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The two-stage chance-constrained program (CCP) is studied for a refinery optimization problem. In stage-I,
the refinery decision-makers determine the type and quantity of crude oil procurement under operational
uncertainties to maximize the expected profit under all possibilities. In stage-II, process unit flowrates are
adjusted based on the realized uncertainties and available crude oil, while introducing probabilistic constraints
to manage the off-spec risk. To solve such a two-stage optimization problem, we propose a novel approach
using Gaussian mixture model (GMM) to characterize uncertainties, and piecewise linear decision rule for
stage-1I operations. Comparing to the conventional scenario-based mixed-integer linear program (MILP), our
new approach offers three advantages. First, it leverages a well-developed global optimization scheme for
joint CCP to avoid scenario generation and potential bias. Second, the data-driven GMM enables CCP to handle
uncertainties with general distributions. Third, the stage-II variables are parameterized via Gaussian component
induced piecewise linear decision rule to strike an excellent trade-off between optimality and computational
time. A simplified refinery plant, consisting of distillation, cracker, reformer, isomerization, and desulfurization
units, is used as a test bed to demonstrate the superiority of the proposed optimization method in solution

time, probabilistic feasibility, and optimality over the large-scale scenario-based MILP.

1. Introduction

Attaining a globally optimal solution for the multi-stage process
scheduling and operations in the presence of parametric uncertain-
ties may enhance the profitability and safety of a refinery. Explicitly
accounting for model uncertainty in such optimization problems is
of importance to the capital-intensive industry and many successful
applications can be found in some comprehensive reviews (Grossmann
et al., 2016; Li and Ierapetritou, 2008; Sahinidis, 2004). One of the
popular methodologies for multi-stage decision-making is the stochastic
programming (SP). In a typical two-stage case, the stage-I decision is
made before uncertainty realization to optimize the expected objective
value. Once the uncertainty is revealed, then a stage-II optimization can
be performed for a specific scenario. The SP framework integrates the
data-driven stochastic modeling and optimization techniques, which
could address a wide range of engineering problems (Chen et al.,
2008). The chance-constrained program (CCP) stems from an alterna-
tive perspective on the optimization under uncertainty. CCP leverages
uncertainty distributions and allows constraints to be violated with a
small risk level, denoted as e. This approach offers greater generality
and lower conservatism compared to robust optimization (Grossmann
et al., 2016; Li et al., 2008).
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Nevertheless, both SP and CCP pose significant computational chal-
lenges. Even in the case of two-stage SP, it typically takes a large
number of scenarios into account and the resulting large-scale formula
is hard to solve directly. In most instances, except for special cases like
an individual linear chance constraint with normal distribution or right-
hand-side uncertainty with log-concave distribution (Prékoba, 1995),
general CCP problems are nonconvex. If a program involves multiple
chance constraints, the resulting joint CCP is even more difficult to
tackle. We first review several widely-adopted methods for addressing
SP and CCP, respectively. Subsequently, a novel approach for solving
two-stage chance-constrained program will be introduced.

Stochastic Programming Methods: SP relies on a scenario tree
to capture the true distribution of uncertain parameters at each de-
cision stage. In general, incorporating more scenarios enhances its
approximation accuracy, but the problem complexity and solution time
will also increase. To resolve this issue, the Benders (Geoffrion, 1972;
Benders, 1962) or Lagrangian (Mouret et al., 2011; Karuppiah and
Grossmann, 2008) decomposition must be employed for convex prob-
lem to sequentially or parallelly solve each scenario. Further research
also extended the Benders decomposition from convex to non-convex
cases (Li et al., 2012, 2011). Computational studies have demonstrated
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Nomenclature
CCP Chance-constrained Program
CDF Cumulative Distribution Function
CDU Crude Distillation Unit
CGO Coker Gas Oil
CN Cracked Gasoline
GMM Gaussian Mixture Model
GO Gas Oil
HF Heavy Fuel Oil
HN Heavy Naphtha
JF Jet Fuel
KE Kerosene
LG Liquefied Petroleum Gas
LN Light Naphtha
MILP Mixed-integer Linear Program
PDF Probability Density Function
RG Refinery Gas
RON Research Octane Number
SOCP Second-order cone program
SP Stochastic Programming
VGO Vacuum distillate
VR Vacuum Residual

that such decomposition approaches offer improved scalability com-
pared to directly solving all scenarios simultaneously (Yang and Barton,
2016). Another methodology for shortening the computational time
of SP is the scenario reduction. It selects support scenarios from a
large set (Kammammettu and Li, 2023; Li and Floudas, 2014) based
on specific metric to minimize the error between the original and re-
duced sets. Alternatively, clustering methods can generate or aggregate
existing scenarios to enhance their representativeness (Bounitsis et al.,
2022; Xu et al., 2012).

The decision rule can be applied to solve multi-stage optimiza-
tion efficiently. It assumes the recourse variable (reactive actions)
as a function of uncertain parameters. The SP can be reformulated
as a robust counterpart through linear decision rule (Ben-Tal et al.,
2004). A scheduling model for power-intensive processes was devel-
oped and solved by the adjustable robust optimization approach with
linear decision rule embedded (Zhang et al., 2016). Multi-parametric
programming has recently been applied to derive a globally optimal
linear decision rule for the multilevel decision process (Avraamidou
and Pistikopoulos, 2020). While the linear structure may sacrifice
some generality, it allows for efficient calculations under the affine
recourse hypothesis (Calafiore, 2008). To obtain more flexibility in
stage-II, the lifting method was proposed to unify different types of
decision rules (Georghiou et al., 2015). Furthermore, polynomial de-
cision rule for multi-stage SP can be efficiently determined by solving
two tractable semi-definite programs (Bampou and Kuhn, 2011). Their
computational study showed that the cubic decision rule significantly
reduced the optimality gap compared with the linear counterpart. The
uncertainty set can be partitioned into several parts for the develop-
ment of adaptive piecewise linear decision rule to balance optimality
and complexity (Nasab and Li, 2021; Bertsimas and Dunning, 2016).
This concept has also been found in several other literature (Rahal
et al., 2022; Hanasusanto et al., 2015).

