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A B S T R A C T

The two-stage chance-constrained program (CCP) is studied for a refinery optimization problem. In stage-I,
the refinery decision-makers determine the type and quantity of crude oil procurement under operational
uncertainties to maximize the expected profit under all possibilities. In stage-II, process unit flowrates are
adjusted based on the realized uncertainties and available crude oil, while introducing probabilistic constraints
to manage the off-spec risk. To solve such a two-stage optimization problem, we propose a novel approach
using Gaussian mixture model (GMM) to characterize uncertainties, and piecewise linear decision rule for
stage-II operations. Comparing to the conventional scenario-based mixed-integer linear program (MILP), our
new approach offers three advantages. First, it leverages a well-developed global optimization scheme for
joint CCP to avoid scenario generation and potential bias. Second, the data-driven GMM enables CCP to handle
uncertainties with general distributions. Third, the stage-II variables are parameterized via Gaussian component
induced piecewise linear decision rule to strike an excellent trade-off between optimality and computational
time. A simplified refinery plant, consisting of distillation, cracker, reformer, isomerization, and desulfurization
units, is used as a test bed to demonstrate the superiority of the proposed optimization method in solution
time, probabilistic feasibility, and optimality over the large-scale scenario-based MILP.
1. Introduction

Attaining a globally optimal solution for the multi-stage process
scheduling and operations in the presence of parametric uncertain-
ties may enhance the profitability and safety of a refinery. Explicitly
accounting for model uncertainty in such optimization problems is
of importance to the capital-intensive industry and many successful
applications can be found in some comprehensive reviews (Grossmann
et al., 2016; Li and Ierapetritou, 2008; Sahinidis, 2004). One of the
popular methodologies for multi-stage decision-making is the stochastic
programming (SP). In a typical two-stage case, the stage-I decision is
made before uncertainty realization to optimize the expected objective
value. Once the uncertainty is revealed, then a stage-II optimization can
be performed for a specific scenario. The SP framework integrates the
data-driven stochastic modeling and optimization techniques, which
could address a wide range of engineering problems (Chen et al.,
2008). The chance-constrained program (CCP) stems from an alterna-
tive perspective on the optimization under uncertainty. CCP leverages
uncertainty distributions and allows constraints to be violated with a
small risk level, denoted as 𝜖. This approach offers greater generality
and lower conservatism compared to robust optimization (Grossmann
et al., 2016; Li et al., 2008).

E-mail address: yu.yang@csulb.edu.

Nevertheless, both SP and CCP pose significant computational chal-
lenges. Even in the case of two-stage SP, it typically takes a large
number of scenarios into account and the resulting large-scale formula
is hard to solve directly. In most instances, except for special cases like
an individual linear chance constraint with normal distribution or right-
hand-side uncertainty with log-concave distribution (Prékoba, 1995),
general CCP problems are nonconvex. If a program involves multiple
chance constraints, the resulting joint CCP is even more difficult to
tackle. We first review several widely-adopted methods for addressing
SP and CCP, respectively. Subsequently, a novel approach for solving
two-stage chance-constrained program will be introduced.

Stochastic Programming Methods: SP relies on a scenario tree
to capture the true distribution of uncertain parameters at each de-
cision stage. In general, incorporating more scenarios enhances its
approximation accuracy, but the problem complexity and solution time
will also increase. To resolve this issue, the Benders (Geoffrion, 1972;
Benders, 1962) or Lagrangian (Mouret et al., 2011; Karuppiah and
Grossmann, 2008) decomposition must be employed for convex prob-
lem to sequentially or parallelly solve each scenario. Further research
also extended the Benders decomposition from convex to non-convex
cases (Li et al., 2012, 2011). Computational studies have demonstrated
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Nomenclature

CCP Chance-constrained Program
CDF Cumulative Distribution Function
CDU Crude Distillation Unit
CGO Coker Gas Oil
CN Cracked Gasoline
GMM Gaussian Mixture Model
GO Gas Oil
HF Heavy Fuel Oil
HN Heavy Naphtha
JF Jet Fuel
KE Kerosene
LG Liquefied Petroleum Gas
LN Light Naphtha
MILP Mixed-integer Linear Program
PDF Probability Density Function
RG Refinery Gas
RON Research Octane Number
SOCP Second-order cone program
SP Stochastic Programming
VGO Vacuum distillate
VR Vacuum Residual

that such decomposition approaches offer improved scalability com-
pared to directly solving all scenarios simultaneously (Yang and Barton,
2016). Another methodology for shortening the computational time
of SP is the scenario reduction. It selects support scenarios from a
large set (Kammammettu and Li, 2023; Li and Floudas, 2014) based
on specific metric to minimize the error between the original and re-
duced sets. Alternatively, clustering methods can generate or aggregate
existing scenarios to enhance their representativeness (Bounitsis et al.,
2022; Xu et al., 2012).

The decision rule can be applied to solve multi-stage optimiza-
ion efficiently. It assumes the recourse variable (reactive actions)
s a function of uncertain parameters. The SP can be reformulated
s a robust counterpart through linear decision rule (Ben-Tal et al.,
004). A scheduling model for power-intensive processes was devel-
ped and solved by the adjustable robust optimization approach with
inear decision rule embedded (Zhang et al., 2016). Multi-parametric
rogramming has recently been applied to derive a globally optimal
inear decision rule for the multilevel decision process (Avraamidou
nd Pistikopoulos, 2020). While the linear structure may sacrifice
ome generality, it allows for efficient calculations under the affine
ecourse hypothesis (Calafiore, 2008). To obtain more flexibility in
tage-II, the lifting method was proposed to unify different types of
ecision rules (Georghiou et al., 2015). Furthermore, polynomial de-
ision rule for multi-stage SP can be efficiently determined by solving
wo tractable semi-definite programs (Bampou and Kuhn, 2011). Their
omputational study showed that the cubic decision rule significantly
educed the optimality gap compared with the linear counterpart. The
ncertainty set can be partitioned into several parts for the develop-
ent of adaptive piecewise linear decision rule to balance optimality
nd complexity (Nasab and Li, 2021; Bertsimas and Dunning, 2016).
his concept has also been found in several other literature (Rahal
t al., 2022; Hanasusanto et al., 2015).
Chance-Constrained Programming Methods: The CCP also can be

olved through scenario-based approaches. A straightforward manner
s to require that a fraction 1 − 𝜖 of the total scenarios are feasi-
le within the optimization framework (Luedtke and Ahmed, 2008;
uedtke, 2014). As the number of scenarios increases, the solution of
2

his method will converge to the original CCP (Peña-Ordieres et al.,
020). However, this approach typically introduces binary variables
or each scenario, potentially hindering its scalability. A decomposition
pproach can be applied to speedup the solving process of scenario-
ased formula (Liu et al., 2016). To avoid additional binary variables,
sample complexity bound was studied for convex problem in several
orks (Alamo et al., 2015; Campi and Garatti, 2011; Calafiore and
ampi, 2006; Campi and Garatti, 2008), which links the optimality
f full-scenario problem with the probabilistic feasibility. Recent ef-
orts have extended this methodology to nonconvex problems via the
osterior evaluation (Esfahani et al., 2015). Since the expectation on
ndicator function can be used to represent the probability of con-
traint satisfaction, many works focused on approximating indicator
unction through sample average schemes. The conditional value-at-risk
CVaR) approximation and the Bernstein approximation (Nemirovski
nd Shapiro, 2006) have gained prominence. The sigmoidal approxima-
ion offers another choice to replace the indicator function in chance
onstraints (Tovar-Facio et al., 2018). One of the challenges in those
ethods is the inaccurate gradient information (Peña-Ordieres et al.,
020). A recent work adopted the projected stochastic subgradient
lgorithm to solve a convergent sequence of smooth approximation for
CP and showed excellent results (Kannan and Luedtke, 2021).
Another promising methodology for CCP leverages historical data

o establish the probability density function (PDF), cumulative distribu-
ion function (CDF), or quantile function of uncertain parameters. These
unctions are utilized in chance constraints to facilitate deterministic re-
ormulations. The kernel smoothing method can estimate the PDF, CDF,
r quantile function to solve chance constraints with right-hand side
ncertainty (Calfa et al., 2015). A related work (Jiang and Guan, 2016)
described the confidence set of an estimated PDF via 𝜓-divergence
with a perturbed risk level to guarantee the robustness of the refor-
mulated CCP when dealing with uncertain distributions. In author’s
recent work, the Gaussian Mixture Models (GMM) were employed to
approximate general uncertainty distributions in the single-stage CCP
and the resulting bi-convex formulation can be solved to global opti-
mality through second-order cone relaxation (Yang, 2023). That work
significantly broadened the application scope of non-sampling-based
CCP methodologies.

This paper aims to solve two-stage CCP (TCCP) that integrates
chance constraints with two-stage SP to enhance the flexibility of refin-
ery optimization. We employ GMM to model uncertainty distributions
due to the following merits:

• GMM is a parametric approach to approximate complex distri-
butions with arbitrary shapes by combining multiple Gaussian
components.

• As a clustering method, GMM not only approximates the true
distribution of uncertainty, but also enables cluster-dependent
linear decision rule for two-stage optimization.

