PIZZA AND 2-STRUCTURES

RICHARD EHRENBORG, SOPHIE MOREL AND MARGARET READDY

ABSTRACT. Let H be a Coxeter hyperplane arrangement in n-dimensional Euclidean space. Assume
that the negative of the identity map belongs to the associated Coxeter group W. Furthermore
assume that the arrangement is not of type AT. Let K be a measurable subset of the Euclidean
space with finite volume which is stable by the Coxeter group W and let a be a point such that
K contains the convex hull of the orbit of the point a under the group W. In a previous article
the authors proved the generalized pizza theorem: that the alternating sum over the chambers T
of H of the volumes of the intersections T'N (K + a) is zero. In this paper we give a dissection
proof of this result. In fact, we lift the identity to an abstract dissection group to obtain a similar
identity that replaces the volume by any valuation that is invariant under affine isometries. This
includes the cases of all intrinsic volumes. Apart from basic geometry, the main ingredient is a
theorem of the authors where we relate the alternating sum of the values of certain valuations over
the chambers of a Coxeter arrangement to similar alternating sums for simpler subarrangements
called 2-structures introduced by Herb to study discrete series characters of real reduced groups.

1. INTRODUCTION

The 2-dimensional pizza theorem is the following result: Given a disc in the plane, choose a
point on this disc and cut the disc by 2k equally spaced lines passing through the point, where
k > 2. The alternating sum of the areas of the resulting slices is then equal to zero. This was first
proved by Goldberg [Gol68|. Frederickson gave a dissection proof [Frel2| based on dissection proofs
of Carter-Wagon in the case k = 2 (see [CW94]) and of Allen Schwenk (unpublished) in the cases
k = 3,4. Frederickson deduced dissection proofs of a similar sharing result for the pizza crust and
of the so-called calzone theorem, which is the analogue of the pizza theorem for a ball in R? that
is cut by one horizontal plane and by 2k equally-spaced vertical planes all meeting at one point in
the ball.

To generalize the pizza problem, consider a finite central hyperplane arrangement H in R™ and
fix a base chamber of this arrangement. Each chamber T has a sign (—1) determined by the parity
of the number of hyperplanes separating it from the base chamber. If K is a measurable subset
of R™ of finite volume, what can we say about the pizza quantity > ,(—1)T Vol(T' N K), where the
sum runs over all the chambers 7" of H? The original pizza theorem is the case where n = 2, ‘H
has the type of the dihedral arrangement I3(2k) and K is a disc containing the origin. The calzone
theorem is the case where n = 3, H has the type of the product arrangement I2(2k) x A; and K
is a ball containing the origin.

The following generalization of the pizza and calzone theorems was proved in [EMR22b, Theo-
rem 1.2] by analytic means. We recently learned that Brailov had proved independently this result
in the case a of ball for the type B,, arrangement using similar methods [Bra22|.

Theorem 1.1 (Ehrenborg-Morel-Readdy). Let H be a Cozeter arrangement with Coxeter group W
that contains the negative of the identity map, denoted by —id. Assume that H is not of type AT.
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Let K be a set of finite measure that is stable by the group W. Then for every point a € R™ such
that K contains the convex hull of {w(a) : w € W}, we have

> (1) Vol(T N (K +a)) = 0.
T

The proof of this result uses an expression for > (—1)T Vol(T N (K + a)) as an alternating
sum of pizza quantities over subarrangements of H of the form {ei,...,e;} with (e1,...,e,) an
orthonormal basis of R", in other words, subarrangements of type A}.

In the paper [EMR22a], we study a different sum > .(—1)Tv(T'), where v is a valuation defined
on closed convex polyhedral cones of R™ that takes integer values. Under the same condition that
‘H is a Coxeter arrangement, we rewrite this quantity as an alternating sum of similar quantities
for certain subarrangements of H that are products of rank 1 and rank 2 arrangements [EMR22a),
Theorem 3.2.1], and then deduce an expression for it. These subarrangements, called 2-structures,
were introduced by Herb [Her00| to study characters of discrete series of real reductive groups. In
fact, the identity of [EMR22a, Theorem 3.2.1] is valid for any valuation and its proof uses only
basic properties of Coxeter systems and closed convex polyhedral cones.

In this paper we use the setting of 2-structures and [EMR22al Corollary 3.2.4] (recalled in
Theorem to obtain a dissection proof of the higher-dimensional pizza theorem of [EMR22b,
Theorem 1.2] that is independent of the results and methods of [EMR22b|:

Theorem 1.2 (Abstract pizza theorem; see Theorem ) With the notation and hypotheses of
Theorem 1.1, we have

S (V)TN (K +a)] =Y (-D)T[TN(K+a) =0,

T T

where the brackets denote classes in the abstract dissection group of Definition [3.1]

As we take into account lower-dimensional sets when defining our abstract dissection group, this
result implies generalizations of the higher-dimensional pizza theorem to all the intrinsic volumes
when K is convex.

The idea of the proof of Theorem is the following: by expanding the expression using 2-
structures, we can reduce to a sum where each term is a similar expression for an arrangement
that is a product of arrangements of types A; and I5(2¥). We then adapt the dissection proof
of Frederickson to an arrangement of type Iy(2m) x H'. We also explain how to keep track of
lower-dimensional regions of the dissection. If our product arrangement contains at least one
dihedral factor, then its contribution is zero, and we immediately get a dissection proof of the
result. However, if all the product arrangements that appear are of type A7, then their individual
contributions are not zero. We need one extra step in the proof to show that the contributions
cancel. This uses a slight refinement of the Bolyai-Gerwien Theorem explained in Section

An interesting point to note is that the shape of the pizza plays absolutely no role in this
proof, as long as it has the same symmetries as the arrangement and contains the convex hull of
{w(a) : w € W}. In particular, we no longer need to assume that it is measurable and of finite
volume.

The plan of the paper is as follows. Section [2| contains a review of 2-structures and of the results
from [EMR22a] that we will need. Section [3|contains the statement and proof of the abstract pizza
theorem (Theorem , and Section 4, as we already mentioned, contains a Bolyai-Gerwien type
result that is needed in the proof of the abstract pizza theorem.

Let us mention some interesting questions that remain open:
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(1) The paper [EMR22b] proves the pizza theorem for more general arrangements (the condi-
tion is that the arrangement H is a Coxeter arrangement and that the number of hyper-
planes is greater than the dimension n and has the same parity as that dimension), but
only in the case of the ball; see [EMR22b, Theorem 1.1]. Is it possible to give a dissection
proof of this result?

(2) Mabry and Deiermann [MDO09] show that the two-dimensional pizza theorem does not hold
for a dihedral arrangement having an odd number of lines. More precisely, they determine
the sign of the quantity > ,(—1)T Vol(T N K), where K is a disc containing the origin,
and show that it vanishes if and only if the center of K lies on one of the lines. Their
methods are analytic. As far as we know, there exists no dissection proof of this result
either. The higher-dimensional case where H is a Coxeter arrangement and the number of
its hyperplanes does not have the same parity as n also remains wide open.

2. REVIEW OF 2-STRUCTURES AND OF THE BASIC IDENTITY

Let V be a finite-dimensional real vector space with an inner product (-, -). For every o € V', we
denote by H, the hyperplane a® and by s, the orthogonal reflection in the hyperplane H,.
We say that a subset ® of V' is a normalized pseudo-root system if:

(a) @ is a finite set of unit vectors;
(b) for all a, f € @, we have sg(a) € ® (in particular, taking o = 3, we get that —a € ).
Elements of ® are called pseudo-roots. The rank of ® is the dimension of its span.

We call such objects pseudo-root systems to distinguish them from the (crystallographic) root sys-
tems that appear in representation theory. If ®' is a root system then the set ® = {a/||a| : @ € D'}
is a normalized pseudo-root system. Not every normalized pseudo-root system arises in this manner;
see for instance the pseudo-root systems of type Hs and Hy.