Chance-Constrained Programming Methods: The CCP also can be
solved through scenario-based approaches. A straightforward manner
is to require that a fraction 1 — ¢ of the total scenarios are feasi-
ble within the optimization framework (Luedtke and Ahmed, 2008;
Luedtke, 2014). As the number of scenarios increases, the solution of
this method will converge to the original CCP (Pefia-Ordieres et al.,
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2020). However, this approach typically introduces binary variables
for each scenario, potentially hindering its scalability. A decomposition
approach can be applied to speedup the solving process of scenario-
based formula (Liu et al., 2016). To avoid additional binary variables,
a sample complexity bound was studied for convex problem in several
works (Alamo et al., 2015; Campi and Garatti, 2011; Calafiore and
Campi, 2006; Campi and Garatti, 2008), which links the optimality
of full-scenario problem with the probabilistic feasibility. Recent ef-
forts have extended this methodology to nonconvex problems via the
posterior evaluation (Esfahani et al., 2015). Since the expectation on
indicator function can be used to represent the probability of con-
straint satisfaction, many works focused on approximating indicator
function through sample average schemes. The conditional value-at-risk
(CVaR) approximation and the Bernstein approximation (Nemirovski
and Shapiro, 2006) have gained prominence. The sigmoidal approxima-
tion offers another choice to replace the indicator function in chance
constraints (Tovar-Facio et al., 2018). One of the challenges in those
methods is the inaccurate gradient information (Pefia-Ordieres et al.,
2020). A recent work adopted the projected stochastic subgradient
algorithm to solve a convergent sequence of smooth approximation for
CCP and showed excellent results (Kannan and Luedtke, 2021).

Another promising methodology for CCP leverages historical data
to establish the probability density function (PDF), cumulative distribu-
tion function (CDF), or quantile function of uncertain parameters. These
functions are utilized in chance constraints to facilitate deterministic re-
formulations. The kernel smoothing method can estimate the PDF, CDF,
or quantile function to solve chance constraints with right-hand side
uncertainty (Calfa et al., 2015). A related work (Jiang and Guan, 2016)
described the confidence set of an estimated PDF via y-divergence
with a perturbed risk level to guarantee the robustness of the refor-
mulated CCP when dealing with uncertain distributions. In author’s
recent work, the Gaussian Mixture Models (GMM) were employed to
approximate general uncertainty distributions in the single-stage CCP
and the resulting bi-convex formulation can be solved to global opti-
mality through second-order cone relaxation (Yang, 2023). That work
significantly broadened the application scope of non-sampling-based
CCP methodologies.

This paper aims to solve two-stage CCP (TCCP) that integrates
chance constraints with two-stage SP to enhance the flexibility of refin-
ery optimization. We employ GMM to model uncertainty distributions
due to the following merits:

+ GMM is a parametric approach to approximate complex distri-
butions with arbitrary shapes by combining multiple Gaussian
components.

+ As a clustering method, GMM not only approximates the true
distribution of uncertainty, but also enables cluster-dependent
linear decision rule for two-stage optimization.

* GMM can be easily built from data through the well-developed
expectation-maximization (EM) algorithm.

In view of these advantages, GMM derived from uncertainty data
is naturally suitable for solving TCCP efficiently. Building upon on
our prior work (Yang, 2023), where we have established a global
optimization algorithm for single-stage CCP with GMM embedded, our
current research demonstrates that GMM and piecewise linear decision
rule integrated formula can be optimized through the adaptive outer
approximation, branch-and-bound, and bound tightening techniques.
The proposed approach outperforms sampling-based methods in terms
of solution time and convergence. Nevertheless, we acknowledge that
the proposed approach still can be improved to allow for more flexible
decision rule and characterize the impact of GMM estimation error on
solution optimality.

The rest of this paper is organized as follows. The refinery model
and TCCP reformulation under GMM and piecewise linear decision
rule are described in Section 2. The global optimization framework is
presented in Section 3. The comparison between GMM with piecewise
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Fig. 1. The refinery flowchart (Favennec, 2001).

linear decision rule and sample average approximation on refinery
optimization are conducted in Section 4 to highlight the superiority of
the proposed scheme. Finally, conclusions are drawn in Section 5.

Notation. Throughout this paper, vectors and matrices are denoted by
boldface letters. For u € R" and X € §;, we let N(u, X)) : R" > R and
@(;u, X) : R" > R denote the PDF and CDF of the n-variate normal
distribution with mean vector u and covariance matrix X, respectively.
We write 0 ~ N(u, X) to express that 0 is normally distributed with
mean p and covariance matrix X. Similarly, for w € RS such that
>3 w, =1, u, € R"and X, € ', Vs € {1,.... 5}, we write 6 ~
35w N (my, Zy) to express that 6 follows the S-component Gaussian

s=1
mixture distribution.

2. Methodology
2.1. Refinery model

A simplified refinery model is applied for this study (Favennec,
2001). The plant monthly planning and operations can be conceptual-
ized as a two-stage decision process (Yang and Barton, 2016). In stage-I,
the optimal crude combination is determined to maximize the expected
profit. In stage-II, the selected crude oils undergo a series of processing
steps outlined in Fig. 1. The crude distillation unit (CDU) separates
the inflow into different fractions based on their boiling points, in-
cluding refinery gas (RG), liquefied petroleum gas (LG), light naphtha
(LN), heavy naphtha (HN), kerosene (KE), gas oil (GO), vacuum dis-
tillate (VGO), and vacuum residual (VR). These intermediate streams
are subsequently directed to the reformer, cracker, isomeration, and
desulferization units for further processing to enhance their values or
reduce undesirable components. The processed streams are ultimately
blended in the final product tanks to yield gasoline PG98, ES95, diesel,
heavy fuel oil (HF) and jet fuel (JF). It is worth noting that, in an effort
to reduce sulfur content in diesel, a proportion of low-sulfur (15 ppm)
KE is mixed into the final product, denoted as ADD in the flowchart.

In stage-I, the procurement of three crude oil is decided according
to their properties, price, refinery capacity, and product requirement.
The crude oil is usually traded in integer lots that can be represented
in base 2 by using binary variables x; = [x;,x;,, ...]7, where j is the
type index of crude oil. Here we assume the lot size to be 5000 barrels.

