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Abstract

We prove sharp £4L? decoupling inequalities for p,q € [2,00) and arbitrary tuples
of quadratic forms. Connections to prior results on decoupling inequalities for
quadratic forms are also explained. We also include some applications of our results
to exponential sum estimates and to Fourier restriction estimates. The proof of our
main result is based on scale-dependent Brascamp—Lieb inequalities.
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1. Introduction

Letn,d > 1. We denote by Q(§) = (Q1(§),..., Qn(£)) an n-tuple of real quadratic
forms in d variables. The graph of such a tuple, Sq = {(£,Q(£)) € [0, 1]¢ x R"}, is
a d-dimensional submanifold of R?+”. We often write a spatial vector in RZ*” as
(x,y) with x = (x1,...,xg) € R? and y = (y1,...,y,) € R". Similarly, we often
write a frequency vector in R*" as (£,7) with § = (£1,....&;) e R? and n =
(M1,....mm) €R™.
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Let O C [0, 1]¢. Define the Fourier extension operator
Edg(x,y) = /D g(§)e'Er e gt (1.1)

with x € RY, y € R". For g, p > 2 and dyadic § € (0, 1), let D, ,(Q, §) be the small-
est constant D such that

1
”E[?)’l]dg”LP(wB) = D( Z ||E|%g||%p(w3)) /q (1.2)
Oclo,114
1(O)=6
holds for every measurable function g and every ball B C R¢*” of radius § 72, where
wpg is a smooth version of the indicator function of B (see (1.31) in the subsection
of notation), and the sum on the right-hand side runs through all dyadic cubes of
side length §. In the current paper, we determine an optimal asymptotic behavior of
Dg.»(Q,8) as § tends to zero, for every choice of ¢, p > 2 and Q.

Before stating our main theorem, let us first review related results in the literature.
Decoupling theory originated from the work of Wolff [58] and was further developed
by Laba and Wolff [42], Laba and Pramanik [41], Garrigds and Seeger [25], [26],
and Bourgain [8]. A breakthrough came with the resolution of the £?-decoupling
conjecture for paraboloids by Bourgain and Demeter [11]. Subsequently, Bourgain,
Demeter, and Guth [17] resolved the main conjecture in Vinogradov’s mean value
theorem using decoupling theory. We also refer to Bourgain and Demeter [13], Bour-
gain, Demeter and Guo [16], Guo and Zhang [30] and Guo and Zorin-Kranich [32]
for extensions of [17] to higher dimensions.

In the current paper, we study sharp decoupling inequalities for quadratic d-
surfaces in R4t with d,n > 1. The cases n = 1,d > 1, that is, quadratic hyper-
surfaces, were the objects studied by Bourgain and Demeter [11], [15]. Since these
works, there have been a number of other works studying sharp decoupling inequal-
ities for quadratic d-surfaces in R4*" with n > 2, that is, manifolds of codimen-
sion greater than 1. Bourgain’s improvement on the Lindelof hypothesis [9] relies
on a decoupling inequality in the case d = n = 2, which was later generalized and
extended to a more general family of manifolds with dimension and codimension 2 in
[12]. Further sharp decoupling inequalities for (nondegenerate) quadratic d -surfaces
of codimension 2 were proved, for 2 < d <4, in [22] and [31]. More recently, in
[34], the classification of sharp decoupling inequalities for quadratic 3-surfaces in R>
was completed, and sharp decoupling inequalities were proved in the “degenerate”
cases, which were not covered by the previously mentioned works. The approach to
the “degenerate” cases in [34] stands out from the previously mentioned works, in that
it relies on small cap decouplings for the parabola and the 2-surface (£1, &2, &2, €1€2)
(we refer also to [23] for further discussion of small cap decouplings). For manifolds
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of codimension n > 2, the only result for quadratic forms that are not monomials prior
to the current article was due to Oh [52], who proved sharp decoupling inequalities for
nondegenerate 3-surfaces in R®. In the current paper, we provide a unified approach
that takes care of all the above examples, and indeed all quadratic d -surfaces in Ré+n
for arbitrary combinations of d and n. In Section 3 we will explain in more detail how
the above-mentioned results fit into our main theorem.

Before we finish reviewing the related decoupling literature, we would also like
to mention that Li [44], [45], building partially on [38], [53], quantified the € loss
implicit in (1.8) in the case of the parabola.

Beyond decoupling theory, problems associated with quadratic d-surfaces
(d = 2) of codimension bigger than 1 have also attracted much attention, in par-
ticular in Fourier restriction theory and related areas. We refer to Christ [19], [20],
Mockenhaupt [47], Bak and Lee [1], Bak, Lee, and Lee [2], Lee and Lee [43], and
Guo and Oh [33] for the restriction problems associated with manifolds of codi-
mension 2 and higher, Bourgain [10], Rogers [56], and Oberlin [51] for the planar
variant of the Kakeya problem, and Oberlin [49] for sharp L? — L4 improving
estimates for a quadratic 3-surface in R>. Recently, Gressman [27]-[29] has made
significant progress in proving sharp L?-improving estimates for Radon transforms
of intermediate dimensions. Perhaps more interestingly, he connected this problem
with Brascamp—Lieb inequalities and geometric invariant theory.

One major difficulty in the development of the above-mentioned problems in the
setting of codimension bigger than 1 is the lack of a good notion of “curvature.”
This is in strong contrast with the case of codimension 1, where we have Gaussian
curvatures and the notion of rotational curvatures, introduced by Phong and Stein in
[54] and [55].

Next let us turn to the main theorem of the current paper. We will formulate a
slightly more general (and essentially equivalent) version of (1.2). This version uses
functions with Fourier supports in small neighborhoods of Sq, instead of Fourier
extension operators, and lends itself more readily to induction on dimension d.

It is convenient to define the Fourier supports in terms of symmetries of Sq. The
group A generated by translations and scalings of R? consists of affine maps of the
form A(£) = 8& + a with a € R? and § € (0, 00) (in particular, A =~ R? x (0, o0)).
This group acts on R¢*” by affine transformations

A(A)(E ) = (58 +a.8%n+8VQ(a) - £ + Q(a)). (1.3)

This A-action leaves Sq invariant. For a cube [J C Rd, let Ag € A be the map such
that An([0,1]¢) = [J, and denote the corresponding affine transformation on R%+"
by AnQ := A(AQ). We define the associated uncertainty region by
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Un = Un(Q) := AD([—z,z]d x [ 4d (IHess 0 + 1)[~1. 1]). (1.4)
j=1

The main feature of the definition (1.4) is that the uncertainty region UQ contains
the convex hull of the graph of Q on [J and is not much larger than this convex hull.
Another convenient property is that

202l = Up € Upy. (1.5)

We will denote by f an arbitrary function with supp 75 C Up.

Let g, p > 2. Let § < 1 be a dyadic number. Let 2 (8) be the partition of [0, 1]¢
into dyadic cubes of side length §. Let Dy, ,(Q, §) be the smallest constant D such
that

/
5 0] =P X 1 i) (16)

OeP () OeP ()
holds for every fo with supp ]/E C Upg. If p = ¢q, we often write
D, (Q.8) := Dy, »(Q,9). (1.7)
Let I'y, , (Q) be the smallest constant I" such that, for every € > 0, we have
Dy p(Q.8) <Cp g8 7€, forevery dyadic § < 1, (1.8)

where C), 4.0,¢ is a constant that is allowed to depend on p,q,Q and €. If p = ¢, we
often write

Q) =T ,(Q). (1.9)
For a tuple 6 = (Q 15),..., Q}, (€)) of quadratic forms with £ € R?, denote
NV(Q):=[{1 <d' <d 3, Qs #0 for some 1 <7’ <i7i}]. (1.10)

Here for a function F, we use F = 0 to mean that it does not vanish constantly,
and NV(Q) refers to “the number of variables that Q depends on.” For instance, for
Q= ((&1 +£)% (61 + & + &4)?), we have that NV(Q) = 3.
ForO<n’ <nand 0 <d’ <d, define
04 w(Q):= inf inf_ NV(M'-(Qo M)), (1.11)

MeRrdxd  M’eR"<n
rank(M)=d’ rank(M")=n’

where Q o M is the composition of Q with M. We abbreviate 3,/ (Q) := 04,/ (Q).



DECOUPLING INEQUALITIES FOR QUADRATIC FORMS 391

As these quantities will be crucial throughout the entire paper, it may make sense
to look at them from a few angles. Let H C R be a linear subspace of codimension
m. Let Roty be a rotation' on R that maps {§ € R? 1§41 =+~ = &4 = 0} to
H. We define

0lu(E) = 0(¢.0)- Roty)"),
with & e R and 0 = (0,...,0) € R". (1.12)

Here (Rotz )T refers to the transpose of Rotz . Similarly, for Q = (Q1,..., Q,), we
denote

Qg == (Q1lu..... OnlH). (1.13)

From the Bourgain—Guth argument used in Proposition 5.6 below and from Lem-
ma 6.1 below, one can see clearly why restricting to subspaces is natural. With the
above notation, we can also write

darw(Q=igf nf - inf  NV(MT @) (L1
rank(M")=n’

where H runs through all linear subspaces in R? of dimension d’. In other words,
this is the minimal number of variables that n’ many of the forms in Q depend on,
after restricting them to subspaces of dimension d’, up to linear changes of variables
in their definition domain R?" and their value domain R”. From (1.14), one can also
see that

00w (Q) = inf 0, (Qln). (1.15)

H of dimd’

For example, if we take d = 3,n =3 and Q = ((£§; + & + £3)%, (&1 + &), (61 +
£2)%), then 99(Q) =21(Q) = 0,22(Q) = 1 and 23(Q) = 2.

THEOREM 1.1
Letd > 1andn > 1. Let Q = (Q1,..., Qn) be a collection of quadratic forms in d
variables. Let 2 < q < p < 0o. Then the £4LP decoupling exponent for the d -surface

So = {(£,Q(8)) : £ € [0, 119} equals

1 1
— / _
I'q,p(Q) = omax nga}én(d (1 P q)
1) 2(n —n’)>

1
—0g/ 0 - —— 1.16
e @(3-5) - (1.16)

"There are infinitely many such rotations: we pick an arbitrary one.
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Moreover, for 2 < p < q < 0o, we have
Tgp(Q) =Tp,p(Q +d(1/p—1/g). (1.17)
The expression (1.16) simplifies in the case ¢ = p in the following way.

COROLLARY 1.2
In the situation of Theorem 1.1, we have

I,(Q = max max ((261’—31,,,,,,/@))(l - l) - 2(%"/)) (1.18)

d/2<d’<d 0<n’<n 2 p

forevery p > 2.

Proof
For every d’ <d/2 and 0 <n’ <n, we have 2d’ — 04/ ,»(Q) <d <2d — 04, (Q).
Hence, the (d’,n’) term in (1.16) is not larger than the (d,n’) term. O

Taking d’ = d and n’ € {0,n} in (1.18), we see that, for every tuple Q =
(0Q1,...,0y) of quadratic forms depending on d variables, it always holds that

1 1 1 1 2n
r > dl-——),2d(=——)—— f >2. 1.19
s} )au(l 1)) meenza
Similarly,
1 1 2
Fz,p(Q)zmaX(O,d(E—;)—?n) for every p > 2. (1.20)

We say that Q = (Q1, ..., Q) is strongly nondegenerate if
Vi—mw (Q)=n'd/n—m (1.21)

for every n’ and every m with 0 <m <d.

COROLLARY 1.3 (Best possible £2L? decoupling)

We have
1 1 2n
I';,,(Q) = max <O,d(5—;)—;> forevery2 < p < oo (1.22)

if and only if Q is strongly nondegenerate.

We say that Q = (Q1, ..., Q) is nondegenerate if
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0d—m.n(Q) Zl’l/d/n—zm, (1.23)

for every n’ and every m with 0 <m < d /2.

COROLLARY 1.4 (Best possible £ L.? decoupling)
We have

1 1 1 1 2n

['p,p(Q) = max (d(i - ;),2d<§ - ;) - ?) forevery2 <p<oo (1.24)

if and only if Q is nondegenerate.

In view of (1.20) and (1.19), Corollaries 1.3 and 1.4 characterize tuples of
quadratic forms that possess “best possible” ¢{2L” decoupling constants and £ L?
decoupling constants, respectively.

We say that Q = (Q1,..., Qn) is weakly nondegenerate if

07—mn(Q)>d —2m, (1.25)

forevery 0 <m < d/2.