We say that a normalized pseudo-root system & is irreducible if, whenever ® = &1 LI &5 with &
and ®5 orthogonal, we have either ®; = & or &9 = &. Every normalized pseudo-root system can
be written uniquely as a disjoint union of pairwise orthogonal irreducible normalized pseudo-root
systems. Irreducible normalized pseudo-root systems are classified: they are in one of the infinite
families A,, (n > 1), B,/Cy (n > 2), H D,, (n > 4), Io(m) (m > 3) or one of the exceptional types
Es, E7, Eg, Fy, Hs or Hy, with types I(3) and Ay isomorphic, as well as types I2(4) and Bs. (See
[GB8&5, Chapter 5] or Table 1 in [BB05, Appendix A].)

We say that a subset ®* C ® is a positive system if there exists a total ordering < on the
R-vector space V such that ®* = {a € ® : @ > 0} (see [Hum90, Section 1.3]). The Cozeter group
of ® is the group of isometries W of V' generated by the reflections s, for a € ®. This group
preserves ® by definition of a normalized pseudo-root system, and it acts simply transitively on the
set of positive systems by [Hum90, Section 1.4]. In particular, the Coxeter group W is finite.

Let E be a finite set of unit vectors of V' such that EN(—FE) = @. The corresponding hyperplane
arrangement is the set of hyperplanes H = {H, : e € E}. A chamber of H is a connected component
of V.—U.cp He; we denote by .7 (H) the set of chambers of H. Fix a chamber Tp to be the base
chamber. For a chamber T' € J(H) we denote by S(T,Tp) the set of e € E such that the two
chambers T and Ty are on different sides of the hyperplane H., and define the sign of T' to be
(-1)T = (—1)IST),

We say that H is a Cozeter arrangement if it is stable by the orthogonal reflections in each of its
hyperplanes. In that case, the set ® = E U (—FE) is a normalized pseudo-root system. We call its
Coxeter group the Coxeter group of the arrangement. The map sending a positive system ®+ C &
to the set {v € V : Va € ®* (v, ) > 0} is a bijection from the positive systems in ® to the chambers
of H. See, for example, [Bou68, Chapitre V § 4 Ne 8 Proposition 9 p. 99] and the discussion following

IThe pseudo-root systems of types B,, and C,, are identical after normalizing the lengths of the roots.
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it. Conversely, if ® C V is a normalized pseudo-root system with Coxeter group W and &+ C ® is
a positive system, then H = {H,, : « € ®T} is a Coxeter hyperplane arrangement, and in that case
we always take the base chamber Ty to be the chamber corresponding to ®*.

We now define product arrangements. Let V; and V5 be two finite-dimensional real vector spaces
equipped with inner products, and suppose that we are given hyperplane arrangements 7, and o
on V; and V5 respectively. We consider the product space Vi x Vs, where the factors are orthogonal.
The product arrangement Hi X Hs is then the arrangement on Vi x Vo with hyperplanes H x V5
for H € Hy and Vi x H' for H € Hs. If H; is the empty arrangement, then we write Vi x Hs
instead of the confusing @ x Hy. Similarly, if Hs is the empty arrangement, we write Hq x Vo. If the
arrangements H; and Hs arise from normalized pseudo-root systems ®; C Vi and ®o C V3, then
their product H; x Hs arises from the normalized pseudo-root system ®; x {0} U{0} x &3 C V] x V5.
We also denote this pseudo-root system by ®; x ®Ps.

The notion of 2-structures was introduced by Herb for root systems to study the characters of
discrete series representations; see, for example, the review article [Her00]. The definition we give
here is Definition B.2.1 of [EMR22a]. It has been slightly adapted to work for pseudo-root systems.

Definition 2.1. Let ® be a normalized pseudo-root system with Coxeter group W. A 2-structure
for ® is a subset ¢ of ® satisfying the following properties:

(a) The subset ¢ is a disjoint union ¢ = p1Upsll---Uep,, where the @; are pairwise orthogonal
subsets of ¢ and each of them is an irreducible pseudo-root system of type Ay, By or I(2F)
for k > 3.

(b) Let ot =N ®*t. If w € W is such that w(p™') = ¢ then det(w) = 1.

We denote by 7(®) the set of 2-structures for ®.

Proposition 2.2. Let ® be a normalized pseudo-root system with Cozeter group W.

(i) The group W acts transitively on the set of 2-structures T (P).
(ii) The pseudo-root system ® and its 2-structures have the same rank if and only if there ezists
w € W whose restriction to Span(®) is equal to — idgpan()-

Proof. (1) See the start of Section 4 of [Her00] and Proposition B.2.4 of [EMR22a].

(ii) For @ arising from a root system @', these two conditions are equivalent to the fact
that @' is spanned by strongly orthogonal roots; see, for example, the top of page 2559
of [Her0O1]. For general pseudo-root systems, see the classification of 2-structures in Sec-
tion B.4 of [EMR22a). &

To each 2-structure ¢ C ®, we can associate a sign e(p) = e(p, ®T) (see the start of Section 5
and Lemma 5.1 of [Her01] and Definition B.2.8 of [EMR22al).

We next introduce the abstract pizza quantity. Let H be a central hyperplane arrangement
on V. Let Cy (V) be the set of closed convex polyhedral cones in V' that are intersections of closed
half-spaces bounded by hyperplanes H where H € H, and let K3(V') be the quotient of the free
abelian group € jccc,, (v) Z[K] on C (V) by the relations [K] + [K'] = [K U K'] + [K N K'] for all
K,K' € Cy(V) such that K U K’ € Cy(V). For K € Cy(V), we still denote the image of K in
Ku(V) by [K].

Definition 2.3. Suppose that we have fixed a base chamber of H. The abstract pizza quantity
of H is

P(H)= Y (-D)"[T] € Kn(V).
TeT(H)



Remark 2.4. By Lemma 3.2.3 of [EMR22a|, we have
PH)= Y (-1'[T].

TeT (M)
We use this alternative definition of P(H) in our proofs.

The following result is Corollary 3.2.4 of [EMR22a]. It shows how to evaluate the pizza quantity
for a Coxeter arrangement in terms of the associated 2-structures.

Theorem 2.5. Let ® C V be a normalized pseudo-root system. Choose a positive system &+ C ®
and let H be the hyperplane arrangement (Hy)aco+ on V with base chamber corresponding to ®.
For every 2-structure ¢ € T(®), we write o7 = ¢ N ®T and we denote by H, the hyperplane
arrangement (Hoé)o[@fr with base chamber corresponding to p*. Then we have

PH)= Y elp)P(Hy,).

pET(P)

If o € T(®) then the closures of the chambers of H, are elements of Cy(V'), so P(H,) makes
sense as an element of Ky (V).

3. A DISSECTION PROOF OF THE HIGHER-DIMENSIONAL PIZZA THEOREM

Definition 3.1. Let C(V') be a nonempty family of subsets of V' that is stable by finite intersections
and affine isometries and such that, if C' € C(V) and D is a closed affine half-space of V, then
CND € C(V). Furthermore, we assume that C(V') is closed with respect to Cartesian products,
that is, if C; € C(V;) for i = 0,1 then Cp x C1 € C(Vp x V7). For example, we could take C(V') to be
the family of all convex subsets of V', or of all closed (or compact) convex subsets, or of all convex
polyhedra.
We denote by K (V') the quotient of the free abelian group B cc¢(v) Z[C] on C(V) by the relations:

- [2]=0;

—-[Ccul+[CnCN=[C]+[C] for all C,C" € C(V) such that CUC’ € C(V);

— [g(C)] = [C], for every C € C(V') and every affine isometry g of V.

For C' € C(V), we still denote the image of C' in K (V') by [C].

Definition 3.2. A wvaluation on C(V') with values in an abelian group A is a function C(V) — A
that can be extended to a morphism of groups K (V) — A.

Remark 3.3. Define B(V) to be the relative Boolean algebra generated by C(V'), that is, the
smallest collection of subsets of V' that contains C(V') and is closed under finite unions, finite
intersections and set differences. Groemer’s Integral Theorem states that a valuation on C(V') can
be extended to a valuation on the Boolean algebra B(V); see [Gro78] and also [KR97, Chapter 2].
Applying this to the valuation C' — [C] with values in K(V'), we see that we can make sense
of [C] for any C € B(V). For instance, we have [C1 U Cq] = [C] 4 [C2] — [C1 N Ce] and [C] — Cy] =
[C1] — [C1 N Cs). Moreover, if C(V') is the set of all convex polyhedra in V', then B(V') contains all
polyhedra (convex or not), and also half-open polyhedra.