Egs. (1) and (2) are enforced for crude oil procurement. If type j crude
oil is selected, namely e; = 1, the lower bound on that order is specified
as 10 lots. The upper bound of an order is specified as 360 lots due
to the stock availability. As a result, the dimension of x; should be 9
and each dimension is denoted by index ¢. If a type of crude oil is not
selected, namely e =0, (2) becomes active and x; ,Vt =1,2,...,9 are

Jit
Zero.
9
10e; < D x;, x 271 <360, j =1,2,3, ¢h)
t=1
x;,<ej, x;,€{0,1}, ¢;€{0,1}, j=1,2,3, r=1,2,....9. 2)

Constraints listed in Egs. (3)-(8) are required to satisfy in stage-
11, including the sulfur contents of PG98, ES95, and diesel, research
octane number (RON) of PG98 and ES95, HF viscosity, PG98 and
diesel demands. However, the operational uncertainties, denoted as
0 = [0¢;, Orons 0s], including CN yield increment, ISO RON reduction,
and sulfur residual increment, may render the problem infeasible under
specific scenarios. Therefore, those quality or demand constraints will
be relaxed such that a joint violation chance e is allowed. In addition,
the catalytic cracked gasoline (CN) and coker gas oil (CGO) mass
balance are also impacted by the cracker yield uncertainty, shown
in (10) and (11) respectively. Other capacity inequalities and mass
balance equations are the same with Yang (2019).

Sulfur in PG98:

YPG‘)S,ISOSHIISO + .VPGQB,LNSHILN + YPG98,R955111R95
+ ¥pgos,LSulLg + Ypgog,r100SUlR100

+ Ypgos,cnSuley < 0.0010%(¥pgog 16 + YpGos,LN + YPGes,Iso
+ YpGos,Ro5 + YPGos,R100 T YPGos,cN)s 3
where Sul represents the sulfur content in each flow.

Sulfur in ES95:

yES95,ISOSUIISO + J’Es95,LNS“1LN + YES95,R95 Sulggs
+ Yesos,16Sulic + Vesos,r100SUlR100
+ Yesos,enSuley < 0.0020%(Vgsos, 150 + Vesos,in + VEsos 16

+ YEsos,ro5 + VESo5,R100 + VES95,CND> 4
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Sulfur in Diesel:
3 3

Z ¥pigserGo, Sulgo, + Z ¥piEserLDEsGO; Stlgo, (0.01 + 65)
j=1 Jj=1

+ YpieseL,pEsccoSulego (001 + 65)
+ ¥pieser,ceoSUlceo + Vpieser,adaStladd

+ yDIESEL,KESUIKE < 0.0018% <yDIESEL,KE
3
Z (yDIESEL,GO ; T YDIESEL,DESGO j) + YDIESEL,DESCGO
Jj=1
+ YpieseL,cco + YDIESEL,Add>» (5)

RON of PG98:
¥pGos,150(RONgo — Oron) . Ypgos,.NRONLy

P1s0 PLN
+ yPG98,R95RONR95 + mPG98,R100RONR100

PR95 PR100
N ¥pGos,cNRONcN + ¥pgog, LcRONLg

> 98 V G98> (6)
PcN PLG ?

where V is the volume of products and p is the density.
RON of ES95:
yES95,ISO(RONISO — Oron) + yESQS,LNRONLN

P1s0 PLN
+ YEs95,Ro5 RONRos + Yes95,r100RONR100

PR95 PR100
N Yes95,cNRONcy N YEs95,.GRONLg

> 95Vgsos- @
PcN PLG - F895

Viscosity of HF:
3 .
X1 kR, Visv,

PVR;

YHF,cco Viscgo
+ < 35Vps

PcGo

where Vis denotes the viscosity of streams.

PG98 demand:
YpG98,LG T YPGas,1s0 + YpGos LN + YpGos,R100 T+ YpGos,ros + Ypgog,cn = 15. (8)
DIESEL demand:

YDIESEL,Add T YDIESEL,KE
3

+ Z <YDIESEL,GO ; T VDIESEL,DESGO ,)
J=1

+ YpieseL,cco + YpieseL,pEscco = 100, €)]

CN balance:

Yar-mveo Permen + Ocr) + Yer-a,veo®Per-a,cn + 0cr) = Ypgos,on + YEsos,on
(10)

where P is the production percentage and cracker may work on two
modes, Mogas: Cr-M and AGO: Cr-A.

CGO balance:
Ycr-M,vGo (PCr-M,CGO —0¢r) + Ycr-A,VGO (PCr-A,CGO —0cr)
=YDIESEL,CGO T YDes,cGo t VHF,cGO- an

2.2. Two-stage chance-constrained program

A generic formula of two-stage chance-constrained program is de-
veloped in (7CCP) to minimize the cost of refining process shown in
Fig. 1:
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min p{x + Eg(F(x, 6)) (Tcep)
x.e

s.t. Egs. (1), (2),
x € {0,1},e e {0,1},

where E is the expectation operator and stage-II formula is

F(x,0) =min ply, + p1 y,
Yi-y2

K
s.t. ]P’{a[.Tx+ Z b;f,iﬂkyl +c[.Ty2 <g,Vi=12,.. ,I} >1-e,
k=1
12)
K
A'x+ ) Bioy, +C'y, =0, 13)
k=1
0<y,0<y,,

where K is the dimension of uncertain parameters. Constant vectors
and matrices include py, py, p,, a;, A’, b, ;, B}, ¢;, C" and g;. y, € RM
and y, € RM2 are two mutually exclusive vectors representing stage-II
recourse variables, such as flowrate of each stream. Their coefficients
p, and p, are negative to represent the revenue of productions. x
is the crude oil procurement, and thus its coefficient p, is positive
to represent the oil price. In this formulation, we assume that each
uncertainty parameter can be modeled by the independent GMM with .S
components: §;, ~ Zle wk,sN(”k,s’G/is)v Vke {1,2,...,K}. Here S'is a
pre-determined number of Gaussian components in the GMM to control
the approximation accuracy. We recommend fitting the uncertainty
data from S = 2 because a larger number of S may lead to more
complexities in optimization. Striking a balance between accuracy and
complexity is still an ongoing research. e is a small risk level that can
exclude extreme cases in the optimization. According to Egs. (3)-(8),
totally I = 8 joint chance constraints should be considered in stage-II
to allow the incomplete recourse. In addition, Eq. (13) represents the
mass balance in the refinery model, such as (10) and (11), in which
uncertain parameter 6, multiples with variables y¢, \ vo and yer.a veo
to determine the CN and CGO productions.

2.3. Piecewise linear decision rule

In this subsection, the vector y, is specified as a function of uncer-
tain parameters whereas y, is kept as constant. Otherwise, quadratic
terms on 6 will be introduced into Egs. (12) and (13), rendering
the optimization intractable. This restriction may limit the flexibility
of the proposed approach applied in processes with many uncertain
parameters.

