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Impact of Aging on the Cardiovascular System

Three-dimensional mitochondria reconstructions of murine cardiac muscle
changes in size across aging
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Abstract

With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mito-
chondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated proc-
esses, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative
stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and
cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-
related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial
block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in car-
diac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphol-
ogy, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of
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mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9
knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative
consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the
need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae
structural changes.

NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related
changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.

aging; cardiac muscle mitochondria; MICOS; serial block-face SEM; three-dimensional morphometry

INTRODUCTION

The mitochondrion is an organelle that critically carries
out oxidative phosphorylation in the cell and is implicated
in many diseases, including Alzheimer’s disease, diabetes,
and heart failure (1–3). Given the dependence on mito-
chondria to meet energetic demands, mitochondrial dys-
function and deterioration are associated with cell death,
including autophagy and apoptosis (4–6). In addition to
producing adenosine triphosphate (ATP), mitochondria
also regulate cell signaling during various cellular processes,
including calcium homeostasis, apoptosis, and immunity (5,
7–9). Interestingly, research also suggests that mitochondria
play a significant role in aging (10, 11). Although the functions
of mitochondria are well understood, the relationship
between mitochondrial dysfunction and age-associated dis-
eases requires further investigation.

Mitochondrial morphology is associated with mitochon-
drial bioenergetic capacity. Mitochondrial dynamics, mainly
fusion and fission, provide a means for mitochondria to
readily adapt to the specific energy demands of the cell.
Fusion and fission are regulated by optic atrophy 1 (OPA1)
and dynamin-related protein-1 (DRP1), respectively (4, 12–
14). Although the loss of DRP1 results in an abundance of
overly elongated and fused mitochondria (5), the loss of
OPA1 gives rise to fragmented mitochondria (12, 15).
Mitochondria may go through several forms in coordi-
nated cycles of fusion and fission. If OPA1 and mitofusions
become upregulated, fusion rates increase producing long,
tubular mitochondria with more complex network forma-
tion (16). Under normal physiological conditions, tubular
mitochondria function well. However, under conditions of
stress, mitochondria have been shown to alter their forma-
tion into donut, blob, or fragmented shapes, the latter of
which is caused by a high fission–fusion ratio (16–18).
Importantly, the evaluation of mitochondrial structure is
vital as deviations from typical tubular mitochondrial
shape indicate lower ATP production and increased sus-
ceptibility to autophagosome degradation (19). Moreover,
the loss of several mitochondrial genes has been impli-
cated in cristae structure alterations (13, 20).

Cristae, the folds of the mitochondria inner membrane,
house electron transfer chain complexes responsible for
establishing the proton motive force, which ultimately
produces ATP (21). The morphological arrangement of
cristae ultimately determines the energetic capacity of mi-
tochondria and has been implicated in playing a role in
other functions including apoptosis and homeostasis (21).

The mitochondrial contact site and cristae organizing sys-
tem (MICOS) maintains the morphology of cristae (22).
Similar to OPA1, the MICOS complex governs the dynamics
of cristae structure (20, 22–24). The MICOS complex is also
involved in the maintenance of cristae junctions, which
are subcompartments for metabolites (25). Given the sig-
nificance of cristae junctions, cristae may also be involved
in other processes such as regulating calcium homeostasis
and molecular signaling. In consideration of the signifi-
cance of mitochondrial and cristae morphology in normal
function, dysfunction of the MICOS complex could nega-
tively impact health (24). However, the role of the MICOS
complex in mitochondrial health during cardiac aging has
yet to be defined. Given the understanding that mitochon-
dria are implicated in the aging process (11), we hypothe-
sized that changes in the MICOS complex, which is critical
to maintaining cristae morphology (26, 27), may lead to
age-associated changes in mitochondria.

Specifically, we sought to understand the role of the
MICOS complex in cardiac muscle mitochondria as it may
provide novel insights into maintaining normal mitochon-
drial health in the heart. This study combines an in vivo
and in vitro approach that looks at cardiac muscle in mice,
cardiac fibroblasts, and human induced pluripotent stem
cell-derived cardiomyocytes (iPSC-CMs). Previously, mito-
chondrial-focused aging studies have focused on cardio-
myocytes (28); however, these studies overlooked the
MICOS complex in relation to the aging of the cardiac
fibroblasts. Cardiac health is linked to insulin resistance
and diabetes (1, 29). Heart failure is also associated with
other mitochondrial processes (6, 30–32) such as endoplas-
mic reticulum stress, mitochondrial bioenergetics, insulin
signaling, autophagy, and oxidative stress (33). Mitochondria
have specialized types and structures associated with their
roles in glycolysis and oxidative metabolism in cardiac fibro-
blasts (17, 34–36). While young mitochondria show extensive
specialization, it is unclear whether this is also true for aged
cardiac murine mitochondria, and there is little information
quantitively analyzing how aging affects cristae and three-
dimensional (3-D) mitochondrial structure across aging in
cardiac tissue. In cardiac muscle, research has shown that
across aging, mitochondria in between myofibrils, called
intermyofibrillar mitochondria, have the most significant
decrease in mitochondrial oxidative respiration function
(37). However, the full extent of causes of these changes in
the oxidative phosphorylation of intermyofibrillar mito-
chondria have yet to be elucidated. Given that heart failure
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risk increases with aging (38), it is vital to consider the role of
mitochondrial dysfunction in the loss of heart function (33).

To better understand the relationship between cardiac mi-
tochondrial structure and the aging process, we used trans-
mission electron microscopy (TEM) and fluorescence for
two-dimensional (2-D) micrographs to observe mitochondria
and cristae. Different muscle types have distinct mitochon-
drial function (17, 34). However, it is unclear how these
unique functioning differences change over age. To further
understand how aging affected mitochondrial morphology,
we looked at cristae morphology at three time points; 3 mo, 1
yr, and 2 yr, which represent “young,” “middle-aged,” and
“old,” mice, respectively. We expanded this to include serial
block-face scanning electron microscopy (SBF-SEM) with
manual contour tracing to reconstruct 3-D mitochondrial
morphology and structure. We then quantitatively analyzed
the 3-D networks in mouse cardiac muscle samples at differ-
ent age intervals. Notably, 3-D reconstruction is an impor-
tant avenue as the 3-D morphology of mitochondria has
been linked to their functional capacity (17). Using SBF-SEM,
we were able to look at single organelles to compare the
shape,morphology, count, complexity, and branching across
different ages. Furthermore, we compared the aging effects
to the loss of the MICOS complex in relation to mitochon-
drial morphology alterations. Specifically, we used CRISPR/
Cas9 on cardiac fibroblasts to knockout (KO) three genes of
the MICOS complex: Chchd3 (Mic19), Chchd6 (Mic25), and
Mitofilin (Mic60), as well as Opa1, as a positive control, to see
how the loss of the MICOS complex affected mitochondrial
size, morphology, and oxygen consumption rate. Finally, we
sought to understand the role of the MICOS complex, specifi-
cally Chchd6, in modulating the reactive oxygen species
response in iPSC-CMs.