• GMM can be easily built from data through the well-developed
expectation–maximization (EM) algorithm.

In view of these advantages, GMM derived from uncertainty data
is naturally suitable for solving TCCP efficiently. Building upon on
our prior work (Yang, 2023), where we have established a global
optimization algorithm for single-stage CCP with GMM embedded, our
current research demonstrates that GMM and piecewise linear decision
rule integrated formula can be optimized through the adaptive outer
approximation, branch-and-bound, and bound tightening techniques.
The proposed approach outperforms sampling-based methods in terms
of solution time and convergence. Nevertheless, we acknowledge that
the proposed approach still can be improved to allow for more flexible
decision rule and characterize the impact of GMM estimation error on
solution optimality.

The rest of this paper is organized as follows. The refinery model
and TCCP reformulation under GMM and piecewise linear decision
rule are described in Section 2. The global optimization framework is
presented in Section 3. The comparison between GMM with piecewise
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Fig. 1. The refinery flowchart (Favennec, 2001).
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linear decision rule and sample average approximation on refinery
optimization are conducted in Section 4 to highlight the superiority of
he proposed scheme. Finally, conclusions are drawn in Section 5.

otation. Throughout this paper, vectors and matrices are denoted by
oldface letters. For 𝝁 ∈ R𝑛 and 𝜮 ∈ S𝑛+, we let  (𝝁,𝜮) ∶ R𝑛 → R and
(⋅;𝝁,𝜮) ∶ R𝑛 → R denote the PDF and CDF of the 𝑛-variate normal
istribution with mean vector 𝝁 and covariance matrix 𝜮, respectively.
e write 𝜽 ∼  (𝝁,𝜮) to express that 𝜽 is normally distributed with
ean 𝝁 and covariance matrix 𝜮. Similarly, for 𝒘 ∈ R𝑆+ such that
𝑆
𝑠=1𝑤𝑠 = 1, 𝝁𝑠 ∈ R𝑛 and 𝜮𝑠 ∈ S𝑛+, ∀𝑠 ∈ {1,… , 𝑆}, we write 𝜽 ∼
𝑆
𝑠=1𝑤𝑠

(

𝝁𝑠,𝜮𝑠
)

to express that 𝜽 follows the 𝑆-component Gaussian
ixture distribution.

. Methodology

.1. Refinery model

A simplified refinery model is applied for this study (Favennec,
001). The plant monthly planning and operations can be conceptual-
zed as a two-stage decision process (Yang and Barton, 2016). In stage-I,
he optimal crude combination is determined to maximize the expected
rofit. In stage-II, the selected crude oils undergo a series of processing
teps outlined in Fig. 1. The crude distillation unit (CDU) separates
he inflow into different fractions based on their boiling points, in-
luding refinery gas (RG), liquefied petroleum gas (LG), light naphtha
LN), heavy naphtha (HN), kerosene (KE), gas oil (GO), vacuum dis-
illate (VGO), and vacuum residual (VR). These intermediate streams
re subsequently directed to the reformer, cracker, isomeration, and
esulferization units for further processing to enhance their values or
educe undesirable components. The processed streams are ultimately
lended in the final product tanks to yield gasoline PG98, ES95, diesel,
eavy fuel oil (HF) and jet fuel (JF). It is worth noting that, in an effort
o reduce sulfur content in diesel, a proportion of low-sulfur (15 ppm)
E is mixed into the final product, denoted as ADD in the flowchart.
In stage-I, the procurement of three crude oil is decided according

o their properties, price, refinery capacity, and product requirement.
he crude oil is usually traded in integer lots that can be represented
n base 2 by using binary variables 𝒙𝑗 = [𝑥𝑗,1, 𝑥𝑗,2,…]T, where 𝑗 is the
ype index of crude oil. Here we assume the lot size to be 5000 barrels.
3

qs. (1) and (2) are enforced for crude oil procurement. If type 𝑗 crude
il is selected, namely 𝑒𝑗 = 1, the lower bound on that order is specified
s 10 lots. The upper bound of an order is specified as 360 lots due
o the stock availability. As a result, the dimension of 𝒙𝑗 should be 9
nd each dimension is denoted by index 𝑡. If a type of crude oil is not
elected, namely 𝑒𝑗 = 0, (2) becomes active and 𝑥𝑗,𝑡,∀𝑡 = 1, 2,… , 9 are
ero.

0𝑒𝑗 ⩽
9
∑

𝑡=1
𝑥𝑗,𝑡 × 2𝑡−1 ⩽ 360, 𝑗 = 1, 2, 3, (1)

𝑥𝑗,𝑡 ⩽ 𝑒𝑗 , 𝑥𝑗,𝑡 ∈ {0, 1}, 𝑒𝑗 ∈ {0, 1}, 𝑗 = 1, 2, 3, 𝑡 = 1, 2,… , 9. (2)

Constraints listed in Eqs. (3)–(8) are required to satisfy in stage-
I, including the sulfur contents of PG98, ES95, and diesel, research
ctane number (RON) of PG98 and ES95, HF viscosity, PG98 and
iesel demands. However, the operational uncertainties, denoted as
= [𝜃Cr, 𝜃RON, 𝜃S], including CN yield increment, ISO RON reduction,
nd sulfur residual increment, may render the problem infeasible under
pecific scenarios. Therefore, those quality or demand constraints will
e relaxed such that a joint violation chance 𝜖 is allowed. In addition,
he catalytic cracked gasoline (CN) and coker gas oil (CGO) mass
alance are also impacted by the cracker yield uncertainty, shown
n (10) and (11) respectively. Other capacity inequalities and mass
alance equations are the same with Yang (2019).

ulfur in PG98:

PG98,ISOSulISO + 𝑦PG98,LNSulLN + 𝑦PG98,R95SulR95
+ 𝑦PG98,LGSulLG + 𝑦PG98,R100SulR100

+ 𝑦PG98,CNSulCN ⩽ 0.0010%(𝑦PG98,LG + 𝑦PG98,LN + 𝑦PG98,ISO

+ 𝑦PG98,R95 + 𝑦PG98,R100 + 𝑦PG98,CN), (3)

here Sul represents the sulfur content in each flow.

ulfur in ES95:

ES95,ISOSulISO + 𝑦ES95,LNSulLN + 𝑦ES95,R95SulR95
+ 𝑦ES95,LGSulLG + 𝑦ES95,R100SulR100

+ 𝑦ES95,CNSulCN ⩽ 0.0020%(𝑦ES95,ISO + 𝑦ES95,LN + 𝑦ES95,LG

+ 𝑦ES95,R95 + 𝑦ES95,R100 + 𝑦ES95,CN), (4)
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Sulfur in Diesel:
3
∑

𝑗=1
𝑦DIESEL,GO𝑗 SulGO𝑗 +

3
∑

𝑗=1
𝑦DIESEL,DESGO𝑗 SulGO𝑗 (0.01 + 𝜃𝑆 )

+ 𝑦DIESEL,DESCGOSulCGO(0.01 + 𝜃𝑆 )
+ 𝑦DIESEL,CGOSulCGO + 𝑦DIESEL,AddSulAdd

+ 𝑦DIESEL,KESulKE ⩽ 0.0018%
(

𝑦DIESEL,KE

3
∑

𝑗=1

(

𝑦DIESEL,GO𝑗 + 𝑦DIESEL,DESGO𝑗
)

+ 𝑦DIESEL,DESCGO

+ 𝑦DIESEL,CGO + 𝑦DIESEL,Add

)

, (5)

RON of PG98:
𝑦PG98,ISO(RONISO − 𝜃RON)

𝜌ISO
+
𝑦PG98,LNRONLN

𝜌LN

+
𝑦PG98,R95RONR95

𝜌R95
+
𝑚PG98,R100RONR100

𝜌R100

+
𝑦PG98,CNRONCN

𝜌CN
+
𝑦PG98,LGRONLG

𝜌LG
⩾ 98𝑉PG98, (6)

where 𝑉 is the volume of products and 𝜌 is the density.

RON of ES95:
𝑦ES95,ISO(RONISO − 𝜃RON)

𝜌ISO
+
𝑦ES95,LNRONLN

𝜌LN

+
𝑦ES95,R95RONR95

𝜌R95
+
𝑦ES95,R100RONR100

𝜌R100

+
𝑦ES95,CNRONCN

𝜌CN
+
𝑦ES95,LGRONLG

𝜌LG
⩾ 95𝑉ES95. (7)

Viscosity of HF:
∑3
𝑗=1 𝑦HF,VR𝑗VisVR𝑗

𝜌VR𝑗
+
𝑦HF,CGOVisCGO

𝜌CGO
⩽ 35𝑉HF,

where Vis denotes the viscosity of streams.

PG98 demand:

𝑦PG98,LG+𝑦PG98,ISO+𝑦PG98,LN+𝑦PG98,R100+𝑦PG98,R95+𝑦PG98,CN ⩾ 15. (8)

DIESEL demand:

𝑦DIESEL,Add + 𝑦DIESEL,KE

+
3
∑

𝑗=1

(

𝑦DIESEL,GO𝑗 + 𝑦DIESEL,DESGO𝑗
)

+ 𝑦DIESEL,CGO + 𝑦DIESEL,DESCGO ⩾ 100, (9)

CN balance:

𝑦Cr-M,VGO(PCr-M,CN + 𝜃Cr) + 𝑦Cr-A,VGO(PCr-A,CN + 𝜃Cr) = 𝑦PG98,CN + 𝑦ES95,CN
(10)

where P is the production percentage and cracker may work on two
modes, Mogas: Cr-M and AGO: Cr-A.