Because GMM has represented the distribution of each uncertain
parameter by .S Gaussian components, the entire uncertainty space with
K parameters can be partitioned into L = SX clusters Q,,Q,,...,Q,. A
linear decision rule can be equipped with each cluster to parameterize

Ya2:

H0+r ifoecq,

H,0+r if6e,,

v, =HO+r= a4

H,0+r ifoecQ,
where r and H, = [h]:h],;...:h[ ] € RV2K are decision variables
calculated in the optimization. Here r should be constant across all
clusters. To show that, let us substitute (14) into (13):

K
A'x+ ) B oy, +C(HO+r)=0.
k=1

To ensure this equality under any scenarios, there should be:

Ax+C'r=0,
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K

Y Bi6y, +C'HO=0.

k=1

Here we can see that r has no flexibility to vary across different pieces.
There is a mapping function from cluster to the dominant Gaus-

sian component index set: M 2, » {d;,.dp,,...,d, g}. Given

a sampled uncertainty vector 6%, the dominant component of each

uncertain parameter {Dl(ei‘), DZ(S;),...,DK(Q*K)} will determine the

assigned cluster through the inverse mapping M™!. Here Dy (0;) €

{1,2,...,8},Vk € {1,2,...,K} is defined as:

wk,S,qS(BZ; Hgrs Zp 1)
S
Zs:l wk,s(ﬁ(ez; ”k,x’ Z:k,s)

Because all uncertainty variables are independent, the probability of a
sampled uncertainty vector belonging to cluster , is given by §, =
Hszl wg, - Furthermore, we define the mean vector and covariance

. (15)

Dy (6;) = arg max
s

matrix corresponding to the cluster €; as i = [uy, - Ha),» - s#d,KJT
and £, = diag(ag’ e ,ajl )» respectively.

Let us substitute (14) into (T CCP). The objective function becomes:

pox +Eo(ply1 +pyy2) = pyx +ply, + Eg(p}y2)
L L

= ng +PFIFY1 + ZPFZFT + Znglﬂlﬁl (16)
=1 =1

The resulting single stage optimization is:

L L
min  pix+ply + Zpgr + ZP;HIIAM&/

ccr)
xeyi-Hin i=1 i=1
st.P{a’x+ (Bl +cTH)0+clr<g, Vi=12,...1}
>1—e+AN,, an
K
A'x+ Y By, +C'(HO+r=0,VI=12,.. L (18
k=1
P{O<yy,;} 21-AYi=12.,N,, 19)
x € {0,1},e € {0,1},Egs. (1), (2), 0< yy,
where B;r =[by;. by, ..., by ,;]; A is a small constant risk level for non-

negative constraints such that AN, < e. This configuration is justifiable
in that the quality or demand constraint violation can be mitigated
via some recovery operations whereas the negative flowrates are not
physically plausible. Because y, is linearly dependent on uncertainty
0, the stringent constraint 0 < y, is transformed into a series of high-
probability constraints (19). In addition, the joint risk level of (17) and
(19) is smaller than e according to Boole’s inequality, which ensuring
the solution of (CCP) to be feasible in (7 CCP).

2.4. Reformulation

Egs. (17) and (19) are all chance-constrained with GMM uncer-
tainty. We present Proposition 1 to derive their deterministic reformu-
lation.

Proposition 1. For GMM uncertainty 6 ~ 35 w N (u,, Z,), piecewise
linear decision rule (14), and A € (0, 1), if there exists a series of positive
number y; < 6;,Vl = 1,2, ..., L, satisfying

L=5K

Y onzl-4 (20)
1=1

then statement (b) below implies statement (a).

(@PO0<y,,)21-4
®) @GO\ Eihyy < iy 4y, VEE (1,2, LY
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Proof. Because clusters £2,,V/ € {1,2,..., L} form a finite partition of
the entire uncertainty space, the law of total probability shows that:

L
P(0<yy,) =D P(0Th,+r,>010€2)P(0€2)
=1

L
=Y P(6Th; +r; 201 0€ Q)5 (21)
=1

The conditional probability of the GMM is Gaussian: P (67h; jt+rile
€Q) ~ Nlyh; + rj,thjE,h,,j). Therefore, the classical results of
Gaussian-distributed linear stochastic program (Prékoba, 1995) can be

applied:
<1>—1(g_5)‘ /h}:jf,h,’j <ifhy+r, Vie(1,2,..., L}

& 50 (0%, +r,>000€ Qs ihy, +r,,j,h{j2,h1‘j)
>y, Vie{l1,2,...,L})

N zlea,qs(eTh,vﬁrj;meeQ,;p,h,‘j+rj,h,T_j2,hl,j)

L

?Z[:lyl

= Y P(0Th 41 2010€)621-2

& PO<y,;)21-4

This concludes the proof. []

Even though Proposition 1 is described based on constraint (19), it
can be further applied to constraint (17) with piecewise linear decision
rule H and r embedded. Consequently, (CCP) can be conservatively
approximated by the following formula:

L L
: T T T T ~
s H s ccr2
ey POXEPIVIH g},pzr 1+ ;pz 1B (ccr2)
v -
s.t. <1>—‘(6‘—")\/(le1;,,T +cTH)E,(y BT + cTH)T <
1
& —OIBT+cTH)py —alx—clr, ¥i=1,2,....1,
Vi=12,..,L, 22)
L
Y Y vu=l-c+iNy, (23)
i=l I=1
Ax+C'r=0, 24)

By +(C'H)., =0, Vvi=12,...,L Vk=12,...,K,

(25)
o (1 - A)\/h{jﬁ,h,,j Shipy+rpVji=12.. N,

vi=1,2,...,L, (26)
x € {0,1},e € {0,1},Egs. (1), (2), 0 < y;.

Egs. (24) and (25) are derived from Eq. (18) such that the constant
term and coefficient of uncertainties are equal to zero, respectively.
Because A for non-negative constraints should be small, there is not
much space to tune their risk level. Hence, each GMM cluster induced
constraint for 0 < V2 specifies yj,,/é, = (1 - 2) in (26) to meet (20)
and avoid unnecessary computational burden. In case study, we set
1 — 4 =0.9999. Egs. (22) and (23) are designed for quality constraint
(17) by applying Boole’s inequality and Proposition 1. The risk level y;
for each cluster-induced constraint (22) is a decision variable.

