This notation is used only in Corollary 3.3 and its proof.
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dn0.Q/� d �
�j
d � n0d

n

k
C 1

�
<
n0d

n
: (3.27)

Therefore, Q is not nondegenerate in the sense of (1.23), and (3.24) cannot hold true

by Corollary 1.4.

Let us show the other direction of the equivalence. First of all, notice that the two

terms on the right-hand side of (3.24) match at p D pn;d WD 2C 4n=d . By Corol-

lary 3.2, it suffices to show that

d
�1
2

� 1

p

�
C
�1
2

� 1

p

��
d � dn0.Q/

�
� 2.n� n0/

p
� 2d

�1
2

� 1

p

�
� 2n

p
(3.28)

for every 1� n0 � n and every p � pn;d . By rearranging the terms, what we need to

show becomes

dn0.Q/� n0d=n (3.29)

for every 1� n0 � n. We argue by contradiction and assume that

dn0.Q/ < n0d=n (3.30)

for some 1� n0 � n. By definition, there exist M 2 Rd�d of rank d and M 0 2 Rn�n

of rank n0 such that

dn0.Q/D NV
�
M 0 � .Q ıM/

�
: (3.31)

Since the assumption (3.25) is invariant under the row operations, we may assume

that M 0 is a diagonal matrix with diagonal entries 1; : : : ; 1; 0; : : : ; 0. By the inequality

(3.30), we have

dim

n0\

iD1

\

�2Rd

ker rQi .�/ > d � n0d

n
: (3.32)

It remains to observe that

ker rQi .�/D
°
� 2 R

d

dX

j D1

�j�jai;j D 0
±

and

\

�2Rd

ker rQi .�/D ¹� 2 R
d�jai;j D 0 for all j D 1; : : : ; dº;

so that (3.32) implies that an n0 � .bd � n0d
n

c C 1/ submatrix of (3.25) vanishes.
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3.5. Decoupling theory for two quadratic forms

COROLLARY 3.4

Let Q D .Q1;Q2/ be two linearly independent quadratic forms defined on Rd satis-

fying d2.Q/D d .

(1) Let 1 � k < d=2. Then Q satisfies d1.Q/D k and the weakly nondegenerate

condition if and only

�p.Q/D max
�
d
�1
2

� 1

p

�
; .2d � k/

�1
2

� 1

p

�
� 2

p
;

2d
�1
2

� 1

p

�
� 4

p

�
; (3.33)

for every p � 2.

(2) Q is nondegenerate if and only if it is weakly nondegenerate and satisfies

d1.Q/� d=2.

Proof of Corollary 3.4

Let us start with proving the first part of the corollary. We denote the right-hand side

of (3.33) by � 0
p.Q/. By Corollary 1.2, �p.Q/ is given by

max
d=2�d 0�d

max
��
2d 0 � dd 0;2.Q/

��1
2

� 1

p

�
;
�
2d 0 � dd 0;1.Q/

��1
2

� 1

p

�
� 2

p
;

2d
�1
2

� 1

p

�
� 4

p

�
: (3.34)

Let us first show that (3.33) holds; that is, �p.Q/D � 0
p.Q/ for every p � 2, if and

only if

max
d 0

�
2d 0 � dd 0;1.Q/

�
D 2d � k;

max
d 0

�
2d 0 � dd 0;2.Q/

�
D d:

(3.35)

To show that (3.35) implies (3.33), we apply (3.34), move the maxd=2�d 0�d inside

the second max, and obtain (3.33). To show the other direction of the equivalence, the

constraint k < d=2 will come into play. Notice that under this assumption,

� 0
p.Q/D

8
ˆ̂<
ˆ̂:

d.1
2

� 1
p
/ if p � 2C 4

d�k
;

.2d � k/.1
2

� 1
p
/� 2

p
if 2C 4

d�k
� p � 2C 4

k
;

2d.1
2

� 1
p
/� 4

p
if p � 2C 4

k
:

(3.36)

Note that we are now under the assumption that �p.Q/ D � 0
p.Q/ for every p � 2.

When p is slightly larger than 2, we have
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�p.Q/D max
d=2�d 0�d

�
2d 0 � dd 0;2.Q/

��1
2

� 1

p

�
; (3.37)

as the contributions from the other two terms in (3.34) are already negative. This

implies

max
d=2�d 0�d

�
2d 0 � dd 0;2.Q/

�
D d: (3.38)

We use (3.38) to further simplify �p.Q/ to

max
�
d
�1
2

� 1

p

�
; max

d=2�d 0�d

�
2d 0 � dd 0;1.Q/

��1
2

� 1

p

�
� 2

p
;

2d
�1
2

� 1

p

�
� 4

p

�
: (3.39)

By comparing �p.Q/ with � 0
p.Q/ for 2C 4

d�k
� p � 2C 4

k
, we see that

max
d=2�d 0�d

.2d 0 � dd 0;1/D 2d � k: (3.40)

This finishes the proof that (3.33) is equivalent to (3.35).

It remains to show that (3.35) is equivalent to that Q is weakly nondegenerate

and satisfies d1.Q/ D k. Since the second equation in (3.35) is already equivalent

to the weakly nondegenerate condition, what we need to prove becomes dd;1.Q/D
d1.Q/D k if and only if

max
d 0

�
2d 0 � dd 0;1.Q/

�
D 2d � k; (3.41)

which follows immediately from

max
d 0

�
2d 0 � dd 0;1.Q/

�
D 2d � dd;1.Q/: (3.42)

To prove (3.42), it suffices to prove the following.

CLAIM 3.5

We have

dd;1.Q/� dd 0;1.Q/� 2.d � d 0/ (3.43)

for every d=2� d 0 � d .

The proof of Claim 3.5 will be presented in the end of this subsection. So far, we

have finished the proof of the first part of the corollary.
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Let us turn to the second part and show that Q is nondegenerate if and only if it

is weakly nondegenerate and satisfies d1.Q/ � d=2. By definition, we need to show

that d1.Q/� d=2 if and only if

dd�m;1.Q/� d=2� 2m (3.44)

for every 0 � m � d=2. By taking mD 0, we see that (3.44) implies d1.Q/ � d=2.

The other direction immediately follows from Claim 3.5. This finishes the second part

of the corollary.

Proof of Claim 3.5

We take M0 2 Rd�d of rank d 0 and M 0
0 2 R2�2 of rank 1 such that

dd 0;1.Q/D inf
M 2Rd�d

rank.M /Dd 0

inf
M 02Rn�n

rank.M 0/D1

NV
�
M 0 � .Q ıM/

�
D NV

�
M 0

0 � .Q ıM0/
�
: (3.45)

Therefore, there exist �1; �2 2 R such that

dd 0;1.Q/D NV
� eQ.�M0/

�
D dd;1

� eQ.�M0/
�
; (3.46)

where eQD �1Q1 C�2Q2 and Q D .Q1;Q2/. We now apply Lemma 3.1 and obtain

dd 0;1.Q/� dd;1.Q/D dd;1

� eQ.�M0/
�

� dd;1.Q/

� dd;1

� eQ.�M0/
�

� dd;1.eQ/
� �2.d � d 0/: (3.47)

This completes the proof of Claim 3.5.

4. Transversality

4.1. Brascamp–Lieb inequalities

Central tools in most existing proofs of decoupling inequalities are the Brascamp–

Lieb inequalities for products of functions in Rm which are constant along some linear

subspaces. Scale-invariant inequalities of this kind have been characterized in [5].

A novelty of our approach is that we for the first time take full advantage of scale-

dependent versions of Brascamp–Lieb inequalities. First inequalities of this kind were

proved in [5] and [6], and a unified description taking into account both minimal and

maximal scales was obtained in [46]. We will only use the results of [46] in a special

symmetric case when all functions fj below play similar roles. This special case is

captured in the following definition.
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Definition 4.1

Let m;m0 2 N. Let .Vj /
M
j D1 be a tuple of linear subspaces Vj � Rm of dimension

m0. For a linear subspace V � Rm, let �V W Rm ! V denote the orthogonal projec-

tion onto V . For 0 � ˛ �M and R � 1, we denote by BL..Vj /
M
j D1; ˛;R;R

m/ (for

Brascamp–Lieb constant) the smallest constant such that the inequality

Z

Œ�R;R�m

MY

j D1

fj

�
�Vj

.x/
�˛

dx

� BL
�
.Vj /

M
j D1; ˛;R;R

m
� MY

j D1

�Z

Vj

fj .xj /dxj

�˛

(4.1)

holds for any functions fj W Vj ! Œ0;1/ that are constant at scale 1, in the sense

that Vj can be partitioned into cubes with unit side length on each of which fj

is constant. If the dimension m of the total space Rm is clear from the context,

BL..Vj /
M
j D1; ˛;R;R

m/ is often abbreviated to BL..Vj /
M
j D1; ˛;R/.

We also need a Kakeya variant of Brascamp–Lieb inequalities, in which each

function fj ı �Vj
is replaced by a sum of functions of the form fj;l ı �Vj;l

, where

Vj;l are different subspaces. The first almost optimal inequality of this kind was the

multilinear Kakeya inequality, proved in [7], which generalizes the Loomis–Whitney

inequality. A simplified induction on scales proof was later given by Guth [36]. An

endpoint version of the multilinear Kakeya inequality was proved by Guth [35] using

the polynomial method. Endpoint Kakeya-type extensions of Brascamp–Lieb inequal-

ities were further developed in [21], [59], and [60]. It will be convenient to use the

following formulation, although a non-endpoint result such as [46, Theorem 2] would

also suffice for the purpose of proving decoupling inequalities with the optimal range

of exponents.

