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Chance-constrained state feedback control law design for nonlinear
systems under uncertainties
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Abstract— A chance-constrained full-state feedback control
law is designed to regulate nonlinear systems under uncer-
tainties. The proposed scheme utilizes Monte Carlo sampling
to generate multiple scenarios, formulates the optimal control
problem as a scenario-based nonlinear optimization, and devel-
ops a sequential algorithm to obtain probabilistic feasible solu-
tions. The resulting controller offers three advantages: First,
the optimization-based design minimizes the tracking error
across considered scenarios. Second, the sampling complexity
is determined adaptively and the chance of constraint violation
is bounded with a guaranteed confidence interval. Third, the
sequential algorithm can reach a probabilistic feasible solution
faster than directly using a state-of-the-art solver for the full-
scenario optimization problem. Two case studies, including
a CSTR and fermentor, are presented to demonstrate the
effectiveness of the proposed method.

I. INTRODUCTION

The model-based optimal controller design has been stud-
ied and applied in various domains. Although it outperforms
simple PID controller via model prediction and explicitly
handling constraints, its sensitivity to uncertainty may de-
grade the control performance. To address that issue, the
robust model-based controller attracts considerable attention
and has progressed significantly in the last few decades. The
essential idea is to minimize the worst-case tracking error
through minimax optimization [1] and enforce constraint
satisfaction under all possible scenarios. For robust nonlinear
control, the polytopic uncertainty set can be employed to
model the system, and the resulting convex control problem
is solved by a semidefinite program to generate a conser-
vative solution [2]. Compared with the traditional robust
controller, a chance-constrained controller allows a certain
probability of constraint violation, denoted as the risk level
€, to provide more flexibilities, and does not sacrifice per-
formance too much. Following this research thrust, several
methodologies have been proposed.

For a linear system with normally distributed uncertain
parameters, the chance-constrained optimization can be cast
as a second-order cone program and solved efficiently [3].
The works of [4], [5], [6] took this advantage to develop
robust model predictive control under chance constraints. In
[7], the controller for linear systems with stationary additive
disturbances was synthesized to meet chance constraints by
solving a semi-definite program. Ref. [8] studied both state
and output measurement noise in the linear system and
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developed a hybrid method to combine the advantage of
analytical and sampling approaches for chance-constrained
control. The scenario-based approximation was shown to be a
robust and distribution-free approach for chance-constrained
control of convex systems [9]. Several works [10], [11],
[12] have been proposed subsequently to reduce the required
number of scenarios and improve the quality of solutions.

The above literature focuses on linear or convex sys-
tems. However, nonlinear, non-convex dynamics are more
general in real applications, and thus deserve more study.
In [13], the chance-constrained nonlinear control problem
was solved through policy gradient and constraint tightening.
The backoffs were adjusted via Bayesian optimization and
added into critical constraints to ensure the probabilistic
feasibility that allows only e chance of constraint viola-
tion. Such an approach needs to learn both controller and
backoff parameters through a number of iterations, but may
not sufficiently make use of the model structure. In [14],
stochastic nonlinearity was considered, and an H, output-
feedback controller was designed, but it assumed the first
and second moments of nonlinear terms are known and used
expectation to overly approximate the chance constraints.
The polynomial chaos expansion has been applied to ensure
the expectation constrain or chance constraint in nonlinear
control [15]. The scenario-based optimization control was
also extended to non-convex systems via posterior evaluation
that determines the reliability of a solution and necessary
sampling complexity [16].

In our previous research, authors have developed a
scenario-based chance-constrained optimization algorithm
and determined the sampling complexity to ensure the
probabilistic feasibility for nonlinear systems that can be
convexified [17]. In this paper, we further propose a full-
state feedback controller design method through scenario-
based optimization and use posterior evaluation to determine
the sampling complexity for general nonlinear systems. Our
contributions lie in three aspects: First, posterior evaluation
in an independent validation scenario set is used to adjust
the sampling complexity of the training set; second, the
expected tracking error is minimized in addition to construct
a probabilistic terminal set within a finite horizon; third, the
sequential optimization algorithm obtains a feasible solution
by choosing a few support scenarios from the full set to
improve computational efficiency.

The rest of this paper is organized as follows: The problem
formulation is introduced in Section II. The scenario-based
controller design and sampling complexity determination are
discussed in Section III. The controllers for a continuously
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stirred-tank reactor (CSTR) and a fermentor under bounded
uncertainties are developed, respectively, in Section IV. Fi-
nally, conclusions are drawn in Section V.