3. Optimization methods

In this section, several optimization methods, including outer ap-
proximation, convex relaxation, branch-and-bound, and optimality-
based bound tightening, are developed and integrated to solve (CCP2).
Given that (CCP2) is inherently non-convex, the proposed algorithm
constructs and solves a lower bounding mixed-integer convex problem
and an upper bounding mixed-integer convex problem iteratively.
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Fig. 2. The outer approximation of @~'(%).

The gap between lower and upper bounds gradually converges and
ultimately a near-optimal solution is achieved. The conservativeness
of the proposed method mainly arises from the Boole’s inequality and
pre-specified functional structure of stage-II variables.

3.1. Adaptive outer approximation

The function @' should be numerically approximated because it
does not have an analytical form. The outer approximation method
developed by Cheng et al. (2012) can be applied because y(;.'—" - <D‘1(%)

!

is convex when % € [0.5,1). A graphical demonstration of the outer
1

approximation is shown in Fig. 2 with gth cutting plane v > « 7" + By
The tangent «, and interception f; are:

1.Vl

do~!(3t |

T @ (x,))

¢ = —
= Vil Yil

d == =7
( 51

_ -l
By =@ (nq)—aqzz'q.

where z, is gth sampled value of % and ¢ is the standard probability
dlstrlbutlon function of a normal distribution.
Consequently, an outer approximation of (CCP2) is:

L L
: T T T T A
min X+ + ré, + H, jé (ccr3)
xeyHrrm py 24! Z,Pz 1901 Z,Pz 1H10;
st 0,/ T BT + TH )5, (y7 BT + T H )T < @7
& —OTBT+cTH)p —alx—clr, ¥i=1,2,...,1,
vi=1,2,..,L
I L
X Y ru=1—e+iN,,
i=1 I=1
0.5 < 7;,/8; < 0.9999, (28)
y.
V2 At B Vg =1,2,..,0, VI= 1,2, L,
. 5,
vi=1,2,....1
A'x+C'r=0,

By, +(C'H)., =0,V =12,.. L VYk=12..K

& (1= DR E by <R+ ¥ =1,2,0 Ny,

vi=1,2,...,L,
x € {0,1},e € {0,1},Eqgs. (1), (2), 0< y;,

where Q is the number of sampling points on y /5. As Q — oo, (CCP3)
approaches (CCP2) with arbitrary accuracy. However, because (CCP2)
has I x L x Q cutting planes, increasing Q implies more constraints to
be considered during the optimization. To balance the computational
demand and approximation accuracy, an adaptive outer approximation
scheme developed in Yang et al. (2017) is adopted to maintain Q at
a manageable level. Starting from a small set of sampling points, the

lower bounding problen} is solved repeatedly at each iteration, and

. LTy . .
the resulting solution {;—’ is used as the sampling point to add new
i

cutting planes in real time. Through this manner, the solution v, can
be continuously elevated to reduce the outer approximation error at
interested feasible region and tighten (27). Moreover, some existing
cutting planes can be eliminated if their associated sampling points are
out of the interested feasible region. Because of ®~!(1) — oo and to
ensure convexity, Eq. (28) sets the upper and lower bounds on y,,/5,.
The upper bound 0.9999 is consistent with 1 — 4 = 0.9999 in the
non-negative constraints.

3.2. Convex relaxation

The formula (CCP3) has non-convex terms:

0,/ T BT + CTH) S T BY + cTH )T, Vi = 1,2,.

,Vi=1,2,...,L.

The McCormick method (McCormick, 1976) can be used to develop a
convex relaxation of those non-convex terms. Let us define u;; = yTBT

c'H, € RX and introduce an auxiliary variable: z;,, = v;u;; € RX
such that

0,/ BT + T H)E (7T BY + T H)T = 0\ Juy Sl =\ [0 21z,

The McCormick relaxation utilizes a set of inequalities (29)-(32) to
build a convex hull of z;; = v;,u; ;. The resulting formula is:

L L
. T T T Ty o
min x + + ré, + H,ji,6 (LBP)
L L Py Py Z;Pz 19 ;PZ M9
s.t. \/zi’,i,ziTl <g —ufy —a‘.Tx - c‘.Tr, Vi=1,2,...,1,
vi=1,2,...,L,

—vTBT 4+ T
u,=y B +c;H,

I L
ZZYU:I_E_'—AN”

I=
5<7,/8 < 09999,

y"+ﬂ,vq_1 2.
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Vi=1,2,...,1,

Ax+Cr=0,
B;(y| +(C/Hl):,k =0,vi=12,...,.L, Vk=1,2,...,K,

@7 (1= /b, E by, <Ry 41V =12, N,

vi=1,2,...,L,

2, 2 Oyt + 0l = Oy, V= 1,2, LVi= 1,2, 1,
(29)

2z >0, Uy ou, — o0 V=12, LYi=12,. .1,
(30)

z, S U U, G, = E'.IE,-,/s vi=1,2,...,L,Vi=1,2,...,1,
(€20)]

Z; < vu T — U’,u,,, vi=1,2,...,L,Vi=1,2,...,1,
(32)

x € {0,1},e € {0,1},Egs. (1), (2), 0<y,,

where the upper and lower bars represent the upper and lower bounds
on variables, respectively. Solving (£/3P) will generate a lower bound-
ing solution of (CCP2) and (CCP3), denoted as LB. Note that (£L5P) is a
mixed-integer second-order cone program (MI-SOCP), and thus can be
solved to the global optimum with pre-specified relative gap through
off-the-shelf solvers.

In the proposed scheme, totally I x L x K bilinear terms in (£5P)
can be relaxed. Alternatively, one may consider to multiple v;, into the
matrix H, and relax the term Oihy s Vi =1,2,... . Ny, Vk=1,2,... K
While this approach may result in a tighter relaxation, it has to consider
I x L x N, x K bilinear terms, which may impede the efficiency
of subsequent branch-and-bound and bound tightening. Moreover, as
both h; ;, and u;; involve decision rule coefficients, their upper and
lower bounds should be guessed without prior information. Therefore,
a relaxation scheme with less bilinear terms is preferred.