Next we have the following straightforward lemma, whose proof we omit, which states that the
class symbol is well-behaved with respect to Cartesian products.

Lemma 3.4. The two class identities [Co] = [Do] and [C1] = [D1] in K(Vo) and K (V1), respectively,
imply that [Cy x C1] = [Dgy x D1] in K(Vy) x K(V1).
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Let H be a central hyperplane arrangement on V' with fixed base chamber. If K € C(V'), we have
a morphism of groups ex : Ky (V) — K(V) induced by the map Cy (V) — C(V), C — CN K.
We denote by P(H, K) the image of P(#) by this morphism eg; in other words, we have

PH,E)= > (-D)ITNK]
TeT(H)
By Remark we also have
PH,E)= > (-D)ITNK]
TeT(H)

We state the main theorem of this paper. First for u,v € V define the half-open line segment
(u,v] by {(1 = XN)u+ Av:0< A <1}. Our main result is the following:

Theorem 3.5 (The Abstract Pizza Theorem). Let H be a Cozeter hyperplane arrangement with
Cozxeter group W in an n-dimensional space V' such that —idy € W. Let K € C(V) and a € V.
Suppose that K is stable by the group W and contains the convezx hull of the set {w(a) : w € W}.
(i) If H is not of type AT, we have P(H,K +a) =0 in K(V).
(ii) If H has type A%, ® is the normalized pseudo-root system corresponding to H and ®+ =
{e1,...,en} where ®T C ® is the positive system corresponding to the base chamber of H,
then the following identity holds:

(3.1) P(H,K +a) = [H(o, 2(a, ei)ei]] .

=1

Here we are using Remark to make sense of the right-hand side of equation ([3.1)).

The conditions on K are satisfied if for example K is convex, contained in C(V'), stable by W
and 0 € K + a. Indeed, the last condition implies that —a € K; as —idy € W by assumption, this
in turns implies that a € K, hence that K contains the convex hull of the set {w(a) : w € W}.

We will give the proof of Theorem [3.5) at the end of the section. This proof does not use
Theorem 1.2 of [EMR22b|, so we obtain a new proof of that result.

Let Vp, ..., V, denote the intrinsic volumes on V' (see [Sch14, Section 4.2]).

Lemma 3.6. Let (vy,...,v;) be an orthogonal family of vectors in V. Then
Vi((0,v1] x ... x (0,v%]) =0

for0<i<k-—1.
Proof. By Lemma 14.2.1 of [SWO08] or Proposition 4.2.3 of [KR97], it suffices to prove that, if a < b
are real numbers, the Oth intrinsic volume of the half-open segment (a,b] C R is 0. As the Oth
intrinsic volume is the Euler-Poincaré characteristic with compact support, this is clear. &
Corollary 3.7. We keep the notation and hypotheses of Theorem (3.5, If H is not of type A7, we
have
(3.2) > (-D)VIT N (K +a)) =0

TeT(H)
for every 0 < i < n, where K is assumed to be convez if i # n. If H has type A} and K is convex
then equation (3.2)) holds for 0 <i <mn—1.

Proof. If H is not of type A7, then equation (3.2) actually holds for any valuation on C(V') that is
invariant under the group of affine isometries; this includes the intrinsic volumes.
Suppose that H is of type A}. Then we know that equation (3.1)) holds. The result then follows

from Lemma &
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H., +2(a,e1)er
H., + (a,e1)er
T Vo = He,
—— /

FIGURE 1. A schematic sketch of V{; x V7 for the proof of Lemma [3.9

Remark 3.8. Theorem immediately implies generalizations to our higher-dimensional case of
the “thin crust” and “thick crust” results of Confection 3 and Leftovers 1 of [MDO09| for an even
number of cuts.

We obtain the “thin crust” result by evaluating the (n — 1)st intrinsic volume on P(H, K + a).
Note that this result holds for a pizza of any (convex) shape and even in the case where we only
make n cuts, where n is the dimension.

To generalize the “thick crust” result, consider two sets K C L stable by W and in C(V). If
a € V is such that K contains the convex hull of the set {w(a) : w € W}, then

P(H7(L_K)+a’) :P(H7L+a’)_P(H7K+a) :07
so in particular
> (=D)TV(T N (L - K)+a)) =0.
TeT(H)
The case where K and L are balls with the same center is the “thick crust” result.

We now state and prove some lemmas that will be used in the proof of Theorem

Lemma 3.9. Let H; be a hyperplane arrangement on V; for i = 0,1. Assume furthermore that
Hi = {Hc}eer, has type A7 and dim(Vy) =r. Let By = {e1,...,e,} be the index set of Hy. Let H
and V' be the Cartesian products Ho X H1 and Vi x Vi, respectively. Then for every K € C(V') that
is stable under the orthogonal reflections in the hyperplanes Vo x He,,...,Vo X H., and for every
a € V1, if L =K + a, we have the identity

P(H,L) =P (Ho x Vi, LN (Vy x (0,2(a,er)er] x --- x (0,2(a,er)er])),
where Ho x V1 is the product of Ho and the empty hyperplane arrangement on V7.

Proof. By a straightforward induction, we may assume that r = dimV; = 1. Also, after changing

the sign of e1, we may assume that (a,e;) > 0. See Figure|l|for a sketch of the situation. Let 7" be a

chamber of the arrangement . The classes of the two regions (T'xRspe1)NL and (T'xRcpe1)NL

of H occur with opposite signs in the pizza quantity P(#, L). Note that the region (T'xR> (4 ¢,)€1)N

L is the orthogonal reflection of the region (7' x R<ge1)NL in the affine hyperplane He, + (a, e1)e; =

H., + a. Hence these regions have the same class in K (V') which cancels in the pizza quantity
7



P(H, L), and the class of the region (T x (0,2(a,e1)e1]) N L= (T x Vi) N LN (Vo x (0,2(a,e1)er])
remains. As the map T'—— T x V] is a sign-preserving bijection from 7 (Hg) to 7 (Ho x V1), this
completes the proof.

We now consider the case of a hyperplane arrangement that is the product of a 2-dimensional
dihedral arrangement and another arrangement. Suppose that V' = V{ x Vi, where the factors are
orthogonal, and that H = Hoy x H1, where H; is a hyperplane arrangement in V;. Suppose also that
dim Vy = 2 and that Hg is an arrangement of type I[2(2m) with Coxeter group Wy where m > 2.
We view Wy as a group of isometries of V' by making w € Wy act on V = Vj x V; by w x idy,. We
also choose a family C(V') as in Definition

Let a € V. We will describe a dissection of V. The case where m = 4 is shown in Figure[2 We
call Ly, ..., Lay—1 the lines of Ho (numbered so that the angle between Lo and L; is an increasing
function of i) and we assume that the point a is in a chamber between L,,_; and L,,. Choose a
closed half-space D bounded by Ly and containing a (this choice is unique if a & Lg). Then, for
0 < i< 2m — 1, we denote by T; the unique chamber of H contained in D and with boundary
contained in L; U L;1;. We assume that (—1)T0 =1 for concreteness. The point a is in the closure
of the chamber T},,_1.

We write 7, = {T € T (Ho) : (—1)T =1} and T = {T € T(Ho) : (-1)T = —1}. Let W, be
the group of affine isometries generated by the orthogonal reflections in the lines L 4 a, for L € Hp.
We take Ry(a) to be the convex hull of the points w(0) for w € W,. This is the shaded polygon
on Figure |2, where the darker slices are the intersections with the closures of chambers in 7. We
have the inclusion Ro(a) C (J7" 2 T;. Finally we set

R0¢(a) = Ro(a) N U T.
TeETy

Lemma 3.10. The following three identities hold in K(Vy x V1):
(i) Let K € C(V) such that K is stable by Wy and let L = K + a. Then

5™ (-1TL A (T~ Rola)) x V1)] = 0.