THEOREM 4.2 (Kakeya–Brascamp–Lieb [60])

Fix integers m0 � m. Let Vj , 1 � j �M , be families of linear subspaces of Rm of

dimension m0. Let 1� ˛ �M and R � 1. Assume that

A WD sup
V12V1;:::;VM 2VM

BL
�
.Vj /

M
j D1; ˛;R

�
<1: (4.2)

Then, for any nonnegative integrable functions fj;Vj
W Vj ! R constant at scale 1,

we have

Z

B.0;R/

MY

j D1

� X

Vj 2Vj

fj;Vj

�
�Vj

.x/
��˛

dx
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� C ˛A

MY

j D1

� X

Vj 2Vj

Z

Vj

fj;Vj
.x/dx

�˛

; (4.3)

where the constant C depends only on the dimension m.

The uniform bound (4.2) is clearly necessary for (4.3) to hold. In the scale-

invariant case, such uniform bounds for Brascamp–Lieb constants were obtained in

[4] and [3]. We need the following corresponding result in the scale-dependent case.

THEOREM 4.3 ([46, Theorem 3])

In the situation of Definition 4.1, fix a tuple .Vj /
M
j D1 and an exponent 1� ˛ �M . Let

	 WD sup
V �Rm

�
dimV � ˛

M

MX

j D1

dim�Vj
V
�
; (4.4)

where the supremum is taken over all linear subspaces of Rm.

Then there exists a constant C0 <1 and a neighborhood of the tuple .Vj /
M
j D1 in

the M th power of the Grassmanian manifold of all linear subspaces of dimension m0

of Rm such that, for any tuple . QVj /
M
j D1 in this neighborhood and any R � 1, we have

BL
�
. QVj /

M
j D1; ˛;R

�
� C0R

� : (4.5)

4.2. Transversality for quadratic forms

Let Q D .Q1; : : : ;Qn/ be a sequence of quadratic forms defined on Rd . The sub-

spaces in the subsequent application of Kakeya–Brascamp–Lieb inequalities will be

the tangent spaces to the manifold SQ:

V� D V�.Q/ WD lin
®�
ej ; @j Q.�/

�
; j D 1; : : : ; d

¯
; � 2 R

d : (4.6)

Here ej is the j th coordinate vector, and lin refers to linear span. Transversality of

pieces of this manifold will be measured by the exponent 	 defined in (4.4) evaluated

at tangent spaces somewhere at the respective pieces: the smaller the exponent, the

more transverse are the pieces. It is an observation going back to [13] (for scale-

invariant Brascamp–Lieb inequalities) that the most transverse situations arise when

the pieces are not concentrated near a low-degree subvariety in the following sense.

Definition 4.4

A subset W � P .1=K/ will be called 
 -uniform if, for every nonzero polynomial P

in d variables with real coefficients of degree � d , we have

ˇ̌
¹W 2 W2W \ZP ¤ ;º

ˇ̌
� 
 jW j:
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Here ZP refers to the zero set of P . When using the notation W D ¹W1; : : : ;WM º D
¹Wj ºM

j D1 for 
 -uniform sets, we always mean that the Wj ’s are pairwise distinct.

LEMMA 4.5

Let 
 2 Œ0; 1�, ˛ � 1, and K 2 2N. Then there exists C�;K;˛ <1 such that, for every


 -uniform set W D ¹W1; : : : ;WM º � P .1=K/ with ˛ �M and everyR � 1, we have

sup
�j 2Wj

BL
�
.V�j

/Mj D1; ˛;R;R
dCn

�
� C�;K;˛R

�Q.˛�.1��//;

where

	Q.˛/ WD sup
V �RdCn

�
dimV � ˛ sup

�2Rd

dim�V�
V
�
: (4.7)

In the remaining part, if Q is clear from the context, we often abbreviate 	Q.˛/

to 	.˛/.

Proof of Lemma 4.5

Since there are only finitely many 
 -uniform sets W , and, for any fixed 
 -uniform

set W D ¹W1; : : : ;WM º, the set
QM

j D1Wj is compact, by Theorem 4.3, it suffices to

show that, for any �j 2Wj , and every subspace V � RdCn, we have

dimV � ˛

M

MX

j D1

dim�V�j
V � dimV � ˛.1� 
/ sup

�2Rd

dim�V�
V:

This is equivalent to

1

M

MX

j D1

dim�V�j
V � .1� 
/ sup

�2Rd

dim�V�
V:

If v1; : : : ; vm is a basis of V , then

dim�V�
V D rank

0
B@
e1 @1Q.�/
:::

:::

ed @d Q.�/

1
CA �

�
v1 : : : vm

�
; (4.8)

where on the right-hand side we have the product of two matrices. Each minor deter-

minant of this matrix is a polynomial of degree at most d . Consider the largest minor

(of size d 0 �d 0, say) whose determinant is a nonvanishing polynomial; call this poly-

nomial P (if d 0 D 0, then P D 1). Then

d 0 D sup
�2Rd

dim�V�
V:
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By Definition 4.4, we have P.�j /¤ 0 for at least .1� 
/M many j ’s. Therefore,

1

M

MX

j D1

dim�V�j
V � 1

M

X

j WP.�j /¤0

dim�V�j
V � 1

M

X

j WP.�j /¤0

d 0 � .1� 
/d 0:

This finishes the proof of the lemma.

From the proof of Lemma 4.5, we see that the sup in sup�2Rd dim�V�
V is

attained at almost every point, with respect to the d -dimensional Lebesgue measure.

Therefore, we introduce the following notation:

dim�V WD sup
�2Rd

dim�V�
V: (4.9)

Next, we will find a more explicit description of the exponent (4.7) in terms of the

quadratic forms Q. The following result relates the terms in (4.7) to the quantities

introduced in (1.11).

LEMMA 4.6

Let Q be an n-tuple of quadratic forms in d variables. For a linear subspace V �
RdCn, let

d 0 WD dim�V; n0 WD dimV � dim�V:

Then

n0 � n and dn0.Q/� d 0:

Lemma 4.6 relies on the following algebraic result.

LEMMA 4.7

Let F D R.�1; : : : ; �d / be the field of rational functions in d variables. Let A D
.
P

k ai;j;k�k/i;j be a .N1 �N2/-matrix whose entries are linear maps with real coef-

ficients. Suppose that rankFA D r . Then there exist real invertible matrices B;B 0

such that

BAB 0 D
	

� �
� 0



; (4.10)

where the zero block has size .N1 � r/� .N2 � r/.

Standard linear algebra shows that there exist invertible matrices B;B 0 with

entries in F such that (4.7) holds. The point of Lemma 4.7 is that we can find B;B 0
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with real entries. Note that Lemma 4.7 may fail if entries of A are not assumed to be

linear forms. We will include a proof of Lemma 4.7 below, and we also note that after

finishing the first version of the paper, Zipei Nie [48] pointed out to us that Lemma 4.7

is in fact known in the literature and follows from [24, Lemma 1]. We thank him for

this comment.

Proof of Lemma 4.6 assuming Lemma 4.7

The claim n0 � n follows from the fact that the tangent spaces V� have codimension n.

After linear changes of variables in Rd and Rn, we may assume that V is spanned

by linearly independent vectors of the form

.e1; v1/; : : : ; .es; vs/; .0; Qe1/; : : : ; .0; Qej /;

where ei are unit coordinate vectors in Rd , Qei are unit coordinate vectors in Rn, vi are

vectors in Rn, and s � min.d;dimV /. Note also that dimV D s C j and that j � n.

As in (4.8), we have

dim�V�
V D rankR

0
B@
e1 @1Q.�/
:::

:::

ed @d Q.�/

1
CA �

 
eT

1 : : : eT
s 0 : : : 0

vT
1 : : : vT

s QeT
1 : : : QeT

j

!
:

Since all entries of the product matrix on the right-hand side are polynomials in � , we

have

d 0 D sup
�

dim�V�
V D rankF

0
B@
e1 @1Q.�/
:::

:::

ed @d Q.�/

1
CA �

 
eT

1 : : : eT
s 0 : : : 0

vT
1 : : : vT

s QeT
1 : : : QeT

j

!
;

where F is the field of rational functions in d variables. This is because the rank equals

the size of the largest minor with nonvanishing determinant, and the determinant of

any minor, viewed as an element of F, vanishes if and only if its value vanishes for

every � . The latter matrix can be written in the block form

	
I CL1 L3

L2 B



; (4.11)

where I is the s � s identity matrix, L1;L2;L3 are matrices whose entries are linear

combinations of monomials of degree 1, and

B D

0
B@
@sC1Q1.�/ : : : @sC1Qj .�/

:::
:::

@dQ1.�/ : : : @dQj .�/

1
CA :
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Let r WD rankFB . Any r � r -minor determinant P of the matrix B is a homogeneous

polynomial of degree r , and P coincides with the lowest-degree homogeneous part of

the corresponding .rCs/�.rCs/-minor determinant of (4.11), obtained by adjoining

the first s rows and columns. Therefore,

d 0 � sC r:

Let us continue to prove dn0.Q/� d 0. Recall that n0 D sCj �d 0 � j � r . By the

definition in (1.11), it suffices to find linear changes of variables in Rd and Rn, after

which QrC1; : : : ;Qj no longer depend on variables �sCrC1; : : : ; �d . Notice that row

and column operations on B with coefficients in R correspond to linear changes of

variables in Rd and Rn, respectively. By Lemma 4.7, by row and column operations

with coefficients in R, B can be brought in a form in which it has a .j � r/ � .d �
s � r/-block of zeros. This means that, after a change of variables, QrC1; : : : ;Qj do

not depend on variables �sCrC1; : : : ; �d .