COROLLARY 1.5
A tuple Q = (Q1,..., Qn) of quadratic forms is weakly nondegenerate if and only if
there exists some p. > 2 such that

I 1

Fp(Q)=d(5—;), 2<p<pe. (1.26)

If Q is weakly nondegenerate, then the largest possible p. is given by

4 —n') ) (1.27)

d— (Dd—m,n’(Q) + 2m)

where the minimum on the right-hand side is taken over all n’ and m satisfying n' <
n—1m<d/2andd >045_s ,(Q)+2m.

2+min(

One reason that we are interested in the exponent p. in Corollary 1.5 is that, when
applying our main results to exponential sum estimates (see Corollary 2.1 below), the
exponent p. is the largest for which we can still expect square root cancellation; see
immediately below Corollary 2.1 for what we mean by “square root cancellation.”

The connections of these three notions of nondegeneracies will be discussed in
forthcoming examples (see, e.g., Corollary 3.4. We leave the proof of Corollaries 1.3—
1.5 to Section 8.
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Table 1. Minimal number of variables on which lower-dimensional restrictions of Q and Q3

depend.
2ar,(Q1) 0a,w(Q2)
n' = 0 1 2 3 0 1
d’ =3 0 1 2 3 3 0 1 3
d' =2 0 0 0 0 2 0 0 1

At the end of the introduction, we would like to make a few remarks on The-
orem 1.1 and how the double max on the right-hand side of (1.16) is connected to
different regimes in scale-dependent Brascamp-Lieb inequalities (see Theorem 4.3
below). To enable comparison with previous approaches, we specialize to p = ¢, so
that (1.16) simplifies to (1.18), and consider the tuples of quadratic forms

Qi1 (§) = (E162.6163. 6283, £3), Q2(8) = (6165 + £163). (1.28)

for which sharp ¢7 L? decoupling inequalities were previously proved in [32] and
[34], respectively. The reasons for picking these two examples will soon become clear.
The numbers of variables (1.11) that appear in (1.18) in these cases are summarized
in Table 1.

To illustrate the kind of arguments used to obtain the entries in Table 1, let us
consider 933(Q1). If 93,3(Q1) < 2, then there is a 3-dimensional subspace @ of
the linear space of quadratic forms spanned by Qq, such that all forms in the sub-
space €@ depend on at most two variables. The space of quadratic forms depending
on any two variables has dimension 3, so @ consists of all quadratic forms depending
on these two variables. In particular, @ contains two linearly independent quadratic
forms that are complete squares. Therefore, lin Q; constants a quadratic form of the
form (a&; + b&; + c£3)? with (a,b) # (0,0). But such a quadratic form includes one
of the monomials & 12, S% with a nonzero coefficient, contradicting the fact that it lies in
lin Q. Hence, 93 3(Q1) > 2, and since 03,3(Q;) < 3, we obtain 03 3(Q;) = 3. Upper
bounds for 94/, are usually easier to obtain. For example, with the notation from
(1.14), the upper bounds for 9, ,/(Q1) are obtained with H = {&3 = 0} and the upper
bounds for 95,/ (Q2) with H = {£; = 0}.

Substituting the numbers in Table 1 into (1.18), we see that the decoupling expo-
nents are given by

3 3 6 14
Fp(Q1)=maX(§—;,2—;,3—;) and (1.29)

3 35 7 10
Fp(Q2)=maX(§—;,§—;,3—?) (1.30)

for every p > 2. These decoupling exponents are sketched as functions of 1/p in
Figure 1 (not to scale). The kinks A,, A3 in the graph la and B, B3 in the graph
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r,(Qu)
i r,(Qy)

® Ay
L A4

SR

1

1
6 1 ;P

(A) Qi(§) = (&1&2, &3, 6263, 63) (B) Qa(&) = (£1.65 + &1&3)

Figure 1. Decoupling exponents for Qp, Q2.

Ib are called critical points: After proving sharp decoupling inequalities at these two
points, we can simply interpolate them with trivial estimates at L2 and L > and obtain
sharp £2 L? decoupling inequalities for every p > 2. One reason for picking these two
examples: on one hand, graph (A) and graph (B) in Figure | look similar, in that they
both have two critical points; on the other hand, the nature of the critical points in the
respective graphs is entirely different, and this can sometimes be misleading when it
comes to trying to come up with a unified proof strategy for both examples. In the
following several paragraphs, let us try to explain the different nature of the critical
points, together with one main ingredient of the paper—scale-dependent Brascamp—
Lieb inequalities.

The tuple Q;, together with the linear forms £1,&;,&3, is the Arkhipov—
Chubarikov—Karatsuba (ACK) system generated by the monomial £, £,£3, restricted
to degree 2. To be more precise, we take all possible partial derivatives of & &£2,
collect the resulting terms, and throw away the terms that are of degree higher than 2.
Decoupling exponents for all ACK systems were found in [32]. The main argument
to handle Q; there was purely guided by the “fake” kink A., and the critical points
A, and A3z were deliberately neglected (see [30, Section 7] for a detailed discussion
on the critical points and the “fake” kink in Parsell-Vinogradov systems). Parsell-
Vinogradov systems are special cases of ACK systems and that discussion applies
equally well to ACK systems. The example (1.28) is perhaps the simplest system
of quadratic monomials that admits more than one critical point and is therefore
discussed here in detail. The way A, appears in [32] can be summarized as follows:
For all p > 2, the article [32] uses only the global/scale-invariant Brascamp-Lieb
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inequality due to Bennett et al. [5]; the difference between p > p. := 22/3 and
P < pc is in the scheme of induction on scales there.

Let us describe the current argument of handling Q;. In the current paper, we
still use the argument of induction on scales (see Section 5), and a phase transi-
tion also happens at the “fake” kink A.. However, for p < p., we will use local
Brascamp-Lieb inequalities as in [0, Theorem 2.2], and for p > p., we will use
discrete Brascamp-Lieb inequalities as in [6, Theorem 2.5]. For p = p., local and
discrete Brascamp-Lieb inequalities coincide and become scale-invariant, as in [5,
Theorem 1.15]. The significance of local and discrete Brascamp-Lieb inequalities
may not be fully reflected from this example, as they coincide at some point. The next
example explains what we could do in a case where they do not coincide at any point.

Let us turn to the tuple Q,. As mentioned above, sharp decoupling inequalities
for Q, were proved in [34]. The tuple Q is an interesting example as it is perhaps
the simplest nontrivial example that is degenerate, in the sense that the scale-invariant
Brascamp-Lieb inequality cannot be used for any p € [2, 00). To handle this degen-
eracy, several specialized tools were introduced in [34], including a partial small ball
decoupling inequality for the tuple (£1&2,£3). In [34], sharp decoupling inequalities
were first proved at the critical points B, and B3, and interpolation with trivial esti-
mates at By and B4 was used to cover the whole range p > 2.

Let us describe our current approach. First of all, the counterpart of A, in Graph
Ib is not significant anymore. Secondly, it turns out that for 2 < p < 4 we can still
use the local Brascamp-Lieb inequality and for p > 6 the discrete Brascamp—Lieb
inequality (it is a general principle that the local Brascamp—Lieb inequality works for
small p and the discrete one for large p, although the ranges of p’s in which they
work may be empty). There is, however, a new regime for p € (4,6). Although this
segment can be filled in by interpolation between p = 4 and p = 6, our proof works
directly for all p, which becomes necessary when the number of kinks increases fur-
ther. To this end, we use the family of scale-dependent Brascamp-Lieb inequalities
due to Maldague [46], which unifies scale-invariant, discrete, and local Brascamp-
Lieb inequalities due to Bennett et al. [5], [6].

Organization of the paper

In Section 2 we state a few applications of our main theorem. In Section 3, we com-
pute the decoupling exponent provided by the main theorem more explicitly for sev-
eral examples of tuples of quadratic forms Q, including some of those tuples Q for
which sharp decoupling inequalities have been previously established in the literature,
and a few tuples Q (in particular, arbitrary pairs of forms and tuples of simultaneously
diagonalizable forms) for which our results are new.



DECOUPLING INEQUALITIES FOR QUADRATIC FORMS 397

The upper bounds of I';,,(Q) in Theorem 1.1 with ¢ < p are proved in Sec-
tions 4 and 5. The lower bounds of I'y ,(Q) in Theorem 1.1 with ¢ < p are proved in
Section 6. In Section 7, we show that the optimal decoupling inequalities for g > p
follow from the case ¢ = p of Theorem 1.1.

In Section 8, we provide the proofs of Corollary 1.3, Corollary 1.4 and Corol-
lary 1.5. In Section 9, we prove the Fourier restriction estimate in Corollary 2.3.

Notation

For two positive constants A, A, and a set 4 of parameters, we use A1 <y A, to
mean that there exists C > 0 depending on the parameters in d such that 4; < CA,.
Typically, d will be taken to be {Q,d,n, p,q,€}, where € > 0 is a small number.
Similarly, we define A1 = A,. Moreover, A1 ~ A means Ay < A, and A; 2> A,.

Let § € (0,1) be a dyadic number. We denote by P (Q,§) the dyadic cubes of
side length § in Q for every dyadic cube Q C [0, 1]¢. Let #(8) be the partition of
[0, 1]¢ into dyadic cubes of side length §. Let [ be a cube with side length /(CJ). We
use ¢ - [ to denote the cube of side length ¢ - [({J) and of the same center as [1.

For two linear spaces V,V’, we use V' <V to mean that V' is a linear sub-
space of V. For a sequence of real numbers {4; }yzl, we abbreviate mA j=
(]_[1;/[=1 |Aj|)1/M. For E > 0 and a ball B = B(cp,rp) C R4*" with center cp and
radius r B, define an associated weight

|'_CB|)_E

I'B

wp.E() = (1 + (131)
The power E is large number depending on d,n (e.g., £ = 10(d + n)) and will be
omitted from the notation wp g. All implicit constants in the paper are allowed to
depend on E. Also, we define the following averaged integrals:

b= (g [1719)" ana 1 hancn = (o [15170a) "

For a dyadic box [0 C [0, 1]¢, a function f{ is always implicitly assumed to satisfy
supp ]”\D C U@, unless otherwise stated.

We would like to make the convention that all vectors are column vectors, unless
they are variables of functions or otherwise stated. Following are a few more conven-
tions we make on notation: We will use dyadic cubes of side lengths §, §? with b < 1
and 1/K; with 1 < j < d. One can always keep in mind that logg ; logg (1/8) =
K ;. We will always use [ to denote a dyadic cube of the smallest scale §, J to denote
a dyadic cube of an intermediate scale 62, and W or W; to denote a dyadic cube of
a large scale 1/K ;. We will introduce certain multilinear estimates during the proof,
and the degree of the multilinearity will always be called M.
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2. Some applications

2.1. Exponential sum estimates
Let Q = (Q1,...,0x) be a collection of quadratic forms of integral coefficients
defined on RY . Let w = (wy,...,wq) eN9,

COROLLARY 2.1
For every d,n > 1, every p > 2,€ > 0, there exists CQ,e,p such that

H Z Z o2 (W x+Q(W)) ‘

1<d’<d 0<wy <W

< Coe,Wir@+5te (o1

L7 ([0,1]9 x[0,1]")
for every integer W.

IfI',(Q) =d(1/2 -1/ p), then the above corollary says that

Z Z o2 (WX +Q(W)-y) ‘

1<d’<d 0<w y <W

ECQ,e,pWEH Z Z o2 (WX +Q(W)-y)

1<d’<d 0w  <W

L7 ([0,1]¢ x[0,1]7)

(2.2)

L2([0,1]9 x[0,1]")

by which we mean square root cancellation holds for the exponential sum at such p.
The derivation of exponential sum estimates of the form in the above corollary
from decoupling inequalities has been standard (see, e.g., [11, Section 2] and [17,
Section 4]). We will not repeat the argument here.
Let s > 1 be an integer. Consider the system of Diophantine equations

Wi Wy = W oo Wy,

Q(wy) + -+ + Q(ws) = Q(Ws41) + -+ + Q(wWay).

(2.3)

For a large integer W, let $o(W) be the number of solutions to (2.3), where 0 <
wqs < W for every d’. As a immediate corollary of (2.1), we obtain the following.