EXPERIMENTAL PROCEDURES

Animal Care and Maintenance

These protocols are previously described (14), and animals
used in this study were cared for using standard procedures
approved by The University of Iowa Animal Care and Use
Committee (IACUC) that follow the recommendations of the
National Institute of Health’s Guide for the Care and Use of
Laboratory Animals. Wild-type (WT) male C57Bl/6J mice
were exclusively used in experiments. They were housed at
22#C on a 12-h:12-h light/dark. They had free access to water
and standard chow. Mice were grown to various ages as
described in the main text. A mixture of 5% isoflurane and
95% oxygen was used to anesthetize mice.

RNA Extraction and RT-qPCR

RNA was extracted from tissue using TRIzol (Invitrogen)
and RNeasy kit (Qiagen Inc). The subsequent concentration
of isolated RNA samples was measured using a NanoDrop
1000 (NanoDrop products, Wilmington, DE) spectrophotom-
eter at an absorbance of 260 nm and 280 nm. Reverse tran-
scription was conducted on isolated RNA ($1 lg) using a
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosciences, Carlsbad, CA). SYBR Green (Life Technologies,
Carlsbad, CA) (1) was used for real-time quantitative PCR
(qPCR). Three samples for each qPCR ($50 ng) were placed in
a 384-well plate that subsequently underwent qPCR in the
ABI Prism 7900HT instrument (Applied Biosystems) (Table 1)
(14). The following qPCR conditions were used: 1 cycle at
95#C for 10 min; 40 cycles of 95#C for 15 s; 59#C for 15 s, 72#C
for 30 s, and 78#C for 10 s; 1 cycle at 95#C for 15 s; 1 cycle of 60#C
for 15 s; and 1 cycle of 95#C for 15 s. The results were normalized
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Data
are shown as fold changes.

CRISPR-Cas9 KOs

Primary mouse fibroblasts were isolated as previously
described (39, 40). Briefly, after cervical dislocation of 8- to
12-wk-old mice, via sternotomy, the heart was exposed and
transferred to 15-mL PBS centrifuge tube and incubated at
37#C. Aorta was removed, and heart was washed with 10 mL
of PBS warmed to 37#C. Once ventricles were dissected, they
were minced into small pieces of 1 mm3, which were then
subjected to enzymatic digestion using a mixture of collage-
nase-dispase and DNase I in PBS, while the tissues were
incubated at 37#C with 5% CO2 atmosphere for 10 min on a
rocking platform. After being centrifuged for 5 min at 1,500
rpm, the tissue digest pellet was resuspended in 1 mL of
fibroblast culture medium (M199 medium supplemented
with 10% FBS and 2% penicillin-streptomycin). This process
was repeated approximately nine times until the tissue was
completely digested. Individual cell suspensions were com-
bined and pelleted again by running in a centrifuge at 1,500
rpm for 7 min. Cells were resuspended in cardiac fibroblast
media and plated on 35-mm collagen-coated soft hydrogel-
bound polystyrene plates. After the media is aspirated,
plates with adherent cells were washed after 150 min with
fibroblast culture medium. From there, 2 mL of fresh media
was added, and the plate was incubated at 37#C with 5% CO2

atmosphere. After 20 h of digestion, this washing and replac-
ing of media process was repeated, and cells were grown to
90% confluency.

Once isolated, CRISPR/Cas9 was used to infect cardiac
fibroblasts to produce the following KOs: control CRISPR/
Cas9 (sc-418922), Chchd6 (Mic25) CRISPR (sc-425817), Chchd3
(Mic19) CRISPR (sc-425804), and Mitofilin (Mic60) CRISPR

Table 1. qPCR primers used

Gene Primers Sequence

Opa1 Forward 5 0-ACCAGGAGACTGTGTCAA-3 0

Reverse 5 0-TCTTCAAATAAACGCAGAGGTG-3 0

Chchd3 Forward 5 0-GAAAAGAATCCAGGCCCTTCCACGCGC-3 0

Reverse 5 0-CAGTGCCTAGCACTTGGCACAACCAGGAA-3 0

Chchd6 Forward 5 0-CTCAGCATGGACCTGGTAGGCACTGGGC-3 0

Reverse 5 0-GCCTCAATTCCCACATGGAGAAAGTGGC-3 0

Mitofilin Forward 5 0-CCTCCGGCAGTGTTCACCTAGTAACCCCTT-3 0

Reverse 5 0-TCGCCCGTCGACCTTCAGCACTGAAAACCTAT-3 0

qPCR, quantitative polymerase chain reaction.

Table 2. RNA guide and plasmids used

Gene Name Type of Plasmid CAS Number

Mitofilin CRISPR/Cas9 KO (m) sc-429376
Chchd6 CRISPR/Cas9 KO (m) sc-425817
Chchd3 CRISPR/Cas9 KO (m) sc-425804
Control CRISPR/Cas9 KO (m) sc-418922

KO, knockout.
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(sc-429376) (Santa Cruz Biotechnology) (Table 2). For each
CRISPR, 2.5% of the CRISPR was combined with 2.5%
RNAiMax (Thermo Fisher Scientific; Cat. No. 13778075), and
95% Opti-MEM (Gibco; Cat. No. 31985070). This mixture was
incubated at room temperature for 20 min. The media was
removed from the cells and washing occurred twice with
PBS. CRISPR mixture (200 lL) and Opti-MEM (800 μL) were
added to each sample and then incubated at 37#C for 4 h. An
additional 1 mL of DMEM was added before cells were incu-
bated at 37#C overnight. Fibroblasts were washed with PBS,
and a freshmediumwas added. Experiments were performed
3 and 7 days following knockouts.

Processing of Mouse Left Ventricles for Serial Block-
Face Scanning Electron Microscope

Serial block-face scanning electron microscope (SBF-SEM)
was performed as previously described (15). Male mice were
euthanized using 5% isoflurane. The heart was excised and
incubated in 2% glutaraldehyde with 100 mM phosphate
buffer for 30 min. Left ventricles were dissected, cut into 1-
mm3 cubes, and then incubated in 2.5% glutaraldehyde, 1%
paraformaldehyde, and 120 mM sodium cacodylate solution
for 1 h.

From there, the tissue was three times washed with 100
mM cacodylate buffer at room temperature. The tissue was
immersed in 3% potassium ferrocyanide and 2% osmium
tetroxide for 1 h at 4#C, then washed three times with
deionized water and incubated in 0.1% thiocarbohydra-
zide and 2% filtered osmium tetroxide 30 min. Finally, the
tissue was washed three times with deionized water,
before transferring to 1% uranyl acetate, and left overnight
at 4#C. The next day, the samples were washed with deion-
ized water and then incubated at 0.6% lead aspartate solu-
tion for 30 min at 60#C. From there, the samples were
dehydrated using an acetone gradient (20, 50, 70, 90, 95,
and 100% acetone for 5 min each). Cardiac tissues were
impregnated in Epoxy Taab 812 hard resin and then moved to
new resin; polymerization occurred at 60#C for 36–48 h. Blocks
of resin were sectioned, cut to 0.5 mm % 0.5 mm, and glued to
aluminum pins. These pins were transferred to the FEI/
Thermo Scientific Volumescope 2 SE Serial sections (300&400
ultrathin; 0.09 lm) from each block were collected for conven-
tional TEM. All sections were collected onto formvar-coated
slot grids (Pella, Redding CA), stained, and imaged.