3.3. Branch-and-bound

In this sub-section, we develop a global optimization framework
for (CCP2). The relaxation gap of (L5P) depends on the distance
between upper and lower bounds on variables v and u. Hence, a branch-
and-bound scheme can be employed to artificially reduce the feasible
interval, and thereby the relaxation gap. To this end, a searching
tree is initialized with the entire u intervals. According to our previ-
ous research (Yang et al., 2017), branching u is more efficient than
branching v for global optimization. Hence, (£/3P) is solved at each
node with associated intervals during the tree traversal, and then the
selected variable in vector u is branched to create two new nodes on the
searching tree. The following criterion is applied for branching variable
selection.

{i", Ik} = arg max |v
13

o 33
e(1.2,...1}Je{1.2,....L} ke{1.2,.. ’J”‘l (33

il tlk

where v* i f,l,k and z* T are the solution of (£BP) at a node. Once
Uy 1 gr 18 ‘chosen, its 1nterva1 is divided into two disjoint sub-intervals:
[Zi’,l’,k”u;‘j,//,k/] and [u;,l’,k”ﬁi'v"vk/]’ while other variables’ bounds are
unchanged. The resulting two exclusive feasible regions together with
their parent (£37) solution value will be used to create two children
nodes in the searching tree.

At each iteration, we always choose a unsolved node associated with
the smallest parent (£/37) solution value. By solving (£BP) at that
node, we obtain the risk level y} ", assignment, which can be substituted
into (CCP2) to yield an upper boundlng problem:

min  plx+ply + Zpgral + Zng,ﬁ,a, (UBP)

x.e.y,.Hr = =

s.t. @~ 1( )\/(yTBT+cTH,)Z,(yTBT+cTH1)T<
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-—(leT+cTH,);41—a x—c r,Vi=1,2,.
vi=1,2,...,L,

Ax+C'r=0,

By, +(C'H).,=0,vi=12,...,L, Vk=12,... K,

& (L= I E kg By Y= 1,2, N,

vi=1,2,...,L,
x € {0,1},e € {0,1},Eqgs. (1), (2), 0<

Note that (U/BP) is still an MI-SOCP that can be solved to optimum
rapidly. If (/'BP) is infeasible, it implies that the convex envelop
made from outer approximation and McCormick relaxation is not tight
enough. To resolve this issue, the adaptive outer approxlmatlon scheme
always samples at the solution point of (£ BP)— to construct an addi-
tional cutting plane, and the variable bounds should be further reduced
by branching and (OBBT). If (U'BP) is feasible and its objective value
is less than the existing upper bound solution, denoted as UB, then we
can update UB accordingly. The entire algorithm, outlined in Fig. 3, will
terminate if the relative gap, defined in Eq. (34), is below a predefined
threshold.

Relative gap = % (€D)]

3.4. Optimality-based bounds tightening

The McCormick method generates the tightest convex envelop for
bilinear terms given a specific variable interval. Typically, a narrower
interval results in a tighter relaxation. While conventional interval
analysis techniques are effective in reducing bounds with minimum
computational overhead, previous research has showed that optimality-
based bounds tightening (OBBT) offers superior efficiency, especially
when lower and upper bounding problems are solved repeatedly. Even
though the bilinear terms of (CC73) involve two variables, v;, only lies
in a small range: [@~1(0.5), ®~!(0.9999)] whereas u;; , may have a much
wider interval. Thus, the OBBT formula shown in (OB37) only focuses

onu ., Vi=12,....[,¥VI=12,....LVk=12,....K
min  u; ;g (OBBT)
x.ey . H,r o
s.t. ‘/z‘-‘,ﬁ‘,z;l:[ <g —u,;,ﬂ, —a;rx—cl.Tr, Vi=1,2,...,1,
vli=1,2,.
u,,—leT+cTH,,

I

Z Yiy=1-e€+AiN,,

055, Vis < 0.99996;,

Vil

q6—1+/3q,\7’q:1,2,...,Q, vi=1,2,...,L
Vi=1,2,...1,

Ax+C'r=0,

By, +(C'H)., =0.Vi=12,.. L Vk=12,...K

<p—1(1—,1),/h Zh,] hy B =12, Ny,

vi=1,2,...,L
Z = ,-,u,-,+v,-,ﬁ,-,—5,-’,ﬁi,l, vi=1,2,...,LVi=1,2,...,1,
ztl>211 /,+v,,ull LN vi=12,...,LVi=1,2,...,1,
2 < Uy ,1+v,1u11—5,~’15i,1, vi=1,2,...,L.Vi=1,2,...,1,
zi <Y, u;, + v u; —guﬁ,-,l, vi=1,2,...,L.Vi=1,2,...,1,
xe€{0,1},e € {0,1},Eqgs. (1), (2), 0 <y,
L L
ng +ply + ZP;F”S/ + 2P§H1ﬁ151 < UB. (35)

I=1 I=1
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Fig. 3. The algorithm flowchart for solving (CCP2).

The constraint (35) requires that any feasible values of u;; , in (OB537)
yields lower value than UB. Because ((O3/37) is solved at least I Xx Lx K
times at each node of searching tree, its implementation should be well-
designed to reduce the overall computational time. Several strategies
are shown below:

» The integer constraint can be relaxed to convert (©O357) into a
SOCP, which can be solved to global optimum quickly.

One of options is to repeat the OBBT several rounds until none of
any variable interval can be further reduced. However, this may
substantially increase the solving time, and thus is not applied in
the case study.

If the interval of a variable is significantly small, we may omit its
OBBT to save the computational time.

Constraint (35) can significantly reduce the variable interval
given the upper bound solution UB. In order to obtain UB, we
may initialize % Vi = 1,2,....1, VI = 1,2,...,L with equal
value and solve ’(Z/BP). If it is infeasible, we just initialize UB
as zero by assuming the refining process is profitable. During the
optimization, once a better UB is found, (9337 ) should be solved
for each component of u to refine variable intervals.

Finally, a flowchart of the global optimization algorithm is shown
in Fig. 3.

4. Case study

In the case study, TCCP with non-Gaussian distributed uncertainties
is solved for refinery optimization. The software platform is GAMS 41,
with MI-SOCP solver CPLEX. The hardware platform is a laptop with
Intel Core i5-8300U CPU 2.30 GHZ and 8GM RAM. The risk level ¢ is
set as 5%, 6% and 7%, respectively. The proposed algorithm is executed
to determine the optimal crude oil procurement and the decision rule
for refining in stage-II. The algorithm terminates when the relative
gap reaches 1%. Then, the resulting solution is evaluated in a test
bed consisting of 500 independent samples of uncertain parameters.
A scenario-based mixed-integer linear program (MILP) formula is also
developed as a benchmark to compare with the proposed algorithm
regarding the solution time and quality.