COROLLARY 2.2
For every d,n > 1, integer s > 1, and every € > 0, there exists Cq. s such that

FQ(W) < Cque s WT2s(@tdte, (2.4)

for every W.
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2.2. Fourier restriction estimates

Let Q= (Q1...., 0y) be a collection of quadratic forms defined on R?. We say that
Q is linearly independent if Q1,..., Q, are linearly independent. We are interested
in the Fourier restriction problems: Find an optimal range of p such that

1E2 i8llLr@a+ny Sanpo gl 2.5)

holds true for every function g. By a simple change of variables, one can see that the
restriction estimate (2.5) cannot hold true for any p < oo if Q is linearly dependent.
As an application of Corollary 1.2, we prove some restriction estimates for every
linearly independent Q for some range of p.

COROLLARY 2.3

LetQ=(Q1,...,0Qn) be acollection of linearly independent quadratic forms defined
on R4, Then

”E[%’l]dg”LP(Rd"‘") Sdn.p llgllp (2.6)

for every

4n’
> =2 . 2.7
P> pQi=2+ mamax 5o @7

The proof of this corollary will be presented in Section 9. One significance of
this corollary is that the range (2.7) is sharp for Parsell-Vinogradov systems. Let
us be more precise. Let d > 2. Denote §% := &' ... £7¢ for § = (§1.....&4) and a
multi-index o = (ayq,...,0q). For Q := (§%)|4|=2, we have n = d(d + 1)/2, and it
has been shown by Christ [20] and Mockenhaupt [47] that (2.6) holds if and only if

4n

Let us also mention that, for this tuple Q, the full range of L¢ — L? estimates gen-
eralizing (2.6) has been obtained in [1] and [50]. The next claim shows that the range
(2.7) coincides with (2.8).

CLAIM 2.4
Let Q := (§%)|q|=2. Then

4n’ 4n 4n
max max = = =
m=1n'<n 2m + 0d—m,n’(Q) 2+ 0d—1,n (Q) d+1

2d. 2.9)

In other words, the max is attained atm = 1,n' = n.
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Proof of Claim 2.4
By definition, 04_1,,(Q) = d — 1. Hence it suffices to show that the leftmost expres-
sion in (2.9) is equal to 2d.

Fix m > 1 and n’ <n. Denote [ := 04_,, ,~(Q). Notice that by the definition of
0g—m»(Q), we see that [ +m < d. Our goal is to show that 2:‘””41 <2d. We claim
that

n < (l er 1) + (m: 1) +m(d —m), (2.10)

Indeed, by definition (1.14), there exist a linear subspace H C R4 of dimension d —m
and a linear subspace @ of the span of Q of dimension n’ such that the restrictions of

the forms from @ to H depend only on / variables. Since the system Q = (§%)|q|=2 is
a basis for the space of all quadratic forms in d variables, the above statement does not
depend on H and the / variables inside H, so we may assume H = {§ : £;_,, 41 =
---=£; = 0} and the [ variables are &1,...,&;. In this case, @ is contained in the
space of all quadratic forms that depend either only on &1,..., &, or on at least one of
the variables £, 41, . . ., &4. The right-hand side of (2.10) is precisely the dimension
of the latter space, which concludes the proof of (2.10).
Given (2.10), it remains to show

I(1+1 1
A G+l  mom+ )+m(d—m))§2d(2m+l), @2.11)
2 2
which is equivalent to
20 +m)(I —m+ 1) <2dl. (2.12)
This holds because [ +m <d and[ —m + 1 <. O

3. Examples: Old and new

3.1. Example: Hypersurfaces with nonvanishing Gaussian curvatures

We take n = 1. Let Q be a quadratic form depending on d variables. Without loss
of generality, we assume that 0;(Q) = d. Via a change of coordinate, we can write
Q(£) as §f £ £5 +--- £ £7. This is the (hyperbolic) paraboloid case. It is easy to see
20(0) =0,01(Q) =d.

LEMMA 3.1
Let Q : R? — R be a quadratic form. Let M € Mg with rank d'. Then

21(0(-M)) 20,(0()) —2(d —d'). (3.1)
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Proof of Lemma 3.1

A lemma of this form was already proved and used by Bourgain and Demeter (see
[15, Lemma 2.6]). We use Hess(g) to denote the Hessian of the quadratic form § .
What we need to prove is, for every M € M ;.4 with rank d’, it holds that

rank(MHess(Q)MT) > rank(Hess(Q)) —2(d —-d"). (3.2)
This follows immediately form Sylvester’s rank inequality,
rank(A B) > rank(A) + rank(B) —n, (3.3)

for two arbitrary matrices A, B € M . O

By Lemma 3.1, we know that 0, (Q|g) > d — 2m for every linear subspace of
codimension m, which means Q is nondegenerate. Therefore, we can apply Corol-
lary 1.4 and obtain

Ip(Q) = max(d - Zd; 2,d(% - %)) (3.4)

This recovers the £7 L? decoupling results of Bourgain and Demeter in [11] and

[15]. Moreover, if we take Q(§) = &7 + --- + &7, then it is elementary to see that

01(Q|H) = d — m for every linear subspace of codimension m, which means Q is

strongly nondegenerate. Therefore, we can apply Corollary 1.3 and obtain
d d+ 2)

FZ,p(Q) = maX(O, 5 — T

(3.5)
This recovers the {2 L? decoupling results of Bourgain and Demeter in [11].
3.2. Example: Codimension 2 manifolds in R*

Take d =n = 2. Let Q1(§) = A1} + 242615 + A3E2 and Q,(§) = B1&F +
2B>616 + 33522. Under the assumption that

Al9 A2, A3
k =2 .
e [Bl, B, BJ ’ 66
Bourgain and Demeter [12] proved that
1 1 4
Fp(Q)=maX(2(§—;),2(l —;)), 3.7)

with Q = (Q1, Q»). This decoupling inequality is particularly interesting as it is one
key ingredient in Bourgain’s improvement on the Lindelof hypothesis in [9].
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Let us see how Theorem 1.1 recovers this result. We take d = n = 2 and notice
that 0,(Q) = 2 (indeed, if 0,(Q) < 1, then Q1, O, would be linearly dependent,
since the space of quadratic forms in one variable is 1-dimensional, contradicting
(3.6)). Moreover, it is straightforward to see that 91 (Q) > 0, as the assumption (3.6)
says that Q1 and Q, are linearly independent. Therefore, Q is nondegenerate in the
sense of (1.23). We can apply Corollary 1.4 and recover the result of Bourgain and
Demeter [12].

3.3. Example: Degenerate 3-dimensional submanifolds of R’

Take d =3, n =2 and Q = (§7,£2 + £&3). Note that 99(Q) = 0, 2;(Q) = 1,
02(Q) = 3, and therefore Q fails to satisfy the nondegeneracy condition (1.23). On the
other hand, one can also compute, for instance via (1.14), that 9, 2(Q) = 1,021 (Q) =
0 and 47,7 (Q) = 0 whenever d’ < 1. We apply Theorem 1.1 and obtain that

I 1\ 5 7 10)

I'p(Q) =max(3(§ — ;)5 — ;,3 »

(3.8)

after some elementary computation. This recovers the main result of Guo et al. [34],
via an entirely different approach: The proof in [34] relies on bilinear Fourier restric-
tion estimates, small cap decoupling inequalities for the parabola and the manifold
(€1,£2,£2,€1&>) and a more sophisticated induction argument; while the proof in the
current paper relies on more sophisticated Brascamp-Lieb inequalities and multilin-
ear Fourier restriction estimates.

3.4. Simultaneously diagonalizable forms

COROLLARY 3.2
Let Q= (Q1,...,Qn) be a collection of quadratic forms without mixed terms. Then

= s (0 2) (3 Dasai@) 20

for every p > 2.
Proof of Corollary 3.2
We first apply Corollary 1.2 and obtain

[,(Q)= max max ((2ar’—ad,,,,,(Q))(l - l) — Z("Tj"/)) (3.10)

d/2<d’<d 0<n’<n 2 p

In order to obtain (3.9), it suffices to prove that

o 2‘25‘1’/‘5[](2‘1 — 04w (Q)) =2d — 0, (Q). (311
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for every n’. By the equivalent definition of 0,4/ ,/(Q) as in (1.14), this is equivalent
to proving

Jmin it (0/(Ql) +2m) = 2u(Q). (3.12)
Setcodimm

for every n’, which is the same as saying

0,(Q) —2m <0, (Q|n) (3.13)

for every 1 <n’ <n and every plane H of codimension m with 1 <m <d/2.
We argue by contradiction and assume that

0 (QlH) =0(Q) —2m — 1, (3.14)

for some n’ and some linear subspace H of codimension m. By the definition (1.11),
we can find My_,, € GLy_,,(R) and M’ € M, s of rank n’ such that

NV(P) = 0,(Qln). (3.15)
where for & € R~ we define
PE):= (01l - Ma—m).....Onln (- Ma—p)) - M’
= (01((" - Mg—m.0) -Rotg)...., 0n((¢ - Mg_.0)-Rotg)) - M'. (3.16)

Here 0 = (0,...,0) € R” and Roty is a rotation matrix acting on R¢. Let M, €
GL4(R) be a matrix such that

(£ My_n.0)=(&,0)- My, forevery & e R4, (3.17)

With this notation, we can write
PE) = (01((¢'.0)- Mg -Roty)..... 0n((€'.0)- My -Rotg)) - M’
=:(P1(&),.... Pw(£§)). (3.18)
Recall (3.15). It implies that
NV(A1 Pr + -+ Ay Pr) <0 (Ql) <0(Q) —2m — 1, (3.19)
for all choices of A1,. .., A, € R. Now if we denote
Q) :=(01(5)- .., 0w (&) = (Q1(5)..., On(§)) - M, (3.20)

then from the definition of 0,/ (Q) and the fact that O, ..., O, are diagonal quadratic
forms, we can find some A, ..., A, such that
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01()&1 Ql +- An/Q_n’) = NV(AI Ql + -+ /\n/Q_n/) = an/(Q)‘ (3.2D)

Recall the definition of P in (3.16) and the relation in (3.17) and (3.18). Lemma 3.1
then says that

NV Py + -+ Ay Ppr) =0, (Q) — 2m, (3.22)

which is a contradiction to (3.19). O

COROLLARY 3.3
For 1 <n’ <n, define

Ow(®) = Y awak). (3.23)
1<d’<d
Then for every p > 2, with Q= (Q1,...,0Qn),
1 1 1 1 2n
L@ =max(d(3-3)-24(3- )= 5) @24

if and only if, for every 1 <n’ <n, every n x (|d — "/de + 1) submatrix of

ara, diz, ..., di4
(3.25)

an,1, A4n2, ..., Qupgd

has rank at least n —n’ + 1. Here for A € R, | A| refers to the largest integer < A.”

When n = 2, a condition of the form (3.25) already appeared in Heath-Brown and
Pierce [39]. Let Q = (Q1, Q>) be a pair of quadratic forms with integer coefficients.
Heath-Brown and Pierce [39] studied the problem of representing a pair of integers
(n1,n7) by the pair of (Q1, Q») for general Q; and Q,. If Q; and Q, are assumed
to be simultaneously diagonalizable, say of the form (3.23), then the condition in [39]
becomes that every 2 x 2 minor of

|:l11,1, ayz, .-, al’d} (3.26)

an,h an,27 T an,d

has rank 2 (see [39, Condition 3]).

Proof of Corollary 3.3
Let us show the “only if”” part by contradiction. Suppose that, for some 1 <n’ <n,
some 1 X (|d — %J + 1) submatrix of (3.25) has rank n — n’ or less. Then

2This notation is used only in Corollary 3.3 and its proof.
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on,(Q)gd—(Ld—ﬁJ +1)<”/Td. (3.27)

n

Therefore, Q is not nondegenerate in the sense of (1.23), and (3.24) cannot hold true
by Corollary 1.4.

Let us show the other direction of the equivalence. First of all, notice that the two
terms on the right-hand side of (3.24) match at p = p, 4 := 2 + 4n/d. By Corol-
lary 3.2, it suffices to show that

O

for every 1 <n’ <n and every p > p, 4. By rearranging the terms, what we need to
show becomes

0 (Q)=n'd/n (3.29)
for every 1 <n’ <n. We argue by contradiction and assume that
0,(Q) <n'd/n (3.30)

for some 1 <n’ < n. By definition, there exist M € R9*4 of rank d and M’ € R™*"
of rank »n’ such that

0,(Q) =NV(M'-(Qo M)). (3.31)

Since the assumption (3.25) is invariant under the row operations, we may assume
that M’ is a diagonal matrix with diagonal entries 1,...,1,0,...,0. By the inequality
(3.30), we have

dim (") (1) kerVQi(§) > d — ”ITd. (3.32)

i=1gerd

It remains to observe that
d
kerVOi(6) ={neR? Y gmjai; =0} and
j=1

() kerVQi(§) ={n€R?nja;; =0forall j =1,....d},
EeRd

so that (3.32) implies that an n’ x (|d — %J + 1) submatrix of (3.25) vanishes. [
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3.5. Decoupling theory for two quadratic forms

COROLLARY 3.4

Let Q = (Q1, Q) be two linearly independent quadratic forms defined on R? satis-

fying 92(Q) =d.