Notation. Throughout this paper, vectors and matrices
are denoted by boldface letters. Underlined variables denote
lower bounds (used for N, N1,N3,and S).

II. PROBLEM FORMULATION

A general non-convex discrete system under parametric
uncertainties shown below is studied in this paper:

f(xr, uy; 0r) (1)

where x;y1 € R" is the system state at time instant
k+ 1, up € R™ is the input; 8, € R" is the system
uncertain parameter vector that may satisfy any distribution;
f represents system dynamics.

A full-state feedback control law, defined as u; =
K (x;,—x)+W, is designed by solving a chance-constrained
program (CCP) offline:

Lp+1 =

L
; _ _=)\2
oin, J—E(kz_o(mk z)?) (CCP)
S.t. Tpy1 = f(a:k,uk;Ok),
P(G(zp,wi) € X,Vk € {0,1,...,H}) >1—¢,

where K and W are decision variables, representing con-
troller parameters; & is the setpoint state; .J is the expected
squared tracking error over a finite hoziron L; E is the
expectation operator and P is the probability; X is the
admissible region of constraint G(x,w); € is a small positive
number representing the allowable risk level; wj, represents
measurement uncertainties. In fact, G(x) € X can represent
any type and number of constraints on x. Thus, (CCP) can
be a joint chance-constrained optimization problem, which
is non-convex and hard to solve analytically.

(CCP) is similar to the well-known model prediction
controller (MPC) in that they all minimize the tracking error
over a finite horizon. However, (CCP) is solved offline to
generate a state feedback control law instead of the online
optimization and receding horizon used in MPC. This is
due to the complexity of chance-constrained controller for
a non-convex stochastic system. Searching for its optimal
solution can be computationally intractable, and thus online
optimization should be avoided, especially for large-scale fast
dynamic systems.

ITI. METHODS FOR SOLVING CHANCE-CONSTRAINED
OPTIMIZATION
Totally N scenarlos can be generated by draw-
ing samples {0(1) wk 70(2) ),...;H,SN) ,(CN)}, VEk €
{0,1,2,..., H} from the dlstrlbutlon of 8 and w, along the
horizon H. Then, the problem (CCP) can be approximated
by a deterministic scenario-based problem (SP):
L

P =S (el e

i=1 k=0
.9C ))

(SP)

mm J=—

s.t. :c,iil = f(a:,(;),u,~C

G w) e x, 2
Vke{0,1,...,L},Vie {1,2,...,N},

where J() is the objective value of sampled scenario i.
In (SP), the expectation operator in objective function is
replaced by the average of tracking error across all sampled
scenarios. The chance constraint is approximated by N
scenario-based constraints. Even though (SP) is still non-
convex, it does not contain any stochastic component and
thus can be solved by a deterministic nonlinear programming
(NLP) solver under mild N. One may further consider
allowing the solution to violate constraint G (a;f;), w,(;)) eX
in [Ne]| scenarios. However, that scheme requires a much
larger number of N and has to introduce /N binary variables
[18], rendering (SP) more difficult to solve.
The key contributions of this paper include:

« Introducing the probabilistic terminal constraint with
prolonged horizon.

o Adjusting the sampling complexity /N adaptively.

o Solving the (SP) more efficiently under large IV scenar-
i0s.

A. Probabilistic Terminal Constraint with Prolonged Hori-
zon

For prediction-based control, because only finite horizon
L can be applied, there should be a terminal state constraint
in (SP) for all scenarios:

Gterminal(w([f)a ¢ )) € Xerminat, Vi € {1,2,...,N} (3)

One may assume that the resulting terminal set is a safe
region in which the controller can always drive the sys-
tem approaching to the setpoint. However, that assumption
does not hold if uncertainty significantly disturbs system
dynamics. Namely, the reliability of a terminal set cannot
be guaranteed if only point-wise constraint is enforced. To
resolve this issue, we suggest terminal constraint with a
prolonged horizon L' > L:

Gterminal(w](;)v w](:)) € Xerminal, 4

Vke {L,L+1,...,L’'},Vie {1,2,...,N}

As L’ is large enough, satisfying (4) for all N scenarios
means that the system can stay within the terminal set for
a long period with high probability. However, the prolonged
horizon may increase the computational burden of (CCP),
which should be addressed in the proposed algorithm.