CGO balance:

𝑦Cr-M,VGO(PCr-M,CGO − 𝜃Cr) + 𝑦Cr-A,VGO(PCr-A,CGO − 𝜃Cr)

=𝑦DIESEL,CGO + 𝑦Des,CGO + 𝑦HF,CGO. (11)

2.2. Two-stage chance-constrained program

A generic formula of two-stage chance-constrained program is de-
veloped in ( ) to minimize the cost of refining process shown in
Fig. 1:
4

min
𝒙,𝒆

𝒑T0𝒙 + E𝜽( (𝒙,𝜽)) ( )

s.t. Eqs. (1), (2),
𝒙 ∈ {0, 1}, 𝒆 ∈ {0, 1},

here E is the expectation operator and stage-II formula is

(𝒙,𝜽) = min
𝒚1 ,𝒚2

𝒑T1𝒚1 + 𝒑T2𝒚2

s.t. P
{

𝒂T𝑖 𝒙 +
𝐾
∑

𝑘=1
𝒃T𝑘,𝑖𝜃𝑘𝒚1 + 𝒄T𝑖 𝒚2 ⩽ 𝒈𝑖, ∀𝑖 = 1, 2,… , 𝐼

}

⩾ 1 − 𝜖,

(12)

𝑨′𝒙 +
𝐾
∑

𝑘=1
𝑩′
𝑘𝜃𝑘𝒚1 + 𝑪 ′𝒚2 = 0, (13)

𝟎 ⩽ 𝒚1, 𝟎 ⩽ 𝒚2,

where 𝐾 is the dimension of uncertain parameters. Constant vectors
and matrices include 𝒑0, 𝒑1, 𝒑2, 𝒂𝑖, 𝑨′, 𝒃𝑘,𝑖, 𝑩′

𝑘, 𝒄𝑖, 𝑪
′ and 𝒈𝑖. 𝒚1 ∈ 𝑁1

and 𝒚2 ∈ 𝑁2 are two mutually exclusive vectors representing stage-II
recourse variables, such as flowrate of each stream. Their coefficients
𝒑1 and 𝒑2 are negative to represent the revenue of productions. 𝒙
is the crude oil procurement, and thus its coefficient 𝒑0 is positive
to represent the oil price. In this formulation, we assume that each
uncertainty parameter can be modeled by the independent GMMwith 𝑆
components: 𝜃𝑘 ∼

∑𝑆
𝑠=1𝑤𝑘,𝑠

(

𝜇𝑘,𝑠, 𝜎2𝑘,𝑠
)

, ∀𝑘 ∈ {1, 2,… , 𝐾}. Here 𝑆 is a
pre-determined number of Gaussian components in the GMM to control
the approximation accuracy. We recommend fitting the uncertainty
data from 𝑆 = 2 because a larger number of 𝑆 may lead to more
complexities in optimization. Striking a balance between accuracy and
complexity is still an ongoing research. 𝜖 is a small risk level that can
exclude extreme cases in the optimization. According to Eqs. (3)–(8),
totally 𝐼 = 8 joint chance constraints should be considered in stage-II
to allow the incomplete recourse. In addition, Eq. (13) represents the
mass balance in the refinery model, such as (10) and (11), in which
uncertain parameter 𝜃Cr multiples with variables 𝑦Cr-M,VGO and 𝑦Cr-A,VGO
to determine the CN and CGO productions.

2.3. Piecewise linear decision rule

In this subsection, the vector 𝒚2 is specified as a function of uncer-
tain parameters whereas 𝒚1 is kept as constant. Otherwise, quadratic
terms on 𝜽 will be introduced into Eqs. (12) and (13), rendering
the optimization intractable. This restriction may limit the flexibility
of the proposed approach applied in processes with many uncertain
parameters.

Because GMM has represented the distribution of each uncertain
parameter by 𝑆 Gaussian components, the entire uncertainty space with
𝐾 parameters can be partitioned into 𝐿 = 𝑆𝐾 clusters 𝛺1, 𝛺2,… , 𝛺𝐿. A
linear decision rule can be equipped with each cluster to parameterize
𝒚2:

𝒚2 = 𝑯̃𝜽 + 𝒓 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑯1𝜽 + 𝒓 if 𝜽 ∈ 𝛺1,
𝑯2𝜽 + 𝒓 if 𝜽 ∈ 𝛺2,
⋮ ⋮,
𝑯𝐿𝜽 + 𝒓 if 𝜽 ∈ 𝛺𝐿,

(14)

where 𝒓 and 𝑯 𝑙 = [𝒉T𝑙,1;𝒉
T
𝑙,2;… ;𝒉T𝑙,𝑁2

] ∈ R𝑁2×𝐾 are decision variables
calculated in the optimization. Here 𝒓 should be constant across all
clusters. To show that, let us substitute (14) into (13):

𝑨′𝒙 +
𝐾
∑

𝑘=1
𝑩′
𝑘𝜃𝑘𝒚1 + 𝑪 ′(𝑯̃𝜽 + 𝒓) = 0.

To ensure this equality under any scenarios, there should be:
′ ′
𝑨 𝒙 + 𝑪 𝒓 = 0,
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𝐾
∑

𝑘=1
𝑩′
𝑘𝜃𝑘𝒚1 + 𝑪 ′𝑯̃𝜽 = 0.

ere we can see that 𝒓 has no flexibility to vary across different pieces.
There is a mapping function from cluster to the dominant Gaus-

ian component index set:  ∶ 𝛺𝑙 ↦ {𝑑𝑙,1, 𝑑𝑙,2,… , 𝑑𝑙,𝐾}. Given
a sampled uncertainty vector 𝜽∗, the dominant component of each
ncertain parameter {1(𝜃∗1 ),2(𝜃∗2 ),… ,𝐾 (𝜃∗𝐾 )} will determine the
assigned cluster through the inverse mapping −1. Here 𝑘(𝜃∗𝑘) ∈
1, 2,… , 𝑆},∀𝑘 ∈ {1, 2,… , 𝐾} is defined as:

𝑘(𝜃∗𝑘) = argmax
𝑠′

𝑤𝑘,𝑠′𝜙(𝜃∗𝑘 ;𝜇𝑠′ , 𝛴𝑘,𝑠′ )
∑𝑆
𝑠=1𝑤𝑘,𝑠𝜙(𝜃

∗
𝑘 ;𝜇𝑘,𝑠, 𝛴𝑘,𝑠)

. (15)

Because all uncertainty variables are independent, the probability of a
sampled uncertainty vector belonging to cluster 𝛺𝑙 is given by 𝛿𝑙 =
∏𝐾

𝑘=1𝑤𝑑𝑙,𝑘 . Furthermore, we define the mean vector and covariance
matrix corresponding to the cluster 𝛺𝑙 as 𝝁̂𝑙 = [𝜇𝑑𝑙,1 , 𝜇𝑑𝑙,2 ,… , 𝜇𝑑𝑙,𝐾 ]

T

and 𝜮̂𝑙 = diag(𝜎2𝑑𝑙,1 ,… , 𝜎2𝑑𝑙,𝐾 ), respectively.
Let us substitute (14) into ( ). The objective function becomes:

𝒑T0𝒙 + E𝜽(𝒑T1𝒚1 + 𝒑T2𝒚2) = 𝒑T0𝒙 + 𝒑T1𝒚1 + E𝜽(𝒑T2𝒚2)

= 𝒑T0𝒙 + 𝒑T1𝒚1 +
𝐿
∑

𝑙=1
𝒑T2 𝒓 +

𝐿
∑

𝑙=1
𝒑T2𝑯 𝑙𝝁̂𝑙𝛿𝑙 (16)

The resulting single stage optimization is:

min
𝒙,𝒆,𝒚1 ,𝑯 𝑙 ,𝒓𝑙

𝒑T0𝒙 + 𝒑T1𝒚1 +
𝐿
∑

𝑙=1
𝒑T2 𝒓 +

𝐿
∑

𝑙=1
𝒑T2𝑯 𝑙𝝁̂𝑙𝛿𝑙 ()

s.t. P
{

𝒂T𝑖 𝒙 + (𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯̃)𝜽 + 𝒄T𝑖 𝒓 ⩽ 𝑔𝑖, ∀𝑖 = 1, 2,… , 𝐼,

}

⩾ 1 − 𝜖 + 𝜆𝑁2, (17)

𝑨′𝒙 +
𝐾
∑

𝑘=1
𝑩′
𝑘𝜃𝑘𝒚1 + 𝑪 ′(𝑯 𝑙𝜽 + 𝒓) = 𝟎, ∀𝑙 = 1, 2,… , 𝐿, (18)

P
{

0 ⩽ 𝑦2,𝑗
}

⩾ 1 − 𝜆,∀𝑗 = 1, 2,… , 𝑁2, (19)
𝒙 ∈ {0, 1}, 𝒆 ∈ {0, 1},Eqs. (1), (2), 𝟎 ⩽ 𝒚1,

where 𝑩T
𝑖 = [𝒃1,𝑖, 𝒃2,𝑖,… , 𝒃𝑁,𝑖]; 𝜆 is a small constant risk level for non-

negative constraints such that 𝜆𝑁2 ≪ 𝜖. This configuration is justifiable
in that the quality or demand constraint violation can be mitigated
via some recovery operations whereas the negative flowrates are not
physically plausible. Because 𝒚2 is linearly dependent on uncertainty
𝜽, the stringent constraint 𝟎 ⩽ 𝒚2 is transformed into a series of high-
probability constraints (19). In addition, the joint risk level of (17) and
(19) is smaller than 𝜖 according to Boole’s inequality, which ensuring
the solution of () to be feasible in ( ).