(1) Let1 <k <d/2. Then Q satisfies 01(Q) = k and the weakly nondegenerate
condition if and only

r,Q) = max(d(% _ %) d —k)(% - %) - 5,
2d(% - %) - %), (3.33)

forevery p>2.
2) Q is nondegenerate if and only if it is weakly nondegenerate and satisfies

01(Q) =d/2

Proof of Corollary 3.4
Let us start with proving the first part of the corollary. We denote the right-hand side
of (3.33) by F;,(Q). By Corollary 1.2, I', (Q) is given by

s (2" =002@) (5 - 5) (24 —0an@) (5= ) =
2d(% = %) = %). (3.34)

Let us first show that (3.33) holds; that is, I',(Q) = T',(Q) for every p > 2, if and
only if

ma}x(Zd' —04,1(Q)) =2d —k,
4 (3.35)
n;a}x(Zd’ —04/2(Q)) =d.

To show that (3.35) implies (3.33), we apply (3.34), move the maxg/,<4/<4 inside
the second max, and obtain (3.33). To show the other direction of the equivalence, the
constraint k < d /2 will come into play. Notice that under this assumption,

a3+ if p<2+ 74,
Q) =102d-kG-2) -2 if2+F2r<p<2+¢, (3.36)
2d(3-3)— 4% if p>=2+ 2.

Note that we are now under the assumption that I',(Q) = F}, (Q) for every p > 2.
When p is slightly larger than 2, we have
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I,(Q)= max (Zd’—ad/,z(Q))(l—%>, (3.37)

d/2<d’<d 2

as the contributions from the other two terms in (3.34) are already negative. This
implies

max (2d"'—04/,(Q)) =d. (3.38)
d/2<d’<d

We use (3.38) to further simplify I',(Q) to

max(d(l - l) max (2d' — Dd/,l(Q))(l - %) - %,

2 plldjpe<di<d 2
2d(% - %) - %) (3.39)

By comparing T',(Q) with I}, (Q) for 2 + ﬁ <p<2+ %, we see that

max (2d'—041) =2d —k. (3.40)
d/2<d’<d

This finishes the proof that (3.33) is equivalent to (3.35).

It remains to show that (3.35) is equivalent to that Q is weakly nondegenerate
and satisfies 91(Q) = k. Since the second equation in (3.35) is already equivalent
to the weakly nondegenerate condition, what we need to prove becomes 04,1(Q) =
01(Q) =k if and only if

n}ia}x(Zd’—Dd/,l(Q)) =2d —k, 3.41)
which follows immediately from
n};}X(2d’ —04,1(Q)) =2d — 04,1 (Q). (3.42)
To prove (3.42), it suffices to prove the following.

CLAIM 3.5
We have

04,1(Q) —04,1(Q) =2(d —d') (3.43)

foreveryd/2<d' <d.

The proof of Claim 3.5 will be presented in the end of this subsection. So far, we
have finished the proof of the first part of the corollary.
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Let us turn to the second part and show that Q is nondegenerate if and only if it
is weakly nondegenerate and satisfies 01 (Q) > d/2. By definition, we need to show
that 0;(Q) > d/2 if and only if

04-m1(Q) =d/2—-2m (3.44)

for every 0 <m < d /2. By taking m = 0, we see that (3.44) implies 91(Q) > d/2.
The other direction immediately follows from Claim 3.5. This finishes the second part
of the corollary. O

Proof of Claim 3.5
We take Mo € R4*? of rank d’ and M|, € R?*? of rank 1 such that

041(Q) = inf inf NV(M/ -(Qo M)) = NV(M(; -(Qo MO)) (3.45)
MeRZ*d  M'eR""
rank(M)=d’ rank(M")=1

Therefore, there exist A1, A € R such that

24/,1(Q) = NV(Q(-Mo)) = 04,1(0(-Mo)). (3.46)
where §= A1Q1+ 12072 and Q= (Q1, Q2). We now apply Lemma 3.1 and obtain

047,1(Q) —04,1(Q) = 04,1 (0 (-Mp)) —04.1(Q)
>04.1(0(-My)) —04.1(0)
> _2(d —d"). (3.47)

This completes the proof of Claim 3.5. O

4. Transversality

4.1. Brascamp-Lieb inequalities

Central tools in most existing proofs of decoupling inequalities are the Brascamp—
Lieb inequalities for products of functions in R” which are constant along some linear
subspaces. Scale-invariant inequalities of this kind have been characterized in [5].
A novelty of our approach is that we for the first time take full advantage of scale-
dependent versions of Brascamp—Lieb inequalities. First inequalities of this kind were
proved in [5] and [6], and a unified description taking into account both minimal and
maximal scales was obtained in [46]. We will only use the results of [46] in a special
symmetric case when all functions f; below play similar roles. This special case is
captured in the following definition.
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Definition 4.1

Let m,m’ € N. Let (Vj)?”= | be a tuple of linear subspaces V; € R™ of dimension
m’. For a linear subspace V C R™, let ry : R™ — V denote the orthogonal projec-
tion onto V. For 0 <o < M and R > 1, we denote by BL((Vj)g’Ll,oe, R,R™) (for
Brascamp-Lieb constant) the smallest constant such that the inequality

M
[ || AR
[_RsR]m j=1

M o
<BL((V))M .o, R.R™) M(/ fj(xj)dxj) (4.1)
j=1"Yi

holds for any functions f; : V; — [0, 00) that are constant at scale 1, in the sense
that V; can be partitioned into cubes with unit side length on each of which f;
is constant. If the dimension m of the total space R™ is clear from the context,
BL((V; §4=1 .o, R,IR™) is often abbreviated to BL((V; ?4:1 ,a, R).

We also need a Kakeya variant of Brascamp-Lieb inequalities, in which each
function f; oy, is replaced by a sum of functions of the form f;; o 7y, ,, where
V1 are different subspaces. The first almost optimal inequality of this kind was the
multilinear Kakeya inequality, proved in [7], which generalizes the Loomis—Whitney
inequality. A simplified induction on scales proof was later given by Guth [36]. An
endpoint version of the multilinear Kakeya inequality was proved by Guth [35] using
the polynomial method. Endpoint Kakeya-type extensions of Brascamp—Lieb inequal-
ities were further developed in [21], [59], and [60]. It will be convenient to use the
following formulation, although a non-endpoint result such as [46, Theorem 2] would
also suffice for the purpose of proving decoupling inequalities with the optimal range
of exponents.

THEOREM 4.2 (Kakeya—Brascamp—Lieb [60])
Fix integers m" <m. Let V;, 1 < j < M, be families of linear subspaces of R™ of
dimension m’. Let 1 <a < M and R > 1. Assume that

A= sup BL((V)}L,. 2. R) < 0. 4.2)

Then, for any nonnegative integrable functions fjy, :V; — R constant at scale 1,
we have

M

/;?(O,R) jl-“ ( Z Jiv, (”Vj (x)))a dx

=1 Vj E'Vj
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o4 fﬁ( 3 [V,- fiv, (x)dx)a, 4.3)

Jj=1 V;€eV;

IA

where the constant C depends only on the dimension m.

The uniform bound (4.2) is clearly necessary for (4.3) to hold. In the scale-
invariant case, such uniform bounds for Brascamp-Lieb constants were obtained in
[4] and [3]. We need the following corresponding result in the scale-dependent case.

THEOREM 4.3 ([46, Theorem 3])
In the situation of Definition 4. 1, fix a tuple (Vj)ﬂil and an exponent 1 <a < M. Let

M
o
= sup (dimV — ) dimn .V), (4.4)
Vsﬂgm( M Vi

Jj=1
where the supremum is taken over all linear subspaces of R™.

Then there exists a constant Cy < 0o and a neighborhood of the tuple (Vj)j!’[: L in
the M th power of the Grassmanian manifold of all linear subspaces of dimension m’
of R™ such that, for any tuple (17])1]”:1 in this neighborhood and any R > 1, we have

BL((V/)™|.a, R) < CoR*. 4.5)

4.2. Transversality for quadratic forms
Let Q = (Q1.....0,) be a sequence of quadratic forms defined on R?. The sub-
spaces in the subsequent application of Kakeya—Brascamp-Lieb inequalities will be
the tangent spaces to the manifold Sq:

Ve = Ve(Q):=lin{(e;,9,Q()),j =1,....d}, &eR. (4.6)

Here e; is the jth coordinate vector, and lin refers to linear span. Transversality of
pieces of this manifold will be measured by the exponent k defined in (4.4) evaluated
at tangent spaces somewhere at the respective pieces: the smaller the exponent, the
more transverse are the pieces. It is an observation going back to [13] (for scale-
invariant Brascamp-Lieb inequalities) that the most transverse situations arise when
the pieces are not concentrated near a low-degree subvariety in the following sense.

Definition 4.4
A subset W C P (1/K) will be called 8-uniform if, for every nonzero polynomial P
in d variables with real coefficients of degree < d, we have

W e W2w N Zp #0}| <6|W|.
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Here Z p refers to the zero set of P. When using the notation W = {Wy,..., Wy} =
{W; }?’L , for f-uniform sets, we always mean that the W;’s are pairwise distinct.

LEMMA 4.5
Let 6 €[0,1], @ > 1, and K € 2~. Then there exists Cg g o < 00 such that, for every
O-uniform set W ={Wy,..., Wy} S P(1/K) witha < M and every R > 1, we have

U BL((Ve, )Y, 0, RRIH) < Cg g o RE@ 0D,
€W

where

ko(e):= sup (dimV —a sup dimmy, V). 4.7)
VS]R‘H'” ‘;‘ERd

In the remaining part, if Q is clear from the context, we often abbreviate xq(c)
to k(o).

Proof of Lemma 4.5

Since there are only finitely many #-uniform sets ‘W, and, for any fixed 6-uniform
set W= {Wy,..., Wy}, the set 1—[?/[=1 W; is compact, by Theorem 4.3, it suffices to
show that, for any & i€ Wj, and every subspace V < ]Rd‘”’, we have

M
. (04 . . .
dimV — ” 2; dlmnVéj V <dimV —a(l—0) SSGL;@ dimmy, V.
]=

This is equivalent to

M
1
i > dimry, V = (1—6) sup dimzy,V.
j=1 £eRrd

If vq,...,v,, is a basis of V, then

er 01Q(%)
dimmy, V =rank | : : (v . vm), (4.8)

eq 04Q(8)

where on the right-hand side we have the product of two matrices. Each minor deter-
minant of this matrix is a polynomial of degree at most d. Consider the largest minor
(of size d’ x d’, say) whose determinant is a nonvanishing polynomial; call this poly-
nomial P (if d’ =0, then P = 1). Then

d’' = sup dimny,V.
£eRrd
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By Definition 4.4, we have P(£;) # 0 for at least (1 — 8) M many j’s. Therefore,

M

1 , 1 Z . 1 Z / /

M E dlmnVEjVZM dlmﬂVEjVZM d Z(l—@)d O
=1 JiP(E)#0 JiP(E7)#0

This finishes the proof of the lemma.

From the proof of Lemma 4.5, we see that the sup in supgegs dimmy, V' is
attained at almost every point, with respect to the d-dimensional Lebesgue measure.
Therefore, we introduce the following notation:

dimnV := sup dimnVEV. “4.9)
£eRd

Next, we will find a more explicit description of the exponent (4.7) in terms of the
quadratic forms Q. The following result relates the terms in (4.7) to the quantities
introduced in (1.11).

LEMMA 4.6

Let Q be an n-tuple of quadratic forms in d variables. For a linear subspace V C
RI*™ et

d' :=dimnV, n':=dimV —dimnV.

Then

!’

n' <n and 2,(Q) <d’.
Lemma 4.6 relies on the following algebraic result.