B. Determine and Adjust Sampling Complexity N

The scenarios number N considerably impacts the per-
formance of solution in (SP). Because the expectation is
approximated by the average, N should be large enough
to incorporate all representative scenarios. However, it may
incur two issues. First, a large number of scenarios introduce
more variables in (SP) and thus render it more difficult to
solve. Second, because N scenarios are required to meet
constraints in (CCP) simultaneously, overly large N may
restrict the feasible region and lead to a conservative solution.
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The resulting constraint violation chance will be far less than
the allowable level e.

As mentioned in [16], for non-convex systems, a posterior
evaluation could be a less conservative approach to determine
N. Note that G(xy, wy) € X is a Binomial random variable,
Lemma 1 is presented based on the Clopper-Pearson interval
[19]:

Lemma 1: For a Binomial distributed random variable, if
the observed success among N trials is S, then the 1 — «
confidence interval of success probability is:

[Binv(1 — %; S,N — S+ 1), Binv(1 — %;S +1,N - 8)],
&)

where Binv represents the quantile of beta distribution.

According to [19], the Clopper-Pearson interval is rela-
tively conservative, but strictly adheres to the prescription
of confidence interval 1 — . Two scenario set are generated
based on the Clopper-Pearson interval for training and valida-
tion, respectively. The training set has N scenarios to build
the controller by solving (SP), and can be further adjusted.
The second set is for validation with much larger cardinality
Ns. The controller should guarantee state trajectories to
satisfy constraints with high probability under the validation
scenario set.

To determine N7, we specify the confidence parameter «,
let S = Ny, and solve Eq. (6) derived from the lower bound
in Eq. (5):

Binv(l—%;S,leSJrl)}l—e (6)

Here S = N is enforced because the solution of (SP) is
required to meet constraints under all sampled scenarios. If
we let « = 0.1%, and € = 5%, then solving (6) will yield an
integer lower bound of N, denoted as IN; = 149. However,
it is worthwhile to note that using N; = N in (SP) does
not guarantee the probabilistic feasibility of the solution to
be greater than 1 — ¢, because Lemma 1 is only applicable
for the posterior evaluation. Hence, we use N; as an initial
guess of N7 and tune the number of scenarios according to
the validation results.

There should be Ny >> N; because the validation set
is employed to estimate the expected objective value and
probabilistic feasibility. Given N,, we can use Lemma 1 and
replace N1 by Ny in Eq. (6) to determine the lower bound
on the number of successful scenarios S. For example, if
Ny = 1000, o = 0.1%, and € = 5%, then the lower bound of
number S is S = 972. Here N> = 1000 is chosen to balance
the computational burden of validation and representative.
Note that scenarios in the validation set are unseen by the
optimization solver, and thus Lemma 1 can be used for
posterior validation and find reliable confidence interval.
If the solution {K™*, W™} does not pass the validation,
it implies that N; is not sufficiently large and has to be
increased. In such a case, we need to continuously sample
new scenarios and attach them to the training set until a
scenario with constraint violation under the current controller
is found. The new training set then will enable (SP) to yield
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a more reliable controller. This process is repeated until the
designed regulator passes the validation.

C. Solve Scenario-based Optimization

Once N; is determined, sampled scenarios can be gen-
erated and resulting (SP) should be solved for controller
design. However, a large number /Ny of scenarios with non-
linear dynamics render the computation of (SP) challenging
and finally become intractable. Hence, a sequential algorithm
is developed to find a sub-optimal solution of (SP). The
rationale include: (i) only a few constraints are active in the
optimal solution. If the scenarios incorporating such active
constraints can be pre-selected in (SP), then the resulting
optimization is easier to solve; (ii) Terminal constraint with
prolonged horizon may significantly increase computational
demands. Thus, Eq. (3) is applied for most of scenarios,
whereas constraint (4) is enforced only on selected ones.

Let us define the initial support set IT := {1}, a prolonged
horizon L' > L, and a batch size B. Algorithm 1 shown
below will return a pool of feasible solutions for (SP):

Step 1: Solve (SP) on the scenario set IT and obtain the
solution {K*, W*}.

Step 2: Evaluate the controller performance on Vi €
{1,2,...,N;} scenarios to calculate J() =
(ZkH:O(ng) — &)?) and construct a set Z incor-
porating all scenarios with constraint violation.

Step 3: If = = (), go to Step 4; Otherwise, enumer-
ate = and select B scenarios such that: ¢ =
argmax;ez J@, E «+ 2\ 4, I + U {i}. Go
back to Step 1.