Proof of Lemma 4.7

Let k1 be the largest index such that �k1
appears in A. Swapping rows and columns,

we may assume a1;1;k1
¤ 0. Using elementary row and column operations, we may

further assume that a1;1;k1
D 1, a1;j;k1

D 0, and ai;1;k1
D 0 for all j ¤ 0 and i ¤ 0.

Thus, we may assume

AD
	
�k1

C � �
� A0



;

where �k1
does not appear in entries � and A0 is an .N1 � 1/ � .N2 � 1/-matrix. If

A0 ¤ 0, we repeat the same procedure in A0, and so on. If this process stops after at

most r iterations, then we are done. Otherwise, we have brought the upper-left corner

of A into the form

0
BBB@

�k1
C � � : : : �
� �k2

C � : : : �
:::

: : :
:::

� : : : � �krC1
C �

1
CCCA ; (4.12)

where ai;j;k D 0 if i ¤ j and k � kmin.i;j /. The determinant of this matrix is a poly-

nomial whose leading term in the lexicographic ordering is �k1
� � � �krC1

:

det (4.12) D �k1
� � � �krC1

C lower-order terms.

This can be seen by induction on the size of this matrix. Indeed, if k1 D � � � D kl >

klC1, then �k1
appears in this matrix only in the first l diagonal entries, so
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det (4.12) D � l
k1

� det

0
BBB@

�klC1
C � � : : : �

� �klC2
C � : : : �

:::
: : :

:::

� : : : � �krC1
C �

1
CCCA

C lower-order terms.

In particular, the matrix (4.12) is invertible (over F), so that rankFA� r C 1, a con-

tradiction.

COROLLARY 4.8

For any ˛ � 1, the exponent defined in (4.7) satisfies

	.˛/� sup
0�n0�n

�
n0 C .1� ˛/dn0.Q/

�
: (4.13)

Proof of Corollary 4.8

Let V � RdCn be a linear subspace. With the notation from Lemma 4.6, we obtain

dimV � ˛ dim�V D .d 0 C n0/� ˛d 0 D n0 C .1� ˛/d 0 � n0 C .1� ˛/dn0.Q/:

The conclusion follows after taking the supremum over all subspaces V .

4.3. Ball inflation

A so-called ball inflation inequality, based on scale-invariant Kakeya–Brascamp–Lieb

inequalities, was first introduced in [17, Theorem 6.6]. Here, we formulate a ver-

sion of this inequality based on scale-dependent Kakeya–Brascamp–Lieb inequalities.

Recall that UJ was defined in (1.4).

PROPOSITION 4.9 (Ball inflation)

Let K 2 2N be a dyadic integer and 0 < � � 1=K . Let ¹Wj ºM
j D1 � P .1=K/ be a 
 -

uniform set of cubes. Then, for any 1� t � p <1, any functions fJ with suppcfJ �
UJ and any x0 2 RdCn, we have

���
MY

j D1

� X

J 2P .Wj ;	/

kfJ kt
–Lt .wB.x;1=�//

�1=t���
–Lp

x2B.x0;��2/

� C�;K;p;t�
�. d

t � dCn
p C �..1��/p=t/

p /

�
MY

j D1

� X

J 2P .Wj ;	/

kfJ kt
–Lt .w

B.x0;��2/
/

�1=t

: (4.14)
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Proof of Proposition 4.9

Let R WD ��1. Without loss of generality, we set x0 D 0. Let � WD B.0;R2/. Let

˛ WD p=t . The pth power of the left-hand side of (4.14) equals

 

x2


MY

j D1

� X

J 2P .Wj ;	/

kfJ kt
–Lt .wB.x;1=�//

�˛

; (4.15)

where
ffl



WD j�j�1

R



denotes the average integral. For each cube J 2 P .Wj ; �/with

center �J , we cover � with a family TJ of disjoint tiles TJ , which are rectangular

boxes with n long sides of length 2��2 centered at 0 pointing in the directions V ?
�J

and d short sides of length ��1 pointing in complementary directions (the length of

the long sides equals the diameter of B.x0; �
�2/, so that we only need one layer of

tiles in the directions V ?
�J

). We can choose these tiles so that they are contained in

C0� with C0 � 1. We let TJ .x/ be the tile containing x, and for x 2
S

TJ 2TJ
TJ we

define

FJ .x/ WD sup
y2TJ .x/

kfJ k–Lt .wB.y;1=�//:

Then

 

x2


MY

j D1

� X

J 2P .Wj ;	/

kfJ kt
–Lt .wB.x;1=�//

�˛

�
 




MY

j D1

� X

J 2P .Wj ;	/

jFJ jt
�˛

:

Since the function FJ is constant on each tile TJ 2 TJ , we can write its restriction to

� in the form QFJ ı�J , where �J is the orthogonal projection onto V�J
. To apply The-

orem 4.2, we apply the change of variables x !Rx such that the resulting functions

FJ .Rx/ are constant at the unit scale:

 




MY

j D1

� X

J 2P .Wj ;	/

jFJ jt
�˛

DR�.dCn/

Z

B.0;R/

MY

j D1

� X

J 2P .Wj ;	/

FJ .R�/t
�˛

: (4.16)

By Theorem 4.2 and Lemma 4.5 with RD ��1, we bound the last expression by

R�.dCn/C�;K;˛R
�.˛.1��//

MY

j D1

� X

J 2P .Wj ;	/

Z

B.0;C0R/�Rd

� QFJ .R�/
�t�˛

�R�.dCn/C�;K;˛R
�.˛.1��//R˛d

�
MY

j D1

� X

J 2P .Wj ;	/

 

B.0;C0R2/�RdCn

jFJ jt
�˛

: (4.17)
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The conclusion will now follow from the bound

kFJ k–Lt .C0
/ � kfJ k–Lt .w�/; (4.18)

which is a standard application of the uncertainty principle (see, e.g., [32, (3.13)]).

The ball inflation inequality in Proposition 4.9 is sufficient for proving `pLp

decoupling. For the proof of `qLp decoupling with q < p we need a slightly more

general statement.

COROLLARY 4.10 (Ball inflation, `qLt version)

In the situation of Proposition 4.9, for any 1� Qq � t , we have

���
MY

j D1

� X

J 2P .Wj ;	/

kfJ k Qq

–Lt .wB.x;1=�//

�1=Qq���
–Lp

x2B.x0;��2/

� C�;K;p;t; Qq.j log�j C 2/K
d

��. d
t � dCn

p C �..1��/p=t/
p /

�
MY

j D1

� X

J 2P .Wj ;	/

kfJ k Qq

–Lt .w
B.x0;��2/

/

�1=Qq

: (4.19)

Proof of Corollary 4.10

This follows from Proposition 4.9 by a dyadic pigeonholing argument in the proof of

[17, Theorem 6.6]. For the sake of completeness, we still include the proof here. We

follow the presentation in [32, Appendix A].

For each 1� j �M , partition

P .Wj ; �/D Jj;1 [
bd log2.1=	/c[

�D0

Jj;�; (4.20)

where for 0� 
� log.1=�/

Jj;� WD
°
J 2 P .Wj ; �/ W 2���1 <

kfJ k–Lt .wB /

maxJ 02P .Wj ;	/kfJ 0k–Lt .wB /

� 2��
±
;

Jj;1 WD
°
J 2 P .Wj ; �/ W

kfJ k–Lt .wB / � 2�bd log2 .1=	/c max
J 02P .Wj ;	/

kfJ 0k–Lt .wB /

±
:

(4.21)

Since M �Kd , the claim (4.19) follows by the triangle inequality from
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���
MY

j D1

� X

J 2Jj;�j

kfJ k Qq

–Lt .wB.x;1=�//

�1=Qq���
–Lp

x2�

� C�;K;p;t; Qq�
�. d

t � dCn
p C �..1��/p=t/

p /
MY

j D1

� X

J 2P .Wj ;	/

kfJ k Qq

–Lt .w�/

�1=Qq

; (4.22)

which we will show for every choice of 
1; : : : ; 
M 2 ¹0; : : : ; bd log2.1=�/cº [ ¹1º.