LEMMA 4.7

Let F = R(&q,...,&y) be the field of rational functions in d variables. Let A =
Ok ai,jkEk)i,j be a (N1 x Na)-matrix whose entries are linear maps with real coef-
ficients. Suppose that rankg A = r. Then there exist real invertible matrices B, B’
such that

’ * *
BAB _(* 0)’ (4.10)

where the zero block has size (N7 —r) X (N —r).

Standard linear algebra shows that there exist invertible matrices B, B’ with
entries in [F such that (4.7) holds. The point of Lemma 4.7 is that we can find B, B’
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with real entries. Note that Lemma 4.7 may fail if entries of A are not assumed to be
linear forms. We will include a proof of Lemma 4.7 below, and we also note that after
finishing the first version of the paper, Zipei Nie [48] pointed out to us that Lemma 4.7
is in fact known in the literature and follows from [24, Lemma 1]. We thank him for
this comment.

Proof of Lemma 4.6 assuming Lemma 4.7

The claim n” < n follows from the fact that the tangent spaces V¢ have codimension 7.
After linear changes of variables in R? and R”, we may assume that V is spanned

by linearly independent vectors of the form

(e1,v1),....(es,v5),(0,€1),...,(0,€5),

where ¢; are unit coordinate vectors in R?, &; are unit coordinate vectors in R”, v; are
vectors in R”, and s < min(d, dim V). Note also that dim V' = s 4 j and that j <n.
As in (4.8), we have

dim 7y, V' = rankg

0
° 19@) ) el ...l 0o ...00
: : of oI et et
eq 94Q(8)

Since all entries of the product matrix on the right-hand side are polynomials in &, we
have

d’ = supdim sy, V = rankg

er 91Q(§)
. el ...l 0 ...00
S of T T T
ea 94Q(6)

where [F is the field of rational functions in d variables. This is because the rank equals
the size of the largest minor with nonvanishing determinant, and the determinant of

any minor, viewed as an element of [, vanishes if and only if its value vanishes for
every &. The latter matrix can be written in the block form

I+L; L3
4.11
(en ) o

where [ is the s x s identity matrix, Ly, L, L3 are matrices whose entries are linear
combinations of monomials of degree 1, and

05+101(8) ... 0s+10;()
B = : :
02016) ... 040Q;(8)
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Let r :=ranky B. Any r X r-minor determinant P of the matrix B is a homogeneous
polynomial of degree r, and P coincides with the lowest-degree homogeneous part of
the corresponding (r +s) x (r +s)-minor determinant of (4.11), obtained by adjoining
the first s rows and columns. Therefore,

d >s+r.

Let us continue to prove 0,7 (Q) < d’.Recall thatn’ = s+ j —d’ < j —r. By the
definition in (1.11), it suffices to find linear changes of variables in R4 and R", after
which Q,41,..., O no longer depend on variables 1,41, ...,&;. Notice that row
and column operations on B with coefficients in R correspond to linear changes of
variables in R4 and R”, respectively. By Lemma 4.7, by row and column operations
with coefficients in R, B can be brought in a form in which ithas a (j —r) x (d —
s —r)-block of zeros. This means that, after a change of variables, Q,+1,...,Q do
not depend on variables &4,41,...,&4. O

Proof of Lemma 4.7

Let k; be the largest index such that &, appears in A. Swapping rows and columns,
we may assume dj 1k, 7# 0. Using elementary row and column operations, we may
further assume that ay,1x, =1, a1 jx, =0,and a; 1, =0 forall j #0andi # 0.

Thus, we may assume
by % %
A= !
( * A)’

where £, does not appear in entries * and A" is an (Ny — 1) x (N, — 1)-matrix. If
A’ # 0, we repeat the same procedure in A’, and so on. If this process stops after at
most 7 iterations, then we are done. Otherwise, we have brought the upper-left corner
of A into the form

ékl—i—* * *
* Sk, % L. *
) , (4.12)
* *  Ep g T x

where a; jx =0if i # j and k > kpin(;, j)- The determinant of this matrix is a poly-
nomial whose leading term in the lexicographic ordering is &, -+ &k, ;

det(4.12) = &, -+ &k, , + lower-order terms.

This can be seen by induction on the size of this matrix. Indeed, if ky =--- = k; >
ki1, then &, appears in this matrix only in the first / diagonal entries, so
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5k1+1 + * * *
* S I *
det(4.12) = £ - det 2 .
* * ékr«H + %

+ lower-order terms.

In particular, the matrix (4.12) is invertible (over ), so that rankp A > r + 1, a con-
tradiction. |

COROLLARY 4.8
For any o > 1, the exponent defined in (4.7) satisfies

k(@) < sup (n"+ (1—a)on(Q)). (4.13)

0<n’<n

Proof of Corollary 4.8
LetV C R9" be a linear subspace. With the notation from Lemma 4.6, we obtain

dimV —adimaV =(d +n)—ad' =n"+ (1 —a)d' <n' + (1 —a)0,/(Q).

The conclusion follows after taking the supremum over all subspaces V. O

4.3. Ball inflation

A so-called ball inflation inequality, based on scale-invariant Kakeya—Brascamp-Lieb
inequalities, was first introduced in [17, Theorem 6.6]. Here, we formulate a ver-
sion of this inequality based on scale-dependent Kakeya—Brascamp-Lieb inequalities.
Recall that Uy was defined in (1.4).

PROPOSITION 4.9 (Ball inflation)
Let K € 2N be a dyadic integer and 0 < p < 1/K. Let {Wj}?'l=1 CP(/K) be a 6-

uniform set of cubes. Then, for any 1 <t < p < 0o, any functions fj with supp ?; C
Uy and any x¢ € Rt e have

M ‘ 1/t
”IH( Z ”fJ”'I:t(wB(X,l/p))) P

j=1 JeP(W;,p) xeB(xg.p~2)

d_d+n  k((1=0)p/t)
(4 —hn ;U=

= CG,K,p,tp P

M ‘ 1/t
<TI( > ||f1||y(w3(xo,p_2))) . (4.14)

j=1 JePW;.p)
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Proof of Proposition 4.9
Let R := p~!. Without loss of generality, we set xo = 0. Let Q := B(0, R?). Let
o := p/t. The pth power of the left-hand side of (4.14) equals

M
][erM( Y 1) @15

j=1 JePW;.p)

where fQ =1Q! J denotes the average integral. For each cube J € £ (W;, p) with
center £, we cover Q with a family 77 of disjoint tiles Ty, which are rectangular
boxes with n long sides of length 2p~2 centered at 0 pointing in the directions Vé
and d short sides of length p~! pointing in complementary directions (the length of
the long sides equals the diameter of B(xg,p 2), so that we only need one layer of
tiles in the directions VEJJ-). We can choose these tiles so that they are contained in
Co2 with Cy < 1. We let Ty (x) be the tile containing x, and for x € UTJGTJ Ty we
define

FJ(X) = Sup ”f-’l|£t(w3(y,1/p))‘
€Ty (x)

Then

M

]{CGQM( Z ”fJ”;’(wB(x,l/m))aSjifﬂl( Z |FJ|t)a.

J=1 JeP(W;,p) JeP(W;.p)

Since the function F; is constant on each tile 77 € T, we can write its restriction to
Q in the form Fy oy, where y is the orthogonal projection onto Ve, . To apply The-
orem 4.2, we apply the change of variables x — Rx such that the resulting functions
F;(Rx) are constant at the unit scale:

M " M .
]iﬂl( D |Ff|t) =R_(d+")/B(O’R)M( > FJ(R-)’) . (4.16)

J=1 JePW;,.p) J=1 JeP(W;,p)

By Theorem 4.2 and Lemma 4.5 with R = p~!, we bound the last expression by

R_(d+”)C9 KaRK(a(l—B)) /‘ (ﬁj (R.))z)“
j=1 JeP(W;,p) B(0,CoR)CRY

S R_(d+n)C9,K,a RK(a(l—O)) Rad

M

o
xﬂ'[( 3 ][ |F,|’) . (4.17)
JS1 es ;) BOCoR)CRA SN
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The conclusion will now follow from the bound

I Frlle:cony S 17l we) (4.18)

which is a standard application of the uncertainty principle (see, e.g., [32, (3.13)]).
O

The ball inflation inequality in Proposition 4.9 is sufficient for proving £7 L?
decoupling. For the proof of £9 L7 decoupling with ¢ < p we need a slightly more
general statement.

COROLLARY 4.10 (Ball inflation, £9L? version)
In the situation of Proposition 4.9, for any 1 < g <t, we have

M 7 1/3
TIC X 19 wpenm) s

j=1 JE?(W/,p) XGB(XOAQ_Z)

d _
< Co.x.prg(|logp| +2)K p~0i

d_d+n_ k((A=0)p/t)
7 T D )

i ; 13
T Y Wy, ) (4.19)

j=1 JePW;.p)

Proof of Corollary 4.10
This follows from Proposition 4.9 by a dyadic pigeonholing argument in the proof of
[17, Theorem 6.6]. For the sake of completeness, we still include the proof here. We
follow the presentation in [32, Appendix Al].

For each 1 < j < M, partition

Ld log>(1/p)]

PWip) =9V | i (4.20)
=0

where for 0 < <log(1/p)

”fJ”:E’(wB) <2—t},

9= {J ePW;,p): 271 < <
max jepw; .ol f17 £ (wp)

Jicoi=1{J € PW;.p): @421

<o-ldloga (1/0)]  1ax , }
1frllet gy < J’E?(W;,p)l|f] £ w)

Since M < K¢, the claim (4.19) follows by the triangle inequality from
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p
£xe$2

M . 1/
HM( Z ”fJ”’E’(wB(x.l/m)) ‘

j=1 JGgLU
—(d_dtn | x=0)p/1)y M g 1/q
‘-4t 5 M( > ile) - 422
j=1 JePW;.p)

=< CG,K,p,t,t?p
which we will show for every choice of ¢1,...,tp €{0,..., d log,(1/p)]} U {oo}.
Since g < t, by Holder’s inequality, the left-hand side of (4.22) is bounded by
(4.23)

P
'I:xeB

1_1 M t 1t
(MM, = HTTC X 15 i) |
j=1 Jegmj

By Proposition 4.9, the last display is bounded by
_(d_d+n | x=0)p/1) 11
Cokpugh 07 T p )<M|3j,Lj|" ‘)

M . 1/t
<X 1) (4.24)
Jj=1 JEgj,tj
It remains to observe that, for every ¢, we have
(4.25)

t ~ 1/
SO X 1wy

1 ‘ 1/
(X 1lery) S
JeP(W;.p)

1_
|g j,t| a1t
JEng
If ¢« # oo, this follows, as the summands on the left-hand side are comparable. For

{ = 00, we have

1_1 1/t
ool (D 1)

Jngvoo

1
<|&jool® max [ f7ll£wp)
JEJ*!OC

< p~dp—ldlog2(1/0)]  ay ,

<p J’E?(W/,p)”fj £ wp)
i 1/g

(X Wlk,) .

TP (W, .0)

5. Induction on scales
The upper bounds of I'y,,(Q) in Theorem 1.1 will be proved by induction on dimen-
sion d. The main inductive step is contained in the following result, whose proof will
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occupy the whole Section 5. One can apply Theorem 5.1 repeatedly and then obtain
the upper bounds in part (1.16) of Theorem 1.1.

THEOREM 5.1
Letd >1andn>1. Let Q= (Q1,...,Qn) be a collection of quadratic forms in d
variables. Let 2 < g < p < 0o and

A = sup T, (Qla). (5.1)

where the sup is taken over all hyperplanes H C RY that pass through the origin.
Then

Fyp(@ = max(A, max [a(1-2 = 1) —ou@(; - 0) - 2)). 52)

0<n’<n 2 p
In the proof of Theorem 5.1, we may assume that
I'=T4,(Q) > A, (5.3)

since otherwise (5.2) already holds. The assumption (5.3) is convenient, because
it means that the multilinear terms in Proposition 5.6 below dominate the lower-
dimensional terms. On a technical level, it allows us to define the quantities (5.32)
that are central to the bootstrapping argument.

5.1. Stability of decoupling constants and lower-dimensional contributions

In order to make use of the quantity (5.1), we need to show that we have a bound for
the decoupling constants D, ,(Q|x,§) that is uniform in the hyperplanes H. More
generally, it turns out that decoupling constants can be bounded locally uniformly
in the coefficients of the quadratic forms Q. Although it is possible to obtain such
uniform bounds by keeping track of the dependence on Q in all our proofs, we use
this opportunity to record a compactness argument for decoupling constants whose
validity is not restricted to quadratic forms.