Step 4: Evaluate the constraint violation and objective
values on the validation set. If a probabilistic feasi-
ble solution is not found, re-sample scenarios with
larger N; and go back to Step 2. If a probabilistic
feasible solution is found and its objective value is
improved, update J* and go to Step 5. If a proba-
bilistic feasible solution is found but the objective
value is not improved, go to Step 5.

Step 5: If the maximum number of iteration is reached,
terminate Algorithm 1; otherwise, enumerate N;
scenarios and select B of them such that: i =
argmax;eq1 o, v J 7, I« TTU{i}. Go back
to Step 1.

Several comments about Algorithm 1 are presented. First,
(SP) is generally solved to a sub-optimal solution in Step
1 because nonlinear, non-convex dynamics are involved in
that optimization. Second, Step 3 aims to find scenarios with
top B maximum objective values among the violation set
= if it is not empty, and then all these scenarios will be
integrated into II. Third, in Step 4, if a feasible solution
from the training set cannot make at least S scenarios
in validation set feasible, then more samples should be
generated and attached to the training set. Fourth, when the
terminal set constraint is violated in scenario ¢, Eq. (4) is
introduced into (SP) with prolonged length L’ for scenario
1. Fifth, if there is no constraint violation, we can still attach
scenarios with B largest objective values to II for solution

Authorized licensed use limited to: CALIF ST UNIV-LONG BEACH. Downloaded on May 01,2024 at 16:47:46 UTC from IEEE Xplore. Restrictions apply.



improvement, as shown in Step 5. Sixth, a balance between
computational burden and optimality should be achieved by
carefully choosing the maximum iteration number. As more
scenarios are incorporated into II, the objective value is
expected to be improved, but the resulting (SP) is more
difficult to solve. Finally, a flowchart of Algorithm 1 with
N adjustment is shown in Fig. 1.

l

Terminate
— Solve (SP) on set I
1 Yes
i Maximum ’N_D
Evaluate constraints on Hterations?
scenarios 1,2,..N, |
l Sample more scenarios
Build constraint and update N, Update I*

violation set 2

Is = empty?

1N0

Select B scenarios in =
with maximum JU)

\

Reconstruct set N with
selected scenarios

INO

Pass
validation
test?

T Yes

Je*

J o

Select B scenarios
with maximum J0

/

Yes
—_

Yes

Fig. 1. Algorithm 1 flowchart.

IV. CASE STUDIES

Two case studies about nonlinear stochastic process con-
troller design are presented using scenario-based optimiza-
tion under the risk level ¢ = 5%. The problem (SP) is
solved through GAMS 32.2.0 with an optimization solver:
BARON [20], which enables the multi-start local search and
global optimization. The hardware is 17-7500U CPU 2.70
GHZ with 8 GB memory.

A. Continuous Stirred-Tank Reactor (CSTR) Control

In this example, a full-state feedback controller for a
CSTR subject to additive uncertainties is developed. The
process model is shown below:

: F
Ca = 3;(Cao = Ca) = koe B/RTRC, 40y, @)
: F AH Q
Tr = —(Tao — Tr) — ——koe E/BTrC 7+
R V( A0 R) pCp o€ A+pCpV+ 2,
(®)

where process state is = [r1,72]T = [Ca,Tr]T in which
C4 is concentration and Tk is temperature. Two control
inputs are 0 < Cap < 2 kmol/m?® and —250 < Q, <
250 kJ/min. Uncertainties ¢, and 65 are uniformly dis-
tributed within ranges [—0.2,0.2] and [—1, 1], respectively.
Other model parameters are shown in Table I. Here C'4 gp
and Tr sp are desired state setpoint. Besides ¢; and s,
uniformly distributed uncertainties on the initial condition
are introduced, such that x; 0 € [0.75,0.85] and T2 €
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TABLE I
PARAMETERS OF THE CSTR MODEL

VY =0.1m3

Ca,sp = 0.5709kmol/m?
AH = —4.78 x 10*kJ/kmol
E = 8.314 x 10*kJ/kmol

p = 1000kg/m3

R = 8.314kJ/kmol K
Tr,sp = 395.4047K
ko =72 x 109min~!
Cp = 0.239kJ /kgK
F = 0.1m3 /min

[386, 388]. The model is discretized with the sampling time
interval 0.1 minute.