2.4. Reformulation

Eqs. (17) and (19) are all chance-constrained with GMM uncer-
tainty. We present Proposition 1 to derive their deterministic reformu-
lation.

Proposition 1. For GMM uncertainty 𝜽 ∼
∑𝑆
𝑠=1𝑤𝑠

(

𝝁𝑠,𝜮𝑠
)

, piecewise
linear decision rule (14), and 𝜆 ∈ (0, 1), if there exists a series of positive
number 𝛾𝑙 < 𝛿𝑙 ,∀𝑙 = 1, 2,… , 𝐿, satisfying

𝐿=𝑆𝐾
∑

𝑙=1
𝛾𝑙 ⩾ 1 − 𝜆, (20)

then statement (b) below implies statement (a).

(a) P
(

0 ⩽ 𝑦2,𝑗
)

⩾ 1 − 𝜆;
(b) 𝛷−1( 𝛾𝑙 )

√

𝒉T 𝜮̂ 𝒉 ⩽ 𝝁̂T𝒉 + 𝑟 , ∀𝑙 ∈ {1, 2,… , 𝐿}.
5

𝛿𝑙 𝑙,𝑗 𝑙 𝑙,𝑗 𝑙 𝑙,𝑗 𝑗
Proof. Because clusters 𝛺𝑙 ,∀𝑙 ∈ {1, 2,… , 𝐿} form a finite partition of
the entire uncertainty space, the law of total probability shows that:

P
(

0 ⩽ 𝑦2,𝑗
)

=
𝐿
∑

𝑙=1
P
(

𝜽T𝒉𝑙,𝑗 + 𝑟𝑗 ⩾ 0| 𝜽 ∈ 𝛺𝑙
)

P
(

𝜽 ∈ 𝛺𝑙
)

=
𝐿
∑

𝑙=1
P
(

𝜽T𝒉𝑙,𝑗 + 𝑟𝑗 ⩾ 0| 𝜽 ∈ 𝛺𝑙
)

𝛿𝑙 (21)

The conditional probability of the GMM is Gaussian: P
(

𝜽T𝒉𝑙,𝑗 + 𝑟𝑗 | 𝜽
∈ 𝛺𝑙

)

∼  (𝝁̂𝑙𝒉𝑙,𝑗 + 𝑟𝑗 ,𝒉T𝑙,𝑗𝜮̂𝑙𝒉𝑙,𝑗 ). Therefore, the classical results of
Gaussian-distributed linear stochastic program (Prékoba, 1995) can be
applied:

𝛷−1( 𝛾𝑙𝛿𝑙
)
√

𝒉T𝑙,𝑗𝜮̂𝑙𝒉𝑙,𝑗 ⩽ 𝝁̂T𝑙 𝒉𝑙,𝑗 + 𝑟𝑗 , ∀𝑙 ∈ {1, 2,… , 𝐿}

⇔ 𝛿𝑙 𝛷
(

𝜽T𝒉𝑙,𝑗 + 𝑟𝑗 ⩾ 0| 𝜽 ∈ 𝛺𝑙; 𝝁̂𝑙𝒉𝑙,𝑗 + 𝑟𝑙,𝑗 ,𝒉T𝑙,𝑗𝜮̂𝑙𝒉𝑙,𝑗
)

⩾ 𝛾𝑙 , ∀𝑙 ∈ {1, 2,… , 𝐿}

⇒
∑𝐿
𝑙=1 𝛿𝑙 𝛷

(

𝜽T𝒉𝑙,𝑗 + 𝑟𝑗 ⩾ 0| 𝜽 ∈ 𝛺𝑙; 𝝁̂𝑙𝒉𝑙,𝑗 + 𝑟𝑗 ,𝒉T𝑙,𝑗𝜮̂𝑙𝒉𝑙,𝑗
)

⩾
∑𝐿
𝑙=1 𝛾𝑙

⇒
∑𝐿
𝑙=1 P

(

𝜽T𝒉𝑙,𝑗 + 𝑟𝑗 ⩾ 0| 𝜽 ∈ 𝛺𝑙
)

𝛿𝑙 ⩾ 1 − 𝜆

⇔ P
(

0 ⩽ 𝑦2,𝑗
)

⩾ 1 − 𝜆

This concludes the proof. □

Even though Proposition 1 is described based on constraint (19), it
can be further applied to constraint (17) with piecewise linear decision
rule 𝑯̃ and 𝒓 embedded. Consequently, () can be conservatively
approximated by the following formula:

min
𝒙,𝒆,𝒚1 ,𝑯 𝑙 ,𝒓,𝛾𝑖,𝑙

𝒑T0𝒙 + 𝒑T1𝒚1 +
𝐿
∑

𝑙=1
𝒑T2 𝒓𝛿𝑙 +

𝐿
∑

𝑙=1
𝒑T2𝑯 𝑙𝝁̂𝑙𝛿𝑙 (2)

s.t. 𝛷−1(
𝛾𝑖,𝑙
𝛿𝑙

)
√

(𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙)𝜮̂𝑙(𝒚T1𝑩

T
𝑖 + 𝒄T𝑖 𝑯 𝑙)T ⩽

𝑔𝑖 − (𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙)𝝁̂𝑙 − 𝒂T𝑖 𝒙 − 𝒄T𝑖 𝒓, ∀𝑖 = 1, 2,… , 𝐼,

∀𝑙 = 1, 2,… , 𝐿, (22)
𝐼
∑

𝑖=1

𝐿
∑

𝑙=1
𝛾𝑖,𝑙 = 1 − 𝜖 + 𝜆𝑁2, (23)

𝑨′𝒙 + 𝑪 ′𝒓 = 𝟎, (24)
𝑩′
𝑘𝒚1 + (𝑪 ′𝑯 𝑙)∶,𝑘 = 𝟎, ∀𝑙 = 1, 2,… , 𝐿, ∀𝑘 = 1, 2,… , 𝐾,

(25)

𝛷−1(1 − 𝜆)
√

𝒉T𝑙,𝑗𝜮̂𝑙𝒉𝑙,𝑗 ⩽ 𝒉T𝑙,𝑗 𝝁̂𝑙 + 𝑟𝑗 ,∀𝑗 = 1, 2,… , 𝑁2,

∀𝑙 = 1, 2,… , 𝐿, (26)
𝒙 ∈ {0, 1}, 𝒆 ∈ {0, 1},Eqs. (1), (2), 𝟎 ⩽ 𝒚1.

Eqs. (24) and (25) are derived from Eq. (18) such that the constant
term and coefficient of uncertainties are equal to zero, respectively.
Because 𝜆 for non-negative constraints should be small, there is not
much space to tune their risk level. Hence, each GMM cluster induced
constraint for 0 ⩽ 𝑦2,𝑗 specifies 𝛾𝑗,𝑙∕𝛿𝑙 = (1 − 𝜆) in (26) to meet (20)
and avoid unnecessary computational burden. In case study, we set
1 − 𝜆 = 0.9999. Eqs. (22) and (23) are designed for quality constraint
(17) by applying Boole’s inequality and Proposition 1. The risk level 𝛾𝑖,𝑙
for each cluster-induced constraint (22) is a decision variable.

3. Optimization methods

In this section, several optimization methods, including outer ap-
proximation, convex relaxation, branch-and-bound, and optimality-
based bound tightening, are developed and integrated to solve (2).
Given that (2) is inherently non-convex, the proposed algorithm
constructs and solves a lower bounding mixed-integer convex problem

and an upper bounding mixed-integer convex problem iteratively.
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Fig. 2. The outer approximation of 𝛷−1( 𝛾
𝛿
).
T
b

𝒙

he gap between lower and upper bounds gradually converges and
ltimately a near-optimal solution is achieved. The conservativeness
f the proposed method mainly arises from the Boole’s inequality and
re-specified functional structure of stage-II variables.