THEOREM 5.2
For every 2 < q < p < 00, € > 0, and real quadratic forms Q1,...,Qy, in d vari-
ables, there exist Cq.e.q,p < 00 and a neighborhood @ of (Q1, ..., Q) such that, for

every (Ql, ..., On) €Q and every § € (0, 1), we have

Dy p((O1..... 0n).8) < Coeqpb Tar@c,

where I'y ,(Q) is given by (1.8).
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LEMMA 5.3 (Affine rescaling)
Let 2 < g < p < o0. For any dyadic numbers 0 <§ <o <1 and every J € (o),

> ), <@y X 1miL)" e

OeP(J,6) Oer(J,6)

Such a lemma has also been standard in the decoupling literature (see, e.g., [11,
Section 4] or [31, Lemma 1.23]).

Proof of Theorem 5.2
Let 0 = 0(Q,¢€,q, p) be a small number, which will be determined later. We may
assume that § < o/4. We consider a tuple (Q1,..., Q) such that

sup|[Hess(Q; — Qi) < 0?/(10d + 10). (5.5)

Then, for every J € (o) and [J € P (J,§), we have
Un(Q) € U (Q). (5.6)

Take a collection of functions fm with supp fm C Un(Q) for each O € £(5).
Using (5.6) and the definition of Iy, ,(Q), we obtain

_ _ 1/q
> fo|,, = Caco T @2 (L3 414,

OeP(8) JeP (o)

~ 1/q
SCQ’ea—Fq.p(Q)—e/Zi)q’p(Q,5/0’)( > i) 6D
OeP($)

The last inequality follows from the affine rescaling (Lemma 5.3). Hence, we obtain
Dg.p(Q.8) < Co.e0™ "7 V72D, ,(Q.5/0). (5.8)
We iterate this inequality log,—1 (§~!)-times and obtain
Dy.p(Q.8) < Co.e(§71) %01 Corg~Tar@=e/2, (5.9)

It suffices to take o small enough so that log;—1 Cq,e < €/2. O

COROLLARY 5.4
Let 2 < q < p < 00. For each € > 0, there exists Cq,e,q,p < 00 such that, for every
linear subspace H C R? of codimension 1, we have

g)q,p(Q|H»5) < CQ,e,q,pS_A_Ev (510)

where A was defined in (5.1).
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Proof

Recall from (1.12) that the Q|g are parameterized by the orthogonal group O(d).
Since Q| z depends continuously on the rotation used to define it, the group O(d) is
compact, and by Theorem 5.2, we obtain the claim. O

To prepare for the broad-narrow analysis of Bourgain and Guth [18] in the follow-
ing section, we need the following lemma that takes care of the case when frequency
cubes are clustered near subvarieties of low degrees.

LEMMA 5.5 ([31, Corollary 2.18])
Foreveryd > 1, D > 1 and € > 0, there exists ¢ = c¢(D, €) > 0 such that the follow-
ing holds. For every sufficiently large K, there exist

K‘<K <Ky<--<Kp<+vK .11

such that for every nonzero polynomial P in d variables of degree at most D, there
exist collections of pairwise disjoint cubes W; C P(1/K;), j =1,2,....D, such
that

D
NMyk(Zp)n[0.1¢ c U (5.12)
i=1wew;

and

| 3 s Sp0ean K1 (> 1wls)"”. 5.1

Wew; w;

Here N,k (Z p) denotes the 1/ K neighborhood of the zero set of P.

This lemma was stated in [31] only for p = ¢ and with Fourier support condition
that is slightly different from (1.4). The same proof works also for ¢ < p and with
Fourier support condition (1.4) without any change, and we will therefore not repeat
it here. The main hypothesis of [31, Corollary 2.18] is [31, Hypothesis 2.4], which is
exactly what we verified in Corollary 5.4.

5.2. Multilinear decoupling
For a positive integer K, a transversality parameter § > 0, and 0 < § < K1, the
multilinear decoupling constant

MulDec(8, 6, K) = MulDec(Q, §, 6, K) (5.14)

is the smallest constant such that the inequality
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Rd j—_l

M

q 1/q
= MulDee, Q8.0 K) [[T( D 1/00L, i) (5.15)
j=1 OeP(W,.5)

holds for every choice of functions fO and every f-uniform set {Wy,..., Wy} C
P(K Y with1 <M < K4

We use a version of the Bourgain—Guth reduction of linear to multilinear esti-
mates (see [18]). Estimates of a similar form already appeared in works of Bourgain
and Demeter (see, e.g., [15], [13]). The version below is a minor variant of [31, Propo-
sition 2.33]. This is the place where the uniform bound in Theorem 5.2 is used.

PROPOSITION 5.6
Let2 <q < p <oo. Let A be given by (5.1). Then, for each € > 0 and 0 > 0, there
exists K such that

Dy, p(Q.8) Sep 8747€
’

§'\A ,
=) MulDec, ,(Q. 8.6, K)]. (5.16)

+67€ max [(
§<8’<1;8dyadic )

Proof of Proposition 5.6
Let { fo}oep(s) be a collection of functions with supp fo C Ug. In the proof, for
each dyadic cube J with /(J) > §, we denote

fr= > fa (5.17)

OeP(J,8)

Let K be a large constant that is to be determined. For each ball B’ € R?*+" of radius
K, we initialize

B'):= P(1/K n= K™ Moy} (5.1
80(B') :={W e P(1/K)|ll fw I Lr5) = ng/flfg/K)HfW lzryf  (5.18)

We repeat the following algorithm. Let ¢ > 0. If 8,(B’) = @ or §,(B’) is #-uniform,
then we set

T(B'):=38,(B) (5.19)
and terminate. Otherwise, there exists a subvariety Z of degree at most d such that

W e 8.(BH2W NZ #0}| > 6|8.(B")]. (5.20)
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Fix any such variety Z. Note that 2W N Z # 0 = W C Nya,g(Z). For j €
{1.....d},let W, _;(B’) := W, be as in Lemma 5.5 with K replaced by K /24 . Repeat
this algorithm with

d
sB)=8sB0\J U 2wk (5.21)

j=1WeW, ;(B')

This algorithm terminates after O(log K) steps, with an implicit constant depending
on 6, as in each step we remove at least the set on the left-hand side of (5.20), which
constitutes a fixed proportion 8 of 8,(B’).

To process the cubes in ‘W, ; and to avoid multiple counting, we define

Wi=(wo\ U W)\ U U U 2ok 622

o<v<t 1<j/<j v WeWy jr

So far, we see that every cube in (5.18) can be covered by exactly one cube in
(UUVVLJ) 7). (5.23)
L
Therefore, by the triangle inequality we obtain

IDDNNCI BT ||fW||‘zp(B,))1/q

Oclo,1]4 WeP(1/K)
d
DD DI
Slog K j=1 weW, ;

+ Z I fwllLe ). (5.24)

WeT (B')

L?”(B’)

On the right-hand side of (5.24), the first term is used to take care of the cubes that
are not counted in (5.18). Next, we will see how to handle all these three terms.
The second term on the right-hand side will be processed via a standard localization
argument (see, e.g., [31, Remark 1.24]) and Lemma 5.5. It is bounded by

d
1/q
CoepglogK Y K}A+e( > fW||‘ip<wB,)) _ (5.25)
j=1 WeP(1/K ;)

Recall in Lemma 5.5 that K¢ < K; < VK for some ¢ = c(d,e€) and every j. This
allows us to absorb log K by K¢, which is the only place where the lower bound K¢
in (5.11) is used. To bound the last term, we use the definition of 7 (B’) and obtain
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M
1/p
d d
K max (| fwleray <k Y [Twew,) - 6520
WeT (B) .
Wi s Wy }SP(1/K) j=1
6 —uniform

The above estimate seems rather crude, but we can allow any K-dependent constant
in the estimate for this term. We plug (5.25) and (5.26) in (5.24), integrate over the
centers of balls B’, and obtain

> fD’

d—+n
OeP(8) Lr@eT™)
d A+2e q 1a
= Coear KM D0 Wl i)
j=0 WeP(1/K;)

+ K* > (> [Af[llfwjllipw,))l/p. (5.27)

W, . Wy }eP(1/K) B/cRé+n j=1
6 —uniform
Here we let Ko := K. The terms under the sum in the former term have the same form
as that on the left-hand side and therefore are ready for an iteration argument. In other
words, we will apply (rescaled versions of) (5.27) to each term || fw || L » (ga+ny under
the sum in the former term. By the definition of the multilinear decoupling constant,
the latter term can be controlled by

d 1/q
K2d2K Mu]Dqu,p(QvSv 9’ K)( Z ||f|:|||lzp(Rd+n)) ) (528)
OeP ()

where we used that there are only 2K “ Subsets of P(1/K), and hence at most that
many @-uniform subsets. We plug (5.28) in (5.27). Now it is a standard argument
to iterate (5.27) and obtain the desired estimate in the proposition. We leave out the
details and refer to [13, Section 8] or [13, Proposition 8.4]. O

Recall that we have assumed (5.3). For most of Section 5, we fix some 0 < € <
I' — A, atransversality parameter § > 0, and a corresponding K as in Proposition 5.6.

The mutlilinear decoupling constant will be estimated by the same procedure as
in [11]. For a detailed exposition of this argument, we refer to [14, Theorem 10.16]
or [31, Section 2.6]. We use a compressed version of this argument, in which each
step is expressed as an inequality between the quantities (5.32) below. This version of
the Bourgain—Demeter argument was originally motivated by decoupling for higher-
degree polynomials (see [32]).

For a 0-uniform set {W; },1}4:1 C P(1/K) and a choice of functions fo, O €
P (5), we write
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8 M 1/2
0= X Wiy, ) o,

=1 JeP(W,.5") rdtn

~

. M . 1/q
Ao=|TC X 1w, ) e

J=1 JepW; sb) xeRdtn

B . M ‘ 1/q

Ap(b):= l— ( Z 175 ”’Ep(wB(x S*Zb))) HLP '
J=1 JepW; 5b) ' xerdtn

where 0 < b <1 and

1 1/2  1/2 1 1/2  1/2
t_yz 1z 1 12 172 (5.29)
t p 2 9 4q 2

Note that 2 < g <t < p. For
0<b<l and x=2,1,p, (5.30)

let a.(b) be the infimum over all exponents a such that, for every 6-uniform set
{W]-}?’I=1 C P(1/K), every § < 1/K, and every choice of functions fo, O € £(5),
we have

M

~ _ 1/q
A(b) Sapx 67° M( 3 ||fD||§p(Rd+n)) : (5.31)
j=1 DeP(W,.5)

with the implicit constant independent of the choice of the tuples (W;) and (/o).
and in particular independent of b, as we will send b — 0. It follows from Holder’s
inequality that this a«(b) < co. Recall that I' := I'; ,(Q). As in [32, Section 3.6], we
define

@y = liminfr%*(b), xe (2.1, p). (5.32)

b—0

The next lemma says that a, is nontrivial.