For the controller design, the horizon for tracking error
minimization is L 15 and the prolonged horizon is
L’ = 20. Note that concentration and temperature are on
the different magnitude. A weighting parameter should be
introduced to rescale the objective function. The resulting
optimization with two constraints is:

JEAL N I R ;
min J = 5 ; IO = 5 ; ]; 100(a ('}, — 21,5p)°
- T ©)
+ (x% — z3.5p)°
s.t. (7), (8),
o{) <1.05,¥k € {1,2,..., L'},
(z)) — zsp)®(x)) — xsp)T < 0.75,

Vk e {12,13,...,Lor L'},Vi € {1,2,..., Ny},

where xsp = [Ca,sp, Tr sp]; the matrix ® is derived from
[22] to represent a region of attraction (ROA) with level 0.75:

d_ {51.6785 2.3359}

2.3359 0.1245
Here two scenario-based constraints are introduced. The
concentration is limited by 1.05 and the state is enforced
to enter the ROA after £k = 12 and stay inside.

As mentioned before, the number of scenarios in train-
ing and validation set are N; = 149 and N, = 1000,
respectively. Because CSTR has relatively short settling time
and only two states, the full scenario-based controller design
problem (9) can be solved directly by using BARON on the
training set. It thus provides a good benchmark to evaluate
the optimality of Algorithm 1. The results are shown in
Table II. Only 1 scenario violation in the validation set
(N3 = 1000) implies the probabilistic feasibility with risk
level ¢ = 5%. It is not surprised to see that solving
N scenarios simultaneously reaches the optimal solution.
However, the proposed Algorithm 1 finds a solution whose
objective value is only 0.5% worse. In addition, only one
scenario has constraint violation, which implies that N;
149 in (9) is sufficient to yield a highly reliable controller
for this CSTR. Note that CSTR is a small-scale problem for
demonstration purpose. When a large-scale nonlinear process
is studied, the computational burden of solving /N; scenarios
simultaneously may become unmanageable by BARON.

The evolution of objective value and violation rate on
training set is plotted in Fig. 2 to show the performance

Authorized licensed use limited to: CALIF ST UNIV-LONG BEACH. Downloaded on May 01,2024 at 16:47:46 UTC from IEEE Xplore. Restrictions apply.



TABLE 11
RESULTS OF SCENARIO OPTIMIZATION, CASE 1
(N1 = 149, N» = 1000)

Algorithm 1 Full scenarios
K* [ 5.815 0.254 [ 6.357 0.280
-32.098 9.707 1 -14.948 3.909 ]
w* [0.707, 147.491]  [0.565, 208.232]
Violation on training set 0 0
Violation on validation set 1 1
J on training set 374.285 372.512
J on validation set 384.183 383.085

of Algorithm 1. Here the maximum iteration is set as 15.
At the third iteration, a feasible solution is found. As more
scenarios are incorporated into set II, the objective value
may fluctuate and the optimal solution is selected from the
pool of searched feasible solutions. In Fig. 3, the regulated
state trajectories under validation scenarios are shown. The
region of attraction is also plotted and it demonstrates that
constraint violation only happens in one scenario.
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330 . . . . . . .
2 4 6 8 10 12 14
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Violated scenarios
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4 [§ 8 10 12 14
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Fig. 2. The objective value and number of constraint violated scenarios on
training set case 1.
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Fig. 3. The state trajectory of 1000 scenarios in case 1 (validation set).

268

TABLE III
PARAMETERS OF THE FERMENTER MODEL

Parameter  Value
Yw/s 0.4 g/g
Lhm 048 h—1
P, 50 g/L
Km 1.2 g/lL
K; 22 g/

B. Fermentor Control

A continuous fermentation process is studied in this sub-
section. The process model is shown in (10)-(12):

X = —DX + uX, (10)

. 1

So:D(Sf_SO)_il’LXa (11)
Yx/s

P=—DP+ (ap+ B)X, (12)

where X is the effluent cell-mass or biomass concentra-
tion; S, is the substrate concentration; P is the product
concentration; (. is the specific growth rate; Y/, is the
cell-mass yield; « and [ are kinetic parameters, subject
to bounded uncertainties. The specific growth rate can be
described in a few different ways based on the current stage
of fermentation. The chosen specific growth rate is shown in
Eq. (13).