.1. Adaptive outer approximation

The function 𝛷−1 should be numerically approximated because it
oes not have an analytical form. The outer approximation method
eveloped by Cheng et al. (2012) can be applied because 𝛾𝑖,𝑙

𝛿𝑙
↦ 𝛷−1( 𝛾𝑖,𝑙𝛿𝑙

)
is convex when 𝛾𝑖,𝑙

𝛿𝑙
∈ [0.5, 1). A graphical demonstration of the outer

approximation is shown in Fig. 2 with 𝑞th cutting plane 𝑣 ⩾ 𝛼𝑞
𝛾𝑖,𝑙
𝛿𝑙

+ 𝛽𝑞 .
The tangent 𝛼𝑞 and interception 𝛽𝑙 are:

𝑞 =
𝑑𝛷−1( 𝛾𝑖,𝑙𝛿𝑙

)

𝑑( 𝛾𝑖,𝑙𝛿𝑙
)

|

|

|

|

𝛾𝑖,𝑙
𝛿𝑙

=𝜋𝑞
= 1
𝜙(𝛷−1(𝜋𝑞))

,

𝑞 = 𝛷−1(𝜋𝑞) − 𝛼𝑞𝜋𝑞 .

here 𝜋𝑞 is 𝑞th sampled value of
𝛾𝑖,𝑙
𝛿𝑙
and 𝜙 is the standard probability

distribution function of a normal distribution.
Consequently, an outer approximation of (2) is:

min
,𝒆,𝒚1 ,𝑯 𝑙 ,𝒓𝑙 ,𝛾𝑖,𝑙

𝒑T0𝒙 + 𝒑T1𝒚1 +
𝐿
∑

𝑙=1
𝒑T2 𝒓𝑙𝛿𝑙 +

𝐿
∑

𝑙=1
𝒑T2𝑯 𝑙𝝁̂𝑙𝛿𝑙 (3)

s.t. 𝑣𝑖,𝑙
√

(𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙)𝜮̂𝑙(𝒚T1𝑩

T
𝑖 + 𝒄T𝑖 𝑯 𝑙)T ⩽ (27)

𝑔𝑖 − (𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙)𝝁̂𝑙 − 𝒂T𝑖 𝒙 − 𝒄T𝑖 𝒓, ∀𝑖 = 1, 2,… , 𝐼,

∀𝑙 = 1, 2,… , 𝐿,
𝐼
∑

𝑖=1

𝐿
∑

𝑙=1
𝛾𝑖,𝑙 = 1 − 𝜖 + 𝜆𝑁2,

0.5 ⩽ 𝛾𝑖,𝑙∕𝛿𝑙 ⩽ 0.9999, (28)

𝑣𝑖,𝑙 ⩾ 𝛼𝑞
𝛾𝑖,𝑙
𝛿𝑙

+ 𝛽𝑞 ,∀𝑞 = 1, 2,… , 𝑄, ∀𝑙 = 1, 2,… , 𝐿,

∀𝑖 = 1, 2,… , 𝐼,

𝑨′𝒙 + 𝑪 ′𝒓 = 𝟎,
𝑩′
𝑘𝒚1 + (𝑪 ′𝑯 𝑙)∶,𝑘 = 𝟎, ∀𝑙 = 1, 2,… , 𝐿, ∀𝑘 = 1, 2,… , 𝐾,

𝛷−1(1 − 𝜆)
√

𝒉T𝑙,𝑗𝜮̂𝑙𝒉𝑙,𝑗 ⩽ 𝒉T𝑙,𝑗 𝝁̂𝑙 + 𝑟𝑗 ,∀𝑗 = 1, 2,… , 𝑁2,

∀𝑙 = 1, 2,… , 𝐿,

𝒙 ∈ {0, 1}, 𝒆 ∈ {0, 1},Eqs. (1), (2), 𝟎 ⩽ 𝒚1,
6

where 𝑄 is the number of sampling points on 𝛾∕𝛿. As 𝑄 → ∞, (3)
approaches (2) with arbitrary accuracy. However, because (2)
has 𝐼 × 𝐿 ×𝑄 cutting planes, increasing 𝑄 implies more constraints to
be considered during the optimization. To balance the computational
demand and approximation accuracy, an adaptive outer approximation
scheme developed in Yang et al. (2017) is adopted to maintain 𝑄 at
a manageable level. Starting from a small set of sampling points, the
lower bounding problem is solved repeatedly at each iteration, and
the resulting solution

𝛾∗𝑖,𝑙
𝛿𝑙

is used as the sampling point to add new
cutting planes in real time. Through this manner, the solution 𝑣𝑞 can
be continuously elevated to reduce the outer approximation error at
interested feasible region and tighten (27). Moreover, some existing
cutting planes can be eliminated if their associated sampling points are
out of the interested feasible region. Because of 𝛷−1(1) → ∞ and to
ensure convexity, Eq. (28) sets the upper and lower bounds on 𝛾𝑖,𝑙∕𝛿𝑙.
The upper bound 0.9999 is consistent with 1 − 𝜆 = 0.9999 in the
non-negative constraints.

3.2. Convex relaxation

The formula (3) has non-convex terms:

𝑣𝑖,𝑙
√

(𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙)𝜮̂𝑙(𝒚T1𝑩

T
𝑖 + 𝒄T𝑖 𝑯 𝑙)T, ∀𝑖 = 1, 2,… , 𝐼, ∀𝑙 = 1, 2,… , 𝐿.

The McCormick method (McCormick, 1976) can be used to develop a
convex relaxation of those non-convex terms. Let us define 𝒖𝑖,𝑙 = 𝒚T1𝑩

T
𝑖 +

𝒄T𝑖 𝑯 𝑙 ∈ 𝐾 and introduce an auxiliary variable: 𝒛𝑖,𝑙 = 𝑣𝑖,𝑙𝒖𝑖,𝑙 ∈ 𝐾 ,
such that

𝑣𝑖,𝑙
√

(𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙)𝜮̂𝑙(𝒚T1𝑩

T
𝑖 + 𝒄T𝑖 𝑯 𝑙)T = 𝑣𝑖,𝑙

√

𝒖𝑖,𝑙𝜮̂𝑙𝒖T𝑖,𝑙 =
√

𝒛T𝑖,𝑙𝜮𝑙𝒛𝑖,𝑙

he McCormick relaxation utilizes a set of inequalities (29)–(32) to
uild a convex hull of 𝒛𝑖,𝑙 = 𝑣𝑖,𝑙𝒖𝑖,𝑙. The resulting formula is:

min
,𝒆,𝒚1 ,𝑯 𝑙 ,𝒓,𝛾𝑖,𝑙

𝒑T0𝒙 + 𝒑T1𝒚1 +
𝐿
∑

𝑙=1
𝒑T2 𝒓𝑙𝛿𝑙 +

𝐿
∑

𝑙=1
𝒑T2𝑯 𝑙𝝁̂𝑙𝛿𝑙 ()

s.t.
√

𝒛𝑖,𝑙𝜮̂ 𝑙𝒛T𝑖,𝑙 ⩽ 𝑔𝑖 − 𝒖𝑖,𝑙𝝁̂𝑙 − 𝒂T𝑖 𝒙 − 𝒄T𝑖 𝒓, ∀𝑖 = 1, 2,… , 𝐼,

∀𝑙 = 1, 2,… , 𝐿,

𝒖𝑖,𝑙 = 𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙 ,

𝐼
∑

𝑖=1

𝐿
∑

𝑙=1
𝛾𝑖,𝑙 = 1 − 𝜖 + 𝜆𝑁2,

0.5 ⩽ 𝛾𝑖,𝑙∕𝛿𝑙 ⩽ 0.9999,

𝑣𝑖,𝑙 ⩾ 𝛼𝑞
𝛾𝑖,𝑙 + 𝛽𝑞 ,∀𝑞 = 1, 2,… , 𝑄, ∀𝑙 = 1, 2,… , 𝐿,

𝛿𝑙
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∀𝑖 = 1, 2,… , 𝐼,

𝑨′𝒙 + 𝑪 ′𝒓 = 𝟎,
𝑩′
𝑘𝒚1 + (𝑪 ′𝑯 𝑙)∶,𝑘 = 𝟎, ∀𝑙 = 1, 2,… , 𝐿, ∀𝑘 = 1, 2,… , 𝐾,

𝛷−1(1 − 𝜆)
√

𝒉T𝑙,𝑗𝜮̂ 𝑙𝒉𝑙,𝑗 ⩽ 𝒉T𝑙,𝑗 𝝁̂𝑙 + 𝑟𝑗 ,∀𝑗 = 1, 2,… , 𝑁2,

∀𝑙 = 1, 2,… , 𝐿,

𝒛𝑖,𝑙 ⩾ 𝑣𝑖,𝑙𝒖𝑖,𝑙 + 𝑣𝑖,𝑙𝒖𝑖,𝑙 − 𝑣𝑖,𝑙𝒖𝑖,𝑙 , ∀𝑙 = 1, 2,… , 𝐿,∀𝑖 = 1, 2,… , 𝐼,
(29)