LEMMA 5.7
Under the above notation, it holds that

Ay < 00, (5.33)

for x =2,t, p.
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Proof of Lemma 5.7
By Holder’s inequality and Bernstein’s inequality, the left-hand side of (5.15) is
bounded by

§ € A, (b) (5.34)

for any * € {2,¢, p} and any 0 < b < 1 with some constant C depending on *. There-
fore, we obtain that

MulDecy ,(Q, 8,6, K) S g.x 8 (COFaxOIFe) (5.35)

for every € > 0 and 1 > b > 0. This, together with Proposition 5.6 and the assumption
(5.3), implies that

T < Cb + ay(b). (5.36)

This finishes the proof of the lemma. O

5.3. Using linear decoupling
By Holder’s inequality, we obtain

Ap(b)sfﬁu( DR 7 Rl BN CE D)

J=1 JepW; 8b) xerdtn
By Minkowski’s inequality, this is further bounded by

M q 1/q
m ( Z H “ f‘] ”’Ep(wB(x,&*Zb)) ” LieRd"‘”)

J=1 JepW;,sb)

STIC S W0 ) (5.38)

M
=1 JepW;,8b)
By the definition of the decoupling exponent and affine scaling (Lemma 5.3), this is
<, §-T+a(-b) fﬁ( Z ||fD||‘ip)l/q. (5.39)
ji=1 DeP W, ,5)
Hence
ap(b) <(I' +¢€)(1 - b),
for every € > 0, which means a,(b) < I'(1 —b). It follows that

ap>T. (5.40)
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5.4. Using L? orthogonality
By L? orthogonality (see, e.g., [32, Appendix B] for details), we have

Ao =| fﬁ( 3 ||ff||12(w3(xga_2b)>)l/2 HL;

J=1 JeP(W;,8P) erdtn

5 1/2
( Z ||fJ||£2(wB(x.6—2b))) ‘

J=1 JeP(W;,52b)

—=

<]

L (5.41)

We further apply Holder’s inequality and obtain

M a

) - 1/q
—d2b(1/2—-1/§) | | E :

<6 ! H ( ”fJ'ly(wB(x,s—M))) ‘

J=1 JePW;,820)

(5.42)

y2)
Lxe]R‘H‘"

Note that the last expression is exactly §~42(1=2/@ 4,(2b). Hence
ax(b) =db(1—2/q) + a:(2D).
It follows that

ar>—d(1-2/3) + 2a,. (5.43)

5.5. Ball inflation
Using Corollary 4.10 with p = §? and taking L?-norms in xo on both sides of (4.19),
we obtain

) |
wo=lM( > i, )",

J=1 JePW;,8b) xerd+n
M .
- G 1/q
P00 X Wi, ) e o G4
J=1 Jep(W;,8b) ’ xerd+n
for every € > 0, where
d d+n  «k({(1-=0)p/t)
V== +
t 4 p
d d 1
< —— +n + — sup (n’ + (1 — E(l — 9))Dn/(Q)>, (5.45)
t 4 P o<n’<n t

and the log factors in Corollary 4.10 have been absorbed by §72¢. In the last step we
used Corollary 4.8. In the end, we apply Holder’s inequality to the last term in (5.44)
and obtain
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A (b) <8P0 FO 4, (b)V2 A, (h)12, (5.46)
It follows that
a;(b) =by +ap(b)/2+ az(b)/2.
Substituting this inequality into the definition (5.32), we obtain

ar>—y+tap/2+az/2. (5.47)

5.6. Proof of Theorem 5.1
Inequalities (5.29), (5.40), (5.43), and (5.47) imply

I'<ap<2y—ax+2a <2y +d(1-2/q) =2y +d(1/2—-1/q).

Inserting the definitions of the respective terms into this inequality, we obtain

Fq,p(Q)EZ(d d;”+l sup (n'+(1—$(1—9))an/(Q)))+d(%_$).

! P o<n’<n

Both sides of this inequality depend continuously on 8, and we consider its limit when
6 — 0. This gives

@2 (S (D) <3 1)

t o<n’<n P

Substituting the ansatz (5.29) for ¢, we obtain

Lp@=d(o43) -2 s (2 (20 o)

2 o<n’<n > P V4 2
ali-
(n—n")
G e T

This finishes the proof of Theorem 5.1.

6. Lower bounds in Theorem 1.1
In this section, we show the lower bounds for £¢ L7 decoupling constants in Theo-
rem 1.1 for ¢ < p. We will prove that

Fy,p(Q) = max(sup Ty, (Qln),
H

max (d(l—%—cl])—bn/(Q)(l—%)_Z(H—_n/))), (6.1)

0<n’<n 2
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where H is a hyperplane passing through the origin, for every p > 2, > 2. Note
that here we do not necessarily require ¢ < p. One can apply the above inequality
repeatedly and then obtain the lower bounds in Theorem 1.1 for ¢ < p.

First of all, we relate the decoupling exponent with the decoupling exponents
on subspaces. Here, the distinction between the cases ¢ < p and ¢ > p becomes
apparent.

LEMMA 6.1
Let Q be an n-tuple of quadratic forms in d variables, and let H € R? be a linear
subspace of dimension d'. Then, for any 2 < q < p < oo, we have

[g,p(Q) = Tg,,(Qln), (6.2)

and, for any 2 < p < q < 00, we have
1

—). (6.3)

1
Tq,p(Q) = Ty p(Qla) + (d - d’)(; -

Proof of Lemma 6.1
For notational convenience, assume that RY = H x R?” with d” = d —d’. The bound
(6.2) will follow from

Dyg,p(Q,C3) Z Dyg,p(QlH,9), (6.4)

for some absolute constant C. To see this, let { /(' € £([0,1]¢',8)} be a tuple of
functions on R4 *” that nearly extremizes the inequality (1.6) for Q|g . Fix a bump
function ¢ such that suppp < B(0,5%) c R4” and, for

O=0'x0"eP([0,1]4,8) = P([0,1]%,8) x ([0, 1], 8),

consider the functions

~/® |:|"=|:]//:=0,8d”,
I

0" # 0Og.
Then supp ?E C CUgand

| o], =101, 2

which implies (6.4). Here 1 denotes an indicator function, which takes the value 1 if

L, Mool =1or=gglélslorllp,

the statement in the subscript is true, and 0 otherwise.
To see (6.3), we define fyxy, as above. For other 0" e £([0,1]¢4",8), leta” €

R4” be the center of (1 and define
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Sy = Ay foay (- + ),

where cyr € R are very large vectors and the linear operators Apy» are given by
affine transformations in the Fourier space:

Aoy f €)= F(E—(0,a"),n+ Q(0,d") —VQ(0,a") - §).

If ¢y are sufficiently far apart, then functions foyxo~ and f=,, 7, are almost dis-
jointly supported for (0" # [1”, so that

|2 5]~ (T o],
= el (3| Ao

p)l/p

p\1/p Y -
)=l |
D/

D// D/ p
and
1/q 1/q
(Ooang) ™ = (3 Do fesce )
\:\ \:‘// D/
~ q 1/q —d"/q ~ q 1/q
= 1o, (3D 1A 18) T = llelps = (30 frs)
D// D/ D/
This implies
Dy.p(Q.C8) 267" VP~ 1D D, ,(Qlu.9).
and therefore (6.3). O

To show the lower bound in (6.1), it remains to prove the following.

PROPOSITION 6.2
Let Q be an n-tuple of quadratic forms in d variables. For0 <n’ <nand2<gq,p <
o0, we have

1 1 1 1 2(n—n')
r >d{l————) =0y —— ). 6.5
@z d(1= =) =0 @(5- ) - = (6.5)
Proof of Proposition 6.2
Let d’ = 0,/(Q). After linear changes of variables, we may assume that Q1,..., Oy

depend only on &, ..., &4 Write frequency points in RZ+" as

(& 1, n") e REFTd 040" (6.6)
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with
S/ = (glv""gd’)9§// = (Sd’-i—lv'-'vg:d)’
’ 7 (67)
=0 )0 = /152 n)s
and d’ +d” =d,n’ + n” = n. Similarly, we write spatial points in RI+™ 45
', x", ', y") c R +d"+n"+n" (6.8)

For a dyadic cube (J € P (§), write 0 = [ x [0 with [ ¢ RY" and " c R?”,
Choose functions f of the form

fo&" X"y y") = go (¥ yho(x", y") (6.9)

with the following properties:’
(1) g0y and hp are positive smooth functions satisfying

/E§=thm=1. (6.10)

(2) g0y is supported on a ball of radius A~ §2 contained in
{E ) €O n— 01| =8 [ = Qw(E)| =82}, (6.11)

where § - [0 is the box of the same center as [ and side length § times that of
™.
3) EE is supported on a rectangular box of dimensions comparable to

Slx o x 8 x§2x---x 82 (6.12)

d"” times n” times

contained in

U {(;;.//, n//) . E” c D//, Mﬁ’ _ Qﬁ/(é/,gﬁ)} < 52,’1/ < < n}. (6.13)

ges v
On one hand, by the uncertainty principle,

||f|:\||p ~ 8—(2d'+d"+2n)/p’ (614)

and by definition we have

> o =ou@a( X 1)

OeP(6) UeP(5)

~ Dy p(Q,8)574/ag=@d"+d"+2m)/p, (6.15)

3Here and below we use [ instead of (0" in A, as Q41,5 .., Qy still depend on &'.
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On the other hand, with U = {(x”,y") € RY" x R"'|x"|,|y"] < 10747/
(sup; [[Hess Q|| + 1)}, we have

- H > inf
Z f p (x//’y//)eU

VR

LP @ x{x" xR x{y"))

OeP () OeP($)

—  inf H Oy ‘ : 6.16
*".y")eU ; Dy 8 Ly g ety (10

where
oy =Y hoor (37 y"7) =Y ho(". ") (6.17)

D// D//
satisfies
—d”

leoy x yrr| ~ 8 (6.18)

uniformly in [0’ and (x”, y”) € U. This is because h7(0,0) = 1 and
(3" = ho©.0)| < [ e+ 3 ) = 1||Fn ") o d’
< 1/“’15(5// 77”)’ dé” dn// _ l
=5 s >
so that all summands in (6.17) are close to 1.

Let ¢5(-) = ¢(82-), where ¢ is a fixed positive Schwartz function on R?" x R?
with supp ¢ C B(0, 1/10). Then, by Holder’s inequality,

H Z CD’,x”,y”gD’ |
o

> |I¢s ||]_/1(]/2—1/p) H¢5 Z o x7,y 80y |
D/

Lr (R4 xR1)

L2(R4' xR")

g2 1)1 /2-1/p) Hch,xv,w% . gD,‘ (6.19)
D/

L2R4 xR

Since the Fourier supports of ¢g - g are disjoint for different ((')’s for sufficiently
small §, we obtain

HZCD/’X//,),//(pS . gD/’
o

L2(R4’ xRr")

1/2
2 2
= (X lerrens Plids - 2122 )
D/

~ 8—11”/2 . S—d” . 8—2~(d’+"’)/2’ (620)
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uniformly in (x”, y”) € U. Combining the above estimates, we obtain

‘:Dq P(Qv 5)5_d/q8_(2d'+d”+2n)/p

2 52~(d’+n’)(1/2—1/p) . 8—d’/2 . 5—(2”/ . 5—2~(d’+n’)/2. (621)

This implies
Pep(Q =d(1—1/g—1/p)—=d'(1/2=1/p)=2(n—n")/p,

as desired. O

7. Sharp ¢4 L? decoupling inequalities with ¢ > p

Proof of Theorem 1.1 with g > p
The upper bound < follows from the Holder inequality between £7 and £9 sums in
the definitions of I'y , and I'p, .

Let us prove the lower bound. Recall from Corollary 1.2 that

[pp(Q = max max ((Zd’—ad/,n/(Q))(l—l)—Z(nT?n/)). (7.1)

d/2<d’<d 0<n’<n 2 p

We will show that

[y,»(Q) > max max ((2d’ _Dd',n/(Q))(l _ l) _ M)

d’'<d 0<n’<n 2 p D
+d(1/p—1/q) (7.2)

via an induction on d. The base case d = 1 is easy, as quadratic forms depending
on one variable &; are all multiples of 512. Let us assume we have proved (7.2) for
d = dy, that is, we have established (7.2) for all Q depending on dy variables. We
aim to prove it for d = dy + 1, that is, for Q depending on dy + 1 variables. First of
all, we apply Proposition 6.2 and obtain

1 1 ) 2(n —n’ ))

Tg.p(Q = 021‘2,,((2(010 1) = 0a1.0(Q) (5 - ; :

1 1
+ (do + 1)(— - —), (7.3)
P 4
which is the right-hand side of (7.2) with d’ = do + 1. It remains to prove that

[y, p(Q) > max max ((Zd/ _ad,,n,(Q))(% _ l) _ M)

d’<dy 0<n’<n P P

l). (7.4)

+(d0+1)(%—q



434 GUO, OH, ZHANG, and ZORIN-KRANICH

Let H C R%*! be a linear subspace of dimension dy. By Lemma 6.1, we obtain

11
[q,p(Q) =Ty ,(Qla) + v (7.5)

Now we apply our induction hypothesis to I'y ,(Q|#x), as Q|g depend on dy vari-
ables, and obtain

L@ = max max( (20"~ 00 @) (5 - 7) - 22
Tl 1)(% - é) (7.6)

In order to prove (7.4), we first take the sup over H in (7.6) and realize that it suffices
to prove

igfod/,nf(Qlﬂ) <0 (Q), (7.7

for every H of dimension dgy and every d’ < djy. This follows from the definition of
[P Ol

The following example shows that Proposition 6.2 does not by itself always give
the correct lower bound for I';, , when g > p. Let us take the extreme case ¢ = oo.

Example 7.1
Letd =4,n =2, and
Q = (&7 + &264.634).
We have
042 =4, 04,1 =2, 032 =1,
and all other 04/, are 0. Let p =2+ 4n/d = 4. Then direct computation shows that
I'oo,p = 9/4. However, Proposition 6.2 only shows s, , > 2.