TeT
(ii) Let K € C(V) such that K is stable by Wy and let L = K + a then

P(H,L) = P(VO X Hi, LN (R07+(a) X Vl)) — P(VO X Hi, LN (RO,_(G) X Vl))
(111) If K1 C Vi is such that Ro(a) x K1 € C(V), then
[Ro+(a) x K1] = [Ro,—(a) x Ki].

Proof. We begin by proving (i). For 0 < i < 2m — 1, we denote by R; + the unique chamber of H
not contained in D and with boundary contained in L; U L;11, that is, the image of T; by the
symmetry with center 0; we write R; 1 if this chamber has sign +1, or equivalently if ¢ is even,
and R; _ if this chamber has sign —1, or equivalently if ¢ is odd. For every 0 < j < m — 1, we
denote by Ry; — and Rj;y1,4 the orthogonal reflection in the line LQLJ-Jrl +a of Ry; 4 and Rajiq,—,
respectively. Note that Rpj - C T3j41 and Rgji1,4+ C To;. For 0 < j < m — 1 again, we denote
by Sj7+ the interior of ng — (Ro(a) U R2j+17+) and by Sj’, the interior of T2j+1 — (Ro(a) @] jo’,)‘
Then T5; — Ro(a) is the disjoint union of Raj 1+, Sj+ and an open ray Ds; starting at an extremal
point of Ry(a) (the image of 0 by the orthogonal reflection in the line LQL]- 41 +a) and parallel to Ly;.
Similarly T5j41 — Ro(a) is the disjoint union of Ry;__, S; — and an open ray Dsj;1 starting at the
same extremal point of Ry(a) and parallel to Lojio. See Figure 2| for the case m = 4, where the
rays Doj and Dojyq are dashed.
8



FIGURE 2. A picture of the regions in the proof of Lemma [3.10(i) for the case of I2(8).

The union [Jp, 7, T is equal to the disjoint union of the set R (a), the regions R; 4 for 0 <
t < 2m — 1, the regions S;  for 0 < j < m — 1 and the rays Ds; for 0 < j < m — 1. On the
other hand, the union (J;c » T is equal to the disjoint union of the set Ry (a), the regions R;
for 0 <4 < 2m — 1, the regions S; _ for 0 < j < m — 1 and the rays Dyjy1 for 0 < j < m — 1.
Consider the following four observations:

— For 0 <4 < 2m — 1 the region R; _ is the image of R; . by the orthogonal reflection in the
affine line Lé_Lz‘/2J+1 +a.

— For 0 < j < m — 1 the region S; _ is the image of S; by the rotation with center a and
angle 7/m.

— For 0 < j < m — 2 the ray Dgj3 is the image of the ray Ds; by the rotation with center a
and angle 27 /m.

— The ray Dop,—2o is the image of D1 by the orthogonal reflection in the affine line L,, + a.

Each of them is of the form: the set X is the image of the set Y under an affine isometry g belonging
to the group W,. Since the set L = K + a is invariant under g, we obtain that the set LN (X x V)
is the image of LN (Y x V1), and hence that [LN (X x V1)] = [LN (Y x V7)]. Statement (i) follows
by summing over all pairs of sets X and Y.

Next we prove (ii). There is a bijection 7 (Ho) x T (H1) — T (H) where (T,T") — T x T"
and (—1)7*T" = (=1)T(=1)T" for all T € 7 (Ho) and T’ € T (H,). Hence

(3.3) P(H,L)= Y >« LN (T xT").

T'eT (H1) T€T (Ho)
9



Fix T' € 7 (H;) for a moment. The fact that K is stable by Wy implies that K N (Vh x T") is also
stable by Wy. Hence applying statement (i) to the set (K N (Vo x T7)) +a = LN (Vh x T') yields

(3-4) Y. (DTN UT = Ro(a)) x T')] = 0.

TeT (Ho)

Multiplying equation (3.4)) with the sign (—1)T/, summing over all 7" € 7 (H;), and subtracting
the result from equation (3.3 yields

PH,L)= Y > (D'DTLN(TNR(a) x T)]

T'€ T (H1) TET (Ho)

= >, (DL R x T = Y ()T [LN(Ro-(a) x T")]
T'e T (Hi) T'€ T (H1)
=P(Vo x H1, LN (Ro+(a) x V1)) — P(Vo x H1, LN (Ro —(a) x V1)).

Finally we consider (iii). By Lemma it suffices to show that, if we take C(V}) to be the set
of convex polygons in Vj, then [Ry 4 (a)] = [Ro,—(a)] in K(Vp). This follows from Corollary 4.2 and
from the fact that the intrinsic volumes of Ry _y(a) and Ry _(a) are equal (which is an easy calcu-
lation), but we also give a direct proof. We consider the following dissection of the polygon Ry(a);
see Figure [3| for the case m = 4. For 0 < ¢ < 2m — 1 let F; be the image of 0 by the orthogonal
reflection in the line Lf‘ + a; note that P; is a boundary point of Ry(a), and that it is on L;. We
describe the pieces of the dissection of Ry(a):

— For 1 <7 < m — 2 consider the pair of isosceles triangles B; . and B; _ that have one side
equal to the segment [0, P»;], angles equal to w/2m at the vertices 0 and P;, and such that
B; + is in a chamber with sign 1; in other words, the triangle B; _ is in the chamber T5;_1,
and B; { is in the chamber T5;.

— Let Byt be the isosceles triangle contained in Ty with one side equal to the segment [0, P]
and angles equal to 7/2m at the vertices 0 and Pp.

— Consider the isosceles triangle contained in 75,,_3 with one side equal to the segment
[0, Py,—2] and angles equal to /2m at the vertices 0 and Py, —2; this splits into an isosceles
triangle By _ congruent to By 4 and an isosceles trapezoid B,,_1 — having one edge equal
to [0, Pgm_g].

— Let B,,—1,+ be the image of B,,_1,— by the orthogonal reflection in the line Lo,,_2; then
B,,—1 + is contained in the chamber T5,,_s.

To finish the dissection of Ry(a), we note that, for 0 < i < 2m — 3, we still have a quadrilateral
piece Q; left over in T; N Rp(a). Then for 1 < ¢ < 2m — 3 the quadrilateral @; is the image
of Q;—1 by the rotation with center a and angle m/m. Indeed, this is true for the intersections of
these quadrilaterals with the boundary of Ry(a) (which consist of two edges with endpoints P;_;
and P;;1), and it is easy to calculate the angles at the vertices of this intersection and to see that
they correspond: If 1 < i < 2m — 2 and ¢ is even, respectively odd, the angle of Q;_1 at P; is
(i — 1) /2m, respectively im/2m. If 0 < i < 2m — 3 and i is even, respectively odd, the angle of Q;
at P; is (2m — 2 — i)w/2m, respectively (2m — 1 —i)m/2m.

This is Frederickson’s dissection; see pages 28-31 of [Frel2]. That paper is only interested in
giving a dissection proof that the alternating sum of the areas is equal to zero. Hence it can safely
ignore line segments of area zero, whereas we are proving an identity in K (V) and have to be
careful with all regions, including lower dimensional ones.

The set Ry +(a) is the disjoint union of the following subsets:

10



FIGURE 3. The dissection of the polygon Rp(a) in the case of I5(8). The darker
shaded regions are the intersections with the chambers which have a positive sign.

—For0<i1<m—2let BZ’-’ I be the intersection of the triangle B; ;. with the interior of the
chamber containing B; ;. In other words, BL 4 is the union of the interior of B; 1 and the
relative interior of one of its two equal sides.

— Let B;n_L + be the intersection of the trapezoid By,—1 4+ and Th,—. That is, B;n_l’ 4 s
the union of the interior of B,,—_1 + and the intersection of its boundary with the boundary
of Ry(a), minus the two extremal points of this intersection.

—For 0 <5 <m—2let Q’Qj be the intersection of the quadrilateral (Q2; and T5;. That
is, Q’zj is the union of the interior of (Q2;41 and the intersection of its boundary with the
boundary of Ry(a), minus the two extremal points of this intersection.

As for the set Ry _(a), it is the disjoint union of the following subsets:

— Let By _ be the union of the interior of the triangle By - and the relative interior of the
side that it shares with Qo,,_3.