Since Qq � t , by Hölder’s inequality, the left-hand side of (4.22) is bounded by

�Y
jJj;�j j

1
Qq

� 1
t

����
MY

j D1

� X

J 2Jj;�j

kfJ kt
–Lt .wB.x;1=�//

�1=t���
–Lp

x2B

: (4.23)

By Proposition 4.9, the last display is bounded by

C�;K;p;t; Qq�
�. d

t � dCn
p C �..1��/p=t/

p /
�Y

jJj;�j j
1
Qq

� 1
t

�

�
MY

j D1

� X

J 2Jj;�j

kfJ kt
–Lt .wB /

�1=t

: (4.24)

It remains to observe that, for every 
, we have

jJj;�j
1
Qq

� 1
t

� X

J 2Jj;�

kfJ kt
–Lt .wB /

�1=t

�
� X

J 2P .Wj ;	/

kfJ k Qq

–Lt .wB /

�1=Qq

: (4.25)

If 
 ¤ 1, this follows, as the summands on the left-hand side are comparable. For


D 1, we have

jJj;1j
1
Qq

� 1
t

� X

J 2Jj;1

kfJ kt
–Lt .wB /

�1=t

� jJj;1j
1
Qq max

J 2Jj;1

kfJ k–Lt .wB /

� ��d2�bd log2.1=	/c max
J 02P .Wj ;	/

kfJ 0k–Lt .wB /

�
� X

J 2P .Wj ;	/

kfJ k Qq

–Lt .wB /

�1=Qq

:

5. Induction on scales

The upper bounds of �q;p.Q/ in Theorem 1.1 will be proved by induction on dimen-

sion d . The main inductive step is contained in the following result, whose proof will
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occupy the whole Section 5. One can apply Theorem 5.1 repeatedly and then obtain

the upper bounds in part (1.16) of Theorem 1.1.

THEOREM 5.1

Let d � 1 and n� 1. Let Q D .Q1; : : : ;Qn/ be a collection of quadratic forms in d

variables. Let 2� q � p <1 and

ƒ WD sup
H

�q;p.QjH /; (5.1)

where the sup is taken over all hyperplanes H � Rd that pass through the origin.

Then

�q;p.Q/� max
�
ƒ; max

0�n0�n

h
d
�
1� 1

p
� 1

q

�
� dn0.Q/

�1
2

� 1

p

�
� 2.n� n0/

p

i�
: (5.2)

In the proof of Theorem 5.1, we may assume that

� WD �q;p.Q/ > ƒ; (5.3)

since otherwise (5.2) already holds. The assumption (5.3) is convenient, because

it means that the multilinear terms in Proposition 5.6 below dominate the lower-

dimensional terms. On a technical level, it allows us to define the quantities (5.32)

that are central to the bootstrapping argument.

5.1. Stability of decoupling constants and lower-dimensional contributions

In order to make use of the quantity (5.1), we need to show that we have a bound for

the decoupling constants Dq;p.QjH ; ı/ that is uniform in the hyperplanes H . More

generally, it turns out that decoupling constants can be bounded locally uniformly

in the coefficients of the quadratic forms Q. Although it is possible to obtain such

uniform bounds by keeping track of the dependence on Q in all our proofs, we use

this opportunity to record a compactness argument for decoupling constants whose

validity is not restricted to quadratic forms.

THEOREM 5.2

For every 2 � q � p < 1, � > 0, and real quadratic forms Q1; : : : ;Qn in d vari-

ables, there exist CQ;�;q;p <1 and a neighborhood Q of .Q1; : : : ;Qn/ such that, for

every . QQ1; : : : ; QQn/ 2 Q and every ı 2 .0; 1/, we have

Dq;p

�
. QQ1; : : : ; QQn/; ı

�
� CQ;�;q;pı

��q;p.Q/��;

where �q;p.Q/ is given by (1.8).
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LEMMA 5.3 (Affine rescaling)

Let 2� q � p <1. For any dyadic numbers 0 < ı � � � 1 and every J 2 P .�/,

���
X

�2P .J;ı/

f�

���
Lp

� Dq;p.Q; ı=�/
� X

�2P .J;ı/

kf�kq
Lp

�1=q

: (5.4)

Such a lemma has also been standard in the decoupling literature (see, e.g., [11,

Section 4] or [31, Lemma 1.23]).

Proof of Theorem 5.2

Let � D �.Q; �; q;p/ be a small number, which will be determined later. We may

assume that ı � �=4. We consider a tuple . QQ1; : : : ; QQn/ such that

sup
i

��Hess. QQi �Qi /
��< �2=.10d C 10/: (5.5)

Then, for every J 2 P .�/ and � 2 P .J; ı/, we have

U�. QQ/� UJ .Q/: (5.6)

Take a collection of functions f� with supp Of� � U�. QQ/ for each � 2 P .ı/.

Using (5.6) and the definition of �q;p.Q/, we obtain

���
X

�2P .ı/

f�

���
Lp

� CQ;��
��q;p.Q/��=2

� X

J 2P .�/

kfJ kq
Lp

�1=q

� CQ;��
��q;p.Q/��=2Dq;p. QQ; ı=�/

� X

�2P .ı/

kf�kq
Lp

�1=q

: (5.7)

The last inequality follows from the affine rescaling (Lemma 5.3). Hence, we obtain

Dq;p. QQ; ı/� CQ;��
��q;p.Q/��=2Dq;p. QQ; ı=�/: (5.8)

We iterate this inequality log��1.ı�1/-times and obtain

Dq;p. QQ; ı/� CQ;�.ı
�1/log

��1 CQ;	ı��q;p.Q/��=2: (5.9)

It suffices to take � small enough so that log��1 CQ;� � �=2.

COROLLARY 5.4

Let 2 � q � p <1. For each � > 0, there exists CQ;�;q;p <1 such that, for every

linear subspace H � Rd of codimension 1, we have

Dq;p.QjH ; ı/� CQ;�;q;pı
�ƒ��; (5.10)

where ƒ was defined in (5.1).
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Proof

Recall from (1.12) that the QjH are parameterized by the orthogonal group O.d/.

Since QjH depends continuously on the rotation used to define it, the group O.d/ is

compact, and by Theorem 5.2, we obtain the claim.

To prepare for the broad-narrow analysis of Bourgain and Guth [18] in the follow-

ing section, we need the following lemma that takes care of the case when frequency

cubes are clustered near subvarieties of low degrees.

LEMMA 5.5 ([31, Corollary 2.18])

For every d � 1, D > 1 and � > 0, there exists c D c.D; �/ > 0 such that the follow-

ing holds. For every sufficiently large K , there exist

Kc �K1 �K2 � � � � �KD �
p
K (5.11)

such that for every nonzero polynomial P in d variables of degree at most D, there

exist collections of pairwise disjoint cubes Wj � P .1=Kj /, j D 1; 2; : : : ;D, such

that

N1=K.ZP /\ Œ0; 1�d �
D[

j D1

[

W 2Wj

W (5.12)

and

���
X

W 2Wj

fW

����D;Q;�;q;p K
ƒC�
j

� X

W 2Wj

kfW kq
p

�1=q

: (5.13)

Here N1=K.ZP / denotes the 1=K neighborhood of the zero set of P .

This lemma was stated in [31] only for p D q and with Fourier support condition

that is slightly different from (1.4). The same proof works also for q � p and with

Fourier support condition (1.4) without any change, and we will therefore not repeat

it here. The main hypothesis of [31, Corollary 2.18] is [31, Hypothesis 2.4], which is

exactly what we verified in Corollary 5.4.

5.2. Multilinear decoupling

For a positive integer K , a transversality parameter 
 > 0, and 0 < ı < K�1, the

multilinear decoupling constant

MulDec.ı; 
;K/D MulDec.Q; ı; 
;K/ (5.14)

is the smallest constant such that the inequality
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�Z

RdCn

� MY

j D1

kfWj
k–Lp.B.x;K//

�p

dx
�1=p

� MulDecq;p.Q; ı; 
;K/

MY

j D1

� X

�2P .Wj ;ı/

kf�kq

Lp.RdCn/

�1=q

(5.15)

holds for every choice of functions f� and every 
 -uniform set ¹W1; : : : ;WM º �
P .K�1/ with 1�M �Kd .

We use a version of the Bourgain–Guth reduction of linear to multilinear esti-

mates (see [18]). Estimates of a similar form already appeared in works of Bourgain

and Demeter (see, e.g., [15], [13]). The version below is a minor variant of [31, Propo-

sition 2.33]. This is the place where the uniform bound in Theorem 5.2 is used.

PROPOSITION 5.6

Let 2 � q � p <1. Let ƒ be given by (5.1). Then, for each � > 0 and 
 > 0, there

exists K such that

Dq;p.Q; ı/��;� ı
�ƒ��

C ı�� max
ı�ı0�1Iı0dyadic

h�ı0

ı

�ƒ

MulDecq;p.Q; ı
0; 
;K/

i
: (5.16)

Proof of Proposition 5.6

Let ¹f�º�2P .ı/ be a collection of functions with supp Of� � U�. In the proof, for

each dyadic cube J with l.J /� ı, we denote

fJ WD
X

�2P .J;ı/

f�: (5.17)

Let K be a large constant that is to be determined. For each ball B 0 � RdCn of radius

K , we initialize

S0.B
0/ WD

®
W 2 P .1=K/jkfW kLp.B0/ �K�d max

W 02P .1=K/
kfW 0kLp.B0/

¯
: (5.18)

We repeat the following algorithm. Let 
 � 0. If S�.B
0/D ; or S�.B

0/ is 
 -uniform,

then we set

T .B 0/ WD S�.B
0/ (5.19)

and terminate. Otherwise, there exists a subvariety Z of degree at most d such that

ˇ̌®
W 2 S�.B

0/j2W \Z ¤ ;
¯ˇ̌

� 

ˇ̌
S�.B

0/
ˇ̌
: (5.20)
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Fix any such variety Z. Note that 2W \ Z ¤ ; H) W � N2d =K.Z/. For j 2
¹1; : : : ; dº, let W�;j .B

0/ WD Wj be as in Lemma 5.5 withK replaced byK=2d . Repeat

this algorithm with

S�C1.B
0/ WD S�.B

0/ n
d[

j D1

[

W 2W�;j .B0/

P .W;1=K/: (5.21)

This algorithm terminates after O.logK/ steps, with an implicit constant depending

on 
 , as in each step we remove at least the set on the left-hand side of (5.20), which

constitutes a fixed proportion 
 of S�.B
0/.