8. Proofs of Corollaries 1.3-1.5

8.1. Proof of Corollary 1.3
We apply Theorem 1.1 with g = 2 to the tuple of quadratic forms Q, and by (1.20),
we know that (1.22) holds true if and only if

s omas (0= va@) (3 - 1) - 2
< max (0,d(%—%)—2§) (8.1)
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for every p > 2. Both sides of (8.1) are finite maxima of affine linear functionsin 1/ p.
The two arguments of the max on the right-hand side coincide at py :=2 + 4n/d.
Hence, (8.1) holds for every p € [2, co] if and only if it holds for all p € {2, pg, 00}.
For p =2, we have LHS(8.1) = 0 = RHS(8.1). For p = oo, we have
LHS(8.1)= max max (d' =04 ,(Q))/2=4d/2,
0<d’<d 0<n’<n
where the maximum is attained at d’ = d and n’ = 0, and therefore (8.1) holds with
equality at p = oo. For p = py, (8.1) is equivalent to
2(n—n’)

—) <0. (8.2)

max max ((d’—bd/,n/(Q))% —

0<d’<d 0=<n’<n

A direct calculation shows that (8.2) is equivalent to the strong nondegeneracy condi-
tion (1.21).

8.2. Proof of Corollary 1.4

The proof is basically the same as that for Corollary 1.3. We apply Corollary 1.2 to
the tuple of quadratic forms Q, and by (1.19), we know that (1.24) holds true if and
only if

a2 <d Ogﬁlén((Zd/ _Dd"”/(Q))G B %) B 2(”;”/))
< max (d(% - %),261(% - %) - 2?”) (8.3)

for every p > 2. The two numbers on the right-hand side coincide at po =2+ 4n/d.
As in the proof of Corollary 1.3, (8.3) holds for every p € [2, co] if and only if it holds
for all p € {2, pg,00}. For p € {2, 00}, the condition (8.3) again always holds with
equality. Hence, (8.3) holds for every p € [2, o] if and only if it holds at p = po,
which is further equivalent to
/
max  max ((Zd’ - Dd/,,,/(Q));—n - M)

d/2<d’<d 0<n’<n Do Po

2
< (8.4)
Po

A direct calculation shows (8.4) is equivalent to the nondegeneracy condition (1.23).

8.3. Proof of Corollary 1.5
Recall from Corollary 1.2 that

T = s (1
p(Q= max_ o max Yd'n (1/p).

(1) = (' =0 @) (5 =) = 2,
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The functions y,4- , are affine. For n’ < n and arbitrary d’, we have yz/ ,(1/2) <
0. Moreover, for arbitrary d’, we have y;/,(1/2) = 0. For every p € (2,00), the
condition (1.25) is equivalent to

vd'e(d/2.d]. yaa(1/p)=d(1/2—1/p).

In particular, if (1.25) fails, then (1.26) fails for any p, > 2.
Suppose now that the condition (1.25) is satisfied. Then, in particular, 04 ,(Q) =
d, and it follows that Then, Corollary 1.2 implies

r,(Q = max(d (l - l),d/zrgax max yd/’n/(l/p)).

2 p d’<d 0<n’<n
Since the latter double maximum is a piecewise affine function of 1/p and is strictly
negative for p = 2, we see that there exists p. > 2 satisfying (1.26). The largest
possible p,. is the minimum of solutions p € (2, 00) of the equations

d (% - %) =y w(1/p) (8.5)

for d/2<d =d —m <d and 0 <n’ <n — 1. These solutions are given by the
formula
4n —4n’

d',n)=2 .
PE) =2 S 0 (@)

(8.6)

This shows (1.27), since the minimum in (1.27) is restricted in such a way as to be
taken over numbers in (2, 00).

We note also that, for n’ = 0 and m = 0, we have Dd,O(Q) = 0, which shows that
the minimum in (1.27) is taken over a nonempty set, and is at most 2 + 4n/d.

9. Fourier restriction: Proof of Corollary 2.3
In this section we prove Corollary 2.3. The proof is standard, and it relies on an epsilon
removal lemma of Tao [57], the broad-narrow analysis of Bourgain and Guth [18], and
the decoupling inequalities established in the current paper. The use of decoupling
inequalities in this context is also standard (see, e.g., Guth [37]). As Q will be fixed
throughout the proof, we will leave out the dependence of the extension function EQg
on Q and simply write Eg.

Let us begin with the epsilon removal lemma. In order to prove (2.6), it suffices
to prove that for every € > 0, there exists Cyg  p.0,e = Ce such that

IEf,1108llLrB) < Ce8™ I8l ps 9.1)

for every § < 1,e > 0, p > pq and every ball B C R?*" of radius §~2. Here and
below, we will leave out the dependence of our implicit constants on d,n, p and Q.



DECOUPLING INEQUALITIES FOR QUADRATIC FORMS 437

Such a reduction first appeared in [57] (see also [18], [40]). For a version of epsilon
removal lemmas for manifolds of codimension bigger than 1, we refer to [33, Sec-
tion 4].

In order to prove (9.1), we will apply the broad-narrow analysis and the decou-
pling inequalities in the current paper, together with an induction argument on §. Let
us assume that we have proved (9.1) with §' in place of § for every 1 > §’ > 26.
Under this induction hypothesis, we will prove (9.1). Let us begin with one corollary
of Proposition 4.9.

COROLLARY 9.1 (Multilinear restriction estimate)

Let K € 2N be a dyadic integer and 0 < 8 < 1/K. Let 0 > 0 and{Wj}ﬁ!’I=1 CP(1/K)
be a O-uniform set of cubes. Let B C R be a ball of radius §2. Then, for each
2<p<ooande >0, wehave

M M
—y(p,8,Q)—¢
H m |Eng|HLP(B) <Co kb 7P ¢ m lgll2qw,) 9.2)
Jj=1 j=1
where
2n’ 2
r(p.0.Q):= sup (= + (2 -(1-0))w(Q). ©9.3)
o<n’<n ™ P P

Proof of Corollary 9.1

The proof is essentially via the argument of passing from multilinear Kakeya esti-
mates to multilinear restriction estimates as in Bennett, Carbery, and Tao [7]. Let us
first show that

,2(%711-};” +K((l—z)p/2))7€/

M
H m |EW/g|Hy(B) < Co kb
Jj=1
M
1/2
<[ X 1Eoglian,) - O
j=

1 DeP(W;.5)

for every € > 0. We take a Schwartz function v such that v is positive on the ball
of radius 1 centered at the origin, and Fourier transform of ¢ has a compact sup-
port. Let us define the function ¥ g(x) := ¥ (6%x). By Holder’s inequality and L2-
orthogonality (see, e.g., [32, Appendix B]), we see that
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M
[T 12wl
j=1

M
S| T 1vsEw,el|
j=1

£7(B)

£2(B)

P
beB

M
<5 T s Ew, glleeaese|
j=1

—e'(d+n)/2 “ 2 1/2
<$ HM( Z ||1//BEJg||£2(wB( 6_6/))) ‘

£17
J=1 JepWw;.5) xeh
We apply (4.14) and L?-orthogonality, and bound the above term by
S_E/(d_,’_n)/zg_e/(%_%_,’_K((l—]@))ﬁ/z))
M
1/2
2
T X ek, ) |,
J=1 JepW; 5<) ‘ xeh
< 5_6/(d+n)/28_€/(%_d#+K((l_g)p/z))
M
1/2
2
STIC X Wwskselen, o)) |,
J=1 Jep(w; 52¢) o xeB
We repeat this process and obtain
§—€ [d+m)/2g=2(§ —LFn 4 U=00P/2))
M
1/2

2

* H M( Z Vs Ejg”y(ws(x,s—%)) ‘ £y

J=1 JePW;.8)

9.5)

(9.6)

9.7)

We rename €’'(d + n)/2 by €', and the above term is bounded by the right-hand side

of (9.4).
By the Plancherel theorem, we see that

IEogll 2wy S 841820y

Therefore, by (9.4), we obtain that

M
I T 1Ew, 5
j=1

LP(B)

(9.8)
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M
< Cp g o8 2=00p/2)/p=¢ m lgllL2m,)- (9.9)
j=1

It suffices to apply Corollary 4.8 to bound «. O

We let 6 be a small number, which will be determined later. Its choice depends
only on how close p is to pq. Therefore the dependence of the forthcoming constants
on 6 will also be compressed. Readers can take 6 = 0 for convenience. We define p,
to be the smallest number such that y(p., 6, Q) = 0. More explicitly,

2n' + zean’(Q))
(1-0)0,(Q) /°

To prove (9.1), we run the broad-narrow analysis of Bourgain and Guth [18] in a way
that is almost the same as in the proof of Proposition 5.6. We repeat the proof there
until before step (5.27), with ¢ = p and fg replaced by g Eqg for every dyadic box
O of side length §. Next, instead of summing over all balls B’ of radius K in R4+",
we sum over B’ C B, a ball of radius § 2, and obtain

Pe= max (2+ (9.10)

1<n/<n

Fag|
H Z YveEng Lo (B)
Ocfo,1]4
d A+2¢’ P p
Co KM IBEWE gy
j=0 WeP(1/K ;)

M

/
+KT Y > (X Tvsewelfg,) " @

1<M<K4 Wi,...WpeP(1/K) B'CBj=1
6 —uniform

where

A= szpr(QIH), 9.12)

and the sup is taken over all hyperplanes H C R? that pass through the origin.
Regarding the second term on the right-hand side of (9.11), we notice that each term
|Ew; g| is essentially constant on B’, and therefore we can apply Corollary 9.1 and
bound it by C¢/, 87 ||gll2, whenever p > p.. So far we have obtained

d
’ 1/p
18 Epeglrm = Co Y KA2 (3 1WBEWEl )
j=0 WeP(1/K;)

+Co k8 g

2, (9.13)
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for every € > 0 and p > p.. After arriving at this form, we are ready to apply an
inductive argument, as the terms on the right-hand side of (9.13) are of the same form
as that on the left-hand side, with just different scales. To be precise, we will apply
our induction hypothesis to each ||V g Ew g||1»(wy)- All these terms can be handled
in exactly the same way. Without loss of generality, we take W =[0,1/K j]d. Recall
that

Ewg(x.y) = /W g(®)e(E-x + Q) -y) de. (9.14)

where x € R?, y € R”. We apply the change of variables £ - £/ K ; and the induction
hypothesis and obtain

d+2n d

1WBEwgllLrws) <CCS K7*K; 7 K/ llglLrmw). (9.15)

where C is some new large constant that is allowed to depend on d, n, p and Q. This,
together with (9.13), implies that

Ef0,1128 L7 (B)

2d

d
_ A—d+24E2n 4 ot .
<CCeCS™ ) K; 7 el + Cox gl (9.16)

j=0
for every €’ > 0. Recall from (5.11) that there exists a small number ¢ = ¢/ such that
K‘<Ki<Ky<--<Kqs<VK. 9.17)
From (9.16) we see that if p is such that
A—d+Q2d+2n)/p<0, (9.18)
then we can pick ¢’ small enough and K sufficiently large, depending on €’, such that
C Co KATATQ@AT2M/PH2" < 1 /(2(d +1)). (9.19)

After fixing €’ and K, we see that in order to control the second term in (9.16), we
just need to set the constant C¢ from (9.1) to be 2C¢/ x and then we can close the
induction step.

Notice that there were two constraints on p, including p > p. and (9.18). Recall
the definition of A in (9.12). One can apply Theorem 1.1 and see that

L1 ) - M] (9.20)

A = I:Zd/—o// - — —
g max | (200w @)(3- ) ==

Elementary computation shows that
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4n’
. 2 )= , PQ)- 9.21
pemax(pe2 s, ) = el 020

As p. is a continuous function depending on 6, to see that we have the range p > pq,
it suffices to show that

(2+ 2 )<2+ il ©.22)
max max max : .
1<n’<n 0,(Q)/ — m=1n'<n 2 434 —m n'(Q)

This inequality follows from

20d,n’((z) = 2+ Dd—l,n/(Q)a (923)

for every n’ > 1, which holds true because 04,/ (Q) > 04—1,,,(Q) as long as
04,,(Q) > 0. Recall that we assumed Q is linearly independent, and therefore
we indeed have that 94 ,,(Q) > 0 for every n’ > 1. This verifies the range p > pq
and thus finishes the proof of the corollary.
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