—Forl1<i<m-—2let BZ’-’_ be the intersection of the triangle B; _ with the interior of the
chamber containing Bz,‘,—- That is, BZ{’_ is the union of the interior of B; _ and the relative
interior of one of its two equal sides.

— Let B;n—l,— be the intersection of the trapezoid B,,—1 — and T5,,—3.

—For0<j<m—2let Q’Qj 41 be the intersection of the quadrilateral QQ2;4+1 and T3;41. That
is, Q/Qj 41 is the union of the interior of Q2;4+1 and the intersection of its boundary with the

boundary of Ry(a), minus the two extremal points of this intersection.
We obtain that [Ro 4 (a)] = [Ro,—(a)] since the regions B | and B] _ are isometric for every 0 <

i < m — 1, as are the regions (Q2; and @211 for 0 < j <m — 2. &
11



Lemma 3.11. Suppose that we have V = Vl(l) X oo X Vl(r) X V2(1) X oo X VQ(S), where the factors of
the product are pairwise orthogonal, and that H is a product Hgl) X - X ?{Y) X Hgl) X - X 'Hés),
) ©))

where each H;"’ is a hyperplane arrangement on V,”’. Suppose further that:

(a) If 1 < j <r then Vl(j) is 1-dimensional, and we have a unit vector ) in Vl(j) yielding the
hyperplane arrangement ng) ={0}.

(b) If 1 < j < s then VZ(j) is 2-dimensional, and the arrangement ng) is of type Io(2m\9)) for
some m() > 2.

Let a € V and K € C(V). Suppose that K is stable by the Coxeter group W and contains the
convez hull of the set {w(a) : w € W}. Then the following two statements hold:

(i) If s > 1 we have P(H,K +a) =0 in K(V).

(ii) If s =0 we have in K (V) the identity

P(H,K +a) = [(0, 2(a, eM)eD] x - x (0,2(a, e<’”>)e<7“>]] .

Proof. Let L = K + a. Since —idy € W we have —a € K and so 0 € L + a; also, the sets {w(a) :
w € W} and {w(—a) : w € W} are equal. Let W, be the group of affine isometries of V' generated
by the orthogonal reflections in the hyperplanes a+ H, for H € H. The conditions on K imply that
L is stable by W, and contains the convex hull of the set {u(0) : u € W,} = {w(—a)+a:w e W}.

Write a = (agl),...,agr),agl),...,aés)), with az(.j) € Vi(j). For 1 < i < r let S® denote the
half-open line-segment (0, 2(a,e®)e®]. For 1 < j < s we consider subsets RSH = Ry + (agj)) and
R(j% =Ry - (agj)) of Vg(j) as in Lemma [3.10. By Lemmas and (ii), we have that

(€1,.p6s)E{£1}*
Consider the polyhedron

P =10,2(a,eM)eM] x --- x [0,2(a, e)e] x Ry (agl)) X +ee X Rg(aés)).

Then P is the convex hull of the set {u(0) : u € W, } by definition of the polygons Ry (aéj )), hence it
is contained in L and so is its subset S x - - x §() x RS) XX RS) for every (e1,...,€5) € {£1}°.
So we obtain
P(H,L) = 3 —— [Sm x e x 8T x R x ... ng)} '
(e1,m65)E{£1}?
If s = 0 this implies statement (ii). Suppose that s > 1. By point (iii) of Lemma [3.10, we know
that

[S(l) N XS(T) XREP ey XRE‘Z):| — |:S(1) X oo X S(T) XRS}% N XRS:?]
for every (e1,...,€5) € {£1}° As 3 yequrys €1+ €s = 0, this finishes the proof of (i). &

Proof of Theorem [3.5 Statement (ii) is exactly Lemma ii). We now prove statement (i), so
we assume that H is not of type AT. By Theorem we have

P(H,K+a)= Y e(p)P(Hy K +a).
pET (D)
By definition, any 2-structure for @ is of type A} x [[;~, [2(2¥)%* with > k>2 Sk finite and, as W
acts transitively on the set of 2-structures (Propositioni)), the integers r and s, for & > 2,

do not depend on the 2-structure but only on ®. Also, by Proposition ii), we have dimV =
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T 4+ Y p>o 25k, S0 we are in the situation of Lemma Suppose that Zkz2 s > 1. Then by
Lemma[3.11{i) we have P( 7—[¢, K +a) =0 for every ¢ € T( ) and hence P(H, K +a) = 0. Assume
now that » ;o sp = 0, that is, sy = 0 for every k. Statement (ii) of the same lemma implies that

(3.5) P, K +a)= ) 6(90)[ 11 (O,Q(a,e)e]].

PeET(P) eCpNd+

This is an alternating sum of classes of half-open rectangular parallelotopes in V. So we can apply
Theorem to prove that P(H,K +a) = 0 in K(V). We know that V;(P(H,K + a)) = 0 if
0 <i<n-—1Dby Lemma so it remains to prove that V,(P(#H, K + a)) = 0, that is, that the
alternating sum of the volumes of the parallelotopes Hewmﬁ(o, 2(a, e)e] is equal to zero. This
follows from Theorem 1.2 of the paper [EMR22b|. However, we now give a direct proof (that does
not use analysis) using the method of that corollary. Let f: V — R be the function defined by

flay="3 ep) Il 2(a.e).

PeT (D) eCpNd+

Note that f is a polynomial homogeneous of degree n on V. Furthermore equation (3.5)) implies
that

Vol(P(H,K + a)) = f(a)

for every convex subset K of V of finite volume that is stable by W and every a € V such that
0 € K + a. The polynomial f satisfies f(w(a)) = det(w)f(a) for every w € W and every a € V
(this is easy to see; see, for example, Corollary 2.3 of [EMR22b|), so it vanishes on every hyperplane
of H. But if f # 0, then the vanishing set of f must be of degree at most n, which contradicts the
fact that, as H is not of type A}, we have |H| > n. Hence we must have f = 0, and this gives the
desired result. &

Remark 3.12. In the paper [Hir+99], J., M. D., J. K., A. D. and P. M. Hirschhorn proved that if
a circular pizza is cut into 4m slices by 2m cuts at equal angles to each other and if m people share
the pizza by each taking every mth slice then they receive equal shares. If m = 4, Frederickson
gives a dissection-based proof of this fact on page 32 of [Frel2], and Proposition 9.1 of [EMR22b]
generalizes the result to pizzas of more general shapes. We cannot lift this result to the group K(V),
because it does not hold in that group. For example, if we consider the pizza of Figure [3] then it
is not true in general that the sums of the perimeters of the pizza pieces in all the shares will be
equal.

However, we can lift the generalization of the Hirschhorns’s result to the quotient Ko(V') of the
group K (V) by the subgroup generated by all the elements [C] with C' € C(V') contained in a line
of V. More precisely, consider a Coxeter arrangement of type I2(2m) in R? with m even and let W
be the Coxeter group of this arrangement. Let Tp,...,Tyn—1 be the chambers of H, indexed so
that that T; and T;11 share a wall. Let K € C(V) and a € V. Suppose that K is stable by W and
contains the convex hull of the set {w(a) : w € W}. Then the quantity

3

Z[Tr+mi N(K +a)] € Ko(V)
=0

is independent of 0 < r < m — 1. (This implies the Hirschhorns’s result even in the case where k

is odd: Just apply the previous statement with m = 2k, and share the pizza between k people by

giving the pth person the eight slices contained in the chambers Top i and Topq14mi, for 0 <7 < 3.)
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Let us prove this result. Let 0 < r < m — 2. We want to show that

3 3
Z[Trﬂ'm N(K +a)] = Z[TrJrlJrim N (K +a)]
i=0 1=0
in Ko(V). Suppose that we know that
3 3
(3.6) D [Trpim N Ry(a) N (K +a)] =Y [Trs1rim N R-(a) N (K + a)]
i=0 i=0

in Ko(V), where Ry (a) and R_(a) are given by
Ri(a)=(V-Ro(a))n |J T

TeT(H)
(=1)T==#1
Then it remains to see that
3 3
Z[Tr+im NRo(a) N (K +a)] = Z[TT+1+im N Ro(a) N (K + a)]
i=0 i=0

in that same quotient. But now all the regions appearing in the sums are polygons, so the equality
of the sums of their classes in Ky(V') is equivalent to the equality of the sums of their areas,
by the Bolyai-Gerwien Theorem; see |[Bol78, Section 5|. This last equality follows either from
Proposition 9.1 of [EMR22b], or from the Hirschhorns’s result. (The Hirschhorns only consider the
case of a circular pizza, but, by equation , their result for a circular pizza implies the result
for the polygonal pizza Ry(a).)