To process the cubes in W�;j and to avoid multiple counting, we define

eW�;j WD
�
W�;j n

[

0��0<�

W�0;j

�
n

[

1�j 0<j

[

�0

[

W 2W�0;j 0

P .W;1=Kj /: (5.22)

So far, we see that every cube in (5.18) can be covered by exactly one cube in

�[

�

[

j

eW�;j

�[
T .B 0/: (5.23)

Therefore, by the triangle inequality we obtain

���
X

��Œ0;1�d

f�

���
Lp.B0/

�
� X

W 2P .1=K/

kfW kq

Lp.B0/

�1=q

C
X

��log K

dX

j D1

���
X

W 2fW�;j

fW

���
Lp.B0/

C
X

W 2T .B0/

kfW kLp.B0/: (5.24)

On the right-hand side of (5.24), the first term is used to take care of the cubes that

are not counted in (5.18). Next, we will see how to handle all these three terms.

The second term on the right-hand side will be processed via a standard localization

argument (see, e.g., [31, Remark 1.24]) and Lemma 5.5. It is bounded by

CQ;�;p;q logK

dX

j D1

KƒC�
j

� X

W 2P .1=Kj /

kfW kq

Lp.wB0 /

�1=q

: (5.25)

Recall in Lemma 5.5 that Kc � Kj �
p
K for some c D c.d; �/ and every j . This

allows us to absorb logK by K�
j , which is the only place where the lower bound Kc

in (5.11) is used. To bound the last term, we use the definition of T .B 0/ and obtain
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Kd max
W 2T .B0/

kfW kLp.B0/ �K2d
� X

¹W1;:::;WM º�P .1=K/
��uniform

MY

j D1

kfWj
kp

Lp.B0/

�1=p

: (5.26)

The above estimate seems rather crude, but we can allow any K-dependent constant

in the estimate for this term. We plug (5.25) and (5.26) in (5.24), integrate over the

centers of balls B 0, and obtain
���
X

�2P .ı/

f�

���
Lp.RdCn/

� CQ;�;q;p

dX

j D0

KƒC2�
j

� X

W 2P .1=Kj /

kfW kq

Lp.RdCn/

�1=q

CK2d
X

¹W1;:::;WM º�P .1=K/
��uniform

� X

B0�RdCn

MY

j D1

kfWj
kp

Lp.B0/

�1=p

: (5.27)

Here we letK0 WDK . The terms under the sum in the former term have the same form

as that on the left-hand side and therefore are ready for an iteration argument. In other

words, we will apply (rescaled versions of) (5.27) to each term kfW kLp.RdCn/ under

the sum in the former term. By the definition of the multilinear decoupling constant,

the latter term can be controlled by

K2d2Kd

MulDecq;p.Q; ı; 
;K/
� X

�2P .ı/

kf�kq

Lp.RdCn/

�1=q

; (5.28)

where we used that there are only 2Kd
subsets of P .1=K/, and hence at most that

many 
 -uniform subsets. We plug (5.28) in (5.27). Now it is a standard argument

to iterate (5.27) and obtain the desired estimate in the proposition. We leave out the

details and refer to [13, Section 8] or [13, Proposition 8.4].

Recall that we have assumed (5.3). For most of Section 5, we fix some 0 < � <

� �ƒ, a transversality parameter 
 > 0, and a correspondingK as in Proposition 5.6.

The mutlilinear decoupling constant will be estimated by the same procedure as

in [11]. For a detailed exposition of this argument, we refer to [14, Theorem 10.16]

or [31, Section 2.6]. We use a compressed version of this argument, in which each

step is expressed as an inequality between the quantities (5.32) below. This version of

the Bourgain–Demeter argument was originally motivated by decoupling for higher-

degree polynomials (see [32]).

For a 
 -uniform set ¹Wj ºM
j D1 � P .1=K/ and a choice of functions f�, � 2

P .ı/, we write
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QA2.b/ WD
���

MY

j D1

� X

J 2P .Wj ;ıb/

kfJ k2
–L2.w

B.x;ı�2b/
/

�1=2���
L

p

x2RdCn

;

QAt .b/ WD
���

MY

j D1

� X

J 2P .Wj ;ıb/

kfJ k Qq

–Lt .w
B.x;ı�b/

/

�1=Qq���
L

p

x2RdCn

;

QAp.b/ WD
���

MY

j D1

� X

J 2P .Wj ;ıb/

kfJ kq

–Lp.w
B.x;ı�2b/

/

�1=q���
L

p

x2RdCn

;

where 0 < b � 1 and

1

t
D 1=2

p
C 1=2

2
;

1

Qq D 1=2

q
C 1=2

2
: (5.29)

Note that 2� Qq � t � p. For

0 < b < 1 and � D 2; t;p; (5.30)

let a	.b/ be the infimum over all exponents a such that, for every 
 -uniform set

¹Wj ºM
j D1 � P .1=K/, every ı < 1=K , and every choice of functions f�, � 2 P .ı/,

we have

QA	.b/�a;�;K ı�a

MY

j D1

� X

�2P .Wj ;ı/

kf�kq

Lp.RdCn/

�1=q

; (5.31)

with the implicit constant independent of the choice of the tuples .Wj / and .f�/,

and in particular independent of b, as we will send b ! 0. It follows from Hölder’s

inequality that this a	.b/ <1. Recall that � WD �q;p.Q/. As in [32, Section 3.6], we

define

a	 WD lim inf
b!0

� � a	.b/

b
; � 2 ¹2; t;pº: (5.32)

The next lemma says that a	 is nontrivial.

LEMMA 5.7

Under the above notation, it holds that

a	 <1; (5.33)

for � D 2; t;p.
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Proof of Lemma 5.7

By Hölder’s inequality and Bernstein’s inequality, the left-hand side of (5.15) is

bounded by

ı�Cb QA	.b/ (5.34)

for any � 2 ¹2; t;pº and any 0 < b < 1 with some constant C depending on �. There-

fore, we obtain that

MulDecq;p.Q; ı; 
;K/��;�;K ı�.CbCa�.b/C�/; (5.35)

for every � > 0 and 1 > b > 0. This, together with Proposition 5.6 and the assumption

(5.3), implies that

� � CbC a	.b/: (5.36)

This finishes the proof of the lemma.

5.3. Using linear decoupling

By Hölder’s inequality, we obtain

QAp.b/�
MY

j D1

���
� X

J 2P .Wj ;ıb/

kfJ kq

–Lp.w
B.x;ı�2b/

/

�1=q���
L

p

x2RdCn

: (5.37)

By Minkowski’s inequality, this is further bounded by

MY

j D1

� X

J 2P .Wj ;ıb/

��kfJ k–Lp.w
B.x;ı�2b/

/

��q

L
p

x2RdCn

�1=q

�

MY

j D1

� X

J 2P .Wj ;ıb/

kfJ kq

Lp.RdCn/

�1=q

: (5.38)

By the definition of the decoupling exponent and affine scaling (Lemma 5.3), this is

�� ı
�.�C�/.1�b/

MY

j D1

� X

�2P .Wj ;ı/

kf�kq
Lp

�1=q

: (5.39)

Hence

ap.b/� .� C �/.1� b/;

for every � > 0, which means ap.b/� �.1� b/. It follows that

ap � �: (5.40)
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5.4. Using L2 orthogonality

By L2 orthogonality (see, e.g., [32, Appendix B] for details), we have

QA2.b/D
���

MY

j D1

� X

J 2P .Wj ;ıb/

kfJ k2
–L2.w

B.x;ı�2b/
/

�1=2���
L

p

x2RdCn

�
���

MY

j D1

� X

J 2P .Wj ;ı2b/

kfJ k2
–L2.w

B.x;ı�2b/
/

�1=2���
L

p

x2RdCn

: (5.41)

We further apply Hölder’s inequality and obtain

� ı�d �2b.1=2�1=Qq/
���

MY

j D1

� X

J 2P .Wj ;ı2b/

kfJ k Qq

–Lt .w
B.x;ı�2b/

/

�1=Qq���
L

p

x2RdCn

(5.42)

Note that the last expression is exactly ı�db.1�2=Qq/ QAt .2b/. Hence

a2.b/� db.1� 2= Qq/C at .2b/:

It follows that

a2 � �d.1� 2= Qq/C 2at : (5.43)

5.5. Ball inflation

Using Corollary 4.10 with �D ıb and taking Lp-norms in x0 on both sides of (4.19),

we obtain

QAt .b/D
���

MY

j D1

� X

J 2P .Wj ;ıb/

kfJ k Qq

–Lt .w
B.x;ı�b/

/

�1=Qq���
L

p

x2RdCn

�� ı
�b.
C�/

���
MY

j D1

� X

J 2P .Wj ;ıb/

kfJ k Qq

–Lt .w
B.x;ı�2b/

/

�1=Qq���
L

p

x2RdCn

; (5.44)

for every � > 0, where

� WD d

t
� d C n

p
C 	..1� 
/p=t/

p

� d

t
� d C n

p
C 1

p
sup

0�n0�n

�
n0 C

�
1� p

t
.1� 
/

�
dn0.Q/

�
; (5.45)

and the log factors in Corollary 4.10 have been absorbed by ı�b� . In the last step we

used Corollary 4.8. In the end, we apply Hölder’s inequality to the last term in (5.44)

and obtain
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QAt .b/� ı
�b.
C�/ QA2.b/