𝒛𝑖,𝑙 ⩾ 𝑣𝑖,𝑙𝒖𝑖,𝑙 + 𝑣𝑖,𝑙𝒖𝑖,𝑙 − 𝑣𝑖,𝑙𝒖𝑖,𝑙 , ∀𝑙 = 1, 2,… , 𝐿,∀𝑖 = 1, 2,… , 𝐼,

(30)
𝒛𝑖,𝑙 ⩽ 𝑣𝑖,𝑙𝒖𝑖,𝑙 + 𝑣𝑖,𝑙𝒖𝑖,𝑙 − 𝑣𝑖,𝑙𝒖𝑖,𝑙 , ∀𝑙 = 1, 2,… , 𝐿,∀𝑖 = 1, 2,… , 𝐼,

(31)
𝒛𝑖,𝑙 ⩽ 𝑣𝑖,𝑙𝒖𝑖,𝑙 + 𝑣𝑖,𝑙𝒖𝑖,𝑙 − 𝑣𝑖,𝑙𝒖𝑖,𝑙 , ∀𝑙 = 1, 2,… , 𝐿,∀𝑖 = 1, 2,… , 𝐼,

(32)
𝒙 ∈ {0, 1}, 𝒆 ∈ {0, 1},Eqs. (1), (2), 𝟎 ⩽ 𝒚1,

here the upper and lower bars represent the upper and lower bounds
n variables, respectively. Solving () will generate a lower bound-
ng solution of (2) and (3), denoted as LB. Note that () is a
ixed-integer second-order cone program (MI-SOCP), and thus can be
olved to the global optimum with pre-specified relative gap through
ff-the-shelf solvers.
In the proposed scheme, totally 𝐼 × 𝐿 × 𝐾 bilinear terms in ()

can be relaxed. Alternatively, one may consider to multiple 𝑣𝑖,𝑙 into the
matrix 𝑯 𝑙 and relax the term 𝑣𝑖,𝑙ℎ𝑙,𝑗,𝑘, ∀𝑗 = 1, 2,… , 𝑁2,∀𝑘 = 1, 2,… , 𝐾.
While this approach may result in a tighter relaxation, it has to consider
𝐼 × 𝐿 × 𝑁2 × 𝐾 bilinear terms, which may impede the efficiency
of subsequent branch-and-bound and bound tightening. Moreover, as
both 𝒉𝑖,𝑗,𝑘 and 𝒖𝑖,𝑙 involve decision rule coefficients, their upper and
lower bounds should be guessed without prior information. Therefore,
a relaxation scheme with less bilinear terms is preferred.

3.3. Branch-and-bound

In this sub-section, we develop a global optimization framework
for (2). The relaxation gap of () depends on the distance
between upper and lower bounds on variables 𝒗 and 𝒖. Hence, a branch-
and-bound scheme can be employed to artificially reduce the feasible
interval, and thereby the relaxation gap. To this end, a searching
tree is initialized with the entire 𝒖 intervals. According to our previ-
ous research (Yang et al., 2017), branching 𝒖 is more efficient than
branching 𝑣 for global optimization. Hence, () is solved at each
node with associated intervals during the tree traversal, and then the
selected variable in vector 𝒖 is branched to create two new nodes on the
searching tree. The following criterion is applied for branching variable
selection.

{𝑖′, 𝑙′, 𝑘′} = arg max
𝑖∈{1,2,…,𝐼},𝑙∈{1,2,…,𝐿},𝑘∈{1,2,…,𝐾}

|𝑣∗𝑖,𝑙𝑢
∗
𝑖,𝑙,𝑘 − 𝑧

∗
𝑖,𝑙,𝑘|, (33)

where 𝑣∗𝑖,𝑙, 𝑢
∗
𝑖,𝑙,𝑘 and 𝑧∗𝑖,𝑙,𝑘 are the solution of () at a node. Once

𝑢𝑖′ ,𝑙′ ,𝑘′ is chosen, its interval is divided into two disjoint sub-intervals:
[𝑢𝑖′ ,𝑙′ ,𝑘′ , 𝑢

∗
𝑖′ ,𝑙′ ,𝑘′ ] and [𝑢∗𝑖′ ,𝑙′ ,𝑘′ , 𝑢𝑖′ ,𝑙′ ,𝑘′ ], while other variables’ bounds are

nchanged. The resulting two exclusive feasible regions together with
heir parent () solution value will be used to create two children
odes in the searching tree.
At each iteration, we always choose a unsolved node associated with

he smallest parent () solution value. By solving () at that
ode, we obtain the risk level 𝛾∗𝑖,𝑙 assignment, which can be substituted
nto (2) to yield an upper bounding problem:

min
,𝒆,𝒚1 ,𝑯 𝑙 ,𝒓

𝒑T0𝒙 + 𝒑T1𝒚1 +
𝐿
∑

𝑙=1
𝒑T2 𝒓𝛿𝑙 +

𝐿
∑

𝑙=1
𝒑T2𝑯 𝑙𝝁̂𝑙𝛿𝑙 ()

s.t. 𝛷−1(
𝛾∗𝑖,𝑙 )

√

(𝒚T𝑩T + 𝒄T𝑯 𝑙)𝜮̂𝑙(𝒚T𝑩T + 𝒄T𝑯 𝑙)T ⩽
7

𝛿𝑙 1 𝑖 𝑖 1 𝑖 𝑖
𝑔𝑖 − (𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙)𝝁̂𝑙 − 𝒂T𝑖 𝒙 − 𝒄T𝑖 𝒓, ∀𝑖 = 1, 2,… , 𝐼,

∀𝑙 = 1, 2,… , 𝐿,

𝑨′𝒙 + 𝑪 ′𝒓 = 𝟎,
𝑩′
𝑘𝒚1 + (𝑪 ′𝑯 𝑙)∶,𝑘 = 𝟎, ∀𝑙 = 1, 2,… , 𝐿, ∀𝑘 = 1, 2,… , 𝐾,

𝛷−1(1 − 𝜆)
√

𝒉T𝑙,𝑗𝜮̂𝑙𝒉𝑙,𝑗 ⩽ 𝒉T𝑙,𝑗 𝝁̂𝑙 + 𝑟𝑗 ,∀𝑗 = 1, 2,… , 𝑁2,

∀𝑙 = 1, 2,… , 𝐿,

𝒙 ∈ {0, 1}, 𝒆 ∈ {0, 1},Eqs. (1), (2), 𝟎 ⩽ 𝒚1.

Note that () is still an MI-SOCP that can be solved to optimum
rapidly. If () is infeasible, it implies that the convex envelop
made from outer approximation and McCormick relaxation is not tight
enough. To resolve this issue, the adaptive outer approximation scheme
always samples at the solution point of ()

𝛾∗𝑖,𝑙
𝛿𝑖,𝑙

to construct an addi-
tional cutting plane, and the variable bounds should be further reduced
by branching and ( ). If () is feasible and its objective value
is less than the existing upper bound solution, denoted as UB, then we
can update UB accordingly. The entire algorithm, outlined in Fig. 3, will
terminate if the relative gap, defined in Eq. (34), is below a predefined
threshold.

Relative gap = UB − LB
|LB| (34)

3.4. Optimality-based bounds tightening

The McCormick method generates the tightest convex envelop for
bilinear terms given a specific variable interval. Typically, a narrower
interval results in a tighter relaxation. While conventional interval
analysis techniques are effective in reducing bounds with minimum
computational overhead, previous research has showed that optimality-
based bounds tightening (OBBT) offers superior efficiency, especially
when lower and upper bounding problems are solved repeatedly. Even
though the bilinear terms of (3) involve two variables, 𝑣𝑖,𝑙 only lies
n a small range: [𝛷−1(0.5), 𝛷−1(0.9999)] whereas 𝑢𝑖,𝑙,𝑘 may have a much
wider interval. Thus, the OBBT formula shown in ( ) only focuses
on 𝑢𝑖,𝑙,𝑘,∀𝑖 = 1, 2,… , 𝐼,∀𝑙 = 1, 2,… , 𝐿,∀𝑘 = 1, 2,… , 𝐾:

min
𝒙,𝒆,𝒚1 ,𝑯 𝑙 ,𝒓

𝑢𝑖,𝑙,𝑘 ( )