4.1. Refining process parameters

A refining process shown in Fig. 1 is studied. The mass balance,
product demands, and quality constraints impacted by uncertainties are
listed in Egs. (3)-(11). The crude oil yields and their prices are shown
in Table 1. The constraints, including product quality, demands, and
unit capacity, are presented in Table 2.

Three operational properties are influenced by uncorrelated uncer-
tainties, including sulfur residual, ISO RON, and CN yield in cracker.
Specifically, their nominal values are 1% for sulfur residual, 94 for ISO
RON, and 43.6% for CN yield in Mogas mode, or 38.1% in AGO mode.
The uncertainties associated with these properties are characterized
by inverse Gaussian, Weibull, and Gamma distributions, respectively,
which are all approximated by 2-component GMMs based on a dataset
comprising 1000 samples. Here we need to point out that when more
GMM components are introduced for these uncertainties, the resulting
weight w becomes significantly smaller than others. Our previous
work (Yang, 2023) for GMM-based single-stage CCP showed that re-
moving the second-order constraints associated with such small w and
5 does not impact the solution feasibility and only slightly reduces
optimality. In addition, we employ various types of asymmetric dis-
tribution to assess the approximation ability of GMM. The resulting
GMM parameters obtained through the Expectation-Maximization al-
gorithm are listed in Table 3. The GMM and histogram derived PDFs
on training data, alongside the true distribution are shown in Figs. 4-6.
The visual comparison reveals a close alignment between the GMM ap-
proximations and the true distribution, particularly in the distribution
tails.

4.2. Sample average approximation

Alternative, the TCCP for refining process optimization can be
solved via the sample average approximation (SAA) (Luedtke and
Ahmed, 2008). Different from the proposed approach, SAA is a scenario-
based method. Its formula is shown in 4.2:

M
. T 1
’rcneu; pyx + —M(l 5 mgl F(x,0,,0,) (SA4AA)

s.t. Egs. (1), (2),
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Table 1
Yields and price of three crude in 2017 ($ per barrel).
Crude  RG LG LN HN KE GO VGO VR Price ($)
Crude, 0.002 0.0091 0.0698 0.1598 0.1003 0.2876  0.2682  0.1032  49.2
Crude, 0.002  0.0080  0.061 0.1206  0.0861 0.2414  0.2646  0.2163  46.3
Crude;  0.004 0.020  0.0851 0.1532 0.0947 0.2539 0.2535 0.1356  48.3
Table 2 speedup the solving process of 4.2, they usually require recovery oper-
Specifications, demands, and capacity. ations in stage-II, which is not applicable in this case study. Thus, the
Specifications Max Min MILP solver is directly applied in 4.2 to obtain the solution.
Gasoline:98 RON o8 There are plenty of v'vorks (Yang and Sut'anto, 2019; Algmo et al.,
Gasoline-95 RON 95 2015; Campi and Garatti, 2011, 2008; Calafiore and Campi, 2006) to
Gasoline-98 Sulfur (ppm) 15 investigate the sample complexity of single-stage CCP, but there has
Gasoline-95 Sulfur (ppm) 15 been relatively limited research addressing the number of required
Heavy Fuel Oil Viscosity (index) 85 samples for two-stage SP or CCP. Therefore, it becomes imperative to
Diesel Sulfur (ppm) 50 . . .
- vary the number of sampled scenarios, namely 7T in 4.2, to examine the
Demand (KT) Max Min computational time and solution quality. It is worthwhile to note that
Gasoline98 15 4.2 can be converted into an MILP and solved using the training sce-
A 1 - o . .
LGGO 200 nario set to a specified relative gap. However, that solution should be
validated in an independent scenario set because there is no theoretical
Capacity (KT) Max Min . . .
guarantee of optimality on unseen scenarios.
Cracker 135
Desulfurization 130

Table 3
Operational uncertainties. Here we build GMMs to approximate the distribution of CN
yield increment, ISO RON reduction, and sulfur residual increment.

Uncertainty Mean Mean Variance Variance Weight Weight
1 2 1 2 1 2
Oce 3.354%  2.021% 1.434/10*  0.510/10*  0.370 0.630
Oron 1.610 2.659 0.410 0.803 0.428 0.572
Og 0.240%  0.733%  0.014/10*  0.172/10*  0.688 0.312
M
z 0, =(-eM,

m=1

xe€{0,1},e€{0,1},0, € {0,1},Ym=1,2,..., M,

where 0,, is the sampled uncertainty value and o,, indicates if that
scenario can be infeasible or not. When o,, = 0, mth scenario will not be
counted in the objective function. The stage-II formula of mth scenario
is:

F(x,6,,0,) = ;?iyr;(p]Tyl + D3 2)0,

K
s.t. a;rx + Z b;‘.ﬁm’kyl + c;ryz <g+U=-o0,)W,
k=1
Vi=12,...
K
A'x+ ) B0,y +C'y, =0,
k=1

A,

0<y,0<y,,

where W is a big positive number to ensure that all inequality con-
straints of mth scenario are relaxed when o,, = 0. Although the objective
function of F(x,0,,,0,,) has bilinear term, it can be equivalently con-
verted into a MILP by using McCormick relaxation because of binary
variable o,,. Here {1,2,..., M} represents a training scenario set for
SAA. The computational challenge of 4.2 lies in the M newly intro-
duced binary variables to deal with chance constraints. Even though
the decomposition approaches in Liu et al. (2016), Yang (2019) may
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4.3. Results comparison

In this subsection, we show the optimization results under various
risk levels (5%, 6%, 7%) and compare the proposed method with SAA
on the validation set, including 500 independent samples of uncertain
parameters. While we use the piecewise linear decision rule to solve
(CCP2) and obtain x*, the stage-II operations can be further optimized
once the crude oil procurement is determined. Hence, given x*, we
show the solution of (CCP2), the decision rule on validation set, and
scenario-based approximation on validation set, in Tables 4-6.