We first suppose that r is even. To prove equation , we suppose that Tp, ..., Ts,—1 denote
the same chambers as in the proof of Lemma [3.10, and we use the notation of that proof. In
particular, for 0 < i < 2m — 1, the chamber T5,,4; is equal to the region R;., where € is the
sign (—1)". We have T, N Ry(a) = Syjo4 U Reg14, Trpm N Ry(a) = Sipgmy/24 U Revmtt 4,
Tryom N Ry(a) = Tryom = Ry and Tyri3, N Ry(a) = Trygm = Rrym+. On the other hand, we
have Tr+1 NR_ (CL) = 57/27_ U R”V—’ Tr+1+m NR_ (G) = S(r+m)/2,— U Rr—i—m,—a Tr+1+2m NR_ (a) =
Trt142m = Rry1— and Trq143m N R_(a) = T4 143m = Rygm41,—. This implies equation (3.6)).

We now consider the case where r is odd. We again suppose that Ty, ..., T5,,_1 denote the same
chambers as in the proof of Lemma |3.10] and the notation of that lemma, but we use a different
dissection, that is illustrated in Figure [4|in the case m = 4. For 0 < ¢ < 2m — 2, we consider the
same region R; 4+ as in the proof of Lemma but we denote by R,2m—1,— the chamber T5,,_1. For
every 1 < j <m — 1, we denote by R5; ; , (respectively, R); ) the orthogonal reflection of Ra; 4+
(respectively, Rojq1,—) in the line LQLj + a; note that R/2j—1,+ C Tyj and R’Q%_ C Tpj—1. We also
denote by Ry _ (respectively, R5,, ; ) the orthogonal reflection of Rg 4 (respectively, R, ; ) in
the line L +a. For 1 < j < m — 1 again, we denote by S’ _ the interior of Thj—1 — (Ro(a) U Ry; )
and by S}, the interior of Ty; — (Ro(a) U Ry; ; ;). Finally, we denote by S _ the interior of
Tym-1 — (Ro(a) U Ry ) and Sp , the interior of Ty — (Ro(a) U Ry, 1 ).

For 0 < i < 2m — 2, the chamber T5,,1; is then equal to the region R;., where € is the sign
(—1)%; also, the chamber T5,, 1 is equal to Ry, 1. We have T, N R_(a) = S(y41y/2,— U Rry1,—,
Trer NR_ (CL) == S(r+m+1)/2,— U Rr+m+1,7; TrJer NR_ ((L) = Tr+2m == Rn, and TT+3m NR_ (CL) =
Ty 43m = Rytm,—. On the other hand, we have T, 1.1 N Ry (a) = S q1) 2+ U R 4+, Tr14m N Ry (a) =
Strr1emy/24 Y Begmts Trairom N Ry (a) = Trgapom = Reg 4 and Trgagsm N Ry (a) = Trqaiam =
R, m+1,4+. This implies equation .

As in Frederickson’s article, there should also be a dissection-based proof of the equality of areas

that we use to finish the proof, but we were not courageous enough to look for it.
14



FIGURE 4. The dissection that we use for odd r in the case of I5(8).

4. THE BOLYAI-GERWIEN THEOREM

The classical Bolyai-Gerwien Theorem states that two polygons are scissors congruent if and only
if they have the same area. There is also a well-known generalization in higher dimensions that
applies to parallelotopes; it follows from the characterization of translational scissors congruences in
arbitrary dimensions, and was proved independently by Jessen-Thorup and Sah; see the beginning
of Section 7 of |JT78] or Theorem 1.1 in Chapter 4 of . In this section, we state a slight
refinement of this generalization, Theorem [4.1] that keeps track of lower-dimensional faces; in other
words, we do not want to ignore the boundaries.

As in the previous sections, let V' be an n-dimensional real vector space with an inner product

(-,). If (v1,...,v,) is a linearly independent list of elements of V', we define the parallelotope
T
P(vi,...,v) = {Zaivi:OSai < 1}.
i=1

We denote by P(V) the set of all convex polytopes in V' (including lower-dimensional ones) and
by Z(V) the subfamily of polytopes that are translates of parallelotopes of the form P(vy,...,v,).
The set P(V') satisfies the conditions of Definition so we can define an abelian group Kp(V)
as in that definition. We denote by Kz (V') the subgroup of Kp(V') generated by the classes [P] for
P e Z(V). Remark [3.3|implies that, if Pext (V') is the relative Boolean algebra generated by P(V),
then we can define the class [P] in Kp(V) of any element P in Pey (V). We denote by Ze (V) the
set of elements P of Pey (V) such that [P] € Kp(V) is in the subgroup Kz (V). For example, the
set Zext (V) contains Z(V'), and it also contains all half-open parallelotopes.

Recall Vg, ..., V, denotes the intrinsic volumes on V'; see Section 4.2]. These are valu-
ations on the set of all compact convex subsets of V', and in particular on P(V), so they induce
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morphisms of groups from Kp(V) to R, which we still denote by Vj,...,V,. Note that Vj is the
Euler-Poincaré characteristic with compact support, so the image of Kp(V) is Z.
The main result of this section is the following isomorphism.

Theorem 4.1. The morphism (Vo,Vi,...,V,) : Kz(V) — Z x R" is an isomorphism. In par-
ticular, if P,P" € Zex(V) are such that V;(P) = V;(P') for every 0 < i < n, then [P] = [P'] in
Kz(V).

We will give the proof of the theorem at the end of this section.

Corollary 4.2. Suppose that dim(V') = 2. Then the triple (Vy, V1, Va) induces an isomorphism
from Kp(V) to Z x R%. In particular, if P,P' are two elements of Pext(V), then their classes in
Kp(V) are equal if and only if Vi(P) = Vi(P') for all 0 < i < 2.

Proof. By Theorem it suffices to prove that Kp(V) = Kz(V). As points and segments are
parallelotopes, it suffices to prove that every polygon P is scissors congruent to a parallelogram,
which follows from the Bolyai-Gerwien Theorem (see [Bol78, Section 5]).

Remark 4.3. (1) If we take the quotient K'p o(V') of Kp(V') by the subgroup generated by the
classes of lower-dimensional polytopes, then two polytopes have the same class in Kp (V)
if and only if they are scissors congruent, and the Bolyai-Gerwien Theorem (see [Bol78,
Section 5]), says that, if dim(V') = 2, the area V5 induces an isomorphism from Kp o(V)
to R.

(2) If dim(V)) > 3, then Kz(V) # Kp(V). Otherwise, every element of P(V') of positive
volume would be scissors congruent to an element of Z(V'), hence to a cube, and this is
not true by the negative solution to Hilbert’s third problem (see for example [Bol78]).

Let Z'(V) be the set of translates of parallelotopes of the form P(vq,...,v,), for (v1,...,v,) a
linearly independent family of elements of V' such that » < n — 1, and let K% (V') be the subgroup
of Kz(V) generated by the classes of elements of Z/(V). We also write Z.. (V) for the set of
P € Ze (V) such that [P] € K% (V).

If P,P' € Z(V), we write P ~ P’ if there exist Pp,...,P.,Q1,...,Qs € Pext(V), a1,...,a,,
bi,...,bs € Vand R, R’ € Z/ (V) such that

PUQiU---UQs = RUPU---UP, and P'U(Q1+b1)U---U(Qs+bs) = R'U(P +ay)U- - -LU(P,+ay).

It is not hard to see that this is an equivalence relation, and that equivalent parallelotopes have
the same volume.

Lemma 4.4. Let W, W’ be subspaces of V' such that V.= W x W’'. We do not assume that W
and W' are orthogonal. Let P,P' € Z(W) and S,S’ € Z(W') such that P ~ P' and S ~ S'. Then
the relation P x S ~ P’ x S’ holds.