. (1 — %)So

— (13)
Ko+ 8, + 22

I

where i, is the maximum specific growth rate; P, is the
product saturation constant; K, is the substrate saturation
constant, and K is the substrate inhibition constant. The
process state is defined as © = [z1,22,23] = [X,S,, P]
with desired setpoint [7.2925, 5.1687,24.9369]. The dilution
rate D and feed substrate concentration Sy are denoted as
inputs u; and wg, respectively. The model parameter values
are from [21], shown in Table III. The sampling time is set
as 1 hour. Please note that the proposed method designs a
full-state feedback controller offline, and thus the sampling
rate does not impact the implementation of the controller.

For the controller design, the horizon for tracking error
minimization is L = 25 and the prolonged horizon is
L' = 50 for state constraint. The weighting parameters
for X, S,, P are 2,2, 1, respectively. The resulting scenario-
based optimization is presented in (14):

1
J==35J0= 2z} —

}?1‘}‘1, N ; N, ZzzlkZ:l (xl,k Z1,5P)

(14)
@ _ @) _
+2(£2,k z2,5p)° + (l‘g,k Z3.9P)

s.t. (10) — (13),

0<u <1,0<u <30,

o) =5,k € {1,2,..., L'}, (15)

7.0 <ol <7550 <zl <5.4,244 <l < 25.4,
(16)
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Vke{L,L+1,...,I'},Vie{1,2,...,Ny}.

Here the state constraint (15) and terminal constraint (16)
are sampled with N; scenarios.

The number of validation scenarios is No = 1000 and the
cardinality of training set starts from N; = 149. Solving (14)
for this three-state slow system requires high computational
demand, and thus we terminate the algorithm once a feasible
solution on validation set is found. The objective value and
the number of scenarios with constraint violation are shown
in Fig. 4. Even though the objective values in early iterations
are smaller, they are not feasible solutions. A feasible solu-
tion on training set is found in 8th jteration, which renders
more than N5 —.S scenarios on the validation set violating the
constraint. Hence, extra scenarios are continuously generated
and attached to the training set until N; = 153 in which
an infeasible scenario is obtained. After 10*" iteration, a
feasible solution on training set is found and it enables
more than Ny — S scenarios feasible on the validation set.
The entire solution time of Algorithm 1 in case 2 is two-
hour, whereas BARON cannot find any feasible solution of
the Nj-scenario problem within three hours. This is due to
the long prediction horizon and more state equations in the
optimization. The results are summarized in Table IV. We
find that the objective value on training and validation set
are only with 0.06% difference. In addition, the number of
violation scenarios on the validation set is 18, and thus the
number of satisfactory scenarios is greater than S = 972,
which implying the probabilistic feasibility.

TABLE IV
RESULTS OF SCENARIO OPTIMIZATION, CASE 2
(N1 = 153, N2 = 1000)

Algorithm 1

K* [ -0.004 -0.013 -0.00055

-2.996 2.041 0.429 |
WH* [0.163, 23.814]
Violation on training set 0

Violation on validation set 18
J on training set 385.941
J on validation set 386.188

In Fig. 5, the three-state trajectories in the scenarios of
validation set are shown. Even though the system is subject to
uncertainties, the proposed controller still can drive the states
to a small region around the setpoint defined in Eq. (16) with
high chance.

V. CONCLUSION

The controller design for nonlinear stochastic systems is
formulated as a scenario-based offline optimization problem.
The lower bound on sampling complexity is determined
for training and validation set based on the exact Clopper-
Pearson interval for Binomial distribution. In addition, the
number of scenarios in the training set can be adjusted
based on the constraint violation rate in the validation
set. The resulting scenario-based large-scale optimization
program is efficiently solved by the proposed algorithm
through a sequential scheme. Namely, the support scenarios
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Fig. 4. The objective value and number of constraint violated scenarios on
training set case 2.
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Fig. 5. The state trajectory of 1000 scenarios in case 2 (validation set).

are identified iteratively to form a small-scale optimization,
which yields a feasible solution within relatively shorter time
than the original full-scenario problem. We test and compare
the proposed algorithm with BARON in the CSTR and
fermentor controller design. For CSTR, the objective value
obtained by our method is only 0.5% worse than the true
optimal solution. For the fermentor, our method generates a
feasible solution within two hours, whereas BARON cannot
find any feasible solution. The designed full-state feedback
controllers are evaluated on the validation set, incorporating
1000 scenarios to verify and demonstrate their probabilistic
feasibility. Future work will be scenario reduction on the
training set to improve the solution and solving time.
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