Measurement of OCR Using Seahorse

Oxygen consumption rate was measured for Opa1,
Cchchd3, Chchd6, or Mitofilin KD fibroblasts using an XF24
bioanalyzer (Seahorse Bioscience: North Billerica, MA), as
previously described (14, 41). Fibroblasts were plated at a
density of 20% 103 per well and differentiated for 3 days. For
KO models, CRISPR/Cas9 for the relevant KO was added as
per the protocol above before plating. The media was
changed to XF-DMEM (supplemented with 1 g/L D-glucose,
0.11 g/L sodium pyruvate, and 4 mM L-glutamine), and cells
were incubated without CO2 for 60 min. Cells were treated
with oligomycin (1 μg/mL), carbonyl cyanide 4-(trifluorome-
thoxy)phenylhydrazone (FCCP; 1 μM), rotenone (1 μM), and
antimycin A [10 μM (Fig. 5I)], in that order, while remaining
in the XF-DMEMmedia. After measurement, cells were lysed

accordingly to prior protocols (41), using 20 μL of 10 mMTris
with 0.1% Triton X-100 added at pH 7.4, and media replaced
with 480 μL of Bradford reagent. Total protein concentration
was then measured at absorbance at 595 nm and used for
normalization. For each sample, three independent experi-
ments were performed for each condition with representa-
tive data from the replicates being shown.

Quantification of TEMMicrographs and Parameters
Using ImageJ

The National Institutes of Health (NIH) ImageJ software
was used to quantify TEM images, as previously described
(42). Specifically, to ensure no bias in TEM quantification,
one team member was responsible for conducting the
experiment and fixing the cells and tissue, while another
individual was responsible for processing and acquiring
images using the electron microscope in a blinded and
randomized manner. Each fiber of interest was divided into
four equal quadrants, and two quadrants were randomly
selected for measurements. Three additional blinded mem-
bers were responsible for quantifying the anonymized sam-
ples. By averaging their collective findings, the potential for
individual subjective bias was reduced. Moreover, those in
charge of quantification were given randomized images at
both whole cell and higher magnification levels to further
minimize bias.

Segmentation and Quantification of 3-D SBF-SEM
Images Using Amira

SBF-SEM images were manually segmented in Amira to
perform 3-D reconstruction, as previously described (15). For
each 3-D reconstruction, (300&400 slices) were obtained
and transferred to Amira. By hand, an individual blinded to
samples traced structural features manually on sequential
slices of micrograph blocks. For each of the 3-D reconstruc-
tions of cardiac muscle in mice, 50–100 serial sections were
chosen at approximately equal z-direction intervals, stacked,
aligned, and visualized using Amira to make videos and
quantify volumetric structures. Algorithms for measure-
ments were entered manually for those not already in the
system (algorithms used are displayed in the main text; Fig.
3, D and H). A total of 750 mitochondria from three mice
were collected for each quantification.

Confocal mCherry-Mito-7 Labeling

To label the mitochondria of cardiac fibroblasts, the
mCherry-Mito-7 plasmid was transfected into the cells using
a transfection reagent according to the manufacturer’s
instructions (43). Briefly, the plasmid and the transfection
reagent were diluted in Opti-MEM medium separately,
mixed gently, and incubated for 20 min at room tempera-
ture. The mixture was added to the culture medium of the
cells, and the cells were incubated for 24–48 h to allow
expression of the mCherry-Mito-7 protein. The localization
of the mCherry-Mito-7 protein in cardiac fibroblasts was
visualized using a Leica SP8 Confocal Microscope. The cells
were washed with PBS, fixed with 4% paraformaldehyde for
10 min, and mounted with DAPI-containing mounting me-
dium. The fluorescent signals were observed using appropri-
ate filters and recorded using a digital camera.
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Immunostaining Protocol

For immunostaining, the hiPS-CMs were plated on
glass-bottom dishes and were fixed in 4% paraformalde-
hyde for 15 min, permeabilized with 0.1% Triton-X-100 for
8 min, and blocked with normal donkey serum for 1 h, fol-
lowed by incubation with primary antibody, Cardiac tro-
ponin-T (Invitrogen, Cat. No. MA5-12960) overnight. They
were then probed with Donkey anti-mouse AlexaFluor 555
secondary antibody (Thermo) and counterstained with DAPI.
Images were acquired using a Leica SP8 confocal microscope
followed by quantification using ImageJ software.

Segmentation and Quantification of 3-D Fibroblasts
Using Confocal Microscopy and Imaris

For the 3-D reconstruction of fibroblasts, a minimum of 10
cells were chosen, and approximately 20 mitochondria from
each cell were segmented for a total of about 200 mitochon-
dria. 3-D structures were quantified as previously described
(15) using the Imaris software (Bitplane), which automati-
cally measured many parameters. All individuals measuring
the parameters were blind to the experimental conditions
but familiar in identifying diverse mitochondrial morphol-
ogy. For each of the 3-D reconstructions of cardiac fibro-
blasts, 50–100 serial sections were chosen at approximately
equal z-direction intervals, stacked, aligned, and visualized.

Maintenance of Induced Pluripotent Stem Cell-Derived
Cardiomyocytes

Cultured onMatrigel-coated plates (Corning, Life Sciences),
iPSC was fed 75% SFM and 25% mTeSRþ . Cardiomyocyte dif-
ferentiation was performed according to prior procedures
(44), using STEMdiff Cardiomyocyte Differentiation and
Maintenance kits. Typically, CMs began beating at day 8, and
were further enriched in day 10 of differentiation with lactic
acid (sodium L-lactate, Sigma-Aldrich). To aid CMmaturation,
triiodothyronine (T3) was added across days 20–40.

Live-Cell Staining

Live cell staining procedures for iPS-CMs were performed
according to prior protocols (44). Once plated on glass-bot-
tom dishes, iPS-CMs media were replaced with 30 min with
culture medium (37#C) supplemented with DCFDA (5 mM)
and TMRE (25 nM). Media was replaced with newmedia sup-
plemented with Hoechst 33342 for counterstaining. A Leica
SP8 confocal microscope was used for image acquisition and
ImageJ software was used for the analysis of fluorescence
intensity.

MitoSox

A stock solution of MitoSOXTM Red CMXRos-M7512 at a
concentration of 1 mM was prepared by adding one vial of
MitoSOXTM Red (50 lg) to 127 lL of DMSO, which was
diluted to a working solution of MitoSOXTM Red CMXRos at
a concentration of 2.5 lM by adding 10 lL of the stock solu-
tion to 10 mL of media. Cells were first aspirated of their
media and then incubated with the working solution of
MitoSOXTM Red at 37#C for 35 min. Following rinsing with
warm media, cells were fixed with 16% paraformaldehyde at
37#C for 15 min. Following fixation, the cells were rinsed and

imaged at 579-nm excitation and 599-nm emission wave-
lengths. Quantification of relative intensity normalized to
standardized image area.

Echocardiographic Parameters Collection

Animals were studied in accordance with protocols
approved by the Institutional Animal Care and Use
Committees of the Carver College of Medicine of the
University of Iowa. Data from 9–10 animals at each age
cohort were averaged to study in vivo cardiac structure and
function per previous procedures (45, 46). After anesthetiza-
tion in an induction chamber using 2.5% isoflurane, mice
were placed on a heated electrocardiography platform for
heart rate monitoring during the imaging procedure and
maintained at 37#C. Mice had a nose cone administering 1%
isoflurane while in the left lateral decubitus position during
imaging. A 13-MHz probe (Vivid V echocardiograph; GE
Healthcare, Tampa, FL) was used to take standard B-mode
M-mode images, along the short-axis position of the papillary
muscles.