Proof. As ~ is transitive and as W and W’ play symmetric roles, it suffices to treat the case
where S = S’. We choose Pi,...,P.,Q1,...,Qs € Pext(W), a1,...,as,b1,...,bs € W and R, R’ €
Z! (W) such that

PUQU---UQs = RUP U---UP. and P'U(Q1+b1)U---LU(Qs+bs) = R'U(P +a)U- - -U(P+ay).
Then

(PxS)U(@i xSU---U(@QsxS)=(RxS)U(PLxS)U---U (P xS)
and

(P'x S)U((Q1 % §) +b1)U- U ((Qs x §) +bs) = (R x S)U((P x §) +ar) U---U((Py x ) +ay).

As R x S and R x S are in Z! (V) this implies that P x S ~ P/ x S. &
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FIGURE 5. Proof of Lemma [4.5

FIGURE 6. Proof of Lemma [4.5]

For two real numbers a,b € R recall that the half open interval is given by (a,b] = {t e R:a <
t < b} and the closed interval by [a,b] = {t € R:a <t < b}.

Lemma 4.5. Let (vi,...,v,) and (wi,...,w,) be bases of V, and let P = P(v1,...,v,) and
P’ = P(wi,...,wy). Then V,(P) = V,(P') if and only if there exists an isometry g of V such that
P~ g(P).

In particular, if V.= R", then, for every P € Z(V), the classes of P and of (0,1]"~! x (0, V,,(P)]
in Kz(V) are equal modulo KZ(V).

Proof. We already know that V,,(P) = V,(P’) if P ~ g(P’) with g an isometry of V. We prove the

converse by induction on n. It suffices to show that, for every basis (v, ...,v,) of V, there exists an
orthonormal basis (ey,...,e,) of V and a € R>g such that P(vi,...,v,) ~ P(e1,...,en—1,a- €p);
we then must have a = V,,(P(v1,...,v,)). There is nothing to prove if n = 0, and the claim is clear

if n = 1. Suppose that n = 2. The classical proofs that two parallelograms that have the same
basis and the same height are scissors congruent and that rectangles that have parallel sides and
the same area are scissors congruent use only translations to move the pieces of the decompositions
(see for example [EucBC, Proposition 35] and Figure 30 on page 52 of [Bol78]; we reproduce the
relevant decompositions in Figures |5/ and @ As the boundaries of the polygons that we ignore
when we are talking about scissors congruence are in Z (V) when dim(V) = 2, this gives the
claim.

Suppose that n > 3. Let (vi,...,v,) be a basis of V, and let P = P(vy,...,v,). By the claim
for n = 2 and Lemma M there exists an orthonormal basis (e, e2) of Span(vi,v2) and a € Rx>q
such that P ~ P(e1,a - ea,vs,...,v,). Applying the n = 2 case in Span(ey,v3) and Lemma we
can find v4 € Span(ey, v3) orthogonal to e; such that P ~ P(e1,a-ea, v, vy, ..., vy,). Now applying
the n = 2 case in Span(eg, v3), noting that this space is orthogonal to e;, and using Lemma
we can find a unit vector ez € Span(es, v4) that is orthogonal to e; and ez and b € R> such that
P ~ P(e1,e2,b- e3,v4,...,v,). Continuing in this way, we finally obtain the claim.
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We prove the last sentence of the lemma. If P is a translate of P(vy,...,vg) with &k < n —1,
then the classes of P and of (0,1]"~! x (0, V,,(P)] are both in K’;(V). Suppose that P is a translate
of P(vi,...,vy), with (v1,...,v,) a basis of V. By the first assertion, there exists an isometry g
of V such that g - P ~ [0,1]"! x [0, V,,(P)], so the classes of P and of [0,1]""! x [0, V,,(P)] in
Kz(V) are equal modulo K% (V). As the difference between the classes of [0,1]"~1 x [0, V;,(P)] and
of (0,1]"1 x (0, V,,(P)] is in K%(V), the result follows.

Lemma 4.6. (i) Let H be a hyperplane of V.. The inclusion Z(H) C Z(V') induces a mor-
phism Kz(H) — Kz(V) whose image is KZ(V). E
(it) The subgroup K5 (V') is the kernel of the morphism V,, : Kz(V) — R.

Proof. (i) The existence of the morphism Kz(H) — Kz(V) is clear, as well as the fact that
its image is contained in K% (V). Conversely, any translate of a P(vy,. .., vx) with k <n—1
can be moved by an affine isometry to lie in H, so its class is in the image of Kz (H).
(i) We may assume that V' = R"™. Any polytope in Z’(V) has volume zero, so K%(V) is
included in the kernel of V,,. We prove the reverse inclusion. Let x be an element of
KerV,,, and write z = >._; a;[P], with o; € {1} and P, € Z(V). We want to show that
z € K%(V). By Lemma for every 1 < ¢ < r, the class of P; is equal to the class of
(0,1]"1 x (0, V,,(P;)] modulo K% (V). So z is equal modulo K%(V) to the sum

Z(M[(O, 171 % (0, V()] = [(0, 1)1 x (0, V4] = [(0, 1]~ x (0, V-]),

where Vi =3 ;o) g.—41 VOI(F5). As Vi —V_ =V, (z) = 0 by assumption, we conclude
that x € K% (V). &

Proof of Theorem[.1] Let Vi, = (Vy,V1,...,V,) : Kz(V) — Z xR"™. Then the morphism V sends
the class of a point to (1,0,...,0), so its image contains the factor Z. Denote by (eq,...,e,) the
canonical basis of R". If i € {1,...,n} and a € R>¢, then by Lemma V. sends the class of the
half-open rectangular parallelotope (0,1]*"1 x (0,a] x {0}"7% to (0,a - e;) € Z x R", so the image
of V, contains R - ¢;. This shows that V, is surjective.

We now prove the injectivity of Vi by induction on dim(V). If dim(V) = 0, the result is
clear. Suppose that dim(V) > 0 and that we know the result for spaces of smaller dimension.
Let x € Kz(V) such that Vi(x) = 0 for 0 < ¢ < n. In particular, we have V,(x) = 0, so
xz € K%(V) by Lemma ii). Let H be a hyperplane of V. Then z is in the image of the morphism
Kz(H) — Kz(V) by Lemma [4.6]ii); choose a preimage y € Kz(H) of z. If 0 < i < n — 1, then
we have V;(y) = Vi(x) because intrinsic volumes do not depend on the dimension of the ambient
space (see the top of page 214 of |[Sch14]), so Vi(y) = 0. It follows from the induction hypothesis

that y = 0, and we conclude that x = 0.

ACKNOWLEDGEMENTS

The authors thank Dominik Schmid for introducing them to the Pizza Theorem, and Ramon
van Handel for dispelling some of their misconceptions and lending them a copy of [Sch14]. They
made extensive use of Geogebra to understand the 2-dimensional situation and to produce some
of the figures. This work was partially supported by the LABEX MILYON (ANR-10-LABX-
0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007)
operated by the French National Research Agency (ANR), and by Princeton University. This work
was also partially supported by grants from the Simons Foundation (#429370 and #854548 to

2In fact, it follows from Theorem that Kz(H) — Kz(V) is injective, so we get an isomorphism from Kz (H)
to K% (V).
18



Richard Ehrenborg and #422467 to Margaret Readdy). The third author was also supported by
NSF grant DMS-2247382.

REFERENCES

[BBO5] Anders Bjorner and Francesco Brenti. Combinatorics of Cozeter groups. Vol. 231. Grad-
uate Texts in Mathematics. Springer, New York, 2005, pp. xiv+363. 1SBN: 978-3540-
442387; 3-540-44238-3.

[Bol78] Vladimir G. Boltianskii. Hilbert’s third problem. Translated from the Russian by Richard
A. Silverman, With a foreword by Albert B. J. Novikoff, Scripta Series in Mathematics.
V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons|, New
York-Toronto-London, 1978, pp. x+228. 1SBN: 0-470-26289-3.

[Bou68] Nicolas Bourbaki. Eléments de mathématique. Fasc. XXXIV. Groupes et algebres de
Lie. Chapitre IV: Groupes de Cozeter et systemes de Tits. Chapitre V: Groupes en-
gendrés par des réflexions. Chapitre VI: systémes de racines. Actualités Scientifiques
et Industrielles, No. 1337. Hermann, Paris, 1968, 288 pp. (loose errata).