s.t.
√

𝒛𝑖,𝑙𝜮̂𝑙𝒛T𝑖,𝑙 ⩽ 𝑔𝑖 − 𝒖𝑖,𝑙𝝁̂𝑙 − 𝒂T𝑖 𝒙 − 𝒄T𝑖 𝒓, ∀𝑖 = 1, 2,… , 𝐼,

∀𝑙 = 1, 2,… , 𝐿,

𝒖𝑖,𝑙 = 𝒚T1𝑩
T
𝑖 + 𝒄T𝑖 𝑯 𝑙 ,

𝐼
∑

𝑖=1

𝐿
∑

𝑙=1
𝛾𝑖,𝑙 = 1 − 𝜖 + 𝜆𝑁2,

0.5𝛿𝑙 ⩽ 𝛾𝑖,𝑙 ⩽ 0.9999𝛿𝑙 ,

𝑣𝑖,𝑙 ⩾ 𝛼𝑞
𝛾𝑖,𝑙
𝛿𝑙

+ 𝛽𝑞 ,∀𝑞 = 1, 2,… , 𝑄, ∀𝑙 = 1, 2,… , 𝐿,

∀𝑖 = 1, 2,… , 𝐼,

𝑨′𝒙 + 𝑪 ′𝒓 = 𝟎,
𝑩′
𝑘𝒚1 + (𝑪 ′𝑯 𝑙)∶,𝑘 = 𝟎, ∀𝑙 = 1, 2,… , 𝐿, ∀𝑘 = 1, 2,… , 𝐾,

𝛷−1(1 − 𝜆)
√

𝒉T𝑙,𝑗𝜮̂𝑙𝒉𝑙,𝑗 ⩽ 𝒉T𝑙,𝑗 𝝁̂𝑙 + 𝑟𝑗 ,∀𝑗 = 1, 2,… , 𝑁2,

∀𝑙 = 1, 2,… , 𝐿,

𝒛𝑖,𝑙 ⩾ 𝑣𝑖,𝑙𝒖𝑖,𝑙 + 𝑣𝑖,𝑙𝒖𝑖,𝑙 − 𝑣𝑖,𝑙𝒖𝑖,𝑙 , ∀𝑙 = 1, 2,… , 𝐿,∀𝑖 = 1, 2,… , 𝐼,

𝒛𝑖,𝑙 ⩾ 𝑣𝑖,𝑙𝒖𝑖,𝑙 + 𝑣𝑖,𝑙𝒖𝑖,𝑙 − 𝑣𝑖,𝑙𝒖𝑖,𝑙 , ∀𝑙 = 1, 2,… , 𝐿,∀𝑖 = 1, 2,… , 𝐼,

𝒛𝑖,𝑙 ⩽ 𝑣𝑖,𝑙𝒖𝑖,𝑙 + 𝑣𝑖,𝑙𝒖𝑖,𝑙 − 𝑣𝑖,𝑙𝒖𝑖,𝑙 , ∀𝑙 = 1, 2,… , 𝐿,∀𝑖 = 1, 2,… , 𝐼,

𝒛𝑖,𝑙 ⩽ 𝑣𝑖,𝑙𝒖𝑖,𝑙 + 𝑣𝑖,𝑙𝒖𝑖,𝑙 − 𝑣𝑖,𝑙𝒖𝑖,𝑙 , ∀𝑙 = 1, 2,… , 𝐿,∀𝑖 = 1, 2,… , 𝐼,

𝒙 ∈ {0, 1}, 𝒆 ∈ {0, 1},Eqs. (1), (2), 𝟎 ⩽ 𝒚1,

𝒑T0𝒙 + 𝒑T1𝒚1 +
𝐿
∑

𝑙=1
𝒑T2 𝒓𝛿𝑙 +

𝐿
∑

𝑙=1
𝒑T2𝑯 𝑙𝝁̂𝑙𝛿𝑙 ⩽ UB. (35)
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Fig. 3. The algorithm flowchart for solving (2).
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The constraint (35) requires that any feasible values of 𝑢𝑖,𝑙,𝑘 in ( )
yields lower value than UB. Because ( ) is solved at least 𝐼×𝐿×𝐾
times at each node of searching tree, its implementation should be well-
designed to reduce the overall computational time. Several strategies
are shown below:

• The integer constraint can be relaxed to convert ( ) into a
SOCP, which can be solved to global optimum quickly.

• One of options is to repeat the OBBT several rounds until none of
any variable interval can be further reduced. However, this may
substantially increase the solving time, and thus is not applied in
the case study.

• If the interval of a variable is significantly small, we may omit its
OBBT to save the computational time.

• Constraint (35) can significantly reduce the variable interval
given the upper bound solution UB. In order to obtain UB, we
may initialize 𝛾𝑖,𝑙

𝛿𝑙
, ∀𝑖 = 1, 2,… , 𝐼, ∀𝑙 = 1, 2,… , 𝐿 with equal

value and solve (). If it is infeasible, we just initialize UB
as zero by assuming the refining process is profitable. During the
optimization, once a better UB is found, ( ) should be solved
for each component of 𝒖 to refine variable intervals.

Finally, a flowchart of the global optimization algorithm is shown
n Fig. 3.

. Case study

In the case study, TCCP with non-Gaussian distributed uncertainties
s solved for refinery optimization. The software platform is GAMS 41,
ith MI-SOCP solver CPLEX. The hardware platform is a laptop with
ntel Core i5-8300U CPU 2.30 GHZ and 8GM RAM. The risk level 𝜖 is
et as 5%, 6% and 7%, respectively. The proposed algorithm is executed
o determine the optimal crude oil procurement and the decision rule
or refining in stage-II. The algorithm terminates when the relative
ap reaches 1%. Then, the resulting solution is evaluated in a test
ed consisting of 500 independent samples of uncertain parameters.
scenario-based mixed-integer linear program (MILP) formula is also
eveloped as a benchmark to compare with the proposed algorithm
egarding the solution time and quality.
8

.1. Refining process parameters

A refining process shown in Fig. 1 is studied. The mass balance,
roduct demands, and quality constraints impacted by uncertainties are
isted in Eqs. (3)–(11). The crude oil yields and their prices are shown
n Table 1. The constraints, including product quality, demands, and
nit capacity, are presented in Table 2.
Three operational properties are influenced by uncorrelated uncer-

ainties, including sulfur residual, ISO RON, and CN yield in cracker.
pecifically, their nominal values are 1% for sulfur residual, 94 for ISO
ON, and 43.6% for CN yield in Mogas mode, or 38.1% in AGO mode.
he uncertainties associated with these properties are characterized
y inverse Gaussian, Weibull, and Gamma distributions, respectively,
hich are all approximated by 2-component GMMs based on a dataset
omprising 1000 samples. Here we need to point out that when more
MM components are introduced for these uncertainties, the resulting
eight 𝑤 becomes significantly smaller than others. Our previous
ork (Yang, 2023) for GMM-based single-stage CCP showed that re-
oving the second-order constraints associated with such small 𝑤 and
does not impact the solution feasibility and only slightly reduces
ptimality. In addition, we employ various types of asymmetric dis-
ribution to assess the approximation ability of GMM. The resulting
MM parameters obtained through the Expectation-Maximization al-
orithm are listed in Table 3. The GMM and histogram derived PDFs
n training data, alongside the true distribution are shown in Figs. 4–6.
he visual comparison reveals a close alignment between the GMM ap-
roximations and the true distribution, particularly in the distribution
ails.

.2. Sample average approximation

Alternative, the TCCP for refining process optimization can be
olved via the sample average approximation (SAA) (Luedtke and
hmed, 2008). Different from the proposed approach, SAA is a scenario-
ased method. Its formula is shown in 4.2:

min
,𝒆,𝒐

𝒑T0𝒙 + 1
𝑀(1 − 𝜖)

𝑀
∑

𝑚=1
 (𝒙,𝜽𝑚, 𝑜𝑚) ()
s.t. Eqs. (1), (2),
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Fig. 4. The GMM, histogram derived, and true distribution (Inverse Gaussian) of sulfur residual increment.

Fig. 5. The GMM, histogram derived, and true distribution (Gamma) of CN yield increment.

Fig. 6. The GMM, histogram derived, and true distribution (Weibull) of ISO RON reduction.
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Table 1
Yields and price of three crude in 2017 ($ per barrel).
Crude RG LG LN HN KE GO VGO VR Price ($)

Crude1 0.002 0.0091 0.0698 0.1598 0.1003 0.2876 0.2682 0.1032 49.2
Crude2 0.002 0.0080 0.061 0.1206 0.0861 0.2414 0.2646 0.2163 46.3
Crude3 0.004 0.020 0.0851 0.1532 0.0947 0.2539 0.2535 0.1356 48.3
Table 2
Specifications, demands, and capacity.
Specifications Max Min

Gasoline-98 RON 98
Gasoline-95 RON 95
Gasoline-98 Sulfur (ppm) 15
Gasoline-95 Sulfur (ppm) 15
Heavy Fuel Oil Viscosity (index) 35
Diesel Sulfur (ppm) 50

Demand (KT) Max Min

Gasoline98 15
AGO 100
LG 2

Capacity (KT) Max Min

Cracker 135
Desulfurization 130

Table 3
Operational uncertainties. Here we build GMMs to approximate the distribution of CN
yield increment, ISO RON reduction, and sulfur residual increment.
Uncertainty Mean Mean Variance Variance Weight Weight

1 2 1 2 1 2

𝜃Cr 3.354% 2.021% 1.434∕104 0.510∕104 0.370 0.630
𝜃RON 1.610 2.659 0.410 0.803 0.428 0.572
𝜃𝑆 0.240% 0.733% 0.014∕104 0.172∕104 0.688 0.312

𝑀
∑

𝑚=1
𝑜𝑚 = (1 − 𝜖)𝑀,

𝒙 ∈ {0, 1}, 𝒆 ∈ {0, 1}, 𝑜𝑚 ∈ {0, 1},∀𝑚 = 1, 2,… ,𝑀,

where 𝜽𝑚 is the sampled uncertainty value and 𝑜𝑚 indicates if that
cenario can be infeasible or not. When 𝑜𝑚 = 0, 𝑚th scenario will not be
ounted in the objective function. The stage-II formula of 𝑚th scenario
s:

(𝒙,𝜽𝑚, 𝑜𝑚) = min
𝒚1 ,𝒚2

(𝒑T1𝒚1 + 𝒑T2𝒚2)𝑜𝑚

s.t. 𝒂T𝑖 𝒙 +
𝐾
∑

𝑘=1
𝒃T𝑘,𝑖𝜃𝑚,𝑘𝒚1 + 𝒄T𝑖 𝒚2 ⩽ 𝒈𝑖 + (1 − 𝑜𝑚)𝑊 ,

∀𝑖 = 1, 2,… , 𝐼,

𝑨′𝒙 +
𝐾
∑

𝑘=1
𝑩′
𝑘𝜃𝑚,𝑘𝒚1 + 𝑪 ′𝒚2 = 0,

0 ⩽ 𝒚1, 𝟎 ⩽ 𝒚2,

here 𝑊 is a big positive number to ensure that all inequality con-
traints of 𝑚th scenario are relaxed when 𝑜𝑚 = 0. Although the objective
unction of  (𝒙,𝜽𝑚, 𝑜𝑚) has bilinear term, it can be equivalently con-
erted into a MILP by using McCormick relaxation because of binary
ariable 𝑜𝑚. Here {1, 2,… ,𝑀} represents a training scenario set for
AA. The computational challenge of 4.2 lies in the 𝑀 newly intro-
uced binary variables to deal with chance constraints. Even though
he decomposition approaches in Liu et al. (2016), Yang (2019) may
10
speedup the solving process of 4.2, they usually require recovery oper-
ations in stage-II, which is not applicable in this case study. Thus, the
MILP solver is directly applied in 4.2 to obtain the solution.