Data Analysis

All SBF-SEM and TEM data were obtained from at least
three independent experiments and are presented as the
means across these experiments. In the presentation,
black bars represent the standard error of means, and dots
represent individual data points. For all data with only two
groups, an unpaired t test was used. If more than two
groups were compared, one-way ANOVA was performed,
and significance was assessed using Tukey’s post hoc tests
for multiple comparisons. For both analyses, GraphPad
Prism software package was used (La Jolla, CA). A mini-
mum threshold of P < 0.05 indicated a significant differ-
ence. Higher degrees of statistical significance were
defined as P < 0.01, P < 0.001, and P < 0.0001. For geneti-
cally regulated gene expression, statistical analysis was
performed as previously described (47). Briefly, transcrip-
tome-wide association studies using gene, splicing, and pro-
teome were compared with Bonferroni correction (0.05/
number of genes tested) for multiple testing correction. For
all mousemodels (Figs. 2 and 3), each dot represents an inde-
pendent mouse (n ¼ 3), but the statistical analysis shown
represents the 750mitochondria quantified.

RESULTS

Ultrastructural Changes in Mitochondria and Cristae
with Age

It is commonly understood that heart function declines
with age in human and murine models. However, these
changes and their association with mitochondrial morpho-
logical changes are unclear. To investigate the cardiac func-
tion of aged mice cohorts, before TEM analysis, we collected
and analyzed echometric data. We observed changes with
age that included increased cardiac output, stroke volume,
and LV thickness, without significant changes in normalized
heart mass, ejection fraction, or heart rate (Supplemental
Fig. S1: https://doi.org/10.6084/m9.figshare.22861616.v1).

As expected, mice increased in body weight across aging
(Supplemental Fig. S2A). Specifically, the fat mass increased
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significantly faster than lean mass, especially in the 2-yr
sample (Supplemental Fig. S2, B and C). In accordance
with this, heart mass also significantly increased with age
(Supplemental Fig. S2D). After a 6-h fast, a glucose toler-
ance test (GTT) showed that aged mice had higher plasma
glucose levels post-GTT, indicating impaired glucose toler-
ance (Supplemental Fig. S2, E and F). These results are
consistent with aging mice having larger fat depots and
abnormal glucose status in comparison to younger mice.
Critically, on average, even with decreased glucose toler-
ance, aged mice did not reach blood glucose levels that are
indicative of diabetes. Therefore, this cohort served as a
strong representation of age-independent from pathology
in this study. To further understand how mitochondrial
affected these dynamics, TEM was used to understand
aging mitochondrial and cristae morphology.

We examined mitochondria and cristae morphology in
cardiac muscle at 3-mo-, 1-yr-, and 2-yr-old male mice.
Different cell types can be studied in cardiac muscle (36) and
cardiac muscle can give information about potential causes
of loss of optimal heart function with age (38). TEM is a
powerful tool for studying cristae in mitochondria as it gives
very high-quality micrographs (42). Young male mice (n ¼ 3,
per age group) showed very clear mitochondria with elec-
tron-dense membranes, whereas the aged mice had fewer
mitochondria and cristae (Fig. 1,A–A0 0). The number ofmito-
chondria more than quadrupled between the 3-mo to 1-yr
aged samples before slightly leveling out between 1 and 2 yr
(Fig. 1B). Although mitochondrial abundance increased, the
average mitochondrial area was significantly smaller in sam-
ples older than 3-mo; the decrease is smaller between the 1-
and 2-yr samples (Fig. 1C). This shows a compensating effect
as mitochondrial area per fiber area does not show signifi-
cant changes across the total aging process (Fig. 1D). The mi-
tochondria also became slightly more circular (Fig. 1E). To
measure ultrastructural details of mitochondria, cristae
numbers in each mitochondrion were evaluated and consis-
tently showed that the number of cristae decreased with age
(Fig. 1F). Finally, the cristae score was used to assess the cris-
tae quantity andmorphology as it is often used to holistically
evaluate cristae (42, 48). A cristae score of 0 represents no
clearly defined cristae, 1 represents that greater than 50% of
mitochondrial area is devoid of cristae, a cristae score of 2
represents that less than 75% of the mitochondria area has
cristae, and the maximum cristae score of 4 represents over-
all typically defined cristae with normal architecture. There
was a large drop in the quality of cristae in cardiac muscle
with age. The young 3-mo sample had mostly regular and
slightly irregular cristae, with cristae scores of about 3.3. The
aged samples both had cristae scores around 2, which sug-
gests there are many areas lacking cristae or having irregular
cristae (Fig. 1G). Thus, we found that cristae count and qual-
ity both decreased across the aging process. These important
findings that indicate a loss of cristae folds with aging caused
us to wonder if cristae were differentially affected in a female
model (Fig. 1,H–H0 0).

Previous research has indicated that male mice have
impaired mitochondrial function in cardiac muscle in com-
parison to female mice, in both healthy and cardiac patho-
logical mice (49). To see mitochondrial and cristae structure
changes across aging in a sex-dependent manner, we first

looked at mitochondrial quantity that increased after a year
of aging, while mitochondrial area was inversely propor-
tional (Fig. 1, I–K). Like the male model, the circularity index
of mitochondria increased with age (Fig. 1L). Importantly,
the female model recapitulated findings of significant loss of
cristae across the aging process in murine cardiac tissue.
Specifically, the number of cristae decreased (Fig. 1M) con-
sistently across aging, while the cristae score also signifi-
cantly decreased past the 3-mo age point (Fig. 1N). Although
in the female model, the cristae score improved slightly in
comparing 2-yr-old with 1-yr-old mice, in both cohorts the
average cristae score remained below 2, representing that
25% or more of mitochondrial area lacked typical cristae.
Based on these findings, in tandem, we propose that mito-
chondrial fission, resulting in decreased mitochondrial area,
is increased while the quality of cristae is decreased with age
in a non-sex-dependent manner (Fig. 1O). However, it should
be noted that TEM can be limited in analyzing mitochon-
drial changes beyond those of cristae structure changes
across the aging process. Given these changes did not pres-
ent as sex dependent, to properly understand how potential
novel phenotypes arose in cardiac tissue, alterations inmito-
chondrial morphology were analyzed with 3-D reconstruc-
tion in amalemousemodel.

Aging Changes Mitochondrial Size in Cardiac Muscle: 3-
D Reconstruction Analysis

Based on our observations of the lack of cristae folding in
aging cardiac muscle, we used 3-D techniques to image car-
diac muscle biopsies from young (3 mo old), mature (1 yr
old), and aged (2 yr old) mice with SBF-SEM With ranges of
10 lm for the x- and y-planes and 50 lm for the z-plane, SBF-
SEM enables 3-D reconstruction of mitochondria with an
accurate spatial resolution that cannot be seen in 2-D. Given
TEM did not reveal a sex-specific change, we focused on a
male model. Specifically, we examined the morphological
changes in the intermyofibrillar region as mitochondrial fre-
quency has been demonstrated to increase in this region
(50). Thus, there is a need to determine if such changes in
frequency are associated with other mitochondrial-related
aging changes, including mitochondrial orientation, network,
and nanotunnel alterations. To elucidate the changes in inter-
myofibrillar mitochondria in relation to aging, we surveyed
$250 intermyofibrillar mitochondria from each of the three
male mice (n ¼ 3) (Fig. 2A) sampled at each age time point
with SBF-SEM 3-D reconstruction methods. At a 10 lm by 10
lm image stack resolution, $300 serial section orthoslices
with a total imaging depth of 50 μM (Fig. 2B) were manually
traced at transverse intervals (Fig. 2C). This allowed for 3-D
reconstructions of mitochondria to be created, as observed in
the flowchart of Fig. 2 (Fig. 2D). In totality, across the three
mice, $750 mitochondria for each age cohort were surveyed.
All measurements used 3-D metrics to understand the volu-
metric dynamics ofmitochondria (Fig. 2H).