[Bra22] Yu A. Brailov. “Reflection Groups and the Pizza Theorem”. In: St. Petersburg Math.
J. 33.6 (2022), pp. 891-896. URL: https://doi.org/10.1090/spmj/1732.

[CW94] Larry Carter and Stan Wagon. “Proof without Words: Fair Allocation of a Pizza”.
In: Math. Mag. 67.4 (1994), p. 267. 1SSN: 0025-570X. URL: http://www. jstor.org/
stable/26908457origin=pubexport.

[EMR22a] Richard Ehrenborg, Sophie Morel, and Margaret Readdy. “A generalization of com-
binatorial identities for stable discrete series constants”. In: J. Comb. Algebra 6.1
(2022), pp. 109-183. 1sSN: 2415-6302. DOI: |10.4171/ jca/62. URL: https://doi-
org.ezproxy.uky.edu/10.4171/jca/62.

[EMR22b] Richard Ehrenborg, Sophie Morel, and Margaret Readdy. “Sharing pizza in n dimen-
sions”. In: Trans. Amer. Math. Soc. 375.8 (2022), pp. 5829-5857. 1ssN: 0002-9947. DOT:
10.1090/tran/8664. URL: https://doi-org.ezproxy.uky.edu/10.1090/tran/

8664,
[EucBC]  Euclid. Elements. Book 1. Greek. c. 300 BC.
[Frel2] Greg N. Frederickson. “The proof is in the pizza”. In: Math. Mag. 85.1 (2012), pp. 26—

33. 1ssN: 0025-570X. DOI: |10.4169/math.mag.85.1.026. URL: https://doi.org/10.
4169/math.mag.85.1.026.

[Gol68] Michael Goldberg. “Divisors of a circle: solution to problem 660”. In: Mathematics
Magazine 41 (1) (1968), p. 46.

[Gro78| Helmut Groemer. “On the extension of additive functionals on classes of convex sets”.
In: Pacific J. Math. 75.2 (1978), pp. 397-410. 1ssN: 0030-8730. URL: http://projecteuclid.
org/euclid.pjm/1103121472.

[GB85] Larry C. Grove and Clark T. Benson. Finite reflection groups. Second. Vol. 99. Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1985, pp. x+133. 1SBN: 0-387-
96082-1. poI: 10.1007/978-1-4757-1869-0. URL: https://doi.org/10.1007/978-
1-4757-1869-0.

[Her01] Rebecca A. Herb. “Discrete series characters as lifts from two-structure groups”. In:
Trans. Amer. Math. Soc. 353.7 (2001), pp. 2557-2599. 1SSN: 0002-9947. DOT: 10.1090/
S0002-9947-01-02827-6. URL: https://doi.org/10.1090/50002-9947-01-02827-
6.

[Her00] Rebecca A. Herb. “Two-structures and discrete series character formulas”. In: The
mathematical legacy of Harish-Chandra (Baltimore, MD, 1998). Vol. 68. Proc. Sympos.
Pure Math. Amer. Math. Soc., Providence, RI, 2000, pp. 285-319. DOI: [10. 1090/
pspum/068/1767900. URL: https://doi.org/10.1090/pspum/068/1767900.

19


https://doi.org/10.1090/spmj/1732
http://www.jstor.org/stable/2690845?origin=pubexport
http://www.jstor.org/stable/2690845?origin=pubexport
https://doi.org/10.4171/jca/62
https://doi-org.ezproxy.uky.edu/10.4171/jca/62
https://doi-org.ezproxy.uky.edu/10.4171/jca/62
https://doi.org/10.1090/tran/8664
https://doi-org.ezproxy.uky.edu/10.1090/tran/8664
https://doi-org.ezproxy.uky.edu/10.1090/tran/8664
https://doi.org/10.4169/math.mag.85.1.026
https://doi.org/10.4169/math.mag.85.1.026
https://doi.org/10.4169/math.mag.85.1.026
http://projecteuclid.org/euclid.pjm/1103121472
http://projecteuclid.org/euclid.pjm/1103121472
https://doi.org/10.1007/978-1-4757-1869-0
https://doi.org/10.1007/978-1-4757-1869-0
https://doi.org/10.1007/978-1-4757-1869-0
https://doi.org/10.1090/S0002-9947-01-02827-6
https://doi.org/10.1090/S0002-9947-01-02827-6
https://doi.org/10.1090/S0002-9947-01-02827-6
https://doi.org/10.1090/S0002-9947-01-02827-6
https://doi.org/10.1090/pspum/068/1767900
https://doi.org/10.1090/pspum/068/1767900
https://doi.org/10.1090/pspum/068/1767900

[Hir+99]

[Hum90]

[JT78]

[KRY7]

[MD09]

[Sah79]

[Sch14]

[SWO0S]

Jeremy Hirschhorn et al. “The pizza theorem”. In: Austral. Math. Soc. Gaz. 26.3 (1999),
pp. 120-121. 1ssN: 0311-0729.

James E. Humphreys. Reflection groups and Coxeter groups. Vol. 29. Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990, pp. xii+204.
ISBN: 0-521-37510-X. DOI: [10.1017/CB09780511623646. URL: https://doi.org/10.
1017/CB09780511623646.

Borge Jessen and Anders Thorup. “The algebra of polytopes in affine spaces”. English.
In: Math. Scand. 43 (1978), pp. 211-240. 1sSN: 0025-5521. DOI: |10.7146/math.scand.
a-11777.

Daniel A. Klain and Gian-Carlo Rota. Introduction to geometric probability. Lezioni
Lincee. [Lincei Lectures|. Cambridge University Press, Cambridge, 1997, pp. xiv+178.
ISBN: 0-521-59362-X; 0-521-59654-8.

Rick Mabry and Paul Deiermann. “Of cheese and crust: a proof of the pizza conjecture
and other tasty results”. In: Amer. Math. Monthly 116.5 (2009), pp. 423-438. 1SSN:
0002-9890. DOT: 10 .4169/193009709X470317. URL: https://doi.org/10.4169/
193009709X470317.

C. H. Sah. Hilbert’s third problem: scissors congruence. Vol. 33. Research Notes in
Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979,
pp. vi+188. 1SBN: 0-273-08426-7.

Rolf Schneider. Convex bodies: the Brunn-Minkowski theory. expanded. Vol. 151. Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, Cambridge,
2014, pp. xxii+736. 1sBN: 978-1-107-60101-7.

Rolf Schneider and Wolfgang Weil. Stochastic and integral geometry. Probability and its
Applications (New York). Springer-Verlag, Berlin, 2008, pp. xii+693. 1SBN: 978-3-540-
78858-4. DOI: 10.1007/978-3-540-78859-1. URL: https://doi.org/10.1007/978-
3-540-78859-1.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506-0027, USA.
http://www.math.uky.edu/~ jrge/, richard.ehrenborg@uky.edu.

ENS DE LyoN, UNITE DE MATHEMATIQUES PURES ET APPLIQUEES, 69342 LyoN CEDEX 07, FRANCE.
http://perso.ens-lyon.fr/sophie.morel/, sophie.morel@ens-lyon.fr.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, LEXINGTON, KY 40506-0027, USA.
http://www.math.uky.edu/ readdy/, margaret.readdyQuky.edu.

20


https://doi.org/10.1017/CBO9780511623646
https://doi.org/10.1017/CBO9780511623646
https://doi.org/10.1017/CBO9780511623646
https://doi.org/10.7146/math.scand.a-11777
https://doi.org/10.7146/math.scand.a-11777
https://doi.org/10.4169/193009709X470317
https://doi.org/10.4169/193009709X470317
https://doi.org/10.4169/193009709X470317
https://doi.org/10.1007/978-3-540-78859-1
https://doi.org/10.1007/978-3-540-78859-1
https://doi.org/10.1007/978-3-540-78859-1

	1. Introduction
	2. Review of 2-structures and of the basic identity
	3. A dissection proof of the higher-dimensional pizza theorem
	4. The Bolyai-Gerwien Theorem
	Acknowledgements
	References