1=2 QAp.b/
1=2: (5.46)

It follows that

at .b/� b� C ap.b/=2C a2.b/=2:

Substituting this inequality into the definition (5.32), we obtain

at � �� C ap=2C a2=2: (5.47)

5.6. Proof of Theorem 5.1

Inequalities (5.29), (5.40), (5.43), and (5.47) imply

� � ap � 2� � a2 C 2at � 2� C d.1� 2= Qq/D 2� C d.1=2� 1=q/:

Inserting the definitions of the respective terms into this inequality, we obtain

�q;p.Q/� 2
�d
t

� d C n

p
C 1

p
sup

0�n0�n

�
n0 C

�
1� p

t
.1� 
/

�
dn0.Q/

��
C d

�1
2

� 1

q

�
:

Both sides of this inequality depend continuously on 
 , and we consider its limit when


 ! 0. This gives

�q;p.Q/� 2
�d
t

� d C n

p
C sup

0�n0�n

�n0

p
C
� 1
p

� 1

t

�
dn0.Q/

��
C d

�1
2

� 1

q

�
:

Substituting the ansatz (5.29) for t , we obtain

�q;p.Q/� d
� 1
p

C 1

2

�
� 2d C n

p
C sup

0�n0�n

�2n0

p
C
� 2
p

� 1

p
� 1

2

�
dn0.Q/

�

C d
�1
2

� 1

q

�

D sup
0�n0�n

��1
2

� 1

p

�
.d � dn0/� 2.n� n0/

p

�
C d

�1
2

� 1

q

�
:

This finishes the proof of Theorem 5.1.

6. Lower bounds in Theorem 1.1

In this section, we show the lower bounds for `qLp decoupling constants in Theo-

rem 1.1 for q � p. We will prove that

�q;p.Q/� max
�

sup
H

�q;p.QjH /;

max
0�n0�n

�
d
�
1� 1

p
� 1

q

�
� dn0.Q/

�1
2

� 1

p

�
� 2.n� n0/

p

��
; (6.1)
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where H is a hyperplane passing through the origin, for every p � 2; q � 2. Note

that here we do not necessarily require q � p. One can apply the above inequality

repeatedly and then obtain the lower bounds in Theorem 1.1 for q � p.

First of all, we relate the decoupling exponent with the decoupling exponents

on subspaces. Here, the distinction between the cases q � p and q > p becomes

apparent.

LEMMA 6.1

Let Q be an n-tuple of quadratic forms in d variables, and let H � Rd be a linear

subspace of dimension d 0. Then, for any 2� q � p <1, we have

�q;p.Q/� �q;p.QjH /; (6.2)

and, for any 2� p < q � 1, we have

�q;p.Q/� �q;p.QjH /C .d � d 0/
� 1
p

� 1

q

�
: (6.3)

Proof of Lemma 6.1

For notational convenience, assume that Rd DH �Rd 00
with d 00 D d �d 0. The bound

(6.2) will follow from

Dq;p.Q;Cı/� Dq;p.QjH ; ı/; (6.4)

for some absolute constant C . To see this, let ¹ Qf�0�0 2 P .Œ0; 1�d
0
; ı/º be a tuple of

functions on Rd 0Cn that nearly extremizes the inequality (1.6) for QjH . Fix a bump

function � such that suppb� �B.0; ı2/� Rd 00
and, for

� D �0 ��00 2 P
�
Œ0; 1�d ; ı

�
D P

�
Œ0; 1�d

0

; ı
�

� P
�
Œ0; 1�d

00

; ı
�
;

consider the functions

f� D f�0��00 D
´ Qf�0 ˝ � �00 D �00

0 WD Œ0; ı�d
00
;

0 �00 ¤ �00
0:

Then suppcf� � CU� and

���
X

�

f�

���
p

D k�kp

���
X

�0

f�0

���
p
; kf�0��00kp D 1�00D�00

0
k�kpkf�0kp;

which implies (6.4). Here 1 denotes an indicator function, which takes the value 1 if

the statement in the subscript is true, and 0 otherwise.

To see (6.3), we define f�0��00
0
, as above. For other �00 2 P .Œ0; 1�d

00
; ı/, let a00 2

Rd 00
be the center of �00 and define
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f�0��00 WDA�00f�0��00
0
.� C c�00/;

where c�00 2 RdCn are very large vectors and the linear operators A�00 are given by

affine transformations in the Fourier space:

Â�00f .�; �/ WD bf
�
� � .0; a00/; �CQ.0;a00/� rQ.0; a00/ � �

�
:

If c�00 are sufficiently far apart, then functions f�0��00 and f Q�0� Q�00 are almost dis-

jointly supported for �00 ¤ Q�00, so that

���
X

�

f�

���
p



�X

�00

���
X

�0

f�0��00

���
p

p

�1=p

D k�kp

�X

�00

���
X

�0

Qf�0

���
p

p

�1=p

D k�kpı
�d 00=p

���
X

�0

Qf�0

���
p

and

�X

�

kf�kq
p

�1=q

D
�X

�00

X

�0

kf�0��00kq
p

�1=q

D k�kp

�X

�00

X

�0

k Qf�0kq
p

�1=q

D k�kpı
�d 00=q

�X

�0

k Qf�0kq
p

�1=q

:

This implies

Dq;p.Q;Cı/� ı
�d 00.1=p�1=q/Dq;p.QjH ; ı/;

and therefore (6.3).

To show the lower bound in (6.1), it remains to prove the following.

PROPOSITION 6.2

Let Q be an n-tuple of quadratic forms in d variables. For 0� n0 � n and 2� q;p �
1, we have

�q;p.Q/� d
�
1� 1

p
� 1

q

�
� dn0.Q/

�1
2

� 1

p

�
� 2.n� n0/

p
: (6.5)

Proof of Proposition 6.2

Let d 0 D dn0.Q/. After linear changes of variables, we may assume that Q1; : : : ;Qn0

depend only on �1; : : : ; �d 0 . Write frequency points in RdCn as

.� 0; � 00; �0; �00/ 2 R
d 0Cd 00Cn0Cn00

; (6.6)
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with

� 0 D .�1; : : : ; �d 0/; � 00 D .�d 0C1; : : : ; �d /;

�0 D .�1; : : : ; �n0/; �00 D .�n0C1; : : : ; �n/;
(6.7)

and d 0 C d 00 D d;n0 C n00 D n. Similarly, we write spatial points in RdCn as

.x0; x00; y0; y00/ 2 R
d 0Cd 00Cn0Cn00

: (6.8)

For a dyadic cube � 2 P .ı/, write � D �0 � �00 with �0 � Rd 0
and �00 � Rd 00

.

Choose functions f� of the form

f�.x
0; x00; y0; y00/D g�0.x0; y0/h�.x

00; y00/ (6.9)

with the following properties:3

(1) dg�0 and ch� are positive smooth functions satisfying
Z
dg�0 D

Z
ch� D 1: (6.10)

(2) dg�0 is supported on a ball of radius � ı2 contained in

®
.� 0; �0/ W � 0 2 ı � �0;

ˇ̌
�1 �Q1.�

0/
ˇ̌
� ı2; : : : ;

ˇ̌
�n0 �Qn0.� 0/

ˇ̌
� ı2

¯
; (6.11)

where ı ��0 is the box of the same center as �0 and side length ı times that of

�0.

(3) ch� is supported on a rectangular box of dimensions comparable to

ı1 � � � � � ı1
„ ƒ‚ …

d 00 times

� ı2 � � � � � ı2
„ ƒ‚ …

n00 times

(6.12)

contained in
[

�02ı ��0

®
.� 00; �00/ W � 00 2 �00;

ˇ̌
�Qn0 �QQn0.� 0; � 00/

ˇ̌
� ı2; n0 < Qn0 � n

¯
: (6.13)

On one hand, by the uncertainty principle,

kf�kp 
 ı�.2d 0Cd 00C2n/=p; (6.14)

and by definition we have

���
X

�2P .ı/

f�

���
p

� Dq;p.Q; ı/
� X

�2P .ı/

kf�kq
�1=q


 Dq;p.Q; ı/ı
�d=qı�.2d 0Cd 00C2n/=p: (6.15)

3Here and below we use � instead of �00 in h� , as Qn0C1; : : : ;Qn still depend on �0 .
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On the other hand, with U D ¹.x00; y00/ 2 Rd 00 � Rn00 jx00j; jy00j � 10�d�n=

.supj kHessQj k C 1/º, we have

���
X

�2P .ı/

f�

���
p
� inf

.x00;y00/2U

���
X

�2P .ı/

f�

���
Lp.Rd 0

�¹x00º�Rn0
�¹y00º/

D inf
.x00;y00/2U

���
X

�0

c�0;x00;y00g�0

���
Lp.Rd 0

�Rn0
/
; (6.16)

where

c�0;x00;y00 WD
X

�00

h�0��00.x00; y00/D
X

�00

h�.x
00; y00/ (6.17)

satisfies

jc�0;x00;y00 j 
 ı�d 00

(6.18)

uniformly in �0 and .x00; y00/ 2 U . This is because h�.0; 0/D 1 and

ˇ̌
h�.x

00; y00/� h�.0; 0/
ˇ̌
�
Z ˇ̌
e.x00 � � 00 C y00 � �00/� 1

ˇ̌ˇ̌ch�.� 00; �00/
ˇ̌
d� 00 d�00

� 1

2

Z ˇ̌ch�.� 00; �00/
ˇ̌
d� 00 d�00 D 1

2
;

so that all summands in (6.17) are close to 1.