In Fig. 2, we show representative images of the cardiac
muscle at each aging point (Fig. 2, F–H). The overlay of the
3-D reconstruction (Fig. 2, F0–H0), and the isolated 3-D recon-
struction (Fig. 2, F0 0–H0 0), allow for the mitochondrial struc-
ture to be viewed better (Supplemental Videos S1 and S2).
Each color represents an independent mitochondrion. The
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perimeter, 3-D area (or surface area), and volume decreased
between 1 and 2 yr, which was a greater change than between
3 mo and 1 yr (Fig. 2, I–K). Importantly, this shows that while
TEM was able to capture some dynamics of mitochondria, it

neglected the alteration that is far greater in mice moving
from adulthood to seniority (1 to 2 yr) than from adolescence
to adulthood (3 mo to 1 yr). For these quantifications, three
individual mice were sampled at each age (Fig. 2, L–N).
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When mitochondrial quantifications from each mouse were
compared, they showed overall little intergroup heterogene-
ity but persistent intraindividual variability.

With these observations, we sought to determine if mito-
chondrial networks changed in response to aging. To further
elucidate age-related changes, we looked at cardiac muscle
from both transverse (Fig. 3, A–C) and longitudinal views
(Fig. 3, A0–C0). Themitochondrial branching index (MBI) was
used to better understand mitochondrial branching (Fig.
3D). The MBI measures network complexity by examining
the ratio between transverse and longitudinal mitochondria
(36) and is similar to aspect ratio which measures the ratio
between major and minor axis (51). With this technique, we

demonstrated that mitochondrial branching decreased
between 3 mo and 1 yr (Fig. 3E). Similarly, within an age
cohort, there is no significant variation between mice, but
there was a large amount of heterogeneity in mitochondrial
samples in each mouse (Fig. 3F). To further characterize the
mitochondrial types in each age cohort, we used mito-otyp-
ing, a method similar to karyotyping, to organize mitochon-
dria based on their volumes to better visualize the overall
mitochondrial diversity (Fig. 3G). This allows for comparison
of themitochondria across ages at each volume.Wemeasured
sphericity to understand how the surface area changed during
the aging process (Fig. 3H). Sphericity generally showedmini-
mal changes (Fig. 3I) while there was homogeneity across all
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Figure 2. Changes in cardiac muscle mitochondria morphology across aging revealed in serial block facing-scanning electron microscopy (SBF-SEM). A:
workflow depicting removal of the left ventricle of murine hearts. B: following embedded fixation, SBF-SEM allows for ortho slice alignment. C and D:
manual segmentation of ortho slices was performed (C) to ultimately yield 3-dimensional (3-D) reconstructions of mitochondria (D). E: schematic depict-
ing how metrics are found using preinstalled analyses on Amira 3-D Software. For some graphs, outlying dots were removed for presentation, but all mi-
tochondria values were considered in statistical analysis. F–H: representative SBF-SEM orthoslice for cardiac muscle (n ¼ 3 mice). F0–H0: 3-D
reconstructions of mitochondria in male cardiac tissues of different ages overlaid on ortho slices. F0 0–H0 0: 3-D reconstructed and isolated mitochondria
for clear visualization. I–K: 3-D reconstructions were then quantified by mitochondrial volume in cardiac muscle of different ages (I), 3-D area of the aver-
age mitochondria in cardiac muscle (J), and perimeter of the average mitochondria in cardiac muscle (K). Each dot represents the average of a single
mouse. L–M: individual quantifications for average volume per mitochondria (L), average 3-D area of mitochondria (M), and average perimeter of the mi-
tochondria (N) for each of the three mice sampled at 3 mo, 1 yr, and 2 yr. One-way ANOVA statistical test performed with post hoc Tukey’s test.
Significance values indicate !P ) 0.05, !!!P ) 0.001, and !!!!P ) 0.0001; ns, not significant. Images were created using a licensed version of
BioRender.com.

Figure 1. Changes in cardiac muscle mitochondria and cristae across aging revealed in transmission electron microscopy (TEM) and heart data.
Representative transmission electron micrographs for cardiac muscle at 3 mo (A), 1 yr (A0), and 2 yr (A0 0) in male mice. Blue boxes show cristae magnified
to enhance the details of cristae. Quantification of key mitochondrial characteristics included number of mitochondria normalized to area surveyed (B),
average mitochondrial area (C), total mitochondrial area content per fiber area (D), and circularity index (E) that measures mitochondrial shape. For cris-
tae, number of cristae (F) and cristae score (G), a measurement of the quality of cristae observed, are shown. Representative transmission electron
micrographs for cardiac muscle at 3 mo (H), 1 yr (H0), and 2 yr (H0 0) in female mice. Quantification of number of mitochondria normalized to area surveyed
(I), average mitochondrial area (J), mitochondrial area per fiber area (K), circularity index (L), number of cristae (M), and cristae score (N). O: schematic
showing dysfunction of mitochondrial cristae across the aging process. Each dot represents a single mitochondrion. MICOS, mitochondrial contact site
and cristae organizing system. One-way ANOVA statistical test was performed with post hoc Tukey’s test. Significance values indicate !P ) 0.05,
!!P) 0.01, !!!P) 0.001, and !!!!P) 0.0001; ns, not significant. Images were created using a licensed version of BioRender.com.
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nine mice measured (Fig. 3J). For all these metrics, some
outliers were observed, which were omitted in the presen-
tation for ease of view, but they were included in all statis-
tical analyses (Supplemental Fig. S3). Critically, together,
this approach revealed that there were few significant
changes in morphology with only branching showing
reductions. In combination, the aged cardiac muscle mito-
chondrial morphology resembled healthy mitochondria
with a reduced size that lacks a phenotype or fragmenta-
tion (Fig. 3). Since the largest findings are loss in cristae
structure and mitochondria size across aging, we sought to
understand the underlying cause of these observed
changes. Given the principal role of the MICOS complex in
cristae formation and maintenance (27, 52), we investi-
gated its role in cristae and mitochondrial remodeling
across the aging process in cardiac muscle.

Aging Changes in MICOS Complex in Fibroblasts: 3-D
Reconstruction Analysis

Although it is established that the MICOS complex is
critical for mitochondrial dynamics (22, 26), it is unclear
how aging affects the MICOS complex. Studies have shown
that Opa1, which is epistatic to the MICOS complex and
physically interacts with components of the MICOS com-
plex (23), decreases with age (53). With Opa1 as a positive
control, we sought to determine if the MICOS complex
mRNA expression also decreased in cardiac muscle with
age. As previously suggested (53), Opa1 mRNA decreased
by over 50% between 3 mo and 2 yr (Fig. 4A). Mitofilin also
decreased by 50% (Fig. 4B). Likewise, Chchd3 and Chchd6

also progressively decreased with age but not as much as
the decline of other transcripts (Fig. 4, C and D). While
Opa1 interacts with the MICOS complex, it is not required
for the formation of cristae junctions at which the MICOS
complex forms, nor does Opa1 loss negatively affect
MICOS components (54). This suggests that the loss of the
MICOS complex across aging occurs in an Opa1-independ-
ent manner.