There are plenty of works (Yang and Sutanto, 2019; Alamo et al.,
2015; Campi and Garatti, 2011, 2008; Calafiore and Campi, 2006) to
investigate the sample complexity of single-stage CCP, but there has
been relatively limited research addressing the number of required
samples for two-stage SP or CCP. Therefore, it becomes imperative to
vary the number of sampled scenarios, namely 𝑇 in 4.2, to examine the
computational time and solution quality. It is worthwhile to note that
4.2 can be converted into an MILP and solved using the training sce-
nario set to a specified relative gap. However, that solution should be
validated in an independent scenario set because there is no theoretical
guarantee of optimality on unseen scenarios.

4.3. Results comparison

In this subsection, we show the optimization results under various
risk levels (5%, 6%, 7%) and compare the proposed method with SAA
on the validation set, including 500 independent samples of uncertain
parameters. While we use the piecewise linear decision rule to solve
(2) and obtain 𝒙∗, the stage-II operations can be further optimized
once the crude oil procurement is determined. Hence, given 𝒙∗, we
show the solution of (2), the decision rule on validation set, and
scenario-based approximation on validation set, in Tables 4–6.

Proposed approach (2) and DR validation: To verify the
decision rule, we first cluster the sampled uncertain parameters on the
validation set using the GMM. Because this refinery model only has 3
uncertain parameters and 2-component for each GMM, there are only
𝐿 = 23 = 8 clusters. Each cluster is equipped with a linear function for
stage-II operations. When stage-I variable 𝒙∗ is fixed, stage-II variables
of each scenario can be determined according to the cluster it belongs
to and associated decision rule function. The optimal objective value
of (2) matches the result of decision rule on validation set (DR
validation) very well. At risk level 5%, there is 0.1% difference in profit
and 0.2% difference in probabilistic feasibility. At risk level 6%, there is
0.1% difference in profit and 1.2% in feasible chance. At risk level 7%,
there is 0.12% difference in profit and 1.2% in feasible chance. The
resulting feasible chance under all risk levels aligns with the desired
reliability 1 − 𝜖 and is slightly higher on the validation. This further
shows that GMM can capture the uncertainty distribution and our
optimization algorithm indeed yields a satisfactory solution.

Proposed approach SAA(𝑥∗): It is not surprised that when 𝒙∗ is
derived from (2), optimizing each scenario individually leads to a
better profit than simply applying the decision rule. We denote such
results as SAA(𝑥∗). On validation set, the feasible chance of SAA(𝒙∗) is
moderately higher than the desired 1− 𝜖 and that of decision rule. This
result indicates that the proposed method is conservative (safe) due to
the pre-specified piecewise linear structure of stage-II variables and the
limitation of Boole’s inequality. More complex functional structure may
be needed in the future work.

SAA 200, SAA 500, SAA 1000: It is worthwhile to note that using
SAA to search 𝒙 may also attain good solutions. In general, a large
number of scenarios are required to accurately estimate the expected
objective function and ensure probabilistic feasibility. When only 200
scenarios are considered in the training set, the resulting solution

cannot meet the reliability 1 − 𝜖 on the validation set. Due to the
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Table 4
Optimization results at risk level 5%. DR Validation: Decision rule is applied on each validation scenario; SAA(𝒙∗): 𝒙∗ is the
state-I solution of (2) and each stage-II validation scenario is solved to optimum individual. The results of SAA 200, SAA
500, and SAA 1000 are all on validation set with the maximum solution time 4 h (14400 s). Note that SAA 200 does not
meet the required probabilistic feasibility.

Proposed approach SAA SAA SAA
(2) & DR validation & SAA(𝒙∗) 200 500 1000

Solution
time (s) 5434 14400 14400 14400

Relative gap <1% 10.53% 12.16% 14.00%

Objective value
(Profit $) 99,723,064 & 99,619,684 & 103,621,483 104,761,071 103,424,582 103,895,013

Probabilistic
feasibility 95% & 95.2% & 97.4% 91.4% 97.6% 96.4%
Table 5
Optimization results at risk level 6%. DR Validation: Decision rule is applied on each validation scenario; SAA(𝒙∗): 𝒙∗ is the
state-I solution of (2) and each stage-II validation scenario is solved to optimum individual. The results of SAA 200, SAA
500, and SAA 1000 are all on validation set with the maximum solution time 4 h (14400 s). Note that SAA 200 does not
meet the required probabilistic feasibility.

Proposed approach SAA SAA SAA
(2) & DR validation & SAA(𝒙∗) 200 500 1000

Solution
time (s) 3135 14400 14400 14400

Relative gap <1% 13.06% 14.94% 16.73%

Objective value
(Profit $) 100,094,923 & 99,985,827 & 103,875,771 104,798,472 103,701,645 104,065,318

Probabilistic
feasibility 94% & 95.2% & 96.4% 91.2% 97% 96%
Table 6
Optimization results at risk level 7%. DR Validation: Decision rule is applied on each validation scenario; SAA(𝒙∗): 𝒙∗ is the
state-I solution of (2) and each stage-II validation scenario is solved to optimum individual. The results of SAA 200, SAA
500, and SAA 1000 are all on validation set with the maximum solution time 4 h (14400 s). Note that SAA 200 does not
meet the required probabilistic feasibility.

Proposed approach SAA SAA SAA
(2) & DR validation & SAA(𝒙∗) 200 500 1000

Solution
time (s) 6461 14400 14400 14400

Relative gap <1% 16.78% 18.25% 24.97%

Objective value
(Profit $) 100,391,861 & 100,266,904 & 104,036,565 104,706,025 103,944,638 103,424,582

Probabilistic
feasibility 93% & 94.2% & 96.0% 91.8% 96.2% 97.6%
a
5
6
t
t

5

c
d
f
W
l
r
b

scenario-dependence, the SAA-based stage-I solution may not enable
optimal or even feasible stage-II operations in unseen scenarios. As the
scenario number is increased to 1000, then SAA slightly outperforms
our method at risk levels 5% and 6%. On the other hand, a large
number of scenario also lowers the convergence rate. As we terminate
the MILP solver for SAA after 4 h, the relative gap for 7% risk level
is nearly 25% and the resulting profit is much lower than that of the
piecewise linear decision rule SAA(𝑥∗). In fact, when running the SAA
ith 1000 scenarios, the solving process consumes the laptop’s memory
esources after 20 h. In contrast, the proposed (2) successfully
onverges to the desired relative gap (1%) within 3100–6500 s at
ifferent risk levels.
In Fig. 7, we present the results of crude oil procurement determined

y the proposed formula under 5%, 6%, and 7% risk levels. As allowed
isk level increases, more type-2 crude oil is purchased. Even though
hat oil has low KE and GO yields, which are essential for producing on-
pec gasoline and diesel, it is cheaper than others and we are willing to
11

i

ccept some level of risks. Hence, the proposed method opts to purchase
4.350, 67.099, and 76.492 ton of type-2 crude oil for risk levels 5%,
% and 7%, respectively. From the data in Tables 4–6, we can see that
he expected profit boosts for nearly $200,000 when 1% more risk is
olerated.

. Conclusion

This paper proposes a methodology to solve the two-stage chance-
onstrained program for refinery optimization. The piecewise linear
ecision rule is employed to parameterize the stage-II variable as a
unction of uncertainty whose distribution is approximated by GMM.
e show that the resulting formula can be safely convexified to a
ower bounding problem using outer approximation and McCormick
elaxation techniques. Additionally, an upper bounding problem can
e constructed by fixing the risk level of joint chance constraints. By
teratively solving the lower and upper bounding problems through
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Fig. 7. The crude oil procurement determined by the proposed method under 5%, 6%, and 7% risk levels (Unit: ton).
ranch-and-bound and optimality-based bound tightening, the gap con-
erges to zero and a global optimum of two-stage chance-constrained
rogram is found. The proposed method is compared with the sample
verage approximation in the optimization of crude oil procurement
nd plant operations for a simplified refinery model to demonstrate its
ffectiveness in solution time and optimality.
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