Let �ı.�/D �.ı2�/, where � is a fixed positive Schwartz function on Rd 0 � Rn0

with suppb� �B.0; 1=10/. Then, by Hölder’s inequality,
���
X

�0

c�0;x00;y00g�0

���
Lp.Rd 0

�Rn0
/

� k�ık�1
1=.1=2�1=p/

����ı

X

�0

c�0;x00;y00g�0

���
L2.Rd 0

�Rn0
/


 ı2�.d 0Cn0/.1=2�1=p/
���
X

�0

c�0;x00;y00�ı � g�0

���
L2.Rd 0

�Rn0
/
: (6.19)

Since the Fourier supports of �ı � g�0 are disjoint for different .�0/’s for sufficiently

small ı, we obtain
���
X

�0

c�0;x00;y00�ı � g�0

���
L2.Rd 0

�Rn0
/

D
�X

�0

jc�0;x00;y00 j2k�ı � g�0k2

L2.Rd 0
�Rn0

/

�1=2


 ı�d 0=2 � ı�d 00 � ı�2�.d 0Cn0/=2; (6.20)
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uniformly in .x00; y00/ 2 U . Combining the above estimates, we obtain

Dq;p.Q; ı/ı
�d=qı�.2d 0Cd 00C2n/=p

� ı2�.d 0Cn0/.1=2�1=p/ � ı�d 0=2 � ı�d 00 � ı�2�.d 0Cn0/=2: (6.21)

This implies

�q;p.Q/� d.1� 1=q � 1=p/� d 0.1=2� 1=p/� 2.n� n0/=p;

as desired.

7. Sharp `qLp decoupling inequalities with q > p

Proof of Theorem 1.1 with q > p

The upper bound � follows from the Hölder inequality between `p and `q sums in

the definitions of �q;p and �p;p .

Let us prove the lower bound. Recall from Corollary 1.2 that

�p;p.Q/D max
d=2�d 0�d

max
0�n0�n

��
2d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

�
: (7.1)

We will show that

�q;p.Q/� max
d 0�d

max
0�n0�n

��
2d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

�

C d.1=p � 1=q/ (7.2)

via an induction on d . The base case d D 1 is easy, as quadratic forms depending

on one variable �1 are all multiples of �2
1 . Let us assume we have proved (7.2) for

d D d0, that is, we have established (7.2) for all Q depending on d0 variables. We

aim to prove it for d D d0 C 1, that is, for Q depending on d0 C 1 variables. First of

all, we apply Proposition 6.2 and obtain

�q;p.Q/� max
0�n0�n

��
2.d0 C 1/� dd0C1;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

�

C .d0 C 1/
� 1
p

� 1

q

�
; (7.3)

which is the right-hand side of (7.2) with d 0 D d0 C 1. It remains to prove that

�q;p.Q/� max
d 0�d0

max
0�n0�n

��
2d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

�

C .d0 C 1/
� 1
p

� 1

q

�
: (7.4)
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Let H � Rd0C1 be a linear subspace of dimension d0. By Lemma 6.1, we obtain

�q;p.Q/� �q;p.QjH /C 1

p
� 1

q
: (7.5)

Now we apply our induction hypothesis to �q;p.QjH /, as QjH depend on d0 vari-

ables, and obtain

�q;p.Q/� max
d 0�d0

max
n0�n

��
2d 0 � dd 0;n0.QjH /

��1
2

� 1

p

�
� 2.n� n0/

p

�

C .d0 C 1/
� 1
p

� 1

q

�
: (7.6)

In order to prove (7.4), we first take the sup over H in (7.6) and realize that it suffices

to prove

inf
H

dd 0;n0.QjH /� dd 0;n0.Q/; (7.7)

for every H of dimension d0 and every d 0 � d0. This follows from the definition of

dd 0;n0 .

The following example shows that Proposition 6.2 does not by itself always give

the correct lower bound for �q;p when q > p. Let us take the extreme case q D 1.

Example 7.1

Let d D 4, nD 2, and

Q D .�2
1 C �2�4; �3�4/:

We have

d4;2 D 4; d4;1 D 2; d3;2 D 1;

and all other dd 0;n0 are 0. Let p D 2C 4n=d D 4. Then direct computation shows that

�1;p D 9=4. However, Proposition 6.2 only shows �1;p � 2.

8. Proofs of Corollaries 1.3–1.5

8.1. Proof of Corollary 1.3

We apply Theorem 1.1 with q D 2 to the tuple of quadratic forms Q, and by (1.20),

we know that (1.22) holds true if and only if

max
0�d 0�d

max
0�n0�n

��
d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

�

� max
�
0;d

�1
2

� 1

p

�
� 2n

p

�
(8.1)
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for every p � 2. Both sides of (8.1) are finite maxima of affine linear functions in 1=p.

The two arguments of the max on the right-hand side coincide at p0 WD 2C 4n=d .

Hence, (8.1) holds for every p 2 Œ2;1� if and only if it holds for all p 2 ¹2;p0;1º.

For p D 2, we have LHS(8.1) D 0D RHS(8.1). For p D 1, we have

LHS(8.1) D max
0�d 0�d

max
0�n0�n

�
d 0 � dd 0;n0.Q/

�
=2D d=2;

where the maximum is attained at d 0 D d and n0 D 0, and therefore (8.1) holds with

equality at p D 1. For p D p0, (8.1) is equivalent to

max
0�d 0�d

max
0�n0�n

��
d 0 � dd 0;n0.Q/

� 2n
dp0

� 2.n� n0/

p0

�
� 0: (8.2)

A direct calculation shows that (8.2) is equivalent to the strong nondegeneracy condi-

tion (1.21).

8.2. Proof of Corollary 1.4

The proof is basically the same as that for Corollary 1.3. We apply Corollary 1.2 to

the tuple of quadratic forms Q, and by (1.19), we know that (1.24) holds true if and

only if

max
d=2<d 0�d

max
0�n0�n

��
2d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

�

� max
�
d
�1
2

� 1

p

�
; 2d

�1
2

� 1

p

�
� 2n

p

�
(8.3)

for every p � 2. The two numbers on the right-hand side coincide at p0 D 2C 4n=d .

As in the proof of Corollary 1.3, (8.3) holds for every p 2 Œ2;1� if and only if it holds

for all p 2 ¹2;p0;1º. For p 2 ¹2;1º, the condition (8.3) again always holds with

equality. Hence, (8.3) holds for every p 2 Œ2;1� if and only if it holds at p D p0,

which is further equivalent to

max
d=2<d 0�d

max
0�n0�n

��
2d 0 � dd 0;n0.Q/

� 2n
dp0

� 2.n� n0/

p0

�
� 2n

p0

: (8.4)

A direct calculation shows (8.4) is equivalent to the nondegeneracy condition (1.23).

8.3. Proof of Corollary 1.5

Recall from Corollary 1.2 that

�p.Q/D max
d=2<d 0�d

max
0�n0�n

�d 0;n0.1=p/;

�d 0;n0.1=p/D
�
2d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p
:
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The functions �d 0;n0 are affine. For n0 < n and arbitrary d 0, we have �d 0;n0.1=2/ <

0. Moreover, for arbitrary d 0, we have �d 0;n.1=2/ D 0. For every p 2 .2;1/, the

condition (1.25) is equivalent to

8d 0 2 .d=2;d �; �d 0;n.1=p/� d.1=2� 1=p/:

In particular, if (1.25) fails, then (1.26) fails for any pc > 2.

Suppose now that the condition (1.25) is satisfied. Then, in particular, dd;n.Q/D
d , and it follows that Then, Corollary 1.2 implies

�p.Q/D max
�
d
�1
2

� 1

p

�
; max

d=2<d 0�d
max

0�n0<n
�d 0;n0.1=p/

�
:

Since the latter double maximum is a piecewise affine function of 1=p and is strictly

negative for p D 2, we see that there exists pc > 2 satisfying (1.26). The largest

possible pc is the minimum of solutions p 2 .2;1/ of the equations

d
�1
2

� 1

p

�
D �d 0;n0.1=p/ (8.5)

for d=2 < d 0 D d � m � d and 0 � n0 � n � 1. These solutions are given by the

formula

p.d 0; n0/D 2C 4n� 4n0

2d 0 � d � dd 0;n0.Q/
: (8.6)

This shows (1.27), since the minimum in (1.27) is restricted in such a way as to be

taken over numbers in .2;1/.

We note also that, for n0 D 0 and mD 0, we have dd;0.Q/D 0, which shows that

the minimum in (1.27) is taken over a nonempty set, and is at most 2C 4n=d .

9. Fourier restriction: Proof of Corollary 2.3

In this section we prove Corollary 2.3. The proof is standard, and it relies on an epsilon

removal lemma of Tao [57], the broad-narrow analysis of Bourgain and Guth [18], and

the decoupling inequalities established in the current paper. The use of decoupling

inequalities in this context is also standard (see, e.g., Guth [37]). As Q will be fixed

throughout the proof, we will leave out the dependence of the extension functionEQg

on Q and simply write Eg.