To further understand the role of mitochondrial dynamics
upon the loss of these MICOS genes, we used CRISPR/Cas9
to make a KO model in fibroblasts, which was validated by
qPCR (Fig. 5, A–D). We have previously validated DRP1,
MFN2, and OPA1 CRISPR-mediated gene knockout translates
to protein level changes as shown by transmission electron
microscopy (42, 55). Coupled with the current use of qPCR,
gene knockout translates to reduced transcript and protein
expression. Specifically, we measured approximately 1,250
mitochondria across 10 cells. Since the loss of Opa1 triggers
changes in morphology (12, 15, 20, 42), we used it as a posi-
tive control for morphological changes. We marked mito-
chondria with MitoTracker Red and verified the successful
deletion of Opa1, Mitofilin, Chchd3, and Chchd6 (Fig. 5E).
Then z-stacks were reconstructed using Bitplane Imaris to
quantify the number of cardiac fibroblasts with loss of
MICOS expression (Fig. 5E). Deletions of Chchd3, Mitofilin,
Chchd6, or Opa1 led to significant decreases in mitochondria
length (Fig. 5F) and volume (Fig. 5G). We further sought to
determine if the mitochondria were more tubular, which
represents normal states, or fragmented, which represents
stressed states (Fig. 5H). Notably, Chchd3-KO cells had
nearly completely fragmented mitochondria, like those in
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Figure 3. Changes in cardiac muscle branching and networking across aging revealed in serial block facing-scanning electron microscopy (SBF-SEM).
A–C: three-dimensional (3-D) reconstruction of individually colored mitochondria from a transverse view for mouse cardiac muscle of different ages. A0–
C0: 3-D reconstruction of individually colored mitochondria from a longitudinal view in cardiac muscle tissues of different ages. D: schematic showing
how transverse and longitudinal mitochondrial length is used to measure mitochondrial branching index. E: mitochondrial branching index was meas-
ured to estimate mitochondrial networks. F: for each of the three male mice sampled at each aging time point, the mitochondrial branching index is
shown. G: mitochondria 3-D reconstructions were further organized by volume for each of the age cohorts. H: schematic showing how sphericity is
measured, as a function of volume to surface area ratio. I: to measure shape, sphericity changes across aging in cardiac muscle was further measured. J:
average sphericity values from each of the approximately 75 mitochondria surveyed per mice is also shown. Outlying dots were removed for presenta-
tion for some graphs, but all mitochondria values were considered in statistical analysis. One-way ANOVA statistical test performed with post hoc
Tukey’s test. Significance values indicate !P ) 0.05 and !!!!P ) 0.0001; ns, not significant. Images were created using a licensed version of
BioRender.com.
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Opa1-KO. Although the WT had mostly tubular mitochon-
dria, the deletion of any of these critical mitochondrial
proteins led to a much higher proportion of fragmented
mitochondria. We further used live-confocal imaging to
observe the dynamics of mitochondrial changes in real
time. The WT mitochondria (Supplemental Video S3) were
normal and potentially undergoing fusion. However, the
cells with deletion of Opa1 (Supplemental Video S4), Chchd3
(Supplemental Video S5), or Mitofilin (Supplemental Video
S6) showed fragmented mitochondria. These videos aid in
showing the real-time mitochondrial dynamics that may be
contributing to changes in the 3-D structure observed.

To understand how the loss of the MICOS complex affects
mitochondrial activity, we measured oxygen consumption
rates (OCRs) with an XF24 extracellular flux bioanalyzer upon
knockout of Opa1 and the MICOS genes in cardiac fibroblasts
(Fig. 5I). The OCR measurements encompassed four stages:
basal respiration, ATP-linked respiration, maximal respiratory
capacity, and reserve capacity. Basal respiration reflects the
cellular OCR under normal, nonstressed conditions, while
ATP-linked respiration represents the OCR directly related to
ATP synthesis, which can be measured following the applica-
tion of oligomycin, an inhibitor of ATP synthase. Maximal re-
spiratory capacity refers to the maximum OCR a cell can
achieve under stress or high-energy demand and is measured
following the application of carbonyl cyanide-p-trifluorome-
thoxyphenylhydrazone (FCCP), an uncoupler ofmitochondrial
oxidative phosphorylation. Reserve capacity represents the
difference between maximal respiratory capacity and basal
respiration, indicating the cell’s ability to respond to increased
energy demand and is measured following the application of
antimycin A/rotenone, inhibitors of the electron transport

chain. The Opa1-KO, Chchd3-KO, Chchd6-KO, and Mitofilin-
KO cells showed decreased basal OCR, ATP-linked OCR, and
maximum OCR compared with the control (Fig. 5, J–M), indi-
cating a general loss of OCR at baseline and during high
demand.

These results suggest that the depletion of theMICOS com-
plex can lead to the impairment of the electron transfer chain,
mitochondrial respiration, and bioenergetics, providing valu-
able insights for the development of targeted therapies for
diseases associated with mitochondrial dysfunction. Of rele-
vance, while Opa1-KO had a dramatic decrease in the reserve
capacity of OCR, Mitofilin-KO cells showed no alteration in
reserve capacity. These data show decreased oxygen con-
sumption rate at basal consumption, decreased ATP-linked
respiration following oligomycin application, decreasedmax-
imal respiratory capacity following FCCP application, and
decreased reserve capacity, asmeasured following antimycin
A/rotenone treatment.

Loss of OPA1 does not yield changes in mtDNA (14), while
alterations in the MICOS complex can affect mtDNA con-
tent (56, 57). Given these differential changes in mtDNA
content, as shown previously, total protein is the most
appropriate way to normalize to mitochondrial content (14,
58). Accordingly, cells were plated at a density of 20 % 103

consistently with normalized protein, which together will
consider changes from the mitochondrial mass. Together
this shows that changes in oxidative consumption occur in-
dependently from changes in mitochondrial mass. Overall,
depletion of these critical mitochondrial proteins led to a
general loss of oxygen consumption rate both at baseline
and during high demand. These findings suggest that deple-
tion of the MICOS complex can lead to the impairment of the
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Figure 4. Transcription of Opa-1 and mito-
chondrial contact site and cristae organiz-
ing system (MICOS) genes in aging
cardiac muscle. A–D: quantitative poly-
merase chain reaction (qPCR) analyzing
the gene transcript fold changes of Opa-1
and MICOS across aging: Opa1 transcripts
(A), Mitofilin transcripts (B), Chchd3 tran-
scripts (C), and Chchd6 transcripts (D).
One-way ANOVA statistical test per-
formed with post hoc Tukey’s test.
Significance values indicate !P ) 0.05,
!!P ) 0.01, !!!P ) 0.001, and !!!!P )
0.0001; ns, not significant. For all experi-
ments, n¼ 6.
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electron transfer chain along with mitochondrial respiration
and bioenergetics.