Proposed approach (CCP2) and DR validation: To verify the
decision rule, we first cluster the sampled uncertain parameters on the
validation set using the GMM. Because this refinery model only has 3
uncertain parameters and 2-component for each GMM, there are only
L =23 =8 clusters. Each cluster is equipped with a linear function for
stage-II operations. When stage-I variable x* is fixed, stage-II variables
of each scenario can be determined according to the cluster it belongs
to and associated decision rule function. The optimal objective value
of (CCP2) matches the result of decision rule on validation set (DR
validation) very well. At risk level 5%, there is 0.1% difference in profit
and 0.2% difference in probabilistic feasibility. At risk level 6%, there is
0.1% difference in profit and 1.2% in feasible chance. At risk level 7%,
there is 0.12% difference in profit and 1.2% in feasible chance. The
resulting feasible chance under all risk levels aligns with the desired
reliability 1 — ¢ and is slightly higher on the validation. This further
shows that GMM can capture the uncertainty distribution and our
optimization algorithm indeed yields a satisfactory solution.

Proposed approach SAA(x*): It is not surprised that when x* is
derived from (CCP2), optimizing each scenario individually leads to a
better profit than simply applying the decision rule. We denote such
results as SAA(x*). On validation set, the feasible chance of SAA(x*) is
moderately higher than the desired 1 —e and that of decision rule. This
result indicates that the proposed method is conservative (safe) due to
the pre-specified piecewise linear structure of stage-II variables and the
limitation of Boole’s inequality. More complex functional structure may
be needed in the future work.

SAA 200, SAA 500, SAA 1000: It is worthwhile to note that using
SAA to search x may also attain good solutions. In general, a large
number of scenarios are required to accurately estimate the expected
objective function and ensure probabilistic feasibility. When only 200
scenarios are considered in the training set, the resulting solution
cannot meet the reliability 1 — ¢ on the validation set. Due to the
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Table 4

Optimization results at risk level 5%. DR Validation: Decision rule is applied on each validation scenario; SAA(x*): x* is the
state-I solution of (CCP2) and each stage-II validation scenario is solved to optimum individual. The results of SAA 200, SAA
500, and SAA 1000 are all on validation set with the maximum solution time 4 h (14400 s). Note that SAA 200 does not
meet the required probabilistic feasibility.

Proposed approach SAA SAA SAA

(CCP2) & DR validation & SAA(x*) 200 500 1000
Solution
time (s) 5434 14400 14400 14400
Relative gap <1% 10.53% 12.16% 14.00%
Objective value
(Profit $) 99,723,064 & 99,619,684 & 103,621,483 104,761,071 103,424,582 103,895,013
Probabilistic
feasibility 95% & 95.2% & 97.4% 91.4% 97.6% 96.4%

Table 5

Optimization results at risk level 6%. DR Validation: Decision rule is applied on each validation scenario; SAA(x*): x* is the
state-I solution of (CC72) and each stage-II validation scenario is solved to optimum individual. The results of SAA 200, SAA
500, and SAA 1000 are all on validation set with the maximum solution time 4 h (14400 s). Note that SAA 200 does not
meet the required probabilistic feasibility.

Proposed approach SAA SAA SAA

(CCP2) & DR validation & SAA(x*) 200 500 1000
Solution
time (s) 3135 14400 14400 14400
Relative gap <1% 13.06% 14.94% 16.73%
Objective value
(Profit $) 100,094,923 & 99,985,827 & 103,875,771 104,798,472 103,701,645 104,065,318
Probabilistic
feasibility 94% & 95.2% & 96.4% 91.2% 97% 96%

Table 6

Optimization results at risk level 7%. DR Validation: Decision rule is applied on each validation scenario; SAA(x*): x* is the
state-I solution of (CCP2) and each stage-II validation scenario is solved to optimum individual. The results of SAA 200, SAA
500, and SAA 1000 are all on validation set with the maximum solution time 4 h (14400 s). Note that SAA 200 does not

meet the required probabilistic feasibility.

Proposed approach SAA SAA SAA

(cCP2) & DR validation & SAA(x*) 200 500 1000
Solution
time (s) 6461 14400 14 400 14400
Relative gap <1% 16.78% 18.25% 24.97%
Objective value
(Profit $) 100,391,861 & 100,266,904 & 104,036,565 104,706,025 103,944,638 103,424,582
Probabilistic
feasibility 93% & 94.2% & 96.0% 91.8% 96.2% 97.6%

scenario-dependence, the SAA-based stage-I solution may not enable
optimal or even feasible stage-II operations in unseen scenarios. As the
scenario number is increased to 1000, then SAA slightly outperforms
our method at risk levels 5% and 6%. On the other hand, a large
number of scenario also lowers the convergence rate. As we terminate
the MILP solver for SAA after 4 h, the relative gap for 7% risk level
is nearly 25% and the resulting profit is much lower than that of the
piecewise linear decision rule SAA(x*). In fact, when running the SAA
with 1000 scenarios, the solving process consumes the laptop’s memory
resources after 20 h. In contrast, the proposed (CCP2) successfully
converges to the desired relative gap (1%) within 3100-6500 s at
different risk levels.

In Fig. 7, we present the results of crude oil procurement determined
by the proposed formula under 5%, 6%, and 7% risk levels. As allowed
risk level increases, more type-2 crude oil is purchased. Even though
that oil has low KE and GO yields, which are essential for producing on-
spec gasoline and diesel, it is cheaper than others and we are willing to

11

accept some level of risks. Hence, the proposed method opts to purchase
54.350, 67.099, and 76.492 ton of type-2 crude oil for risk levels 5%,
6% and 7%, respectively. From the data in Tables 4-6, we can see that
the expected profit boosts for nearly $200,000 when 1% more risk is
tolerated.

5. Conclusion

This paper proposes a methodology to solve the two-stage chance-
constrained program for refinery optimization. The piecewise linear
decision rule is employed to parameterize the stage-II variable as a
function of uncertainty whose distribution is approximated by GMM.
We show that the resulting formula can be safely convexified to a
lower bounding problem using outer approximation and McCormick
relaxation techniques. Additionally, an upper bounding problem can
be constructed by fixing the risk level of joint chance constraints. By
iteratively solving the lower and upper bounding problems through
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Fig. 7. The crude oil procurement determined by the proposed method under 5%, 6%, and 7% risk levels (Unit: ton).

branch-and-bound and optimality-based bound tightening, the gap con-
verges to zero and a global optimum of two-stage chance-constrained
program is found. The proposed method is compared with the sample
average approximation in the optimization of crude oil procurement
and plant operations for a simplified refinery model to demonstrate its
effectiveness in solution time and optimality.
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