Let us begin with the epsilon removal lemma. In order to prove (2.6), it suffices

to prove that for every � > 0, there exists Cd;n;p;Q;� D C� such that

kEŒ0;1�dgkLp.B/ � C�ı
��kgkp; (9.1)

for every ı � 1; � > 0, p > pQ and every ball B � RdCn of radius ı�2. Here and

below, we will leave out the dependence of our implicit constants on d;n;p and Q.
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Such a reduction first appeared in [57] (see also [18], [40]). For a version of epsilon

removal lemmas for manifolds of codimension bigger than 1, we refer to [33, Sec-

tion 4].

In order to prove (9.1), we will apply the broad-narrow analysis and the decou-

pling inequalities in the current paper, together with an induction argument on ı. Let

us assume that we have proved (9.1) with ı0 in place of ı for every 1 � ı0 � 2ı.

Under this induction hypothesis, we will prove (9.1). Let us begin with one corollary

of Proposition 4.9.

COROLLARY 9.1 (Multilinear restriction estimate)

LetK 2 2N be a dyadic integer and 0 < ı � 1=K . Let 
 > 0 and ¹Wj ºM
j D1 � P .1=K/

be a 
 -uniform set of cubes. Let B � RdCn be a ball of radius ı�2. Then, for each

2� p <1 and �0 > 0, we have

���
MY

j D1

jEWj
gj
���

Lp.B/
� C�;K;�0ı�
.p;�;Q/��0

MY

j D1

kgkL2.Wj /; (9.2)

where

�.p; 
;Q/ WD sup
0�n0�n

�2n0

p
C
� 2
p

� .1� 
/
�
dn0.Q/

�
: (9.3)

Proof of Corollary 9.1

The proof is essentially via the argument of passing from multilinear Kakeya esti-

mates to multilinear restriction estimates as in Bennett, Carbery, and Tao [7]. Let us

first show that

���
MY

j D1

jEWj
gj
���

–Lp.B/
� C�;K;�0ı�2. d

2 � dCn
p C �..1��/p=2/

p /��0

�
MY

j D1

� X

�2P .Wj ;ı/

kE�gk2
–L2.wB /

�1=2

; (9.4)

for every �0 > 0. We take a Schwartz function  such that  is positive on the ball

of radius 1 centered at the origin, and Fourier transform of  has a compact sup-

port. Let us define the function  B.x/ WD  .ı2x/. By Hölder’s inequality and L2-

orthogonality (see, e.g., [32, Appendix B]), we see that
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���
MY

j D1

jEWj
gj
���

–Lp.B/

�
���

MY

j D1

j BEWj
gj
���

–Lp.B/

� ı��0.dCn/=2
���

MY

j D1

k BEWj
gk–L2.B.x;ı�	0

//

���
–Lp

x2B

� ı��0.dCn/=2
���

MY

j D1

� X

J 2P .Wj ;ı	0
/

k BEJgk2
–L2.w

B.x;ı�	0
/
/

�1=2���
–Lp

x2B

: (9.5)

We apply (4.14) and L2-orthogonality, and bound the above term by

ı��0.dCn/=2ı��0. d
2 � dCn

p C �..1��/p=2/
p /

�
���

MY

j D1

� X

J 2P .Wj ;ı	0
/

k BEJgk2
–L2.w

B.x;ı�2	0
/
/

�1=2���
–Lp

x2B

� ı��0.dCn/=2ı��0. d
2 � dCn

p C �..1��/p=2/
p /

�
���

MY

j D1

� X

J 2P .Wj ;ı2	0
/

k BEJgk2
–L2.w

B.x;ı�2	0
/
/

�1=2���
–Lp

x2B

: (9.6)

We repeat this process and obtain

ı��0.dCn/=2ı�2. d
2 � dCn

p C �..1��/p=2/
p /

�
���

MY

j D1

� X

J 2P .Wj ;ı/

k BEJgk2
–L2.w

B.x;ı�2/
/

�1=2���
–Lp

x2B

: (9.7)

We rename �0.d C n/=2 by �0, and the above term is bounded by the right-hand side

of (9.4).

By the Plancherel theorem, we see that

kE�gk–L2.wB / � ı
d kgkL2.�/: (9.8)

Therefore, by (9.4), we obtain that

���
MY

j D1

jEWj
gj
���

Lp.B/
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� C�;K;�0ı�2�..1��/p=2/=p��0
MY

j D1

kgkL2.Wj /: (9.9)

It suffices to apply Corollary 4.8 to bound 	.

We let 
 be a small number, which will be determined later. Its choice depends

only on how close p is to pQ. Therefore the dependence of the forthcoming constants

on 
 will also be compressed. Readers can take 
 D 0 for convenience. We define pc

to be the smallest number such that �.pc; 
;Q/D 0. More explicitly,

pc D max
1�n0�n

�
2C 2n0 C 2
dn0.Q/

.1� 
/dn0.Q/

�
: (9.10)

To prove (9.1), we run the broad-narrow analysis of Bourgain and Guth [18] in a way

that is almost the same as in the proof of Proposition 5.6. We repeat the proof there

until before step (5.27), with q D p and f� replaced by  BE�g for every dyadic box

� of side length ı. Next, instead of summing over all balls B 0 of radius K in RdCn,

we sum over B 0 �B , a ball of radius ı�2, and obtain
���

X

��Œ0;1�d

 BE�g
���

Lp.B/

� C�0

dX

j D0

KƒC2�0

j

� X

W 2P .1=Kj /

k BEW gkp

Lp.wB /

�1=p

CKd
X

1�M �Kd

X

W1;:::;WM 2P .1=K/
��uniform

� X

B0�B

MY

j D1

k BEWj
gkp

Lp.B0/

�1=p

; (9.11)

where

ƒ WD sup
H

�p.QjH /; (9.12)

and the sup is taken over all hyperplanes H � Rd that pass through the origin.

Regarding the second term on the right-hand side of (9.11), we notice that each term

jEWj
gj is essentially constant on B 0, and therefore we can apply Corollary 9.1 and

bound it by C�0;Kı
��0kgk2, whenever p > pc . So far we have obtained

k BEŒ0;1�dgkLp.B/ � C�0

dX

j D0

KƒC2�0

j

� X

W 2P .1=Kj /

k BEW gkp

Lp.wB /

�1=p

CC�0;Kı
��0kgk2; (9.13)
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for every �0 > 0 and p > pc . After arriving at this form, we are ready to apply an

inductive argument, as the terms on the right-hand side of (9.13) are of the same form

as that on the left-hand side, with just different scales. To be precise, we will apply

our induction hypothesis to each k BEW gkLp.wB /. All these terms can be handled

in exactly the same way. Without loss of generality, we take W D Œ0; 1=Kj �
d . Recall

that

EW g.x;y/D
Z

W

g.�/e
�
� � xC Q.�/ � y

�
d�; (9.14)

where x 2 Rd ; y 2 Rn. We apply the change of variables � 7! �=Kj and the induction

hypothesis and obtain

k BEW gkLp.wB / � CC�ı
��K�d

j K
dC2n

p

j K
d
p

j kgkLp.W /; (9.15)

where C is some new large constant that is allowed to depend on d;n;p and Q. This,

together with (9.13), implies that

kEŒ0;1�dgkLp.B/

� CC�0C�ı
��

dX

j D0

K
ƒ�dC 2dC2n

p C2�0

j kgkp CC�0;Kı
��0kgkp; (9.16)

for every �0 > 0. Recall from (5.11) that there exists a small number c D c�0 such that

Kc �K1 �K2 � � � � �Kd �
p
K: (9.17)

From (9.16) we see that if p is such that

ƒ� d C .2d C 2n/=p < 0; (9.18)

then we can pick �0 small enough and K sufficiently large, depending on �0, such that

CC�0Kƒ�dC.2dC2n/=pC2�0 � 1=
�
2.d C 1/

�
: (9.19)

After fixing �0 and K , we see that in order to control the second term in (9.16), we

just need to set the constant C� from (9.1) to be 2C�0;K and then we can close the

induction step.

Notice that there were two constraints on p, including p > pc and (9.18). Recall

the definition of ƒ in (9.12). One can apply Theorem 1.1 and see that

ƒD max
d 0�d�1

max
0�n0�n

h�
2d 0 � dd 0;n0.Q/

��1
2

� 1

p

�
� 2.n� n0/

p

i
: (9.20)

Elementary computation shows that
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p >max
�
pc ; 2C max

m�1
max
n0�n

4n0

2mC dd�m;n0.Q/

�
D max.pc ; pQ/: (9.21)

As pc is a continuous function depending on 
 , to see that we have the range p > pQ,

it suffices to show that

max
1�n0�n

�
2C 2n0

dn0.Q/

�
� 2C max

m�1
max
n0�n

4n0

2mC dd�m;n0.Q/
: (9.22)

This inequality follows from

2dd;n0.Q/� 2C dd�1;n0.Q/; (9.23)

for every n0 � 1, which holds true because dd;n0.Q/ > dd�1;n0.Q/ as long as

dd;n0.Q/ > 0. Recall that we assumed Q is linearly independent, and therefore

we indeed have that dd;n0.Q/ > 0 for every n0 � 1. This verifies the range p > pQ

and thus finishes the proof of the corollary.
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