Loss of Chchd6 Results in Changes in Mitochondrial
Size, Shape, and Fluorescence of Reactive Oxygen
Species in Induced Pluripotent Stem Cell-Derived
Cardiomyocytes

To understand the impact of the MICOS complex
beyond murine cardiac fibroblast models, we knocked
down Chchd6, a component of the MICOS complex, in
induced pluripotent stem cell-derived cardiomyocytes
(iPCS-CMs). To verify changes in mitochondrial size and
morphology, we analyzed iPCS-CM through TEM (Fig. 6, A
and B). We found that Chchd6-deficient iPCS-CM had
reduced mitochondrial area and perimeter while mito-
chondrial circularity index increased (Fig. 6, C–F). We then
moved to fluorescence live-cell imaging and overlaid tetra-
methylrhodamine, ethyl ester (TMRE) red dye, a label of
active mitochondria and their membrane potential, dichlor-
odihydrofluorescein diacetate (DCFDA) green dye to assay
for overall reactive oxygen species, and Hoechst blue dye to

label for DNA in control iPCS-CMs (Fig. 6, G–G0 0 0) and
Chchd6-depleted IPCS-CMs (Fig. 6,H–H0 0 0). Analysis showed
that while mitochondrial membrane potential did not signif-
icantly change (Fig. 6I), general reactive oxygen species
increased (Fig. 6J). Following verifying the cardiomyocyte
identity of our iPSC-CM using troponin T staining (Fig. 6K),
to further validate this response and to look at alterations in
levels of superoxides (59) upon loss of the MICOS complex,
we examined Mitosox live staining (Fig. 6, L–L0), which
shows a significant increase of Mitosox fluorescence in the
Chchd6 depleted, suggesting that the loss of this subunit of
the MICOS complex results in increased in mitochondrial
superoxides.

We also sought to understand the functional impact of loss
of Chchd6 using the Vanderbilt BioVU bank (Supplemental
Fig. S4A). This is a powerful biobank of over 270,000 collected
by the Vanderbilt University Medical Center (60). This data-
base includes a mixture of individuals of European ancestry
and African American ancestry (Supplemental Fig. S4B).
Genetically regulated gene expression (GREX) of CHCHD6 was
calculated across cardiac tissues in individuals of European
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MICOS in cardiac fibroblasts upon CRISPR/Cas9 knockdown:Opa1 transcripts (A),Mitofilin transcripts (B), Chchd3 transcripts (C), and Chchd6 transcripts
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Dunnett’s multiple comparisons test. Significance values indicate !!!P) 0.001 and !!!!P) 0.0001; ns, not significant.
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ancestry. The relationship between CHCHD6 GREX and the
“Heart failure with reduced EF [Systolic or combined heart
failure]” phenotype was evaluated across cases and controls
within BioVU. The associations between CHCHD6 GREX
and heart failure were nominally significant in two of the
three tissues tested in individuals of European ancestry
and one of the three tissues tested in individuals of African
ancestry (P < 0.05). None of the associations met the
across-tissue Bonferroni-corrected P value (0.0167). Cases
were required to have two instances of the “Heart failure
with reduced EF [Systolic or combined heart failure]” phe-
code, controls had no reports of “Heart failure with reduced
EF [systolic or combined heart failure]” in their records.
Individuals with similar codes were excluded from the
analysis (congestive heart failure; nonhypertensive, con-
gestive heart failure (CHF) NOS, Heart failure NOS, heart
failure with preserved EF [diastolic heart failure], ill-
defined descriptions and complications of heart disease,
heart transplant/surgery, abnormal function study of car-
diovascular system, symptoms involving cardiovascular
system, cardiac complications, not elsewhere classified).
Covariates included sex, age, median age of medical re-
cord, genotype batch, and genetic ancestry (principal com-
ponents 1–10). Together, this suggests that the MICOS
complex may be linked to genetic factors of heart failure,
and plays a role in modulating membrane potential and
oxidative stress in iPCS-CM.

DISCUSSION

Heart failure may be intrinsically linked to mitochondria
(2, 33, 61), and understanding the interplay of cristae dynam-
ics, MICOS complex component expression, and mitochon-
drial dynamics during aging may aid in the development of

future therapies to restore energetic production. Here,
we demonstrated abnormal mitochondrial structure and
impaired function related to the loss of the MICOS complex.
To our knowledge, this study is the first to show that abnor-
mal MICOS complex alters mitochondrial morphology in
cardiac tissue assessed by 3-D-EM. Previous studies looking
at mitochondria in aged cardiomyocytes did not find signifi-
cant changes in mitochondrial number, however, there was
no comprehensive quantitative analysis of the mitochon-
drial size and morphology (62). With the innovative 3-D-EM
technology, we reported decreased mitochondrial volume
and altered morphology with age. Importantly, our study
combined TEM and SBF-SEM to create novel 3-D reconstruc-
tions of aging cardiac muscle cells. Although the high resolu-
tion of TEM allows us to measure cristae (42), it only creates
2-D images that do not provide accurate spatial resolutions.
Therefore, the 3-D reconstructions of mitochondria by SBF-
SEM allow us to better understand mitochondrial morphol-
ogy. Future studies are needed that use focused ion beam-
scanning electron microscopy (FIB-SEM) and thus, allow for
better resolution of the details of smaller subcellular objects,
such as cristae (36, 63). In the past, FIB-SEMwas successfully
performed in mouse cardiac muscle to characterize mito-
chondria, but not suborganellar structures, such as cristae
(62, 64). However, mixed-microscope approaches may still
be required to achieve the resolution and sample size to ana-
lyze changes in mitochondria associated with aging and
organ, particularly muscle, behavior.

Previous studies have quantified mitochondria with SBF-
SEM in human and mouse muscles, yet the aging heart
remains understudied with 3-D techniques(36). Given that
cardiac muscle is responsible for proper heart contractions,
there remains a gap in our understanding of the changes of
cardiac mitochondrial 3-D structure in aging. When only
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examining TEM, our results show that much of the age-de-
pendent changes in mitochondrial architecture occur only
from 3 mo to 1 yr, which is equivalent from adolescence to
adult. However, when switching to 3-D reconstruction, we
observe that mitochondrial size and morphology progres-
sively decrease across the aging process, including from 1 to
2 yr, which better emulates geriatric aging. Interestingly,
however, mitochondrial networking does not appear as
affected by the aging process past 1 yr. In tandem, our 3-D
reconstruction elucidates how cardiac muscle mitochondria
change across aging in mice, highlighting the importance of
the MICOS complex in aging and its effects on cristae mor-
phology and mitochondrial dynamics. Future studies are
needed that examine mtDNA and other modulators of cris-
tae and mitochondrial dynamics (65) as they may provide a
further understanding of the MICOS complex in relation to
mitochondrial structure.

When viewing mitochondrial 3-D structure across aging,
we looked for the presence of nanotunnels. Previous studies
suggest that the formation of nanotunnels occurs during mi-
tochondrial stress. Nanotunnels aremitochondrial structures
that allow for the transport of materials and intermitochon-
drial communication (35). Nanotunnels have also been found
in human skeletalmuscles and in diseased states (35). We did
not find evidence of nanotunnel formation in aged heart.
This warrants future studies to investigate the factors leading
to nanotunnel formation and whether this mechanism also
exists in cardiacmuscle (66).

We observed a decline in MICOS components gene expres-
sion with age (Fig. 7). Additionally, with 3-D reconstructions,
we observed that the loss of Opa1, Mitofilin, Chchd3, and
Chchd6 in cardiacfibroblastsmay be correlatedwithhighmi-
tochondrial dysfunction. This was marked by smaller mito-
chondria, altered morphology, and reduced OCR. Given the
higher percentage of fragmented mitochondria and reduced
mitochondrial volume of Opa1-KO, Chchd3-KO, Chchd6-KO,
and Mitofilin-KO. The exact cause of this fragmentation is
unclear, although past studies have linked cristae dysfunc-
tion and mitochondrial fragmentation, potentially through
mtDNA mutations (25). However, further study is needed to
determine if the loss of the MICOS complex is causing mito-
chondrial stress-related fragmentation, modulation of fis-
sion-fusion dynamics, or acts on mitochondrial dynamics in
analtogetherdifferentway.

It was predicted that these phenotypes would also arise in
aging as expression of Opa1, Mitofilin, Chchd3, and Chchd6
is reduced across aging (Fig. 4). In cardiac tissue, we
observed that the mitochondrial number increased with age,
while the area decreased (Fig. 1, B–D). It is possible that fis-
sion rates may be increasing over time, because of pathway
changes such as Opa1 loss or Drp1 upregulation (5, 20).
Furthermore, the loss of cristae morphology supports the
occurrence of age-associated decline of the MICOS complex.
When looking at 3-D reconstruction, we principally noticed
alterations in mitochondrial volume across aging which par-
allel findings from the loss of MICOS complex. In combina-
tion, these findings suggest that the loss of MICOS complex
genes may be associated with a loss of overall mitochondrial
volume. However, in comparing morphological changes in
aged samples with MICOS complex KO fibroblasts, we
noticed a differential change in morphology. Mitochondrial

morphology in the heart did not change as drastically as
anticipated in response to aging. In general, the sphericity of
mitochondria did not undergo significant changes (Fig. 3I).

Changes in mitochondrial shape are implicated in heart
failure (33), which makes the specific study of cardiac mus-
cle across aging essential for the development of new thera-
peutics. This study showed less networking, as measured
through MBI, in cardiac mitochondria across aging than
other studies have suggested (Fig. 3). It is possible that
some cardiac metabolic pathways are more resilient to
aging changes, supporting the retention of mitochondrial
morphology. Interestingly, a recent study showed that sper-
midine treatment restores mitochondrial morphology in
the aged hearts (62), potentially indicating that spermidine
differentially is regulated specifically in cardiac tissue.
However, future studies are warranted to examine age-de-
pendent mitochondrial changes in other tissues, to better
understand tissue-specific mitochondrial changes that
occur during aging.

Looking at iPCS-CMs, the loss of the MICOS complex led
to increased ROS (Fig. 6), consistent with previous studies in
other models showing that loss of the MICOS complex may
cause oxidative stress (67). Although the mitochondrial free
radical theory of aging has been proposed for decades
(68), the detailed mechanistic interplay between ROS and
mitochondrial dynamics remains incompletely understood.
Previous studies suggest that a positive feed loop within mi-
tochondria promotes more ROS and thus, amplifies the ROS-
related damage and structural decline (69). Consistent with
this, loss of Opa1 has been reported to cause the accumula-
tion of ROS (70). Taken together, it is possible that during
the aging process, the loss of Opa1 and the MICOS complex
allows for more oxidative stress to occur, resulting in ROS-
induced ROS and the age-related functional decline of mito-
chondria (71). TMRE we used here to validate TEM findings
that there are no significant changes in active mitochondria,
thus oxidative stress changes can be mainly attributed to
altered generation (72). Interestingly, we also noticed that
when using TMRE as a baseline measurement of mitochon-
drial membrane potential, we diverge from the literature in
showing there is no change in the membrane potential. Loss
of the MICOS complex, specifically Mic60, results in a
decrease in membrane potential in Drosophila (56). A loss of
membrane potential in OPA1 loss has also been seen in amu-
rine model (14). Yet, TMRE may not be the best monitor of
membrane potential as loss of negative charge affects its
retention; thus, future studies may better investigate the
MICOS-dependent loss of membrane potential (72, 73). Using
the BioVU BioBank, we also observed linkages of Chchd6 to
factors of heart failure, with a differential ethnicity associa-
tion (Supplemental Fig. S4), suggesting that loss of the
MICOS complex and concomitant modulation of mitochon-
dria structure has important implications in human health
whichmust need to be further elucidated.

In summary, we combined TEM and 3-D reconstructions
to evaluate mitochondria and cristae morphology in male
murine cardiac muscle. Our findings indicate that the
MICOS complex decreases with age, and loss of the MICOS
complex results in mitochondrial dysfunction and changes
in mitochondrial structure. These findings better our
understanding of how mitochondrial structure quantitively
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changes in cardiac muscle, and aid in understanding a
potential that can be targeted to protect cardiac muscle mi-
tochondria from complete fragmentation. Future studies
are needed to explore this mechanism and continue to elu-
cidate the link between age-related changes in cardiac cris-
tae structural integrity, the MICOS complex, mitochondrial
dysfunction, and ROS.

Limitations

While we explored mitochondrial structure of around 750
mitochondria in each age cohort of male murine myocar-
dium tissue, there are several potential limitations of our
study. While the overall mitochondrial count was high, the
quantity of mice in each age cohort is limited, although we

Figure 7. Graphical representation of loss of mitochondrial
contact site and cristae organizing system (MICOS) complex
across aging that may occur, affecting the structure of mito-
chondria. Importantly, here we show this in a murine model,
which may not translate to a human model (see Limitations),
but these findings suggest an important relation between
the MICOS complex and aging which may be reproduced in
human models. OMM, outer membrane; IMS, intermem-
brane space; IMM, inner membrane.
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did not note large heterogeneity between the mice for most
mitochondrial quantifications. Notably, while Fig. 7 shows a
human model, this study was performed in a male murine
model. There are several known critical differences between
human and rodent hearts, which have differential develop-
mental processes although they are generally considered to
have similar anatomy (74). For example, while human hearts
are predominantly composed of b-myosin heavy chain
(MHC), in murine hearts, a-MHC is relatively more abundant
while pathophysiology and aging cause a shift toward b-MHC
(75, 76). Notably, myocardial performance is partially depend-
ent on the relative quantities of these MHCs, suggesting that
they may modulate mitochondrial structure and function
(77). While mitochondrial-related cardiovascular pathophysi-
ology parallels each other between these models, greater
research is still necessary in potential model-dependent dif-
ferences. Beyond this, while we show through TEM that there
are no sex-related differences on mitochondria across aging
(Fig. 1), future studies may still consider performing 3-D
reconstruction of female mice. While it is commonly under-
stood that men are more vulnerable to age-related cardiovas-
cular pathologies, female hearts have been shown to have
increased resilience toward oxidative stress (78), which sug-
gests that there may be a sex-dependent response to ROS.
Finally, while the study sheds light on some of the molecular
mechanisms underlying age-related decline in mitochondrial
function, it does not address potential interventions or treat-
ments to prevent or reverse this decline. Future research may
look at whether restoring the MICOS complex can restore
these age-related changes. Since we only show a loss of
MICOS transcripts over aging, it remains to be elucidated if
increasing MICOS protein amount may restore mitochondrial
structure.
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